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Warming weakens the night-time barrier to 
global fire

Jennifer K. Balch1,2 ✉, John T. Abatzoglou3,9 ✉, Maxwell B. Joseph1,4,9, Michael J. Koontz1,9, 
Adam L. Mahood1,2,9, Joseph McGlinchy1,5,9, Megan E. Cattau6 & A. Park Williams7,8 ✉

Night-time provides a critical window for slowing or extinguishing fires owing to the 
lower temperature and the lower vapour pressure deficit (VPD). However, fire danger 
is most often assessed based on daytime conditions1,2, capturing what promotes fire 
spread rather than what impedes fire. Although it is well appreciated that changing 
daytime weather conditions are exacerbating fire, potential changes in night-time 
conditions—and their associated role as fire reducers—are less understood. Here we 
show that night-time fire intensity has increased, which is linked to hotter and drier 
nights. Our findings are based on global satellite observations of daytime and 
night-time fire detections and corresponding hourly climate data, from which we 
determine landcover-specific thresholds of VPD (VPDt), below which fire detections 
are very rare (less than 95 per cent modelled chance). Globally, daily minimum VPD 
increased by 25 per cent from 1979 to 2020. Across burnable lands, the annual number 
of flammable night-time hours—when VPD exceeds VPDt—increased by 110 hours, 
allowing five additional nights when flammability never ceases. Across nearly one-fifth 
of burnable lands, flammable nights increased by at least one week across this period. 
Globally, night fires have become 7.2 per cent more intense from 2003 to 2020, 
measured via a satellite record. These results reinforce the lack of night-time relief 
that wildfire suppression teams have experienced in recent years. We expect that 
continued night-time warming owing to anthropogenic climate change will promote 
more intense, longer-lasting and larger fires.

Human-caused climate change has warmed the night more than the day 
over the past seven decades3,4, with unknown consequences for global 
fire activity. Nightfall brings lower temperatures, reduced evapora-
tive demand and increased fuel moisture5,6—providing a natural bar-
rier to fire spread and reducing fire intensity. A key metric for how the 
atmosphere dries fuels across the diurnal oscillation in irradiance is 
the vapour pressure deficit (VPD), an absolute measure of the differ-
ence between the air’s water vapour content and its saturation value7.

Although many climate variables are strongly associated with 
global fire activity8,9, VPD is one of the most important predictors of 
the actual fire spread rate10. Furthermore, an increased VPD has been 
directly connected to observed increases in burned area in Alaska’s 
boreal forests11 and the western United States12,13. Previous work has 
documented changes in global fire weather and seasonal extension1,2, 
but this has been primarily tied to daytime conditions. Minimum VPD 
(VPDmin), which most often occurs at night, can provide a fundamental 
barrier for fire if it allows fuels to approach their moisture of extinc-
tion—the fuel moisture content at which fire propagation is halted14. 
The extent to which wildfire is a contagion phenomenon across days 
and nights is partly governed by the diurnal oscillation in VPD, par-
ticularly night-time VPD conditions, and consequent fluctuations in 

fuel flammability. VPD is a strong predictor of fuel moisture15, which 
tends to equilibrate rapidly with atmospheric humidity, particularly 
for fine fuels such as leaf litter and small-diameter woody debris16. 
Therefore, identifying VPD thresholds that extinguish fires is criti-
cal for understanding the diurnal fire cycle. Although many studies 
have documented the increases in overall VPD7,17,18, the trends in global 
night-time VPD remain unexplored.

Global- and continental-scale active fire products from satellites pro-
vide observations of night-time fire19–21; however, only general summa-
ries of the diurnal cycle have been provided22. It has been documented, 
for example, that peak fire activity tends to occur during the afternoon 
across arid to tropical ecosystems23,24, and larger fires are known to have 
greater night-time fire activity25. Regional studies for Australia and 
Africa have further characterized geographical or seasonal patterns in 
night-time fires25–27. Local studies have documented that experimental 
fires in Amazon forests extinguish at night in non-drought years28, and 
wildfires have been observed to go out at night in the wet–dry tropics of 
Australia in the early dry season23,29. There are also important anecdotes 
of wildfires that make remarkable runs at night under very hot, dry and 
windy conditions, for example, the Tubbs wildfire in California (2017) 
and the Snowy Complex in Australia (2019–2020).
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Although there is limited understanding of global night-time fire, 
there is clear acknowledgement of the diurnal weather cycle in fire sup-
pression efforts and intentional land management fires. Fire suppres-
sion operations take advantage of night-time conditions, when wildfires 
tend to ‘lie down’ and be less intense30. Furthermore, the ‘10 a.m.’ policy 
established by the US Forest Service in 193531 agitated for quick suppres-
sion the morning after detection, implicitly acknowledging this diurnal 
oscillation. In addition, suppression teams often take note of the rela-
tive humidity recovery at night32. Deforestation fires in tropical regions 
aim for peak dryness during the dry season33, as hot afternoons achieve 
a more complete combustion of biomass. Agricultural management34 
and prescribed fires35 tend to be conducted during the day—implicitly 
using the night-time barrier to prevent escape. Indigenous burning 
practices around the world have also been documented to take advan-
tage of the time of day for planning intentional fires36. However, none 
of these studies have explored the climatic drivers of night-time fires, 
nor the potential link or consequences of anthropogenic warming.

Here we define key aspects of the global night-time fire regime, 
including the frequency of active fires, the fire radiative power (FRP; 
a proxy for fire intensity20) and the seasonal peak in both frequency and 
FRP. This is a critical advance in our conceptualization of fire regimes 
at a subdaily, global scale using state-of-the-science fire-detection 
technology from remote-sensing and data-harmonization approaches. 
We define the burnable globe based on 25 vegetated landcover types 
that had at least 100 fire events (2017–2020; Methods). These landcover 
types were determined by combining the broadest Köppen–Geiger 
climate classifications (arid, boreal, equatorial and temperate; polar 
excluded) with 11 Moderate Resolution Imaging Spectroradiometer 
(MODIS) landcovers (see Methods for data sources): woody savannahs, 
savannahs, evergreen broadleaf forests, deciduous broadleaf forests, 
evergreen needleleaf forests, cropland, cropland/natural vegetation 
mosaic, closed shrublands, open shrublands, grassland and mixed 
forest (Extended Data Fig. 1).

Second, we quantify landcover-specific VPD thresholds (VPDt) for 
when fires extinguish using satellite-derived fire perimeters for 81,809 
fire events (2017–2020) in North America and South America. These 

events were delineated using the Fire Events Delineation (FIRED) 
spatiotemporal clustering algorithm37 on MODIS burned area pixels, 
which were then joined with Geostationary Operational Environmen-
tal Satellite-R Series (GOES-16) active fire detections19 and European 
Centre for Medium-Range Weather Forecasts Reanalysis version 5 
(ERA5) hourly VPD estimates38 (Methods). This data harmonization 
enables evaluation of fire-event progression at an hourly timestep 
for tens of thousands of events—a key advance. Fires were considered 
extinguished when models predicted a 95% chance of no active fire 
detection (Methods). This definition expands on our understanding 
of the physical models of fire spread14 to build a remote-sensing-based 
interpretation of fire extinction.

Last, we quantify how night-time fire activity and the night-time 
fire season have changed. We characterize trends in the night-time 
fire season (when VPD > VPDt on an hourly and daily scale) globally 
over the past 42 years using ERA5 climate data, extending the deter-
mination of VPD thresholds to the major landcover types mentioned 
above. We also explore trends in MODIS-derived daytime and night-time 
FRP and active fire counts over the longest-available satellite record 
(2003–2020) of global night-time fire activity. Our approach capitalizes 
on multiple sources of remotely sensed fire and weather data to explore 
night-time fire activity during individual events and determine under 
what VPD conditions fires go out. To our knowledge, this is the first 
effort to explore global trends in night-time fire activity (2003–2020) 
and to determine how the climatological night-time fire season has 
changed (1979–2020) at an hourly scale as a function of increasing 
night-time temperatures.

Substantial night fires occur globally
Across 16.3% of the global burnable land area, night-time fires accounted 
for more than one-quarter of MODIS-derived active fire detections dur-
ing 2003–2020 (Fig. 1, Extended Data Table 1). On an annual basis, 10.4% 
(±0.9% standard deviation (s.d.)) of global MODIS active fire detec-
tions during 2003–2020 occurred during night-time hours (defined 
based on solar elevation angle and including only vegetation fires with 
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Night-time fire detections (%)

Fig. 1 | Large portions of the globe experience night-time fires. The map 
shows the percentage of 2003–2020 active fire detections (n = 80,190,449) 
that occurred at night, from MODIS Fire Information for Resource 
Management System (FIRMS) data aggregated to 1° resolution20. The displayed 

pixel values are thresholded at 60% detection; less than 1% of the mapped land 
area had more than 60% of fire detections at night. Map developed using 
Python software.
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>10% detection confidence) (Methods, Extended Data Tables 2, 3). 
The percentage of night-time detected fires ranged from 5% to 38% 
across burnable landcover types (Extended Data Table 1). Night-time 
fire detections were most prevalent in temperate evergreen needleleaf 
forests, with 38% of detections occurring at night. Cropland fires hap-
pened mostly during daytime hours (89–95% of active fire detections 
occurred during the day across equatorial, arid, temperate and boreal 
croplands). The FRP was generally lower at night (with the exception 
of boreal grasslands), constituting 52–97% of daytime FRP/detection, 
depending on the landcover type (Extended Data Table 1). The peak of 
the night-time fire season tended to occur after or coincident with the 
peak of the daytime fire season as measured by detection frequency 
for the majority of landcover types, with the exception of equatorial 
grasslands and croplands in the arid, temperate and boreal Köppen–
Geiger climate classes. The peak night-time fire season when measured 
by FRP often did not coincide with the peak measured by detection 
frequency, indicating that satellite-derived fire counts and intensity 
are not necessarily coupled (Extended Data Fig. 2).

VPD conditions when fires extinguish
We modelled the diurnal cycle of fire on a continental, hourly scale 
to calculate event-level VPD thresholds for fire extinction (VPDt).  
We estimated VPD thresholds by quantifying relationships between 
hourly VPD and GOES active fire detections using generalized linear 
mixed models, then using the predictive distributions of these models 
to find the VPD values for which there was a 95% posterior probability of 
zero active fire detections (definition of VPDt) (Methods). We also use 
these VPD thresholds to define ‘flammable’ hours, when VPD > VPDt. 
We trained landcover-specific models by extracting hourly GOES active 
fire detections19 (May 2017–July 2020) and hourly VPD calculated from 
ERA538 within FIRED event perimeters for North America and South 
America37, resulting in 13,073,214 hourly observations across 81,809 

events. Across the 25 burnable landcover types there was a similar, 
positive relationship: an increase in VPD heightened the probability 
of fire detection (Fig. 2, Extended Data Fig. 3, Extended Data Table 2). 
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Fig. 2 | VPD provides a key metric for the atmospheric moisture conditions 
that can cause fire extinction. Predicted relationships between hourly VPD38 
and GOES active fire detections19 during the burning period of 81,809 fire 
events in North America and South America. The y-axis position represents the 
median of the posterior predictive distribution, coloured by Köppen–Geiger 
climate classification. Each line represents a landcover type within the 
Köppen–Geiger classes with at least 100 fire events during the GOES record 
(2017–2020). VPD thresholds ranged from 0.3 kPa to 2.3 kPa. The grey ribbons 
represent 90% credible intervals for the probability of active fire detection. See 
Extended Data Fig. 4 for a representation of uncertainty for each landcover 
type. Figure developed using R software.
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VPDt ranged from 0.3 kPa to 2.3 kPa across these landcover types. Crop-
lands had the highest VPDt, with equatorial, arid and temperate crop-
lands ranging from 2.0 kPa to 2.3 kPa. Beyond croplands, equatorial 
landcover types had the next highest set of VPD thresholds (range 
1.7–2.1 kPa), whereas three temperate forest landcover types had the 
lowest thresholds (0.3–0.6 kPa). On an individual-fire-event scale, the 
oscillation in active fire counts tracked the diurnal oscillation in VPD 
(Fig. 3, Extended Data Fig. 4). From these thresholds, we define the 
climatological night-time fire season: the nights within a year where 
VPDmin > VPDt.

More flammable nights (1979–2020)
Annual mean VPDmin increased by an average of 25% across the global 
land surface over the 42-year period (Extended Data Fig. 5). Across 
all burnable lands, 82% experienced increased VPDmin, with signifi-
cant increases (P < 0.05) across 59% of the area. This trend has substan-
tial implications for fire behaviour and other Earth-system phenomena. 
Most fire weather indices incorporate only midday to afternoon 
weather conditions39,40 to provide proxies for potential maximum 
fire spread rates and burn intensity. Here we argue that it is equally 
important to consider the conditions that extinguish or slow fires, 
particularly at night.

Across the burnable globe, we document an annual average increase 
of 110 flammable night hours (VPD > VPDt; 36% increase) (Fig. 4, Table 1) 
gained over the 42-year period. The companion increase in flammable 
day hours was 238 day hours, a 27% increase (Table 1). The trend in 
night-time hours is spatially variable (Fig. 4) owing to differences in 
observed VPD trends and the underlying climatologies of the diur-
nal VPD, as globally there are 2.4 times as many daytime hours when 
VPD > VPDt versus at night (Extended Data Fig. 6). Among landcover 
types, temperate deciduous broadleaf forests and arid open shrub-
lands had the highest absolute increase in flammable night-time hours, 
248 h and 206 h over the record, respectively (Table 1). By continent, 
some of the most substantial increases in flammable night-time hours 
(>400 flammable night hours over the record) were in arid portions of 

western North America, equatorial grasslands and savannahs in South 
America and Africa, arid grasslands across Asia, and open shrublands 
in Australia (Fig. 4).

We further show that, on average, the number of nights per year when 
hourly VPD did not drop below VPDt increased by 5 nights (15% increase) 
(range across landcover types 0–22.2 nights) (Table 1, Extended  
Data Fig. 6). We find that 19.0% and 13.8% of burnable lands showed 
a lengthening of the mean annual night-time fire season by at least  
7 nights and 14 nights across the record, respectively. The landcover types 
that experienced at least a week-long extension included temperate 
evergreen needleleaf forests (10 nights), deciduous broadleaf for-
ests (10 nights), arid open shrublands (22 nights) and arid grasslands  
(10 nights) (Table 1). Notably, in the western United States, the number 
of flammable nights has increased by 11—representing a 45% increase 
over the four decades. We also document an increase in the annual 
maximum number of consecutive above-VPDt nights by an average of 
1.8 nights, or a 10% increase across burnable lands (Table 1, Extended 
Data Fig. 6). Such an increase in the length of the temporal window that 
lacks a night-time fire barrier represents an important and overlooked 
driver that can enable longer duration and consequently larger fire 
events. For example, more than 50% of active fire detections occurred at 
night during the devastating 2019–2020 Snowy Complex in southeast 
Australia and the 2017 Tubbs wildfire in California (Fig. 3).

Night-time fire intensity has increased
FRP is a proxy for fire intensity, providing a metric of radiative fire 
energy41 that integrates underlying fuel and climate conditions. Mean 
annual FRP per night-time detection significantly increased by 7.2% 
over the past 18 years (from 29.5 MW to 31.6 MW; P < 0.05; n = 8,365,435) 
(Fig. 5, Extended Data Figs. 7, 8). To our knowledge, this is the first global 
evidence of increased night-time fire activity from 2003 to 2020. The 
areas of the burnable globe that had an increase in flammable night 
hours (1979–2020) (Fig. 4) also showed a strong positive trend in mean 
FRP per detection from 2003 to 2020, whereas there was no detect-
able trend for areas with a decrease in night-time flammable hours 

–550 –400 –300 –200 –100 –50 50 100 200 300 400 550
Change in number of night-time hours VPD > VPDt

1979 2020
Year

1,354

1,599

561

693

Global land surface
 VPD annual hours

D N

Fig. 4 | The annual number of flammable night-time hours when VPD > VPDt 
increased by over a third from 1979 to 2020. Forty-seven per cent of burnable 
lands (by pixel) had significant (P < 0.05) positive trends in the number of 
night-time hours above the VPD38 threshold (80% had increases in total), 

according to a linear model. Inset: globally averaged area-weighted hours per 
year when VPD > VPDt during day (D, red) and night (N, blue; the scales are 
offset for day and night hours). The white areas indicate lands not classified as 
burnable. Map developed using Python software.
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(Extended Data Fig. 8). There were important regional differences; 
the western United States, central America, eastern Brazil, eastern 
Europe and eastern Australia showed significant positive trends in 
night-time FRP, whereas equatorial regions showed significant negative 
trends (Fig. 5, Extended Data Fig. 7). In the western United States, we 
found a 28% increase in mean annual night-time FRP per detection and 
strong interannual correlation with annual night-time flammable hours 
(R2 = 0.82). The boreal experienced the largest significant night-time 
increase across Köppen–Geiger climate classes during this time period, 
with a 9.7% increase in mean annual FRP per detection. The percentage 
of total fire counts that occurred at night significantly increased on 
a global scale over this period (2003–2020; P < 0.05; Extended Data 
Figs. 7, 8). This is largely driven by the faster decline in daytime active 
fire counts, compared with night-time active fire counts (2003–2020; 
Extended Data Fig. 8). This decline in fire frequency is consistent with 
the observed global decline in burned area, which is probably due to 
agricultural expansion and intensification over this period, such as in 
high-frequency fire regimes in African savannahs42. We expect that 
the climate signal in fire trends to be less influenced at night by agri-
cultural practices.

The ‘night brakes’ on fires are failing
Night-time burning is an understudied part of the global fire cycle, 
but is especially important to understand as anthropogenic warming 

weakens the night-time barrier to fire spread. We document that the 
daily minimum VPD has increased by 25% on average across global burn-
able lands since the 1970s. This has substantial consequences for the 
number of flammable nights, when VPD did not fall below VPDt, which 
increased in frequency by 36% from 1979 to 2020. Furthermore, over 
the best-available global satellite record of active fire detections, we 
discovered that night fires have become 7.2% more intense in just the 
past 18 years. We document that the most night-time burning (that is,  
where indicated by night-time active fire detections 2003–2020) 
occurred in temperate evergreen needleleaf forests (more than a third), 
and the least occurred in croplands (around 10% or less). These results 
indicate that intentional, land-management fires are most probably 
a daytime phenomenon, whereas temperate forest wildfires, such 
as those in western North America, may be marked by their ability to 
spread through the night. We also quantify key aspects of the night-time 
fire regime, including frequency, FRP and seasonality.

We further define the night-time fire season based on the number 
of nights in which VPDmin surpasses VPDt—a proxy for the atmospheric 
conditions that promote fire extinction (that is, when satellite-based 
fire detections were very rare for over tens of thousands of fire events). 
There were important regional differences in trends of VPDmin exceed-
ing VPDt: equatorial evergreen and deciduous broadleaf forests, for 
example, exhibited at least a 50% increase in the number of flammable 
night-time hours. This substantial increase in flammable night-time 
hours in tropical forests, a system that historically has many nights 

Table 1 | Summary of trend (number of) and relative trend (%) in flammable night hours, day hours, nights and consecutive 
nights (VPD > VPDt) by landcover across the 42-year record

Trend from 1979 to 2020 (number of) Relative trend from 1979 to 2020 (% change)
Landcover type Night 

hours
Day hours Nights Consecutive nights Night 

hours
Day hours Nights Consecutive nights

Equatorial savannahs 129.4 342.3 2.7 0.8 63 34 28 23

Equatorial deciduous broadleaf forests 152.3 289.7 1.1 0.2 57 21 22 15

Equatorial grasslands 109.4 345.2 3.7 1 56 34 19 16

Equatorial woody savannahs 39.4 187.3 0 0 55 40 9 9

Equatorial evergreen broadleaf forests 39.9 399.4 0.1 0 53 57 10 8

Boreal grasslands 82 178.7 1.4 0.7 46 34 24 14

Temperate croplands 25.6 128.4 0.1 0 46 44 −7 −9

Arid woody savannahs 180.1 290.2 3.7 0.4 45 26 53 21

Temperate savannahs 108 227.5 2.4 0.5 43 24 27 14

Boreal croplands 87.5 249 0.5 0.2 40 32 12 8

Arid savannahs 205.1 313.3 4.9 0.8 38 21 58 28

Temperate woody savannahs 121.4 227.1 2.7 0.5 38 18 16 8

Temperate grasslands 154.1 257.9 4.7 1.4 37 20 35 18

Equatorial permanent wetlands 50.8 216.7 1.6 0.6 34 35 28 26

Arid croplands 54.4 92.6 2.2 0.9 34 24 9 10

Equatorial cropland natural vegetation 
mosaics

20 123.4 0.1 0 34 37 7 4

Boreal savannahs 35.4 95.9 0 0 33 27 2 1

Temperate deciduous broadleaf forests 247.7 270 9.6 2 32 13 51 20

Boreal evergreen needleleaf forests 32.9 97.2 0 0 31 23 3 2

Boreal woody savannahs 44.2 124.5 0.1 0 26 21 3 1

Arid grasslands 182.4 223.9 10.3 5.4 24 14 42 28

Temperate evergreen broadleaf forests 115.8 152.3 1.4 0 24 10 15 0

Temperate evergreen needleleaf forests 191.8 190.9 10 2.1 22 10 35 16

Equatorial croplands 12.3 32.4 0.8 0.4 13 6 6 7

Arid open shrublands 206 238.8 22.2 4.8 11 8 24 18

All burnable landcover types 109.6 237.8 5 1.8 36 27 15 10

Ordered by greatest relative change in the number of night hours.
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that do not exceed VPDt, may provide another mechanism to explain 
how droughts, coupled with persistent ignitions from deforestation 
fires43, can promote escaped Amazon understory wildfires that last 
for weeks28,44. Importantly, in the western United States, which has 
experienced intense fire seasons in the past five years45,46, the annual 
number of flammable nights increased by 45% (1979–2020) and the 
annual mean night-time fire intensity increased by 28% (2003–2020). 
Hotter and drier nights across much of the western United States47 may 
partly explain why recent fire seasons have sustained long-duration 
wildfires and consequently burned such large areas.

Although substantial public attention and scientific effort have 
focused on extreme fire behaviour45,48, this effort highlights that it 
is equally important to investigate what puts fires out, particularly 
night-time weather conditions. The increase in the frequency of very 
warm nights has outpaced that of very warm days for much of the 
globe49. These trends are consistent with model simulations of anthro-
pogenic climate change, although future asymmetry in diurnal warming 
will depend on precipitation and soil moisture changes50, as well as 
changes in vegetation cover and water-use efficiency. The night-time 
cooling and recovery of moisture that occurs with the diurnal loss of 
solar radiation is a critical, yet vastly understudied, phenomenon that 
matters for understanding night-time fire regimes, including: (1) varia-
tion in fire severity that may occur at hourly scales, potentially creating 
fire refugia51,52; (2) temporal variation in the connectivity of flammable 
fuel, which can determine the rate and direction of fire spread and 
influence ecosystem resilience53; and (3) fire emissions resulting from 
lower intensity or smouldering burning54 that often occurs at night. One 
more week per year of flammable nights, shown across nearly a fifth of 
burnable lands, also represents a substantial loss in night-time relief 
for fire suppression efforts. It will be important to track night-time fire 
behaviour across this coming decade and beyond. Critically needed are 
openly available drone-, airborne- and space-based fire observations 
at fine enough spatial and temporal resolutions that enable recon-
struction of fire spread through the diurnal oscillation of VPD. With 
continued night-time warming, we expect to further lose the ‘night 
brakes’ on fire, resulting in a greater number of escaped wildfires that 
are more intense, longer-lasting and larger.
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Fig. 5 | Night-time fires have become more intense across large portions of 
the globe in just the past 18 years. The map shows the trend in MODIS 
night-time mean fire radiative power (MW per detection; 2003–2020,  
n = 8,365,435), at 1° resolution, for pixels with more than 180 MODIS active fire 
detections at night20 (positive and negative significant Siegel-estimated trends 

displayed where P < 0.05). The grey pixels are those defined as burnable but 
without a significant trend. Inset: the observed night-time global annual mean 
fire radiative power (MW per detection) and estimated trend in areas where 
night-time flammable hours increased from 1979 to 2020. Map developed 
using R software.
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Methods

We use a combination of satellite fire data and hourly climate data to 
make critical advances in understanding night-time fires. First, we 
classify active fire detections from the MODIS instruments20 as either 
‘night-time’ or ‘daytime’ detections based on solar elevation angle to 
better understand the diurnal changes in fire behaviour that may be 
a function of changes in solar radiation. We also correct for overpass 
frequency, which varies based on latitude for the polar-orbiting satel-
lites, Aqua and Terra, which carry the MODIS instruments. We do not 
distinguish between intentional fire and unintentional wildfires, as 
there is no globally available dataset that provides information on 
anthropogenic and natural ignitions. We delineate the croplands land-
cover class, which captures many intentional land-use fires55.

Second, we analyse hourly fire progression for 81,809 events, 
representing 935,817 km2 in total burned area (mean size ± s.d. 
11.3 km2 ± 61.6 km2) across North America and South America by 
harmonizing GOES-16 active fire detections (2017–2020; from the 
GOES-R Series) with FIRED fire events37. The Advanced Baseline Imager 
(ABI) onboard the GOES-R Series observes fires across North America 
and South America at high temporal resolution, approximately every 
5–15 min at 2-km spatial resolution56,57. FIRED is a newly developed 
fire event delineation algorithm that utilizes the MODIS burned area 
product58 to create perimeters around burned area pixels that are 
close in space and time37. The FIRED algorithm was validated with 
over 13,700 Monitoring Trends in Burn Severity (MTBS) fire perim-
eters, a Landsat-based product, and the agreement was very strong 
(that is, the linear relationship between the size of individual FIRED 
and MTBS events was R2 = 0.92)37. The representativeness of FIRED 
is directly related to the MODIS burned area product58. We expect 
with finer spatial resolution fire products, such as the 30-m Landsat 
burned area product that captures smaller fires59, that there will be 
greater insights into the patterns of daytime–night-time progression.  
The FIRED product was expanded for this study to North America and 
South America (2017–2020) to constrain GOES-16 active fire detec-
tions within FIRED event perimeters. Although the GOES-16 data have 
documented commission and omission errors, when compared with 
other active fire products60–63, we use only GOES-16 detections that 
lie within FIRED event perimeters. The data harmonization between 
GOES-16 and FIRED perimeters enables modelling the diurnal cycle 
of fire on a continental, hourly scale, to determine when individual 
fire events go extinct (that is, a 95% chance that there will be no GOES 
active fire detection within a FIRED perimeter). Fire danger is most 
often assessed based on daytime conditions, capturing what pro-
motes fire, rather than what puts fires out. Our modelling approach 
allows us to detect the lower VPD thresholds for fire, below which a 
fire extinguishes. This definition of extinction assumes that VPD has 
a dominant role in extinguishing fire events. However, it is important 
to note that anthropogenic influence may supersede the climatic 
influence on dampening fire spread. There are also known limitations 
and differences in the MODIS and GOES fire products, particularly the 
difficulty of detecting smaller fires or in persistently cloudy areas59,61. 
Despite these limitations, these remotely sensed data sources pro-
vide a valuable representation of global and regional fire across the 
diurnal cycle22,64.

Third, we explore trends in the climatological night-time fire sea-
son across a 42-year record (1979–2020) and in observed fire activity 
across an 18-year record (2003–2020). We utilize ERA5 (0.25° horizontal 
resolution; hourly38) climate reanalysis data to determine how the  
climatological night-time fire season (when VPDmin > VPDt) has changed 
on an hourly and nightly basis globally (1979–2020), extending the 
determination of VPD thresholds to the major climate and landcover 
classes. We also explore trends in MODIS daytime and night-time active 
fire counts and FRP, which provide the longest-available satellite record 
(2003–2020) of global night-time fire activity.

Developing MODIS active fire grids for defining key aspects of 
the night-time fire regime
The MODIS active fire detections (2003–2020; MCD14ML product20; 

 n = 80,190,449 total detections with n = 8,365,435 night-time detections) 
were gridded to 0.25° resolution in the WGS84 coordinate system—the 
native coordinate system of the data. The aggregation of MODIS active 
fire variables (counts and FRP) to each grid cell was done by rounding the 
coordinates of each detection to 0.25°. The aggregation and summary 
calculations were performed using GeoPandas65 and rasterized using 
Rasterio66, both open-source Python libraries. The rasterized products 
were created at a monthly time step from 2003 to 2020. Data were subset 
based on confidence threshold and fire type, and a day–night designation 
and overpass correction were applied before analysis.

Confidence value thresholds. A confidence threshold on active fire 
detections was set to 10%, and all active fire detections above that con-
fidence threshold were used in the analysis. We also removed persistent 
non-fire hotspots (for example, gas flares and industrial burning) by 
utilizing type-0 detections only, or presumed vegetation fires. This 
resulted in a removal of less than 1% of the raw MODIS active fire detec-
tions, which were presumed vegetation fires.

Day–night designation for MODIS active fire data. Each active fire de-
tection was classified for this study as a day or night detection based on 
solar elevation angle, which represents the angle between the horizon 
and the centre of the Sun’s disk. Detections with a solar elevation angle 
greater than or equal to zero were considered day detections, and detec-
tions with a solar elevation angle less than zero were considered night 
detections. It is important to note that our designation of day and night 
based on solar elevation angle is different from the ‘daynight’ attribute 
in the raw MCD14ML product, which describes whether the day or night 
algorithm was used to detect the active fire based on a solar elevation 
angle threshold of 5° (ref. 20). Thus, fires detected while the Sun is up, 
but low in the sky (less than 5° above the horizon), are done so using 
the night-detection algorithm. On a global scale, 2.8% of MCD14ML 
detections that used the night-detection algorithm were classified 
here as day detections based on solar elevation angle. The difference 
in designation is more substantial in higher northern latitudes owing to 
the long-day summer seasons where the Sun is still above the horizon 
at the nominal 10:30 p.m. and/or 1:30 a.m. local overpass times for 
MODIS. For example, over 16% of the detections in the burnable boreal 
Köppen–Geiger class (and 26.0% of detections in the boreal savannah 
landcover class) detected using the night algorithm are classified here 
as day detections based on solar elevation angle. The use of the night 
algorithm for detecting daytime fires at low solar elevation angles may 
influence the fire-detection probability, as the threshold brightness 
temperature is 360 K and 320 K for day and night, respectively20. For 
our study, we rely on the MCD14ML active fire product validation20 
and remove low-confidence detections (see above) and assume that 
each observation was detected using the most appropriate algorithm.

Overpass correction for MODIS data. The MCD14ML active fire prod-
uct exhibits a latitudinal bias owing to the variable overpass frequencies 
of the Aqua and Terra satellites, with up to 30 daily overpasses near 
the poles and only 4 at the Equator22,67. We accounted for this bias by 
separately summing the number of daytime and night-time overpasses 
of a MODIS instrument (that is, combining Aqua and Terra overpasses) 
for each pixel on a 0.25° grid and a 1° grid in monthly aggregations as 
well as the total number of overpasses between 1 January 2003 and  
31 December 2020. We designated pixels experiencing a MODIS overpass  
as those within the bounds of the Level-1 and Atmospheric Archive 
Distribution System GeoMeta Collection 6.1 product for Aqua and 
Terra, which describes the corner locations of each MODIS instrument’s 
ground footprint in 5-min intervals. We designated whether a pixel’s 
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overpass occurred at day or night based on the solar elevation angle 
at the pixel during the overpass (using the same solar elevation angle 
calculation as for the reclassification of the MCD14ML product; see 
above section ‘Day–night designation for MODIS active fire data’).

Landcover-type designation. We defined the burnable globe as 25 
vegetated landcover types based on a combination of the MODIS 
MCD12Q1v006 Landcover Type 1 product68 (https://lpdaac.usgs.gov/
products/mcd12q1v006/) and the Köppen–Geiger climate classifica-
tion regions69. We used the combination of the two products because 
landcover classes can be qualitatively different within a single class at 
different parts of the globe (Extended Data Fig. 1). So, for example, what 
is classified as a woody savannah in the boreal region will probably have 
very different fuel properties as they relate to fire than a woody savan-
nah in the arid or equatorial regions. The combined landcover types 
that we modelled had at least 100 fire events during the temporal extent 
of the GOES 16 satellite (2017–2020). The 25 burnable landcover types 
(≥100 fire events) included: arid croplands, arid grasslands, arid open 
shrublands, arid savannahs, arid woody savannahs, boreal croplands, 
boreal evergreen needleleaf forests, boreal grasslands, boreal savan-
nahs, boreal woody savannahs, equatorial cropland natural vegetation 
mosaics, equatorial croplands, equatorial deciduous broadleaf forests, 
equatorial evergreen broadleaf forests, equatorial grasslands, equato-
rial permanent wetlands, equatorial savannahs, equatorial woody sa-
vannahs, temperate croplands, temperate deciduous broadleaf forests, 
temperate evergreen broadleaf forests, temperate evergreen needleleaf 
forests, temperate grasslands, temperate savannahs and temperate 
woody savannahs (Extended Data Table 1). These landcover types  
represent 63% of the terrestrial land surface, or about 90 million km2.  
To assign each fire event to a landcover type and Köppen class, we cre-
ated a 1° grid for both the modal Köppen–Geiger (equatorial, arid, tem-
perate or boreal) and MODIS landcover categories. We then assigned 
each fire-event landcover type (the combination of a Köppen–Geiger 
and MODIS landcover class) based on which grid cell it was in. The result 
is a combined landcover type for each fire event polygon in the FIRED 
dataset, as well as each grid cell.

Estimating the observed daytime and night-time fire counts, FRP 
and peak season by landcover types. We divided the total count of 
daytime or night-time active fire detections across the 2003–2020 
period in each 0.25° grid cell by the daytime or night-time count of 
MODIS overpasses at that grid cell in the same time period, and then by 
the area within each grid cell to standardize the fire-detection counts 
in each pixel per overpass, per unit area. We calculated the expected 
daytime and night-time number of active fire detections per overpass 
per million square kilometres by landcover averaged across 2003–2020 
for each day of the year. We used the MODIS MCD14ML product and ag-
gregated the fire counts by daytime versus night-time, day of year and 
0.25° grid cell. We divided each of the monthly daytime or night-time 
overpass counts by the number of days in that month (accounting for 
leap years) to produce an approximate daytime and night-time overpass 
count for each day of the year across the 18-year record. We calculated 
the expected detections per overpass for each grid cell by dividing the 
aggregated active fire counts for each of night and day by their corre-
sponding approximated daytime and night-time overpass count. We 
then summed these measures by landcover type and divided by the 
total area of each landcover type to determine the rate of daytime and 
night-time fire detections on each day of the year per overpass per mil-
lion square kilometres. We also determined the daytime and night-time 
mean FRP per detection on each day of theyear for each landcover. 
Days of the year were considered ‘peak’ fire season if the daily detec-
tion rate or FRP was greater than 120% of the average detection rate or 
FRP, following Giglio et al.22. Detections and mean FRP per detection 
on each day of the year were smoothed using a 31-day window (15 days 
before the focal day of year, the focal day of year itself and 15 days after).

Calculating trends in night-time and daytime active fire detections 
and FRP. We analysed the trends in FRP and active fire counts using 
Siegel-estimated coefficients and slopes70 with the seasonal component 
removed via a loess-based seasonal trend decomposition71. We explored 
the temporal trends in monthly means of FRP and active fire counts 
globally and for the four Köppen–Geiger climate classes (Extended 
Data Fig. 8a, c). We also subsetted the areas of the burnable globe that 
had a significant increase in flammable night hours (1979–2020) to 
further explore the trend in mean FRP per detection from 2003 to 2020 
(Extended Data Fig. 8b). Areas that had an increase in flammable night 
hours (1979–2020) also showed a strong increasing trend in mean FRP/
detection from 2003 to 2020, whereas areas that had a decrease in flam-
mable hours had no detectable trend (Extended Data Fig. 8b). Areas 
with an increase in flammable night hours had significantly higher 
FRP (1.8 MW per detection; Welch two sample t-test) than in areas with  
decreases in flammable night-time hours. We estimated the trends in FRP 
within 1° grid cells to show regional variation (Fig. 5), with no temporal  
aggregation within grid cells. We also evaluated the annual means of 
active fire counts within 1° pixels (Extended Data Fig. 7). For the western 
United States, we report a 77% increase in night-time fire detections 
and a 28% increase in mean annual night-time FRP per detection, with 
both measures showing strong interannual correlations with annual 
night-time flammable hours (R2 = 0.80 and R2 = 0.82, respectively), 
compared with daytime flammable hours (R2 = 0.65 and R2 = 0.60,  
respectively; see ‘Defining and calculating trends in the climatological 
night-time fire season’ below).

Estimating threshold VPD values for the North American and 
South American landcover types
Delineating fire events in North America and South America. We 
used the fire events delineator algorithm (FIRED37) to define fire perim-
eters across all of North America and South America between May 2017 
and June 2020. This algorithm uses a spatiotemporal moving window 
to aggregate the monthly burn date pixels (463-m resolution) from the 
MODIS MCD64A1 burned area product into fire event boundaries. We 
used a spatial criterion of one pixel and a temporal criterion of five days 
to err on the side of avoiding the over-aggregation of events.

VPD extraction per hour during fire events. For each fire event in the 
FIRED database37, we extracted estimates of hourly VPD values from 
ERA5 (0.25°; hourly38) for each hour spanning the beginning and end 
of the event, buffering by 24 h on either side of every event. ERA5 is the 
latest climate reanalysis produced by the ECMWF, providing hourly 
data on many key climate variables that influence fire behaviour. We 
extracted VPD values at the spatial centroid of the burned area perim-
eters of each event for each hour.

Extracting GOES active fire detections during fire events.  
The full-disk GOES-16 active fire product (ABI-L2-FDCF) is centred on the 
Equator at 75.2° W, covering all of South America and nearly all of North 
America with 5–15 min temporal resolution and a nominal 2-km spatial 
resolution (though coarser with increasing distance from the centre of 
coverage). We summarized GOES active fire detections for each FIRED 
event in terms of successes and trials by determining the number of 
GOES images per hour with at least one active fire detection within 
the FIRED event perimeter (that is, successes) and the total number  
of GOES images per hour (that is, trials; usually four to six, unless the 
instrument was offline). We treated all hourly active fire detection 
successes/trials at unique observations of VPD (in hectopascals (hPa) 
rounded to the nearest integer) as independent within events and gen-
erated sufficient statistics as our binomially distributed fire detection 
response variable with successes being the sum of all successes and 
trials being the sum of all trials within unique combinations of VPD 
and FIRED event. This response variable represents 13,073,214 hourly 
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observations of fire detections and VPD across 81,809 events deline-
ated by FIRED summarized as 1,941,422 observations (that is, pairs of 
successes and trials) across those events. Sufficient statistics were 
used as a data compression technique to condense GOES active fire 
detections to hourly observations and reduce the overall data volume. 
To aid in model fitting, landcover classes with more than 100,000 fire 
detection observations were subset by sequentially dropping random 
FIRED events until fewer than 100,000 fire detection observations were 
present (Extended Data Table 2).

Linking hourly VPD to GOES active fire detections. We used hierar-
chical generalized linear mixed models72 to estimate instantaneous 
relationships between hourly VPD and the probability of a GOES active 
fire detection within a FIRED event within that hour. Separate models 
were fit for each landcover type with 100 or more fire events (the polar 
Köppen–Geiger climate class was excluded). In each model, we included 
an overall effect of VPD and a random effect for each event. This means 
that for any particular event, the relationship between VPD and the 
probability of a GOES active fire detection is the sum of (1) an overall 
relationship between VPD and GOES active fire, (2) a global intercept 
and (3) an additional intercept offset for the event. The distribution of 
the random-effect intercept adjustments is normal on the logit scale. 
This overall approach assumes a linear relationship between VPD and 
the logit probability of active fire detection: let i index VPD values within 
FIRED events and j index FIRED events, and let yij be the number images 
with at least one fire detection, out of nij total images:

y n p~ Binomial( , ),ij ij ij

p α βx ε= logit ( + + ),ij ij j
−1

ε σ~ Normal(0, ),j

where pij is the probability of active fire detection, α is an intercept 
parameter, β a coefficient describing the effect of VPD (xij), with εj 
representing an adjustment for event j, σ representing among-event 
variation, and with ~ used to mean ‘distributed as’.

This hierarchical model allows for differences among events while 
sharing information among events, allowing for ‘partial pooling’ that 
borrows information from the distribution of events to provide better 
estimates for each particular event. We fit these models using the bam 
function from the mgcv package in R73, using a binomial response dis-
tribution and a logit link. We used the fitted models for each landcover 
type to predict the relationship between VPD and expected active fire 
counts for a new event, simulating 1,000 draws from the posterior pre-
dictive distribution for each landcover type. We draw these posterior 
samples from the normal approximation of the posterior distribu-
tion. For every draw, we compute the probability of detection of a fire 
across a grid of non-negative VPD values from the posterior predictive 
distribution. Finally, for each landcover type, we used these posterior 
simulations to compute the VPD values that were most closely associ-
ated with a 95% posterior probability of zero detections, which we treat 
as an extinction threshold. This gives 1,000 posterior draws for that 
VPD value, and we use the posterior mean of those 1,000 values as VPD 
thresholds. Note that for some of these 1,000 draws in some landcover 
types, a VPD value of zero was used (the lowest possible valid VPD value) 
even if that corresponded to a posterior probability of zero detections 
that was less than the target of 95%. These thresholds represent the 
lowest value of VPD where the model predicts that there is a 95% chance 
that there will be no active fire detection (Extended Data Table 2). These 
thresholds, derived based on North America and South America fire 
perimeters and GOES active fire detections that are constrained to 
the Americas, were then applied to global landcover types. The large 
volume of data used in this analysis precluded a fully Bayesian approach 

that would propagate reliable uncertainty estimates and account for 
spatiotemporal dependence among observations, overdispersion 
and nonlinearity. To maximize the spatial scope of the analysis, we 
opted to fit more simple models and average over posterior samples 
simulated with a Gaussian approximation to derive our VPD thresholds. 
One potential consequence of this approach is an underestimate of 
VPDt uncertainty, but this is unlikely to affect our conclusions, which 
are based on the point estimates of VPDt.

Defining and calculating trends in the climatological night-time 
fire season
We calculated hourly VPD from ERA5 and used landcover-specific VPD 
thresholds (VPDt) to tabulate several metrics for defining the climato-
logical night-time fire season, compared with the daytime fire season, 
including: (1) the number of night-time hours per year with VPD > VPDt, 
(2) the number of daytime hours per year with VPD > VPDt, (3) the num-
ber of days per year with VPDmin > VPDt and (4) the longest consecutive 
number of days per year with VPDmin > VPDt. We calculated VPDmin as the 
minimum hourly VPD for each calendar day. The longest consecutive 
sequence of days with VPDmin exceeding VPDt was calculated for each 
calendar year. Linear trends in VPD metrics were calculated during 
1979–2020 using the Theil–Sen slope estimator74. The maps report indi-
vidual metric trends (for example, Extended Data Fig. 6). For landcover 
types, we report area-weighted mean trends over the 42-year period 
(Table 1). Relative trends reported (Table 1) were calculated based on 
the difference from the mean across the 42-year period. For trend cal-
culations at the western United States scale, we define this region from 
31–49° N and 103–125° W. The overall results for the western United 
States were a 22% increase in VPDmin (+0.07 kPa), a 45% increase in the 
annual number of flammable nights (+11.1 nights), a 16% increase in the 
annual total of flammable daytime hours (+279 h) and a 31% increase in 
the annual total of flammable night-time hours (+257 h).

Data availability
The datasets for conducting the analysis presented here are all publicly 
available, including: the MODIS active fire product (https://earthdata.
nasa.gov/earth-observation-data/near-real-time/firms/mcd14ml); 
the GOES-16 full-disk active fire product (https://registry.opendata.
aws/noaa-goes/); the ERA-5 hourly climate data (https://www.ecmwf.
int/en/forecasts/datasets/reanalysis-datasets/era5); the MODIS Geo-
Meta Collection 6.1 product (https://ladsweb.modaps.eosdis.nasa.
gov/archive/geoMeta/61/); the Köppen–Geiger climate classifica-
tions (https://doi.org/10.6084/m9.figshare.6396959); and the MODIS 
MCD12Q1v006 Landcover Type 1 product (https://lpdaac.usgs.gov/
products/mcd12q1v006/). We also generated fire perimeters using the 
FIRED algorithm (https://www.github.com/earthlab/firedpy) for fire 
events in North America and South America from May 2017 to July 2020 
(https://scholar.colorado.edu/concern/datasets/d217qq78g). Source 
data are provided with this paper.

Code availability
The code for conducting the data integration and analysis is avail-
able at contributor and Earth Lab’s GitHub repositories, including 
code for: calculation of hourly VPD and the delineation of day and 
night hours (https://github.com/abatz/VPD)  or at DOI (https://
doi.org/10.5281/zenodo.5911663); quantifying monthly counts of 
day and night MODIS overpasses (https://github.com/mikoontz/
modis-overpass-correction)  or at DOI (https://doi.org/10.5281/
zenodo.5911671); and the remainder of the workflow (https://github.
com/earthlab/warming-weakens-the-nighttime-barrier-to-global-fire) 
or at DOI (https://doi.org/10.5281/zenodo.5911673). A Python software 
package, ‘firedpy’, recreates the FIRED event perimeters from the FIRED 
algorithm, available at https://github.com/earthlab/firedpy. 
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Extended Data Fig. 1 | Climate and landcover classifications used in VPD 
threshold analysis shown at 1° grid cell resolution. a, The Köppen–Geiger 
climate classifications69. b, The MODIS MOD12Q1 landcover68. c, Areas in red fill 

represent Köppen–Geiger landcover classes that were burnable (that is, ≥ 100 
fire events in the FIRED data product37 that also had GOES detections19 between 
December 2017 and June 2020).
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Extended Data Fig. 2 | Observed peak fire season (dark lines) based on 
MODIS active fire detections (MCD14ML)20. Each line, smoothed using a 
31-day window, represents the expected number of day or night active fire 
detections per overpass per million km2 (left facets) or the expected day or 
night FRP per detection (right facets) for each landcover type averaged across 

2003–2020. Note the y axis is on the log10 scale  and the FRP facet y axis  
begins at 15. Facets are presented in ascending order of the derived 
VPDt (Extended Data Table 2). Bimodality in the ‘peak’ is largely explained by 
landcover types that are split across the Northern and Southern hemispheres.



Extended Data Fig. 3 | Diurnal oscillations of weather and active fire 
counts, displaying hourly time series of GOES active fire detections19 and 
ERA-538 VPD for two fire events in the United States. A dashed line marks the 

land-cover specific VPD threshold. The red points indicate observations made 
during the day and the blue points represent night-time observations.
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Extended Data Fig. 4 | Estimated relationship between VPD (kPa) on GOES 
active fire detections by landcover type (facets). The posterior mean is 
shown as a solid line, with 1,000 posterior draws as transparent lines in the 

background to convey uncertainty. Facets are presented in ascending order of 
the derived VPD thresholds.



Extended Data Fig. 5 | Trends in flammable nights. Change in daily minimum VPD (kPa) from 1979 to 202038 based on a linear trend.
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Extended Data Fig. 6 | Global climatology of flammable hours and nights 
(1991–2020) and global trend in flammable hours and nights (1979–2020), 
based on VPD38. a–d, The average total of daytime hours (a), night-time hours 
(b), nights (days, 24-hour periods, when VPDmin > VPDt; c) and consecutive 
nights (d) per year (1991–2020) where minimum VPD > VPDt across the 

burnable globe. e–h, Change in annual number of daytime hours (e), night-time 
hours (Fig. 4 reproduced here for ease of comparison; f), nights (g) and 
consecutive nights (h) (1979–2019) where minimum VPD > VPDt based on a 
linear trend across the burnable globe.



Extended Data Fig. 7 | Global trends in active fire detections from 2003 to 
2020. a–c, Day (a), night (b) and the percentage of night-time (c) detections out 
of total detections, Siegel-estimated slopes70 of MODIS active fire detections20 

at 1° annual aggregations. Grey pixels are those defined as burnable but 
without a significant trend.
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Extended Data Fig. 8 | Trends in fire radiative power and active fire 
detections from 2003 to 2020. a, b, Trends (2003–2020) in MODIS fire 
radiative power (MW per detection) for detections that occurred during the 
day and night, and areas with increases and decreases in flammable night-time 
hours from 1979–2020 (a) and active fire detections (per overpass per M km2) 

and percent of total detections that occurred at night, globally and by major 
Köppen–Geiger climate classification69 (Siegel-estimated slopes70 at monthly 
aggregations at 1°; b). Bold lines surrounded by dotted confidence intervals 
indicate significant trends. The underlying data are the observed values with 
the seasonal oscillation removed, and smoothed to aid visualization.



Extended Data Table 1 | Observed aspects of the night-time fire regime from the MODIS-derived MCD14ML active fire 
product, with variables averaged across 2003–2020

Detections and FRP variables are corrected for latitudinal bias in overpass frequency of the MODIS instruments as well as total area of grid cells in each landcover type that experienced at least 
one fire detection. Detection variables are in units of ‘day/night detections per overpass per million km2’ and FRP (fire radiative power) variables are in units of ‘day/night megawatts (MW) per 
detection’.
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Extended Data Table 2 | Estimated VPDt for each landcover class

The thresholds represent the value of VPD corresponding to a 95% probability of a zero active fire count. In other words, the value of VPD where the model has high confidence that there would 
be no GOES active fire detections for a new event. Standard deviation (s.d.) is a measure of the uncertainty around the modelled VPDt. Nevents is the number of unique FIRED events within each 
landcover class in the GOES-16 era. Nobs is the number of unique FIRED event/hour combinations. Random subsetting was used to fit models and derive VPDt for landcover types with more than 
100,000 observations. In these cases, the Nmodelled events values differ from Nevents. Sufficient statistics were used to summarize the Nobs into unique combinations of FIRED event/hourly VPD. The 
random subsetting and sufficient statistics approaches lead to differences between Nmodelled obs and Nobs.
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