
2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-6654-0126-5/21/$31.00 ©2021 IEEE 1499

A Semantic Framework for Secure and Efficient
Contact Tracing of Infectious Diseases

Payton Schubel∗, Zhiyuan Chen†, Adina Crainiceanu‡, Karuna P Joshi† and Don Needham‡
∗ Duke University Durham, NC, Email: {payton.schubel}@duke.edu

† University of Maryland Baltimore County, Baltimore, MD, Email: {zhchen, karuna.joshi}@umbc.edu
‡United States Naval Academy, Annapolis, MD, Email: {adina, needham}@usna.edu

Abstract—Contact tracing is the process of identifying people
who came into contact with an infected person (“case”) and
collecting information about these contacts. Contact tracing is an
essential part of public health infrastructure and slows down the
spread of infectious diseases. Existing contact tracing methods
are extremely time and labor intensive due to their reliance
on manually interviewing cases, contacts, and locations visited
by cases. Additionally, complex privacy regulations mean that
contact tracers must be extensively trained to avoid improper
data sharing. App-based contact tracing, a proposed solution
to these problems, has not been widely adopted by the general
public due to privacy and security concerns. We develop a secure,
semantically rich framework for automating the contact tracing
process. This framework includes a novel, flexible ontology for
contact tracing and is based on a semi-federated data-as-a-
service architecture that automates contact tracing operations.
Our framework supports security and privacy through situation-
aware access control, where distributed query rewriting and
semantic reasoning are used to automatically add situation
based constraints to protect data. In this paper, we present our
framework along with the validation of our system via common
use cases extracted from CDC guidelines on COVID-19 contact
tracing.

Index Terms—Ontology, Contact tracing, Access control, Au-
tomation, Semantic web

I. INTRODUCTION

Contact tracing, which identifies and notifies individuals
who had close contact with a confirmed or probable case of
an infectious disease, must be improved to effectively combat
large scale pandemics like COVID-19. Current contact tracing
process requires interviewing cases, contacts, and the places
cases visited to determine who was exposed to an infectious
disease. The procedure is time consuming and labor intensive
and becomes less effective during the peaks of epidemics [1].
Current efforts to improve manual contact tracing frequently
focus on better recruitment and training, not automation [2].

Apps proposed to combat contact tracing’s inefficiency
during the COVID-19 pandemic generally have low use when
voluntarily adopted, since users are concerned with the apps’
ability to maintain their privacy and security [3].

We have developed a novel contact tracing system to address
these challenges. Our system builds on existing contact tracing
methods where public health officials investigate cases and
inform contacts. We contribute the following:

1) We built a novel and flexible ontology for contact tracing
of infectious diseases. To the best of our knowledge, this

is the first ontology designed for practical contact tracing
of infectious respiratory diseases.

2) Our framework is based on a semi-federated Data-as-a-
Service architecture which allows many contact tracing
operations to be automated using SPARQL queries over
data stored at multiple member locations.

3) We incorporate query rewriting to support security and
privacy by situation-aware access control.

4) We validate our solution using use cases extracted from
CDC guidelines [4].

5) We implement our solution using Apache Jena Fuseki.

Section II presents the architecture of our framework. Sec-
tion III describes the ontology. Section IV describes automat-
ing some contact tracing operations. Section V explains how
we enforce security and privacy using situation-aware access
control. Section VI describes validating our solution. Section
VII concludes the paper and discusses future work.

II. SYSTEM ARCHITECTURE

Fig. 1. An overview of the proposed system architecture, modified from [5]

We assume that all entities store data for the contact tracing
process in an RDF format that is consistent with our contact
tracing ontology. Our architecture is similar to our prior work
[5], illustrated in Figure 1. The main difference is that our
system is semi-federated, meaning most communications go
through the organization in charge of contact tracing.

Organizations can implement personalized access control
rules that apply when querying their specific data in addition
to proposed universal access control rules. Rules are stored in
a cloud-based repository for easy access. A trusted middleware
contains the query engine and the query rewriting module
proposed in our original work to implement the rules [5].

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

io
in

fo
rm

at
ic

s a
nd

 B
io

m
ed

ic
in

e
(B

IB
M

) |
 9

78
-1

-6
65

4-
01

26
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

B
IB

M
52

61
5.

20
21

.9
66

96
63

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 01,2022 at 18:07:16 UTC from IEEE Xplore. Restrictions apply.

1500

We use the open source Apache Jena Fuseki code to
implement this architecture. Each member in the system has
a Jena/Fuseki server which provides a SPARQL 1.1 service
endpoint.

III. ONTOLOGY

There have been several ontologies implemented to classify
infectious diseases or collect patient data [6]–[8]. However,
none of these ontologies have the depth, breadth, or flexibility
required to map detailed exposure scenarios as indicated by
CDC guidelines [4].

We used the ontology development tool Protégé and the
W3C Web Ontology Language (OWL) to design a practical
contact tracing ontology. This ontology prioritizes flexibility
to try to model all possible contact tracing scenarios. Ad-
ditionally, we wanted to collect all information relevant to
contact tracers. The ontology class structure developed from
these principles is presented in Figure 2.

When selecting major classes, we considered what infor-
mation contact tracers needed to know as per CDC guidelines
[4]. This resulted in creating Personal Information and its sub-
classes. Information is classified as open, closed, or protected
based on how carefully that information is protected by rules
and privacy regulations.

We considered the practical information users need to trace
contacts. For example, public health officials need contact
information in order to inform individuals of their disease
status. Also, public health officials need certain information
about those places e.g. their address, purpose, or layout in
order to investigate disease exposure there. Classes were
created to account for these needs.

We also considered how to link information in order to
automatically determine disease exposure. To be exposed to
a disease, one would have to be at the same location as
an infected case at the same time. Visits were used to
link people to places they went at certain times so that the
system could contact trace. Regular_Visits are recurring
visits that allow users to contact trace without reentering each
recurrence into the system.

Finally, we considered how to make the ontology flexible.
We present an approach similar to the PLATYS ontology,
which classifies places using a secondary type class (e.g.
PlaceType) to determine what kind of place is described by
the instance [9]. Adding a new type of place (e.g. movie
theater) simply requires a new instance of PlaceType as (e.g.
‘movie theater’) and associating a Place instance with this
new PlaceType. This structure was used to classify places,
organizations, and data in our ontology.

The complete ontology, including major relationships and
data type properties, can be found in [10].

IV. AUTOMATION

A. Background

We list several potential applications of our ontology below.
We implemented and tested the first application, and our
system provides support to execute others as well.

• Accessing place or organization data directly

• Assigning people, visits, or places to users based on
characteristics such as role, location, or caseload

• Identifying disease contacts based on visits/locations
• Purging data from the system after a set period of time

B. Example Use Case

We consider Alice, a student with confirmed COVID-19. We
wish to request data from Alice’s school to determine contacts
for COVID-19.

We assume that data relevant for contact tracing is stored on
two servers. The public health server stores information col-
lected from Alice directly. The school’s server stores classes,
attendance, and rosters. A query sent to the school needs to
return personal and contact information students who attend
class with Alice, as well as attendance records for her class.

Suppose Alice is identified as Person1a on the public
health server. The complete query is provided in [10], with
segments provided below. First, Alice’s name and contact
information is pulled from the public health server in order
to identify her.

1 # C o l l e c t i n f o r m a t i o n t o i d e n t i f y A l i c e
2 p a t h : P e r s o n 1 a p a t h : h a s F i r s t N a m e ? fname ;
3 p a t h : hasLastName ? lname .
4 ? c o n t a c t r d f s : s u b P r o p e r t y O f * p a t h :

h a s C o n t a c t I n f o r m a t i o n .
5 p a t h : P e r s o n 1 a ? c o n t a c t ? c o n t a c t I n f o .

Since each server maintains its own database, the same
entity may have different identifiers on different servers. The
query needs to link these entities. After determining Alice’s
school and entering the school’s server, Alice’s name and
contact information links her to the school’s server, as shown
below. The variable ?PUI refers to Alice in the school’s
server, and it has the same name and contact information
as Person1a. Other entities can be linked in a similar
way. Then other individuals exposed to Alice (?Person) are
determined from the visits (classes) Alice attended.

1 SERVICE <h t t p : / / 1 9 2 . 1 6 8 . 1 0 0 . 5 : 3 0 3 0 / ds>{
2 # Link A l i c e in s c h o o l d a t a based on fname ,

lname , c o n t a c t I n f o
3 ? PUI p a t h : h a s F i r s t N a m e ? fname ;
4 p a t h : hasLastName ? lname ;
5 ? c o n t a c t ? c o n t a c t I n f o .
6 # Find p e o p l e at V i s i t s w i th A l i c e
7 ? V i s i t 2 p a t h : v i s i t e d B y ?PUI , ? Pe r s on ;

Once those exposed to Alice are identified, their personal
information can be determined. This query is presented prior to
query-rewriting, where situation-specific privacy and security
conditions are added to the query.

V. SITUATION-AWARE ACCESS CONTROL

Situation-aware access control allows access to certain data
based on dynamic situations, such as whether a contact tracer
is assigned to a specific case.

Each member of the federated system can implement rules
for accessing their specific data, in addition to universal rules
applied generally. A non-exhaustive list of example rules are
as follows:

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 01,2022 at 18:07:16 UTC from IEEE Xplore. Restrictions apply.

1501

Fig. 2. The complete class structure of the contact tracing ontology

• Users only can access a Person’s closed or protected
personal information if a Person is a case for some
disease.

• Users can access information related to an entity only if
they are assigned to that entity.

• Information regulated by certain privacy regulations like
HIPAA can only be accessed with explicit permission.

Once access control rules are defined, they can be enforced
by the query rewriting algorithm that extends the method in
[5].

Our original query-rewriting solution does not consider
expanded queries with keywords such as UNION, FILTER,
or OPTIONAL [5]. We can extend our previous solution by
recognizing that queries with the UNION keyword can be
rewritten as two nearly identical queries, with the query rewrit-
ing algorithm applied to each rewritten query. Additionally,
FILTERs will not return more results than an unfiltered query,
so restriction can ignore filters. Finally, access control rules
for data queried using OPTIONAL can be added within the
OPTIONAL block.

We again consider Alice, a student and confirmed case of
COVID-19. This is the same example used in section IV-B.
Consider UserC who wants to query the school’s information.
We consider the following:

• Since Alice’s school is regulated by FERPA, Users need
explicit permission to access the school’s data.

• Only Users with a role of Contact Tracer or Outbreak
Investigator can query data from the school.

• Contact Tracers accessing data in the system must be
assigned to the case Alice or to the Visit itself.

• Outbreak Investigators accessing data in the system
must be assigned to an entity containing the Visit’s
location (e.g. assigned to a district which contains the
school which contains the classroom) or to the Visit itself.

The rewritten query, which has the same content as the
query provided in section IV-B while implementing access
control rules, is provided in [10]. Sections of the query
illustrating the access control rules are provided below. First,

UserC confirmed to be assigned to Alice (Person1a) or
the location being investigated (?Place or ?entity). Then
UserC’s ID is retrieved in order to link UserC in the school’s
server.

1 { p a t h : UserC p a t h : hasRo le p a t h :
C o n t a c t T r a c e r

2 { p a t h : UserC p a t h : a s s i g n e d p a t h : P e r s o n 1 a .
3 p a t h : P e r s o n 1 a p a t h : i s C a s e F o r p a t h : Covid

−19.}
4 UNION{ p a t h : UserC p a t h : a s s i g n e d ? V i s i t .}}
5 UNION{ p a t h : UserC p a t h : hasRo le p a t h :

O u t b r e a k I n v e s t i g a t o r .
6 { p a t h : UserC p a t h : a s s i g n e d ? V i s i t .}
7 UNION{{ p a t h : UserC p a t h : a s s i g n e d ? P l a c e .}
8 UNION{ p a t h : UserC p a t h : a s s i g n e d ? e n t i t y .}}}
9 #Use UserID t o check a c c e s s at t h e s c h o o l

10 p a t h : UserC p a t h : u s e r I D ? ID .

After confirming their assignment, UserC’s ID is sent to
the school to confirm that they have permission to access
information about the class (?Visit2). ?User is UserC,
since they have the same ID.

1 SERVICE <h t t p : / / 1 9 2 . 1 6 8 . 1 0 0 . 5 : 3 0 3 0 / ds>{
2 ? User p a t h : u s e r I D ? ID .
3 ? User p a t h : canAccess ? V i s i t 2

Once access has been confirmed, the query can return the
information about contacts for COVID-19 in Alice’s class.

VI. VALIDATION

Setup: We simulated two servers using Apache Jena Fuseki
on two virtual machines: a public health server to store contact
tracing data, and a contact tracing partner (e.g: a school, an
employer, a movie theater etc). Each VM has 2 GB RAM
and 32 GB hard disks. Both VMs were hosted by a machine
with 16GB RAM and an Intel i7-8665U 1.90GHz processor.
We used the Micro Owl Reasoner to leverage the ontology’s
logic.

We validated our solution by applying it to use cases
reflecting common situations contact tracers encounter [4]. The
situations considered are:

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 01,2022 at 18:07:16 UTC from IEEE Xplore. Restrictions apply.

1502

Use Case No. of triples on
Partner’s server

Result Size No. of
Rules Used

School 1158 4 3
Household Not using part-

ner’s server
6 3

Work 1072 5 3
Social Event 1086 28 3
Venue Exposure 1086 3 3

TABLE I
DATA SET CHARACTERISTICS, RESULT SIZES, AND NUMBER OF RULES

USED IN EACH USE CASE.

1) School: This is the use case described in section IV-B to
find contacts at school.

2) Household: Finding contacts that share a household with
the case.

3) Work: Finding contacts exposed at work.
4) Social Event: Finding contacts exposed at a social event

(e.g. a movie).
5) Venue Exposure: A venue querying whether it or any of

its locations were exposed to a disease.
These queries were implemented by considering the fictional
case Alice, who exposed contacts at school, work, home, and
the movies. All situations were successfully implemented with
our ontology. All queries and data sets used to validate these
use cases can be found in our repository [10].

The public health server contained 1152 triples. Table I lists
the number of triples on each partner’s server, the result size,
and number of access control rules used for each use case.

Since our algorithm has not yet been modified to account for
UNION, FILTER and OPTIONAL, the situation-aware access
control rules for these use cases were added manually [5].

Results: Figure 3 presents the average execution time of each
query over 10 trials with the highest and lowest execution
times dropped. These trials were conducted with access control
constraints.

Fig. 3. The average execution time of each query over 10 trials with the
highest and lowest execution times dropped.

While Social Event query has a slightly higher execution
time, it is still under 20 seconds on average. The execution
times of these use cases are reasonable given the modest hard-
ware used in the experiments and demonstrate the feasibility

of implementing our contact tracing system. However, it is
difficult to tell how the efficiency of our system compares to
other contact tracing systems without a larger data set. Greater
efficiency can be achieved by building additional indexes or
optimizing the queries.

VII. CONCLUSION AND FUTURE WORK

Existing contact tracing systems are either inefficient or lack
public trust due to security concerns. In this paper we propose
an approach to increase the efficiency of the contact tracing
process while protecting privacy. Our framework supports
both situation-aware access control via query rewriting and
automation of some contact tracing tasks in a semi-federated
data-as-a-service system.

In our future work, we plan to collect use cases from
contact tracing domain experts to ensure our ontology can
handle those situations. Additionally, we plan to implement
extensions to the query rewriting algorithm proposed in our
previous work to handle more complex queries [5] and run
larger scale experiments.

ACKNOWLEDGMENT

This research is partially supported by the NSF REU Site
grant CNS-2050999 for Smart Computing and Communica-
tions as well as Office of Naval Research grant N00014-18-
1-2452. The authors thank project director Dr. Nirmalya Roy
and UMBC’s Mobile, Pervasive and Sensor Computing Lab
for hosting this research.

REFERENCES

[1] E. Clark, E.Y. Chiao, and S. Amirian, ”Why contact tracing efforts have
failed to curb coronavirus disease 2019 (COVID-19) transmission in
much of the United States,” in Clinical Infectious Diseases, vol. 72 no.
9 pp. e415-e419, May 2021. Volume 72, Issue 9, 1 May 2021.

[2] P. Koetter et al., “Implementation and process of a COVID-19 contact
tracing initiative: leveraging health professional students to extend the
workforce during a pandemic,” in American Journal of Infection Control,
vol. 48 no. 12 pp. 1451-1456, Dec 2020.

[3] F. Legendre, M. Humbert, A. Mermoud, and V. Lenders, ”Contact
tracing: an overview of technologies and cyber risks,” 2020. [Online].
Available: https://arxiv.org/abs/2007.02806

[4] Centers for Disease Control and Prevention. ”Contact Tracing,” June
2021. [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/
php/contact-tracing/index.html

[5] S. Oni, Z. Chen, A. Crainiceanu, K. P. Joshi and D. Needham, ”A
Framework for Situation-Aware Access Control in Federated Data-as-
a-Service Systems Based on Query Rewriting,” in IEEE International
Conference on Services Computing, 2020, pp. 1-11.

[6] D, McGagh, H. Liyanage, S. de Lusignan and J. Williams, ”COVID-
19 surveillance ontology.” Jan 2021, accessed June 21, 2021. [Online].
Available: https://bioportal.bioontology.org/ontologies/COVID19

[7] D. Biswanath and M. DeBellis, ”An ontology for collection and analysis
of COVID-19 data.” Oct 2020, accessed June 21, 2021. [Online].
Available: https://bioportal.bioontology.org/ontologies/CODO

[8] L. Bonino, ”WHO COVID-19 rapid version CRF semantic data model.”
June 2020, accessed June 21, 2021. [Online]. Available: https://bioportal.
bioontology.org/ontologies/COVIDCRFRAPID

[9] L. Zavala et al., ”Platys: From Position to Place- Oriented Mobile
Computing,” in AI Magazine, vol. 36 no. 2. pp. 50-62. 2015.

[10] P. Schubel, ”Contact-tracing,” August 2021. [Online]. Available:
https://github.com/pns13-umbc/contact-tracing

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on March 01,2022 at 18:07:16 UTC from IEEE Xplore. Restrictions apply.

