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Abstract— We study a setting where each agent in a network
receives certain private signals generated by an unknown static
state that belongs to a finite set of hypotheses. The agents are
tasked with collectively identifying the true state. To solve this
problem in a communication-efficient manner, we propose an
event-triggered distributed learning algorithm that is based on
the principle of diffusing low beliefs on each false hypothesis.
Building on this principle, we design a trigger condition under
which an agent broadcasts only those components of its belief
vector that have adequate innovation, to only those neighbors
that require such information. We establish that under standard
assumptions, each agent learns the true state exponentially fast
almost surely. We also identify sparse communication regimes
where the inter-communication intervals grow unbounded, and
yet, the asymptotic learning rate of our algorithm remains the
same as when agents communicate at every time-step. We then
establish, both in theory and via simulations, that our event-
triggering strategy has the potential to significantly reduce
information flow from uninformative agents to informative
agents. Finally, we argue that, as far as only asymptotic
learning is concerned, one can allow for arbitrarily sparse
communication patterns.

I. INTRODUCTION

We consider a scenario involving a network of agents,
where each agent receives a stream of private signals sequen-
tially over time. The observations of every agent are gener-
ated by a common underlying distribution, parameterized by
an unknown static quantity which we call the true state of the
world. The task of the agents is to collectively identify this
unknown quantity from a finite family of hypotheses, while
relying solely on local interactions. The problem described
above is known as distributed inference/hypothesis testing,
and has been explored using a variety of techniques [1]–[8].
While [1]–[6] proposed consensus based linear and log-linear
rules, [7] and [8] propose a min-protocol that leads to an
improved asymptotic learning rate over previous approaches.

A much less explored aspect of distributed inference is
that of communication-efficiency - a theme that is becoming
increasingly important as we envision distributed autonomy
with low-power sensor devices, and limited-bandwidth wire-
less communication channels. Motivated by this gap in the
literature, we seek to answer the following questions in this
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paper. (i) When should an agent exchange information with
a neighbor? (ii) What piece of information should the agent
exchange? To address the questions posed above, we draw on
ideas from the theory of event-triggered control. The initial
results [9], [10] on this topic were centered around stabilizing
dynamical systems by injecting control inputs only when
needed, as opposed to periodic inputs. These ideas were then
extended to design event-driven control and communication
techniques for multi-agent systems, focusing primarily on
variations of the basic consensus problem [11].

Contributions: The main contribution of this paper is the
development of a novel event-triggered distributed learning
rule that is based on the principle of diffusing low beliefs
on each false hypothesis across the network. Building on
this principle, we design a trigger condition that enables
an agent to decide, using purely local information, whether
or not to broadcast its belief1 on a given hypothesis to a
given neighbor. Specifically, based on our event-triggered
strategy, an agent broadcasts only those components of its
belief vector that have adequate “innovation”, to only those
neighbors that are in need of the corresponding pieces of
information. In this way, our approach not only reduces
the frequency of communication, but also the amount of
information transmitted in each communication round.

We establish that our proposed event-triggered learning
rule enables each agent to learn the true state exponen-
tially fast under standard assumptions on the observation
model and the network. We characterize the learning rate
of our algorithm, and identify conditions under which it
matches the rate in [8], even when the inter-communication
intervals between the agents grow unbounded. In other
words, we identify sparse communication regimes where
communication-efficiency comes essentially for “free”. We
further demonstrate, both in theory and in simulations, that
our event-triggered scheme can considerably reduce informa-
tion flow from uninformative agents to informative agents.
Finally, we show that if asymptotic learning of the truth is
the only consideration, then one can allow for arbitrarily long
intervals between successive communications.

II. MODEL AND PROBLEM FORMULATION

Network Model: We consider a group of agents V =
{1, . . . , n}, and model interactions among them via an
undirected graph G = (V , E). An edge (i, j) ∈ E indicates
that agent i can directly transmit information to agent j, and
vice versa. The set of all neighbors of agent i is defined as

1By an agent’s “belief vector”, we mean a distribution over the set of
hypotheses; this vector gets recursively updated over time.
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Ni = {j ∈ V : (j, i) ∈ E}. We say that G is rooted at C ⊆ V ,
if for each agent i ∈ V\C, there exists a path to it from some
agent j ∈ C. For a connected graph G, we will use d(i, j) to
denote the length of the shortest path between i and j.

Observation Model: Let Θ = {θ1, θ2, . . . , θm} denote m
possible states of the world, with each state representing a
hypothesis. A specific state θ? ∈ Θ, referred to as the true
state of the world, gets realized. Conditional on its realiza-
tion, at each time-step t ∈ N+, every agent i ∈ V privately
observes a signal si,t ∈ Si, where Si denotes the signal space
of agent i.2 The joint observation profile so generated across
the network is denoted st = (s1,t, s2,t, . . . , sn,t), where
st ∈ S , and S = S1 × S2 × . . .Sn. Specifically, the signal
st is generated based on a conditional likelihood function
l(·|θ?), the i-th marginal of which is denoted li(·|θ?), and is
available to agent i. The signal structure of each agent i ∈ V
is thus characterized by a family of parameterized marginals
li = {li(wi|θ) : θ ∈ Θ, wi ∈ Si}. We make certain standard
assumptions [1]–[5]: (i) The signal space of each agent i,
namely Si, is finite. (ii) Each agent i has knowledge of
its local likelihood functions {li(·|θp)}mp=1, and it holds that
li(wi|θ) > 0, ∀wi ∈ Si, and ∀θ ∈ Θ. (iii) The observation se-
quence of each agent is described by an i.i.d. random process
over time; however, at any given time-step, the observations
of different agents may potentially be correlated. (iv) There
exists a fixed true state of the world θ? ∈ Θ (unknown to
the agents) that generates the observations of all the agents.
The probability space for our model is denoted (Ω,F ,Pθ?),
where Ω , {ω : ω = (s1, s2, . . .), ∀st ∈ S, ∀t ∈ N+}, F is
the σ-algebra generated by the observation profiles, and Pθ?

is the probability measure induced by sample paths in Ω.

Specifically, Pθ? =
∞∏
t=1

l(·|θ?). We will use the abbreviation

a.s. to indicate almost sure occurrence of an event w.r.t. Pθ? .
The goal of each agent is to eventually learn the true state

θ?. However, the key challenge in achieving this objective
arises from an identifiability problem that each agent might
potentially face. To make this precise, define Θθ?

i , {θ ∈
Θ : li(wi|θ) = li(wi|θ?), ∀wi ∈ Si} as the set of hypotheses
that are observationally equivalent to θ? from the perspective
of agent i. Thus, if |Θθ?

i | > 1, it will be impossible for agent
i to uniquely learn the true state θ∗ on its own.

In the next section, we will develop an algorithm that
resolves the identifiability problem described above in a
communication-efficient manner. Before describing this al-
gorithm, let us first recall the following definition from [7].

Definition 1. (Source agents) An agent i is said to be a
source agent for a pair of distinct hypotheses θp, θq ∈ Θ if it
can distinguish between them, i.e., if D(li(·|θp)||li(·|θq)) >
0, where D(li(·|θp)||li(·|θq)) represents the KL-divergence
between the distributions li(·|θp) and li(·|θq). The set of
source agents for pair (θp, θq) is denoted S(θp, θq).

Throughout the rest of the paper, we will use Ki(θp, θq)
as a shorthand for D(li(·|θp)||li(·|θq)).

2We use N and N+ to represent the set of non-negative integers and
positive integers, respectively.

III. AN EVENT-TRIGGERED DISTRIBUTED LEARNING
RULE

• Belief-Update Strategy: In this section, we develop
an event-triggered distributed learning rule that enables each
agent to eventually learn the truth, despite infrequent infor-
mation exchanges with its neighbors. Our approach requires
each agent i to maintain a local belief vector πi,t, and
an actual belief vector µi,t, each of which are probability
distributions over the hypothesis set Θ. While agent i updates
πi,t in a Bayesian manner using only its private signals
(see eq. (2)), to formally describe how it updates µi,t,
we need to first introduce some notation. Accordingly, let
1ji,t(θ) ∈ {0, 1} be an indicator variable which takes on a
value of 1 if and only if agent j broadcasts µj,t(θ) to agent i
at time t. Next, we define Ni,t(θ) , {j ∈ Ni|1ji,t(θ) = 1}
as the subset of agent i’s neighbors who broadcast their belief
on θ to i at time t. As part of our learning algorithm, each
agent i keeps track of the lowest belief on each hypothesis
θ ∈ Θ that it has heard up to any given instant t, denoted
by µ̄i,t(θ). More precisely, µ̄i,0(θ) = µi,0(θ), and ∀t ∈ N,

µ̄i,t+1(θ) = min{µ̄i,t(θ), {µj,t+1(θ)}j∈{i}∪Ni,t+1(θ)}. (1)

We are now in position to describe the belief-update rule
at each agent: πi,t and µi,t are initialized with πi,0(θ) >
0, µi,0(θ) > 0, ∀θ ∈ Θ, ∀i ∈ V (but otherwise arbitrarily),
and subsequently updated as follows ∀t ∈ N:

πi,t+1(θ) =
li(si,t+1|θ)πi,t(θ)

m∑
p=1

li(si,t+1|θp)πi,t(θp)
, (2)

µi,t+1(θ) =
min{µ̄i,t(θ),πi,t+1(θ)}

m∑
p=1

min{µ̄i,t(θp),πi,t+1(θp)}
. (3)

• Communication Strategy: We now focus on specifying
when an agent broadcasts its belief on a given hypothesis
to a neighbor. To this end, we first define a sequence I =
{t1, t2, t3, . . .} ∈ N+ of event-monitoring time-steps, where
t1 = 1, and tk+1 − tk = g(k), ∀k ∈ N+. Here, g : [1,∞)→
[1,∞) is a continuous, non-decreasing function that takes
on integer values at integers. We will henceforth refer to
g(k) as the event-interval function. At any given time t ∈
N+, let µ̂ij,t(θ) represent agent i’s belief on θ the last time
(excluding time t) it transmitted its belief on θ to agent j. Our
communication strategy is as follows. At t1, each agent i ∈
V broadcasts its entire belief vector µi,t to every neighbor.
Subsequently, at each tk ∈ I, k ≥ 2, i transmits µi,tk(θ) to
j ∈ Ni if and only if the following event occurs:

µi,tk(θ) < γ(tk) min{µ̂ij,tk(θ), µ̂ji,tk(θ)}, (4)

where γ : N → (0, 1] is a non-increasing function, which
we will henceforth call the threshold function. If t /∈ I, then
an agent i does not communicate with its neighbors at time
t, i.e., all inter-agent interactions are restricted to time-steps
in I, subject to the trigger-condition given by (4). We will
describe the functional forms of g(·) and γ(·) in Section IV.
• Summary: At each time-step t+ 1 ∈ N+, and for each

hypothesis θ ∈ Θ, the sequence of operations executed by
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1 2 3

Fig. 1. The figure shows a network where only agent 1 is informative. In
Section III, we design an event-triggered algorithm under which all upstream
broadcasts along the path 3→ 2→ 1 stop eventually almost surely.

an agent i is summarized as follows. (i) Agent i updates its
local and actual beliefs on θ via (2) and (3), respectively.
(ii) For each neighbor j ∈ Ni, it decides whether or not to
transmit µi,t+1(θ) to j, and collects {µj,t+1(θ)}j∈Ni,t+1(θ).3

(iii) It updates µ̄i,t+1(θ) via (1) using the (potentially) new
information it acquires from its neighbors at time t+ 1.
• Intuition: The premise of our belief-update strategy is

based on diffusing low beliefs on each false hypothesis. For
a given false hypothesis θ, the local Bayesian update (2) will
generate a decaying sequence πi,t(θ) for each i ∈ S(θ∗, θ).
Update rules (1) and (3) then help propagate agent i’s low
belief on θ to the rest of the network.

To build intuition regarding our communication strategy,
consider the network in Fig 1. Suppose Θ = {θ1, θ2}, θ∗ =
θ1, and S(θ1, θ2) = 1, i.e., agent 1 is the only informative
agent. Since our approach is based on eliminating each false
hypothesis, it makes sense to broadcast beliefs only if they
are low enough. Accordingly, a naive way to enforce sparse
communication could be to set a fixed low threshold, and
wait until beliefs fall below such a threshold to broadcast.
However, it is fairly easy to see that this approach will
eventually lead to dense communication. The obvious fix is
to introduce an event-condition that is state-dependent. For
instance, suppose an agent broadcasts its belief on a state
θ only if it is sufficiently lower than what it was when it
last broadcasted about θ. While an improvement over the
“fixed-threshold” strategy, this new scheme has the following
demerit: broadcasts are not agent-specific. In other words,
going back to our example, agent 2 (resp., agent 3) might
transmit unsolicited information to agent 1 (resp., agent 2) -
information, that agent 1 (resp., agent 2) does not require.

Given the above issues, we ask: Is it possible to devise
an event-triggered scheme that eventually stops unnecessary
broadcasts from agent 3 to 2, and agent 2 to 1, while
preserving essential information flow from agent 1 to 2, and
agent 2 to 3? More generally, we seek a triggering rule
that can reduce transmissions from uninformative agents to
informative agents. This leads us to the event condition in
Eq. (4). For each θ ∈ Θ, an agent i broadcasts µi,t(θ) to a
neighbor j ∈ Ni only if µi,t(θ) has adequate “innovation”
with respect to i’s last broadcast about θ to j, and j’s last
broadcast about θ to i. A decreasing threshold function γ(t)
makes it progressively harder to satisfy the event condition
in Eq. (4), demanding more innovation to merit broadcast as
time progresses. Checking the event condition only at time-
steps in I saves computations, and provides an additional
instrument to control communication-sparsity.4

3If t+ 1 /∈ I, this step gets bypassed, and Ni,t+1(θ) = ∅, ∀θ ∈ Θ.
4Without the event condition given by (4), our communication strategy

would boil down to a simple time-triggered rule, as in our recent work [12].

IV. MAIN RESULTS

In this section, we state the main results of this paper,
and then discuss their implications. With the exception of
Theorem 1, the proofs of all our results are omitted here
due to space constraints, but can be found in [13]. To

state our first result, let us define G(z) ,
z∫
1

g(τ)dτ, ∀z ∈

[1,∞). Let G−1(·) represent the inverse of G(·), i.e., ∀z ∈
[1,∞), G−1(G(z)) = z. Since g(·) is continuous and takes
values in [1,∞) by definition, G(·) is strictly increasing,
unbounded, and continuous, with G(1) = 0, and hence,
G−1(z) is well-defined for all z ∈ [0,∞).

Theorem 1. Suppose the functions g(·) and γ(·) satisfy:

lim
t→∞

G(G−1(t)− 2)

t
= α ∈ (0, 1]; lim

t→∞

log(1/γ(t))

t
= 0.

(5)
Furthermore, suppose the following conditions hold. (i) For
every pair of hypotheses θp, θq ∈ Θ, the source set S(θp, θq)
is non-empty. (ii) The communication graph G is connected.
Then, the event-triggered distributed learning rule governed
by (1), (2), (3), and (4) guarantees the following.
• (Consistency): For each agent i ∈ V , µi,t(θ?)→ 1 a.s.
• (Exponentially Fast Rejection of False Hypotheses):

For each agent i ∈ V , and for each false hypothesis
θ ∈ Θ \ {θ?}, the following holds:

lim inf
t→∞

− log µi,t(θ)

t
≥ max
v∈S(θ?,θ)

αd(v,i)Kv(θ
?, θ) a.s.

(6)

We prove Theorem 1 in Section V. At this point, it is
natural to ask: For what classes of functions g(·) does the
above result hold? The following result provides an answer.

Corollary 1. Suppose the conditions in Theorem 1 hold.
(i) Suppose g(x) = xp, ∀x ∈ R+, where p is any positive

integer. Then, for each θ ∈ Θ \ {θ?}, and i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ max
v∈S(θ?,θ)

Kv(θ
?, θ) a.s. (7)

(ii) Suppose g(x) = px, ∀x ∈ R+, where p is any positive
integer. Then, for each θ ∈ Θ \ {θ?}, and i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ max
v∈S(θ?,θ)

Kv(θ
?, θ)

p2d(v,i)
a.s. (8)

Clearly, the communication pattern between the agents is
at least as sparse as the sequence I. Our event-triggering
scheme introduces further sparsity, as we next establish.

Proposition 1. Suppose the conditions in Theorem 1 are met.
Then, there exists Ω̄ ⊆ Ω such that Pθ∗(Ω̄) = 1, and for each
ω ∈ Ω̄, ∃T1(ω), T2(ω) <∞ such that the following hold.
(i) At each tk ∈ I such that tk > T1(ω), 1ij,tk(θ∗) 6=

1, ∀i ∈ V and ∀j ∈ Ni.
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(ii) Consider any θ 6= θ∗, and i /∈ S(θ∗, θ). Then, at each
tk > T2(ω), ∃j ∈ Ni such that 1ij,tk(θ) 6= 1.5

The next result is an immediate application of Prop. 1.

Corollary 2. Suppose the conditions in Theorem 1 are met.
Additionally, suppose G is a tree graph, and for each pair
θp, θq ∈ Θ, |S(θp, θq)| = 1. Consider any θ 6= θ∗, and
let S(θ∗, θ) = vθ. Then, each agent i ∈ V \ {vθ} stops
broadcasting its belief on θ to its parent in the tree rooted
at vθ eventually almost surely.

A few comments are now in order.
• On the nature of g(·) and γ(·): Intuitively, if the

event-interval function g(·) does not grow too fast, and the
threshold function γ(·) does not decay too fast, one should
expect things to fall in place. Theorem 1 makes this intuition
precise by identifying conditions on g(·) and γ(·) that lead
to exponentially fast learning of the truth. From (5), we note
that γ(·) can be any sub-exponentially decaying function.
Moreover, Corollary 1 reveals that up to integer constraints,
g(·) can be any polynomial or exponential function.
• Design trade-offs: What is the price paid for sparse

communication? To answer the above question, we set as
benchmark the scenario studied in our previous work [8],
where we did not account for communication efficiency.
There, we showed that each false hypothesis θ gets rejected
exponentially fast by every agent at the network-independent
rate: maxv∈V Kv(θ

∗, θ).6 We note from (6) that it is only
the event-interval function g(·) that potentially impacts the
learning rate, since α ≤ 1. However, from claim (i) in
Corollary 1, we glean that polynomially growing inter-
communication intervals between the agents, coupled with
our proposed event-triggering strategy, lead to no loss in the
long-term learning rate relative to the benchmark case in [8],
i.e., communication-efficiency comes essentially for “free”
under this regime. With exponentially growing event-interval
functions, one still achieves exponentially fast learning, albeit
at a reduced learning rate that is network-structure dependent
(see Eq. 8). Our results thus capture the trade-offs between
sparse communication and the learning rate.
• Sparse communication introduced by event-

triggering: Observe that being able to eliminate each false
hypothesis is enough for learning the true state. In other
words, agents need not exchange their beliefs on the true
state (of course, no agent knows a priori what the true
state is). Our event-triggering scheme precisely achieves this,
as evidenced by claim (i) of Proposition 1: every agent
stops broadcasting its belief on θ∗ eventually almost surely.
In addition, an important property of our event-triggering
strategy is that it reduces information flow from uninfor-
mative agents to informative agents. To see this, consider
any false hypothesis θ 6= θ∗, and an agent i /∈ S(θ∗, θ).
Since i /∈ S(θ∗, θ), agent i’s local belief πi,t(θ) will stop
decaying eventually, making it impossible for agent i to

5In this claim, j might depend on tk .
6In contrast, for linear [1], [2] and log-linear [3]–[6] rules, the correspond-

ing rate is a convex combination of the relative entropies Kv(θ∗, θ), v ∈ V .

lower its actual belief µi,t(θ) without the influence of its
neighbors. Consequently, when acting alone, i will not be
able to leverage its own private signals to generate enough
“innovation” in µi,t(θ) to broadcast to the neighbor who most
recently contributed to lowering µi,t(θ). The intuition here
is simple: an uninformative agent cannot outdo the source
of its information. This idea is made precise in claim (ii)
of Proposition 1. Moreover, Corollary 2 stipulates that when
the baseline graph is a tree, then all upstream broadcasts to
informative agents stop after a finite period of time.

A. Asymptotic Learning of the Truth

If asymptotic learning of the true state is all one cares
about, i.e., if the convergence rate is no longer a considera-
tion, then one can allow for arbitrarily sparse communication
patterns, as we shall now demonstrate. We first allow the
baseline graph G(t) = (V , E(t)) to now change over time.
To allow for this generality, we set I = N+, i.e., the
event condition (4) is now monitored at each time-step.
Furthermore, we set γ(t) = γ ∈ (0, 1], ∀t ∈ N. At
each time-step t ∈ N+, and for each θ ∈ Θ, an agent
i ∈ V decides whether or not to broadcast µi,t(θ) to an
instantaneous neighbor j ∈ Ni(t) by checking the event
condition (4). While checking this condition, if agent i has
not yet transmitted to (resp., heard from) agent j about θ
prior to time t, then it sets µ̂ij,t(θ) (resp., µ̂ji,t(θ)) to 1.
Update rules (1), (2), (3) remain the same, with Ni,t(θ) now
interpreted as Ni,t(θ) , {j ∈ Ni(t)|1ji,t(θ) = 1}. Finally,
by an union graph over an interval [t1, t2], we will imply the
graph with vertex set V , and edge set ∪t2τ=t1E(τ).

Theorem 2. Suppose for every pair of hypotheses θp, θq ∈
Θ, S(θp, θq) is non-empty. Furthermore, suppose for each
t ∈ N+, the union graph over [t,∞) is rooted at S(θp, θq).
Then, the event-triggered distributed learning rule described
above guarantees µi,t(θ∗)→ 1 a.s. ∀i ∈ V .

While a result of the above flavor is well known for the
basic consensus setting [14], we are unaware of its analogue
for the distributed inference problem. When G(t) = G, ∀t ∈
N, we observe from Theorem 2 that, as long as each agent
transmits its belief vector to every neighbor infinitely often,
all agents will asymptotically learn the truth, without any
other constraints on the frequency of agent interactions.

V. PROOF OF THEOREM 1
We start with the following useful result.

Lemma 1. Suppose the conditions in Theorem 1 hold. Then,
there exists a set Ω̄ ⊆ Ω with the following properties. (i)
Pθ?(Ω̄) = 1. (ii) For each ω ∈ Ω̄, there exist constants
η(ω) ∈ (0, 1) and t′(ω) ∈ (0,∞) such that

πi,t(θ
?) ≥ η(ω), µ̄i,t(θ

?) ≥ η(ω), ∀t ≥ t′(ω), ∀i ∈ V . (9)

(iii) Consider a false hypothesis θ 6= θ∗, and an agent
i ∈ S(θ∗, θ). Then on each sample path ω ∈ Ω̄, we have:

lim inf
t→∞

− log µi,t(θ)

t
≥ Ki(θ

?, θ). (10)
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The proofs of claims (ii) and (iii) in the above Lemma
essentially follow the same arguments as that of [8, Lemma
2] and [8, Lemma 3], respectively. The following result will
be the key ingredient in proving Theorem 1.

Lemma 2. Consider a false hypothesis θ ∈ Θ\{θ?} and an
agent v ∈ S(θ?, θ). Suppose the conditions stated in Theorem
1 hold. Then, the following is true for each agent i ∈ V:

lim inf
t→∞

− log µi,t(θ)

t
≥ αd(v,i)Kv(θ

?, θ) a.s. (11)

Proof. Let Ω̄ ⊆ Ω be the set of sample paths for which
assertions (i)-(iii) of Lemma 1 hold. Fix a sample path ω ∈
Ω̄, an agent v ∈ S(θ?, θ), and an agent i ∈ V . When i = v,
the assertion of Eq. (11) follows directly from Eq. (10) in
Lemma 1. In particular, this implies that for a fixed ε > 0,
∃tv(ω, θ, ε), such that:

µv,t(θ) < e−(Kv(θ?,θ)−ε)t, ∀t ≥ tv(ω, θ, ε). (12)

Moreover, since ω ∈ Ω̄, Lemma 1 guarantees the existence of
a time-step t′(ω) <∞, and a constant η(ω) > 0, such that on
ω, πi,t(θ?) ≥ η(ω), µ̄i,t(θ

?) ≥ η(ω), ∀t ≥ t′(ω), ∀i ∈ V . Let
t̄v(ω, θ, ε) = max{t′(ω), tv(ω, θ, ε)}. Let tq > t̄v be the first
event-monitoring time-step in I that is larger than t̄v .7 Now
consider any tk ∈ I such that k ≥ q. In what follows, we
will analyze the implications of agent v deciding whether or
not to broadcast its belief on θ to a one-hop neighbor j ∈ Nv
at tk. To this end, we consider the following two cases.

Case 1: 1vj,tk(θ) = 1, i.e., v broadcasts µv,tk(θ) to j at
tk. Thus, since v ∈ Nj,tk(θ), we have µ̄j,tk(θ) ≤ µv,tk(θ)
from (1). Let us now observe that ∀t ≥ tk + 1:

µj,t(θ)
(a)

≤ µ̄j,t−1(θ)
m∑
p=1

min{µ̄j,t−1(θp), πj,t(θp)}

(b)

≤ µv,tk(θ)
m∑
p=1

min{µ̄j,t−1(θp), πj,t(θp)}

(c)
<
e−(Kv(θ?,θ)−ε)tk

η
.

(13)
In the above inequalities, (a) follows directly from (3),
(b) follows by noting that the sequence {µ̄j,t(θ)} is non-
increasing based on (1), and (c) follows from (12) and the
fact that all beliefs on θ? are bounded below by η for t ≥ t̄v .

Case 2: 1vj,tk(θ) 6= 1, i.e., v does not broadcast µv,tk(θ)
to j at tk. From the event condition in (4), it must then
be that at least one of the following is true: (a) µv,tk(θ) ≥
γ(tk)µ̂vj,tk(θ), and (b) µv,tk(θ) ≥ γ(tk)µ̂jv,tk(θ). Suppose
µv,tk(θ) ≥ γ(tk)µ̂vj,tk(θ). From (12), we then have:

µ̂vj,tk(θ) ≤ µv,tk(θ)

γ(tk)
<
e−(Kv(θ?,θ)−ε)tk

γ(tk)
. (14)

In words, the above inequality places an upper bound on
the belief of agent v on θ when it last transmitted its belief
on θ to agent j, prior to time-step tk; at least one such
transmission is guaranteed to take place since all agents

7We will henceforth suppress the dependence of various quantities on
ω, θ, and ε for brevity.

broadcast their entire belief vectors to their neighbors at t1.
Noting that µ̄j,t(θ) ≤ µ̂vj,tk(θ), ∀t ≥ tk, using (3), (14), and
arguments similar to those for arriving at (13), we obtain:

µj,t(θ) <
e−(Kv(θ?,θ)−ε)tk

ηγ(tk)
≤ e−(Kv(θ?,θ)−ε)tk

ηγ(t)
, ∀t ≥ tk+1,

(15)
where the last inequality follows from the fact that γ(·) is
a non-increasing function of its argument. Now consider
the case when µv,tk(θ) ≥ γ(tk)µ̂jv,tk(θ). Following the
same reasoning as before, we can arrive at an identical
upper-bound on µ̂jv,tk(θ) as in (14). Using the definition
of µ̂jv,tk(θ), and the fact that agent j incorporates its own
belief on θ in the update rule (1), we have that µ̄j,t(θ) ≤
µ̂jv,tk(θ), ∀t ≥ tk. Using similar arguments as before,
observe that the bound in (15) holds for this case too.

Combining the analyses of cases 1 and 2, referring to (13)
and (15), and noting that γ(t) ∈ (0, 1], ∀t ∈ N, we conclude
that the bound in (15) holds for each tk ∈ I such that tk > t̄v .
Now since tk+1 − tk = g(k), for any τ ∈ N+ we have:

tq+τ = tq +

q+τ−1∑
z=q

g(z). (16)

Next, noting that g(·) is non-decreasing, observe that:

tq +

q+τ∫
q

g(z − 1)dz ≤ tq+τ ≤ tq +

q+τ∫
q

g(z)dz. (17)

The above yields: l(q, τ) , tq +G(q+ τ − 1)−G(q− 1) ≤
tq+τ ≤ tq+G(q+τ)−G(q) , u(q, τ). Fix any time-step t >
u(q, 1), let τ(t) be the largest index such that u(q, τ(t)) < t,
and τ̄(t) be the largest index such that tq+τ̄(t) < t. Observe:

t̄v < tq < tq+1 ≤ tq+τ(t) ≤ tq+τ̄(t) < t. (18)

Using the above inequality, the fact that l(q, τ(t)) ≤ tq+τ(t),
and referring to (15), we obtain:

µj,t(θ) <
e−(Kv(θ?,θ)−ε)tq+τ̄(t)

ηγ(t)
≤ e−(Kv(θ?,θ)−ε)l(q,τ(t))

ηγ(t)
.

(19)
From the definitions of τ(t) and u(q, τ), we have q+τ(t) =⌈
G−1(t− tq +G(q))

⌉
− 1. This yields:

l(q, τ(t)) = tq +G(
⌈
G−1(t− tq +G(q))

⌉
− 2)−G(q − 1)

≥ tq +G(G−1(t− tq +G(q))− 2)−G(q − 1).
(20)

From (19) and (20), we obtain the following ∀t > u(q, 1):

− log µj,t(θ)

t
>
G̃(t)

t
(Kv(θ

?, θ)−ε)− log c

t
− log(1/γ(t))

t
,

(21)
where G̃(t) = G(G−1(t − tq + G(q)) − 2), and c =
e−(Kv(θ∗,θ)−ε)(tq−G(q−1))/η. Now taking the limit inferior
on both sides of (21) and using (5) yields:

lim inf
t→∞

− log µj,t(θ)

t
≥ α(Kv(θ

?, θ)− ε). (22)

Finally, since the above inequality holds for any sample path
ω ∈ Ω̄, and an arbitrarily small ε, it follows that the assertion
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Fig. 2. Plots pertaining to the simulation example in Sec. VI. Fig.
2(a) plots the belief evolutions on the true state θ1. Fig. 2(b) plots
the rate at which each agent rejects the false hypothesis θ2, namely
qi,t(θ2) = − log(µi,t(θ2))/t. Fig.’s 2(c) and 2(d) demonstrate the sparse
communication patterns generated by our event-triggering scheme.

in (11) is true for every one-hop neighbor j of agent v.
Now consider any agent i such that d(v, i) = 2. Clearly,
there must exist some j ∈ Nv such that i ∈ Nj . Following
identical arguments as before, it is easy to see that µi,t(θ)
decays exponentially at a rate that is at least α times the
rate at which µj,t(θ) decays to zero. From (22), the latter
rate is at least αKv(θ

∗, θ), and hence, the former is at least
α2Kv(θ

∗, θ). This establishes the claim of the lemma for all
two-hop neighbors of agent v. Noting that G is connected,
the proof can be easily completed by induction.

Proof. (Theorem 1) Fix a θ ∈ Θ\{θ?}. Based on condition
(i) of the Theorem, S(θ?, θ) is non-empty, and based on con-
dition (ii), there exists a path from each agent v ∈ S(θ?, θ) to
every agent i ∈ V \{v}; Eq. (6) then follows from Lemma 2.
By definition of a source set, Kv(θ

?, θ) > 0, ∀v ∈ S(θ?, θ);
Eq. (6) then implies limt→∞ µi,t(θ) = 0 a.s., ∀i ∈ V .

VI. A SIMULATION EXAMPLE

In this section, we illustrate our theoretical findings via
a simple simulation example. To do so, we consider the
network in Fig. 1. Suppose Θ = {θ1, θ2}, θ∗ = θ1, and
let the signal space for each agent be {0, 1}. The likelihood
models are as follows: l1(0|θ1) = 0.7, l1(0|θ2) = 0.6, and
li(0|θ1) = li(0|θ2) = 0.5, ∀i ∈ {2, 3}. Clearly, agent 1 is
the only informative agent. To isolate the impact of our
event-triggering strategy, we set g(k) = 1, ∀k ∈ N+, i.e.,
the event condition in Eq. (4) is monitored at every time-
step. We set the threshold function as γ(k) = 1/k2. The
performance of our algorithm is depicted in Fig. 2. We make
the following observations. (i) From Fig. 2(a), we note that
all agents eventually learn the truth. (ii) From Fig. 2(b),
we note that the asymptotic rate of rejection of the false
hypothesis θ2, namely qi,t(θ2) = − log(µi,t(θ2))/t, agrees
with the theoretical bound in Thm. 1. (iii) From Fig. 2(c), we

note that after the first time-step, all agents stop broadcasting
about the true state θ1, complying with claim (i) of Prop.
1. (iv) From Fig. 2(d), we note that broadcasts about θ2

along the path 3 → 2 → 1 stop after the first time-step, in
accordance with claim (ii) of Prop. 1, and Corr. 2. We also
observe that in the first 4000 time-steps, agent 1 (resp., agent
2) broadcasts its belief on θ2 to agent 2 (resp., agent 3) only
7 times (resp., 6 times). Despite such drastic reduction in the
communication frequency, all agents still learn the truth at
the same learning rate as with the baseline algorithm in [8].

VII. CONCLUSION

We introduced a new event-triggered distributed learning
rule and established that it leads to exponentially fast learning
of the true state. In particular, we identified sparse com-
munication regimes where the inter-communication intervals
between the agents grow unbounded, with no loss in the
long-term learning rate. We then demonstrated, both in
theory and in simulations, that our event-triggered scheme
has the ability to drastically reduce information flow from
uninformative agents to informative agents in the network.
As future work, we plan to investigate the complementary
direction of compressing information. Exploring connections
to Federated Learning is also of interest [15].
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