
0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

1

Distributed State Estimation over Time-Varying
Graphs: Exploiting the Age-of-Information

Aritra Mitra, John A. Richards, Saurabh Bagchi and Shreyas Sundaram

Abstract—We study the problem of designing a distributed
observer for an LTI system over a time-varying communication
graph. The limited existing work on this topic imposes various
restrictions either on the observation model or on the sequence
of communication graphs. In contrast, we propose a single-time-
scale distributed observer that works under mild assumptions.
Specifically, our communication model only requires strong-
connectivity to be preserved over non-overlapping, contiguous
intervals that are even allowed to grow unbounded over time.
We show that under suitable conditions that bound the growth
of such intervals, joint observability is sufficient to track the state
of any discrete-time LTI system exponentially fast, at any desired
rate. We also develop a variant of our algorithm that is provably
robust to worst-case adversarial attacks, provided the sequence
of graphs is sufficiently connected over time. The key to our
approach is the notion of a “freshness-index” that keeps track of
the age-of-information being diffused across the network. Such
indices enable nodes to reject stale estimates of the state, and, in
turn, contribute to stability of the error dynamics.

I. INTRODUCTION

Given a discrete-time LTI system x[k + 1] = Ax[k], and
a linear measurement model y[k] = Cx[k], a classical result
in control theory states that one can design an observer that
generates an asymptotically correct estimate x̂[k] of the state
x[k], if and only if the pair (A,C) is detectable [1]. Addi-
tionally, if the pair (A,C) is observable, then one can achieve
exponential convergence at any desired convergence rate. Over
the last couple of decades, significant effort has been directed
towards studying the distributed counterpart of the above
problem, wherein observations of the process are distributed
among a set of sensors modeled as nodes of a communication
graph [2]–[13]. A fundamental question that arises in this
context is as follows: What are the minimal requirements on
the measurement structure of the nodes and the underlying
communication graph that guarantee the existence of a dis-
tributed observer? Here, by a distributed observer, we imply
a set of state estimate update and information exchange rules
that enable each node to track the entire state asymptotically.

A. Mitra, S. Bagchi and S. Sundaram are with the School of Elec-
trical and Computer Engineering at Purdue University. J. A. Richards
is with Sandia National Laboratories. Email: {mitra14, sbagchi,
sundara2}@purdue.edu, jaricha@sandia.gov. This work was sup-
ported in part by NSF CAREER award 1653648, and by the Laboratory
Directed Research and Development program at Sandia National Laboratories.
Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. The views expressed in the article do not necessarily
represent the views of the U.S. Department of Energy or the United States
Government.

The question posed above was answered only recently in [5]–
[11] for static graphs. However, when the underlying network
changes with time, very little is known about the distributed
state estimation problem - a gap that we intend to bridge in this
paper. Our study is motivated by applications in environmental
monitoring tasks using mobile robot teams [14], [15], where
time-varying communication graphs arise naturally either as
a consequence of robot-mobility, or due to packet drops and
link failures typical in wireless sensor networks.

Related Work: The existing literature on the design of
distributed observers can be broadly classified in terms of
the assumptions made on the system model, the observation
model, and the network structure. Recent works on this
topic [5]–[11] that make minimal system- and graph-theoretic
assumptions can be further classified based on a finer set of
attributes, as follows. (i) Does the approach require multiple
consensus iterations between two consecutive time-steps of the
dynamics?1 (ii) What is the dimension of the estimator main-
tained by each node? (iii) Is the convergence asymptotic, or
in finite-time? (iv) In case the convergence is asymptotic, can
the convergence rate be controlled? The techniques proposed
in [5]–[11] operate on a single-time-scale, and those in [6],
[8]–[11] require observers of dimension no more than that of
the state of the system. The aspect of reduced order distributed
observer design is studied in [16]. The notion of convergence
in each of the papers [5]–[11] is asymptotic; the ones in [7],
[8], [10], [11] can achieve exponential convergence at any
desired rate. For dynamic networks, there is much less work.
Two recent papers [12] and [17] provide theoretical guarantees
for certain specific classes of time-varying graphs; while the
former proposes a two-time-scale approach, the latter develops
a single-time-scale algorithm. However, the extent to which
such results can be generalized has remained open.

Contributions: The main contribution of this paper is the
development of a single-time-scale distributed state estimation
algorithm in Section IV that requires each node to maintain
an estimator of dimension equal to that of the state (along
with some simple counters), and works under assumptions that
are remarkably mild in comparison with those in the existing
literature. Specifically, in terms of the observation model, we
only require joint observability, i.e., the state is observable
w.r.t. the collective observations of the nodes. This assumption
is quite standard, and can be relaxed to joint detectability, with
appropriate implications for the convergence rate.

However, the key departure from existing literature comes

1Such approaches, referred to as two-time-scale approaches, incur high
communication cost, and might hence be prohibitive for real-time applications.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

2

from the generality of our communication model, introduced
formally in Section II. Based on this model, we require strong-
connectivity to be preserved over non-overlapping, contiguous
intervals that can even grow linearly with time at a certain rate.
In other words, we allow the inter-communication intervals
between the nodes to potentially grow unbounded. Even under
the regime of such sparse communications, we establish that
our proposed approach can track the state of any discrete-
time LTI system exponentially fast, at any desired convergence
rate. While all the works on distributed state estimation that
we are aware of provide an asymptotic analysis, we show
that under a suitable selection of the observer gains, one
can achieve finite-time convergence based on our approach.
To put our results into context, it is instructive to compare
them with the work closest to ours, namely [12]. In [12],
the authors study a continuous-time analog of the problem
under consideration, and develop a solution that leverages
an elegant connection to the problem of distributed linear-
equation solving [18]. In contrast to our technique, the one in
[12] is inherently a two-time-scale approach, requires each
node to maintain and update auxiliary state estimates, and
works under the assumption that the communication graph is
strongly-connected at every instant.

Our work is also related to the vast literature on consen-
sus [19] and distributed optimization [20] over time-varying
graphs. It is important to recognize that, in contrast to these
settings, the problem at hand requires tracking potentially
unstable external dynamics, making the stability analysis
considerably more challenging. In particular, one can no
longer directly leverage convergence properties of products
of stochastic matrices. From a system-theoretic point of view,
the error dynamics under our communication model evolves
based on a switched linear system, where certain modes are
potentially unstable. Thus, one way to analyze such dynamics
is by drawing on techniques from the switched system stability
literature [21]. However, such an analysis can potentially
obscure the role played by the network structure. Instead,
we directly exploit the interplay between the structure of the
changing graph patterns on the one hand, and the evolution
of the estimation error dynamics on the other, to provide a
simple, self-contained stability analysis of our algorithm.

Finally, in Section VI, we extend our study of distributed
state estimation over dynamic graphs to settings where certain
nodes are under attack, and can act arbitrarily. For the problem
under consideration, accounting for adversarial behavior is
highly non-trivial even for static graphs, with only a few
recent results that provide any theoretical guarantees [22]–
[25]. Accounting for worst-case adversarial behavior over
time-varying networks is considerably harder, since the com-
promised nodes can not only transmit incorrect, inconsistent
state estimates, but also lie about the time-stamps of their
data. Nonetheless, we develop a novel algorithm to handle
such scenarios, and establish its correctness when the graph-
sequence is sufficiently connected over time.

The key idea behind our approach is the use of a suit-
ably defined “freshness-index” that keeps track of the age-
of-information being diffused across the network. Loosely
speaking, the “freshness-index” of a node quantifies the extent

to which its estimate of the state is outdated. Exchanging such
indices enables a node to assess, in real-time, the quality of
the estimate of a neighbor. Accordingly, it can reject estimates
that are relatively stale - a fact that contributes to the stability
of the error dynamics. We point out that while this is perhaps
the first use of the notion of age-of-information (AoI) in a
networked control/estimation setting, such a concept has been
widely employed in the study of various queuing-theoretic
problems arising in wireless networks [26]–[28].2

To sum up, we propose the first single-time-scale distributed
state estimation algorithm that provides both finite-time and
exponentially fast convergence guarantees, under significantly
milder assumptions on the time-varying graph sequences than
those in existing works. Moreover, we show how our approach
can be extended to allow for worst-case adversarial attacks.

A preliminary version of this paper appeared as [29]. Here,
we significantly expand upon the content in [29] in two
main directions. First, we generalize the results in [29] to
allow for unbounded inter-communication intervals. Second,
the extension to adversarial scenarios in Section VI is a new
addition entirely. We also provide full proofs of all our results.

II. PROBLEM FORMULATION AND BACKGROUND

System and Measurement Model: We are interested in
collaborative state estimation of a discrete-time LTI system of
the form:

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, A ∈ Rn×n is the
system matrix, and x[k] ∈ Rn is the state of the system.3

A network of sensors, modeled as nodes of a communication
graph, obtain partial measurements of the state of the above
process as follows:

yi[k] = Cix[k], (2)

where yi[k] ∈ Rri represents the measurement vector of
the i-th node at time-step k, and Ci ∈ Rri×n repre-
sents the corresponding observation matrix. Let y[k] =[
yT1 [k] · · · yTN [k]

]T
and C =

[
CT

1 · · · CT
N

]T
represent

the collective measurement vector at time-step k, and the
collective observation matrix, respectively. The goal of each
node i in the network is to generate an asymptotically correct
estimate x̂i[k] of the true dynamics x[k]. It may not be possible
for any node i in the network to accomplish this task in
isolation, since the pair (A,Ci) may not be detectable in
general. Throughout the paper, we will only assume that the
pair (A,C) is observable; the subsequent developments can
be readily generalized to the case when (A,C) is detectable.

Communication Network Model: As is evident from
the above discussion, information exchange among nodes is
necessary for all nodes to estimate the full state. At each

2The notion of age-of-information (AoI) was first introduced in [26]
as a performance metric to keep track of real-time status updates in a
communication system. In a wireless network, it measures the time elapsed
since the generation of the packet most recently delivered to the destination.
In Section IV, we will see how such a concept applies to the present setting.

3We use N and N+ to denote the set of non-negative integers and the set
of positive integers, respectively.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

3

time-step k ∈ N, the available communication channels are
modeled by a directed communication graph G[k] = (V , E [k]),
where V = {1, . . . , N} represents the set of nodes, and E [k]
represents the edge set of G[k] at time-step k. Specifically,
if (i, j) ∈ E [k], then node i can send information directly
to node j at time-step k; in such a case, node i will be
called a neighbor of node j at time-step k. We will use Ni[k]
to represent the set of all neighbors (excluding node i) of
node i at time-step k. When G[k] = G ∀k ∈ N, where G
is a static, directed communication graph, the necessary and
sufficient condition (on the system and network) to solve the
distributed state estimation problem is the joint detectability
of each source component of G [5].4 Our goal in this paper is
to extend the above result to scenarios where the underlying
communication graph is allowed to change over time. To this
end, let the union graph over an interval [k1, k2], 0 ≤ k1 ≤ k2,

denoted
k2⋃

τ=k1

G[τ], indicate a graph with vertex set equal

to V , and edge set equal to the union of the edge sets of
the individual graphs appearing over the interval [k1, k2].
Based on this convention, we now formally describe the
communication patterns (induced by the sequence {G[k]}∞k=0)
that are considered in this paper. We assume that there exists a
sequence I = {t0, t1, . . .} of increasing time-steps with t0 = 0
and each ti ∈ N+, satisfying the following conditions.
(C1) Define the mapping h : I → N+ as h(tq) = tq+1 −

tq, ∀tq ∈ I. We assume that h(tq) is a non-decreasing
function of its argument.

(C2) For each k ∈ N, let m(k) , max{tq ∈ I : tq ≤ k}, and
M(k) , min{tq ∈ I : tq > k}. Define g : N → N+

as g(k) = M(k)−m(k) = h(m(k)). Then, we assume
that the following holds:

lim sup
k→∞

2(N − 1)g(k)

k
= δ < 1. (3)

(C3) For each tq ∈ I, we assume that
tq+1−1⋃
τ=tq

G[τ] is strongly-

connected.
To understand the conditions above, and how they relate to

existing conditions, let us start by noting that based on (C3),
the union graph over each interval of the form [tq, tq+1 − 1)
is strongly-connected, where tq ∈ I. The next natural question
is: how large can the gap tq+1 − tq be? Clearly, larger gaps
allow for more general graph sequences. To formally answer
the question above, we introduce the mapping h(·) in (C1).
The condition described in (3) essentially allows the intervals
tq+1− tq to grow linearly over time at a certain rate. In other
words, based on our model, the intervals over which strong-
connectivity is preserved can potentially grow unbounded over
time. In contrast, the typical assumption made while studying
consensus [19] or distributed optimization [20] over time-
varying graphs is that there exists some T ∈ N+, such that
tq+1− tq ≤ T, ∀tq ∈ I, i.e., the inter-communication intervals
are uniformly bounded. For the specific problem under study,
the result closest to ours [12] further assumes that T as defined

4A source component of a static, directed graph is a strongly connected
component with no incoming edges.

above is 1, i.e., G[k] is strongly-connected ∀k ∈ N. Thus, our
communication model subsumes the cases discussed above.

While (C1) requires h(·) to be non-decreasing (to allow for
sparse communication schemes), our results can be readily
generalized to the case where h(·) is non-monotonic by modi-
fying (C2). Finally, note that since we place no assumptions at
all on the spectrum of the A matrix, stability of the estimation
error process imposes natural restrictions on how fast the inter-
communication intervals can be allowed to grow. Condition
(C2) formalizes this intuition by constraining such intervals to
grow at most linearly at a certain rate.

Consider the following two examples. (i) The mapping h
satisfies h(tq) = T, ∀tq ∈ I, where T is some positive integer.
(ii) The mapping h satisfies h(tq) = b

√
tq + 1c, ∀tq ∈ I. It

is easy to verify that (C2) is satisfied in each case. While in
example (i), the inter-communication intervals are uniformly
bounded, they are allowed to grow over time in example (ii).

Background: For communication graphs satisfying
conditions (C1)-(C3) as described above, our objective
will be to design a distributed algorithm that ensures
limk→∞ ‖x̂i[k]− x[k]‖ = 0, ∀i ∈ V , with x̂i[k] representing
the estimate of the state x[k] maintained by node i ∈ V . To
this end, we recall the following result from [6].

Lemma 1. Given a system matrix A, and a set of N
sensor observation matrices C1,C2, . . . ,CN , define C ,[
CT

1 · · · CT
N

]T
. Suppose (A,C) is observable. Then, there

exists a similarity transformation matrix T that transforms the
pair (A,C) to (Ā, C̄), such that

Ā =


A11 0
A21 A22 0

...
...

. . .
...

AN1 AN2 · · · AN(N−1) ANN

 ,

C̄ =


C̄1

C̄2
...

C̄N

 =


C11 0
C21 C22 0

...
...

...
...

CN1 CN2 · · ·CN(N−1) CNN

 ,
(4)

and the pair (Aii,Cii) is observable ∀i ∈ {1, 2, . . . , N}.
We use the matrix T given by Lemma 1 to perform the

coordinate transformation z[k] = T−1x[k], yielding:

z[k + 1] = Āz[k],

yi[k] = C̄iz[k], ∀i ∈ {1, . . . , N},
(5)

where Ā = T−1AT and C̄i = CiT are given by (4).
Commensurate with the structure of Ā, the vector z[k] is of
the following form:

z[k] =
[
z(1)[k]

T · · · z(N)[k]
T
]T
, (6)

where z(j)[k] will be referred to as the j-th sub-state. By
construction, since the pair (Ajj ,Cjj) is locally observable
w.r.t. the measurements of node j, node j will be viewed as the
unique source node for sub-state j. In this sense, the role of
node j will be to ensure that each non-source node i ∈ V\{j}
maintains an asymptotically correct estimate of sub-state j. For
a time-invariant strongly-connected graph, this is achieved in
[6] by first constructing a spanning tree rooted at node j, and

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

4

x[k + 1] = ax[k]

1

2 3

(a)

x[k + 1] = ax[k]

1

2 3

(b)

Fig. 1. An LTI system is monitored by a network of 3 nodes, where the
communication graph G[k] switches between the two graphs shown above.

Fig. 2. Estimation error plots of the nodes for the model in Figure 1.
Simulations are performed for a model where a = 2. The figure on the left
corresponds to the case where consensus weights are distributed uniformly
among neighbors, while the one on the right is the case where weights are
placed along a tree rooted at node 1.

then requiring nodes to only listen to their parents in such
a tree for estimating sub-state j. The resulting unidirectional
flow of information from the source j to the rest of the network
guarantees stability of the error process for sub-state j [6].

However, the above strategy is no longer applicable when
the underlying communication graph is time-varying, for the
following reasons. (i) For a given sub-state j, there may not
exist a common spanning tree rooted at node j in each graph
G[k], k ∈ N. (ii) Assuming that a specific spanning tree rooted
at node j is guaranteed to repeat at various points in time
(not necessarily periodically), is restrictive, and qualifies as
only a special case of conditions (C1)-(C3). (iii) Suppose for
simplicity that G[k] is strongly-connected at each time-step
(as in [12]), and hence, there exists a spanning tree Tj [k]
rooted at node j in each such graph. For estimating sub-state
j, suppose consensus at time-step k is performed along the
spanning tree Tj [k]. As we demonstrate in the next section,
switching between such spanning trees can lead to unstable
error processes over time. Thus, if one makes no further as-
sumptions on the system model beyond joint observability, or
on the sequence of communication graphs beyond conditions
(C1)-(C3), ensuring stability of the estimation error dynamics
becomes a challenging proposition. Nonetheless, we develop
a simple algorithm in Section IV that bypasses the above
problems. In the next section, we provide an example that
helps to build the intuition behind this algorithm.

III. AN ILLUSTRATIVE EXAMPLE

Consider a network of 3 nodes monitoring a scalar unstable
process x[k + 1] = ax[k], as shown in Figure 1. The com-
munication graph G[k] switches between the two topologies
shown in Figure 1. Specifically, G[k] is the graph in Figure

1(a) at all even time-steps, and the one in 1(b) at all odd time-
steps. Node 1 is the only node with non-zero measurements,
and thus acts as the source node for this network. Suppose
for simplicity that it perfectly measures the state at all time-
steps, i.e., its state estimate is x̂1[k] = x[k], ∀k ∈ N. Given
this setup, a standard consensus based state estimate update
rule would take the form (see for example [5], [6], [12]):

x̂i[k + 1] = a

 ∑
j∈Ni[k]∪{i}

wij [k]x̂j [k]

 , i ∈ {2, 3}, (7)

where the weights wij [k] are non-negative, and satisfy∑
j∈Ni[k]∪{i} wij [k] = 1, ∀k ∈ N. The key question is: how

should the consensus weights be chosen to guarantee stability
of the estimation errors of nodes 2 and 3? Even for this simple
example, if such weights are chosen naively, then the errors
may grow unbounded over time. To see this, consider the
following two choices: (1) consensus weights are distributed
evenly over the set Ni[k]∪{i}, and (2) consensus weights are
placed along the tree rooted at node 1. In each case, the error
dynamics are unstable, as depicted in Figure 2. To overcome
this problem, suppose nodes 2 and 3 are aware of the fact
that node 1 has perfect information of the state. Since nodes
2 and 3 have no measurements of their own, intuitively, it
makes sense that they should place their consensus weights
entirely on node 1 whenever possible. The trickier question
for node 2 (resp., node 3) is to decide when it should listen to
node 3 (resp., node 2). Let us consider the situation from the
perspective of node 2. At time-step 0, it adopts the information
of node 1, and hence, the error of node 2 is zero at time-step
1. However, the error of node 3 is not necessarily zero at time-
step 1. Consequently, if node 2 places a non-zero consensus
weight on the estimate of node 3 at time-step 1, its error at
time-step 2 might assume a non-zero value. Clearly, at time-
step 1, node 2 is better off rejecting the information from
node 3, and simply running open-loop. The main take-away
point here is that adoption or rejection of information from a
neighbor should be based on the quality of information that
such a neighbor has to offer. In particular, a node that has
come in contact with node 1 more recently is expected to
have better information about the state than the other. Thus,
to dynamically evaluate the quality of an estimate, the above
reasoning suggests the need to introduce a metric that keeps
track of how recent that estimate is with respect to (w.r.t.) the
estimate of the source node 1. In the following section, we
formalize this idea by introducing such a metric.

IV. ALGORITHM

Building on the intuition developed in the previous sec-
tion, we introduce a new approach to designing distributed
observers for a general class of time-varying networks. The
main idea is the use of a “freshness-index” that keeps track of
how delayed the estimates of a node are w.r.t. the estimates
of a source node. Specifically, for updating its estimate of
z(j)[k], each node i ∈ V maintains and updates at every time-
step a freshness-index τ

(j)
i [k]. At each time-step k ∈ N, the

index τ
(j)
i [k] plays the following role: it determines whether

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

5

Algorithm 1

1: Initialization: τ (j)
j [0] = 0, τ

(j)
i [0] = ω, ∀i ∈ V \ {j}.

2: Update Rules for the Source Node: Node j maintains
τ

(j)
j [k] = 0, ∀k ∈ N. It updates ẑ

(j)
j [k] as:

ẑ
(j)
j [k + 1] = Fjj ẑ

(j)
j [k] +

(j−1)∑
q=1

Gjqẑ
(q)
j [k] + Ljyj [k],

(8)

where Fjj = (Ajj−LjCjj), Gjq = (Ajq−LjCjq), and
Lj is an observer gain to be designed later.

3: Update Rules for the Non-Source Nodes: Each non-
source node i ∈ V \ {j} operates as follows.

4: Case 1: τ (j)
i [k] = ω. Define M(j)

i [k] , {l ∈ Ni[k] :

τ
(j)
l [k] 6= ω}. If M(j)

i [k] 6= ∅, let u ∈
argmin

l∈M(j)
i [k]

τ
(j)
l [k]. Node i updates τ

(j)
i [k] and

ẑ
(j)
i [k] as:

τ
(j)
i [k + 1] = τ (j)

u [k] + 1, (9)

ẑ
(j)
i [k + 1] = Ajj ẑ

(j)
u [k] +

(j−1)∑
q=1

Ajqẑ
(q)
i [k]. (10)

If M(j)
i [k] = ∅, then

τ
(j)
i [k + 1] = ω, (11)

ẑ
(j)
i [k + 1] = Ajj ẑ

(j)
i [k] +

(j−1)∑
q=1

Ajqẑ
(q)
i [k]. (12)

5: Case 2: τ (j)
i [k] 6= ω. Define F (j)

i [k] , {l ∈ M(j)
i [k] :

τ
(j)
l [k] < τ

(j)
i [k]}, where M(j)

i [k] is as defined in line
4. If F (j)

i [k] 6= ∅, let u ∈ argmin
l∈F(j)

i [k]
τ

(j)
l [k]. Node i

then updates τ (j)
i [k] as per (9), and ẑ

(j)
i [k] as per (10). If

F (j)
i [k] = ∅, then τ (j)

i [k] is updated as

τ
(j)
i [k + 1] = τ

(j)
i [k] + 1, (13)

and ẑ
(j)
i [k] is updated as per (12).

node i should adopt the information received from one of its
neighbors in Ni[k], or run open-loop, for updating ẑ

(j)
i [k],

where ẑ
(j)
i [k] represents the estimate of z(j)[k] maintained by

node i. In case it is the former, it also indicates which specific
neighbor in Ni[k] node i should listen to at time k; this piece
of information is particularly important for the problem under
consideration, and ensures stability of the error process. The
rules that govern the updates of the freshness indices τ (j)

i [k],
and the estimates ẑ

(j)
i [k], are formally stated in Algorithm 1.

In what follows, we describe each of these rules.
Discussion of Algorithm 1: Consider any sub-state j ∈
{1, . . . , N}. Each node i ∈ V maintains an index τ

(j)
i [k] ∈

{ω}∪N, where ω is a dummy value. Specifically, τ (j)
i [k] = ω

represents an “infinite-delay” w.r.t. the estimate of the source
node for sub-state j, namely node j, i.e., it represents that
node i has not received any information (either directly or
indirectly) from node j regarding sub-state j up to time-step

k τ1[k] τ2[k] τ3[k] x̂2[k] x̂3[k]

0 0 ω ω x̂2[0] x̂3[0]
1 0 1 ω ax̂1[0] ax̂3[0]
2 0 2 1 a2x̂1[0] ax̂1[1]
3 0 1 2 ax̂1[2] a2x̂1[1]
4 0 2 1 a2x̂1[2] ax̂1[3]
...

...
...

...
...

...

Fig. 3. Illustration of Algorithm 1 for the example in Section III.

k. For estimation of sub-state j, since delays are measured
w.r.t. the source node j, node j maintains its freshness-index
τ

(j)
j [k] at zero for all time, to indicate a zero delay w.r.t.

itself. For updating its estimate of z(j)[k], it uses only its own
information, as is evident from (8).

Every other node starts out with an “infinite-delay” ω w.r.t.
the source (line 1 of Algo. 1). The freshness-index of a
node i ∈ V \ {j} changes from ω to a finite value when
it comes in contact with a neighbor with a finite delay, i.e.,
with a freshness-index that is not ω (line 4 of Algo. 1). At
this point, we say that τ (j)

i [k] has been “triggered”. Once
triggered, at each time-step k, a non-source node i will adopt
the information of a neighbor l ∈ Ni[k] only if node l’s
estimate of z(j)[k] is “more fresh” relative to its own, i.e., only
if τ (j)

l [k] < τ
(j)
i [k].5 Among the set of neighbors in M(j)

i [k]

(if τ (j)
i [k] has not yet been triggered), or in F (j)

i [k] (if τ (j)
i [k]

has been triggered), node i only adopts the information (based
on (10)) of the neighbor u with the least delay. At this point,
the delay of node i matches that of node u, and this fact is
captured by the update rule (9). In case node i has no neighbor
that has fresher information than itself w.r.t. sub-state j (where
informativeness is quantified by τ (j)

i [k]), it increments its own
freshness-index by 1 (as per (13)) to capture the effect of
its own information getting older, and runs open-loop based
on (12). Based on the above rules, at any given time-step k,
τ

(j)
i [k] measures the age-of-information of ẑ(j)

i [k], relative to
the source node j. This fact is established later in Lemma
3. Finally, note that Algorithm 1 describes an approach for
estimating z[k], and hence x[k], since x[k] = Tz[k].

Example: Fig. 3 illustrates how the freshness-indices and
state estimates of the nodes evolve for the example in Sec. III.
Node 1 is the only source node in this example, and maintains
τ1[k] = 0, ∀k ∈ N. Observe that for i ∈ {2, 3}, (i) τi[k] 6=
ω, ∀k ≥ 2, (ii) τi[k] = m =⇒ x̂i[k] = amx̂1[k −m], where
m ∈ N+, and (iii) τi[k] ≤ 2, ∀k ≥ 2. In words, eventually,
the estimates of the non-source nodes are at most 2-delayed
versions of the estimate of the source node 1. Thus, since
node 1 can estimate the state x[k] on its own, the estimates
of nodes 2 and 3 converge to x[k] as well. This simple scalar
example demonstrates the mechanism of Algo. 1, and provides
intuition regarding why it works. As we shall see shortly, the
above ideas translate to general dynamics in a natural way.

5Under Case 1 or Case 2 in Algo. 1, when a node i ∈ V \ {j} updates
τ
(j)
i [k] via (9), and ẑ

(j)
i [k] via (10), we say that “i adopts the information

of u at time k for sub-state j”; else, if it runs open-loop, we say it adopts its
own information.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

6

V. PERFORMANCE GUARANTEES FOR ALGORITHM 1

A. Statement of the Results

In this section, we state the theoretical guarantees afforded
by Algorithm 1; proofs of these statements are deferred to
Appendix A and B. We begin with one of our main results.

Theorem 1. Given an LTI system (1), and a measurement
model (2), suppose (A,C) is observable. Let the sequence of
communication graphs {G[k]}∞k=0 satisfy conditions (C1)-(C3)
in Section II. Then, given any desired convergence rate ρ ∈
(0, 1), the observer gains L1, . . . ,LN can be designed in a
manner such that the estimation error of each node converges
to zero exponentially fast at rate ρ, based on Algorithm 1.

The next result states that under the conditions in Theorem
1, one can in fact achieve finite-time convergence.

Proposition 1. (Finite-Time Convergence) Suppose the con-
ditions stated in Theorem 1 hold. Then, the observer gains
L1, . . . ,LN can be designed in a manner such that the
estimation error of each node converges to zero in finite-time.

The next result follows directly from Prop. 1 and indicates
that, when the sequence of communication graphs exhibits
certain structure, one can derive a closed form expression for
the maximum number of time-steps required for convergence.

Corollary 1. Suppose the conditions stated in Theorem 1 hold.
Additionally, suppose h(tq) ≤ T, ∀tq ∈ I, where T ∈ N+.
Then, the observer gains L1, . . . ,LN can be designed in a
manner such that the estimation error of each node converges
to zero in at most n+ 2N(N − 1)T time-steps.

A few remarks are now in order.

Remark 1. The fact that a network of partially informed nodes
can track the state of a dynamical system with arbitrarily
large eigenvalues, over inter-communication intervals that can
potentially grow unbounded, is non-obvious a priori. Our
results in Thm. 1 and Prop. 1 indicate that not only can this
be done exponentially fast at any desired rate, it can also be
done in finite-time. In contrast, the result closest to ours [12]
assumes strong-connectivity at each time-step - an assumption
that is significantly stronger than what we make.

Remark 2. Notice that given a desired convergence rate ρ,
the general design approach described in the proof of Thm.
1 (in Appendix A) offers a considerable degree of freedom in
choosing the parameters λ1, . . . , λN ; the design flexibility so
obtained in choosing the observer gains can be exploited to
optimize transient performance, or performance against noise.
In contrast, the proof of Prop. 1 highlights a specific approach
to obtain finite-time convergence. However, such an approach
may lead to undesirable transient spikes in the estimation
errors, owing to large observer gains.

Remark 3. When strong-connectivity is preserved over uni-
formly bounded intervals, i.e., when h(tq) ≤ T, ∀tq ∈ I, for
some T ∈ N+, our approach guarantees bounded estimation
errors under bounded disturbances. However, as we will see in
Sec. V-B, this may no longer be true if the inter-communication
intervals grow unbounded, no matter how slowly.

B. Implications of growing inter-communication intervals un-
der bounded disturbances

While Theorem 1 shows that estimation is possible under
growing inter-communication intervals, the goal of this section
is to demonstrate via a simple example that this may no longer
be true in the presence of disturbances. To this end, consider
a scalar, unstable LTI system x[k + 1] = ax[k] + d, where
a > 1, and d > 0 is a disturbance input to the system. The
network comprises of just 2 nodes: node 1 with measurement
model y1[k] = c1x[k], c1 6= 0, and node 2 with no mea-
surements. Now consider an increasing sequence of time-steps
I = {t0, t1, . . .} with t0 = 0, and let h(tq) = tq+1−tq, ∀tq ∈ I
be a non-decreasing function of its argument, as in Section
II. Suppose the communication pattern comprises of an edge
from node 1 to node 2 precisely at the time-steps given by
I. Node 1 maintains a standard Luenberger observer given
by x̂1[k + 1] = ax̂1[k] + l1(y1[k] − c1x̂1[k]), where l1 is the
observer gain. Node 2 applies Algorithm 1, which, in this case,
translates to node 2 adopting the estimate of node 1 at each
time-step tq , and running open-loop at all other time-steps.
Accordingly, we have x̂2[tq+1] = ah(tq)x̂1[tq], ∀tq ∈ I. With
ei[k] = x[k]− x̂i[k], i ∈ {1, 2}, one can then easily verify:

e1[k + 1] = γe1[k] + d, ∀k ∈ N,

e2[tq+1] = ah(tq)e1[tq] + d
(ah(tq) − 1)

(a− 1)
, ∀tq ∈ I,

(14)

where γ = (a−l1c1). Now consider a scenario where the inter-
communication intervals grow unbounded, i.e., h(tq) → ∞
as tq → ∞. Since a > 1 and d > 0, it is clear from (14)
that the error subsequence e2[tq], tq ∈ I will grow unbounded
even if node 1 chooses l1 such that γ = 0. For the specific
example under consideration, although the above arguments
were constructed w.r.t. our algorithm, it seems unlikely that
the final conclusion would change if one were to resort to
some other approach.6 The discussions in Section V can be
thus summarized as follows.
• For a noiseless, disturbance free LTI system of the form

(1), one can achieve exponential convergence at any
desired rate, and even finite-time convergence based on
Algorithm 1, under remarkably mild assumptions: joint
observability, and joint strong-connectivity over intervals
that can potentially grow unbounded.

• For an unstable system, any non-zero persistent distur-
bance, however small, can lead to unbounded estimation
errors when the inter-communication intervals grow un-
bounded, no matter how slowly. Note however from Eq.
(14) that our approach leads to bounded estimation errors
under bounded disturbances if the sequence {h(tq)}tq∈I
is uniformly bounded above (see Remark 3).

In light of the above points, the reasons for stating our results
in full generality, i.e., for unbounded communication intervals,
are as follows. First, we do so for theoretical interest, since
we believe our work is the first to establish that the distributed

6Note that we are only considering single-time-scale algorithms where
nodes are not allowed to exchange their measurements. Also, we assume
here that the nodes have no knowledge about the nature of the disturbance d,
thereby precluding the use of any disturbance-rejection technique.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

7

state estimation problem can be solved with growing inter-
communication intervals. Second, we essentially get this result
for “free”, i.e., accounting for such general scenarios incurs
no additional steps in terms of the design of Algorithm 1.
Finally, we emphasize that, while no existing approach can
even handle the case where strong-connectivity is preserved
over uniformly bounded time intervals (i.e., ∃T ∈ N+ such
that h(tq) ≤ T, ∀tq ∈ I), the analysis for this scenario is
simply a special case of that in Appendix A.

Comments on Algorithm 1: Algo. 1 requires a centralized
design phase where the nodes implement the multi-sensor
decomposition in Section II, and design their observer gains to
achieve the desired convergence rate as outlined in the proof of
Thm. 1.7 Moreover, the nodes need to know an upper-bound on
the parameter δ in Eq. (3) while designing their observer gains.
If, however, we constrain the inter-communication intervals
to grow sub-linearly at worst, i.e, if δ = 0, then such gains
can be designed with no knowledge on the nature of the
graph-sequences. Thus, there exists a trade-off between the
generality of the graph sequences that can be tolerated, and
the information required to do so. Notably, with the exception
of [11] that studies continuous-time dynamics, all existing
approaches we are aware of require a centralized design phase.

Notice that for the estimation of a given sub-state j, all
nodes are reliant on the estimate of the unique source node
for that sub-state, namely node j. Thus, even though other
nodes may be in a position to estimate sub-state j as well,
their measurement information is not made full use of in
Algo. 1. While exploiting information redundancy is not
necessary for the basic distributed observer design problem,
it becomes important for improving estimation quality when
measurements are noisy, or when certain nodes can drop out
of the network. Thus, when it comes to these latter issues,
Algo. 1 does have limitations. In the next section, we show
exactly how to leverage measurement redundancy (under a
slightly stronger assumption) to handle node drop-outs or even
arbitrary malicious behavior; we anticipate that the approach
in Section VI holds promise for tackling noise as well.

VI. RESILIENT DISTRIBUTED STATE ESTIMATION OVER
TIME-VARYING NETWORKS

A. Description of Algorithm 2

We now consider a scenario where a subset of agents in the
network is adversarial, and can deviate from the prescribed
algorithm. We will show how one can employ the notion of
freshness-indices to account for such adversarial agents over a
time-varying network. To avoid cumbersome notation and to
present the key ideas in a clear way, we will consider a scalar
LTI system of the form x[k+1] = ax[k]. Later, we will discuss
how our approach can be naturally extended to more general
system models. We consider a worst-case Byzantine adversary
model, where an adversarial node is assumed to be omniscient,

7Performing the decomposition in Lemma 1 requires assigning labels to
the nodes, and also global knowledge of the observation model. While each
choice of label assignment leads to a different coordinate transformation, the
assertions of Theorem 1 and Proposition 1 hold irrespective of the way in
which such labels are assigned.

Algorithm 2
1: Initialization: For each i ∈ V\S , τi[0] = ω; each entry of

vi[0],di[0], and φi[0] is empty;Mi[0] = ∅; and qi[0] = 0.
For each i ∈ S , τi[0] = 0.

2: Update Rules for Source Nodes: Each i ∈ S maintains
τi[k] = 0, ∀k ∈ N. It updates x̂i[k] based on the following
Luenberger observer, where li is the observer gain:

x̂i[k + 1] = ax̂i[k] + li(yi[k]− cix̂i[k]). (15)

3: Update Rules for Non-Source Nodes: At each k ∈ N,
every non-source node i ∈ V \S operates as follows (lines
4-18).

4: Case 1: τi[k] = ω. Define Ji[k] , {j ∈ Ni[k] : τj [k] 6=
ω, τj [k] ∈ N, τj [k] ≤ k}.

5: if |Ji[k] \Mi[k]| < (2f + 1)− qi[k] then
6: Append each l ∈ Ji[k] \Mi[k] to Mi[k] . This

involves adding l to Mi[k], and setting vi,l[k] = x̂l[k],
di,l[k] = τl[k], and φi,l[k] = k.

7: Perform the following updates.

qi[k + 1] = qi[k] + |Ji[k] \Mi[k]|. (16)

di,l[k + 1] = di,l[k] + 1, l ∈Mi[k]. (17)

τi[k + 1] = ω. (18)

x̂i[k + 1] = ax̂i[k]. (19)

8: else
9: Sort the nodes in Ji[k] \Mi[k] in ascending order of

their freshness-indices τl[k], l ∈ Ji[k]\Mi[k]. Append the
first (2f + 1)− qi[k] nodes in the resulting list to Mi[k].

10: Set qi[τ] = 2f + 1, ∀τ ≥ k + 1; update di,l[k], l ∈
Mi[k] as per (17); update τi[k] as follows:

τi[k + 1] = max
l∈Mi[k]

di,l[k] + 1. (20)

11: For each l ∈Mi[k], form the following quantity:

x̄i,l[k] = a(k−φi,l[k])x̂l[φi,l[k]]. (21)

12: Sort x̄i,l[k], l ∈ Mi[k] from highest to lowest, and
reject the highest f and the lowest f of such quantities. Let
the quantity that remains after such trimming be denoted
x̄i[k]. Update x̂i[k] as follows:

x̂i[k + 1] = ax̄i[k]. (22)

13: end if
14: SetMi[k+1] =Mi[k],vi[k+1] = vi[k], and φi[k+1] =

φi[k].
15: Case 2: τi[k] 6= ω. For each l ∈ Ji[k]∩Mi[k], if τl[k] <

di,l[k], then set vi,l[k] = x̂l[k], di,l[k] = τl[k], and
φi,l[k] = k (we will classify this as an append operation).

16: Sort the nodes in Mi[k] ∪ {Ji[k] \Mi[k]} in ascending
order of their freshness-indices, using di,l[k] as the index
for l ∈Mi[k], and τl[k] as the index for l ∈ Ji[k]\Mi[k].
Append the first 2f+1 nodes in the resulting list toMi[k].

17: For each l ∈ Mi[k], update di,l[k] as per (17). Update
τi[k] as per (20), and x̂i[k] via (22) based on the filtering
operation described in lines 11-12.

18: Execute the operations in line 14.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

8

and can essentially act arbitrarily: it can transmit incorrect,
potentially inconsistent information to its instantaneous out-
neighbors, or choose not to transmit anything at all, while
colluding with other adversaries in the process [30]–[32]. We
will focus on an f -total adversarial model where the total
number of adversaries in the network is bounded above by
f , with f ∈ N. The adversarial set will be denoted by A, and
the set of regular nodes by R = V \A. Finally, for the scalar
model under consideration, we will define the set of source
nodes as follows: S = {i ∈ V : ci 6= 0, where yi[k] = cix[k]},
i.e., i ∈ S if and only if it can measure the state on its own.8

We will allow S ∩ A 6= ∅.
Following the same line of reasoning as in Section IV, we

are once again interested in answering the following question:
When should a regular non-source node i ∈ {V \ S} ∩ R
use the information of a neighbor to update its estimate of
the state? Unlike before, however, the presence of adversaries
introduces certain complications: not only can an adversary
transmit an arbitrary estimate of the state, it can also lie
about its freshness-index. In particular, an adversary can follow
the strategy of always reporting a freshness-index of 0 so as
to prompt its instantaneous out-neighbors to use its estimate
value. To carefully account for such misbehavior, we devise
a novel protocol, namely Algorithm 2. In what follows, we
explain the main idea behind Algorithm 2 in a nutshell.

High-level idea: Our goal is to ensure that the state estimate
x̂i[k] of a regular non-source node i is “close” to those of
the regular source set S ∩ R. To achieve this, we would like
x̂i[k] to be updated based on information that is neither too
outdated, nor corrupted by the adversarial set. To meet the two
requirements above, our main idea is to have node i store and
process information received from a dynamic list of neighbors.
At each time-step, the list is first updated so as to retain only
those nodes that have the most recent state estimates w.r.t.
the source set. Subsequently, x̂i[k] is updated by filtering out
extreme estimates in the list in an appropriate manner. We now
describe in detail how the above steps are implemented.

Detailed Description: Like Algo. 1, Algo. 2 requires each
node i to maintain a freshness-index τi[k] ∈ N ∪ {ω}. Each
source node i ∈ S maintains τi[k] = 0 for all time, and updates
x̂i[k] based on a standard Luenberger observer (see Eq. (15)).
Given the presence of adversarial nodes in the network, each
regular non-source node i relies on information redundancy for
updating its estimate of the state. To achieve this, it maintains
four additional vectors vi[k],di[k], φi[k], andMi[k], each of
dimension 2f + 1. The vector vi[k] consists of state estimates
received over time from 2f + 1 distinct nodes. The labels of
such nodes are stored in a listMi[k], their freshness-indices in
di[k], and the time-stamps associated with their estimates (i.e.,
the time-step at which their estimate is received) are recorded
in φi[k]. Algo. 2 requires each non-source node i to execute
two key steps: (1) Maintaining a dynamical listMi[k] of those
2f + 1 neighbors that have the lowest freshness-indices based
on all the information node i has acquired up to time k; and
(2) Performing a filtering operation to update x̂i[k] based on

8Note that with a slight abuse of terminology, the definition of source nodes
here is different from that of a source node in Section II.

the latest state estimates of the nodes in the current listMi[k].
The second step, however, requires the cardinality of the set
Mi[k] to be 2f + 1. Thus, Algo 2 involves an initial pre-
filtering phase (lines 4-7) where a non-source node simply
gathers enough estimates to later act on.
• Discussion of Case 1: We first describe the rules as-

sociated with the pre-filtering phase. Initially, each entry of
vi[0],di[0], and φi[0] is empty, and Mi[k] is an empty list
(line 1). As time progresses, node i adds distinct nodes to the
listMi[k] based on rules that we will discuss shortly. Until the
time when |Mi[k]| = 2f +1, node i maintains τi[k] = ω, and
uses a counter qi[k] to keep track of the number of entries
in Mi[k]. When τi[k] = ω, node i operates as follows. It
first considers the subset of neighbors Ji[k] at time k that
have freshness-indices other than ω, belonging to N, and at
most k (line 4).9 In line 5 of Algo. 2, node i checks whether
there are enough new nodes (i.e., nodes different from those
already inMi[k]) in Ji[k] so as to bring the number of distinct
entries inMi[k] up to (2f+1). If not, it “appends” each node
l ∈ Ji[k] \Mi[k] to Mi[k]. By this, we mean that it adds l
to Mi[k], sets vi,l[k] = x̂l[k], di,l[k] = τl[k], and φi,l[k] = k
(see line 6). Here, we use the double subscript i, l to indicate
the i-th node’s record of the various quantities associated with
a node l ∈ Mi[k]. Node i keeps track of the number of new
nodes appended via (16). The entry di,l[k] is the i-th node’s
internal copy of the freshness-index of node l, which it updates
via (17) for future comparisons (such as those in lines 15 and
16). As an indicator of the fact that it has not yet acquired
2f + 1 state estimates to perform a filtering operation, node i
sets τi[k+1] = ω (see Eq. (18)), and runs open-loop via (19).

Let us now discuss the case when τi[k] transitions from
ω to some value other than ω (lines 8-12). At the transition
time-step, node i appends those nodes from Ji[k] \ Mi[k]
to Mi[k] that have the lowest freshness-indices (see line 9).
It does so in a way such that |Mi[k]| is precisely 2f + 1.
Since node i has now acquired enough estimates to perform
the filtering step, it maintains qi[τ] = 2f + 1 for all τ ≥ k+ 1
(see line 10). As in the non-adversarial setting, the freshness-
index of a node i is a measure of how delayed its estimate
is w.r.t. that of the source set S . Since node i’s estimate in
turn is updated based on the estimates of nodes in Mi[k],
its freshness-index is essentially dictated by the largest entry
in di[k], i.e., the entry corresponding to the most delayed
estimate. This facet is captured by (20). Lines 11-12 of Algo.
2 constitute the filtering step that a node i ∈ V \ S employs
to update x̂i[k]. Since the latest estimates of nodes in Mi[k]
might have different time-stamps, we need a way to make
meaningful comparisons between them. To this end, for each
l ∈ Mi[k], node i constructs an intermediate quantity x̄i,l[k]
by propagating forward the latest estimate it has obtained from
node l, namely x̂l[φi,l[k]], from time φi,l[k] to time k (see Eq.
(21)).10 Note here that φi,l[k] is the latest time-step when node

9Note that in the absence of adversaries, any node j following Algo. 1
would satisfy τj [k] ∈ N and τj [k] ≤ k, whenever τj [k] 6= ω. We would like
the same to hold for any regular node following Algo. 2. Thus, any neighbor
reporting otherwise need not be considered for inclusion in Mi[k].

10One can interpret x̄i,l[k] as node i’s prediction of node l’s state estimate
at time k, based on its current information.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

9

i appended node l toMi[k]. Having constructed the quantities
x̄i,l[k], l ∈ Mi[k], node i then rejects the highest f and the
lowest f of them (i.e., it filters out extreme values), and uses
the one that remains, denoted x̄i[k], to update x̂i[k] via (22).
• Discussion of Case 2: The rules in lines 15-18 are

essentially the same as those just discussed above for lines 8-
12. The key difference between them stems from the manner
in which Mi[k] is updated. In particular, when τi[k] = ω,
or when τi[k] transitions from ω to a value other than ω,
node i is less selective in terms of which nodes to include in
Mi[k]; at this point, its main concern is in gathering enough
estimates for implementing the filtering step. In contrast, when
τi[k] 6= ω, node i carefully examines the freshness-indices of
its instantaneous neighbors prior to a potential inclusion in
Mi[k]. This is done in two steps. First, if it comes in contact
with a node l that already exists in Mi[k], then it checks
whether node l has fresher information to offer than when
it was last appended to Mi[k] (see line 15). If so, node i
replaces the entries corresponding to node l with their more
recent versions. Next, in line 16, node i considers the set
Mi[k]∪{Ji[k]\Mi[k]}, and appends/retains only those 2f+1
nodes that have the lowest freshness-indices.11 The rationale
behind breaking up the “appending” operation into two steps
(lines 15-16) is to avoid the possibility of having multiple
appearances of a single node inMi[k]. Note that for both Case
1 and Case 2, the values of Mi,vi and φi at the beginning
of time-step k + 1 are initialized with their values at the end
of time-step k (lines 14 and 18); their values at the end of
time-step k+ 1 will naturally depend on the new information
available to node i at time k+1. Finally, we emphasize that the
rules of Algo. 2 apply only to the regular nodes; an adversary
can deviate from them in arbitrary ways.

VII. PERFORMANCE GUARANTEES FOR ALGORITHM 2

In order to state our main result concerning the performance
of Algorithm 2, we need to recall the following concepts.

Definition 1. (r-reachable set) [31] Given a graph G =
(V , E), a set C ⊆ V , and an integer r ∈ N+, C is said to
be an r-reachable set if ∃i ∈ C such that |Ni \ C| ≥ r.

Definition 2. (Strongly r-robust graph w.r.t. S) [25] Given a
graph G = (V , E), a set S ⊂ V , and an integer r ∈ N+, G is
said to be strongly r-robust w.r.t. S if any non-empty subset
C ⊆ V \ S is r-reachable.

Based on the above concepts, we now introduce the key
graph property that will be of primary importance to us.

Definition 3. (Joint strong r-robustness w.r.t. S) Given an
integer r ∈ N+, and a set S ⊂ V , a sequence of graphs
{G[k]}∞k=0 is said to be jointly strongly r-robust w.r.t. S if

there exists T ∈ N+ such that
(k+1)T−1⋃
τ=kT

G[τ] is strongly r-

robust w.r.t. S, ∀k ∈ N.

11In implementing this step, suppose a node l already existing in Mi[k]
gets retained inMi[k]. Suppose the information concerning node l was stored
in the p-th components of di[k],vi[k] and φi[k]. Then, node i continues to
store node l’s information in the p-th components of the above vectors. This
is done only to simplify some of the arguments (see proof of Lemma 5).

The main result of this section is as follows; its proof is
deferred to Appendix C.

Theorem 2. Consider a scalar LTI system of the form (1),
and a measurement model of the form (2). Let the sequence of
communication graphs {G[k]}∞k=0 be jointly strongly (3f+1)-
robust w.r.t. the source set S . Then, based on Algorithm 2, the
estimation error of each node i ∈ R can be made to converge
to zero exponentially fast at any desired rate ρ, despite the
actions of any f -total Byzantine adversarial set.

Remark 4. While in Def. 3, we required the strong-robustness
property to be preserved over intervals of constant length T ,
we can easily allow for such intervals to grow linearly as
well, in the spirit of condition (C2) in Section II. Moreover,
following the proof of Theorem 2 in Section C, it is easy to see
that if each regular source node i sets its observer gain li in
(15) such that a−lici = 0, then the errors of all regular nodes
will converge to 0 in at most 2(N − |S|)T + 1 time-steps.

Remark 5. The reason we require joint strong (3f + 1)-
robustness as opposed to joint strong (2f+1)-robustness is as
follows. Consider a scenario where there are precisely 2f + 1
source nodes, f of whom are adversarial, and there is exactly
one non-source node i. Suppose the graph sequence is jointly
strongly (2f + 1)-robust w.r.t. S , i.e., each source node will
be in a position to transmit information to node i over every
interval of the form [kT, (k + 1)T), k ∈ N. Suppose the f
adversaries do not transmit at all. Node i will never be able
to attribute such a phenomenon to adversarial behavior (since
the lack of information from the adversarial nodes could be
due to absence of links in the time-varying graph). Thus, τi[k]
will equal ω for all time, and node i will keep running open-
loop forever, thereby causing Algorithm 2 to fail.

Extension to vector dynamics: Note that there is a concep-
tual difference in our treatments of the adversarial and non-
adversarial cases. For the non-adversarial case, Algorithm 1
relies on Lemma 1, which does not exploit information redun-
dancy as we explained earlier. However, utilizing information
redundancy is critical when dealing with adversaries, and this
motivates a different initial transformation than the one in
Lemma 1. In particular, transforming A to its real Jordan
canonical form is the first step in extending Algorithm 2 to
vector dynamical systems. When the system matrix A contains
real, distinct eigenvalues, this amounts to a simple diagonal-
ization. In the new coordinate frame, each state component
is a scalar that can be treated analogously as in Algorithm
2. When A has arbitrary spectrum, one can combine ideas
from [25] and Section VI. In each of the above cases, if every
unstable mode (eigenvalue) λj of A is observable w.r.t. a set
of nodes Fλj

, and (ii) joint strong (3f + 1)-robustness holds
w.r.t. each such set Fλj

, then our results will go through.
At a high-level, the set Fλj

can be viewed as a “source
set” for each mode λj , just as node j was considered to
be a source node for sub-state j in Algo. 1. In a broader
sense, source nodes should be thought of as informative nodes
that can estimate certain components of the state on their
own; the specific definition of such nodes relies on the nature
of the initial coordinate transformation. Suppose instead of

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

10

leveraging Lemma 1, we use a Jordan transformation when
f = 0, i.e., when there are no adversaries (see [6, Section
VI] for more details on this). To proceed, we would need to
assume that the set Fλj

(as defined above) is non-empty for
each unstable eigenvalue λj - an assumption that is stronger
than joint observability. This is why we resort to Lemma 1 for
the non-adversarial case.

VIII. CONCLUSION

We proposed a novel approach to the design of distributed
observers for LTI systems over time-varying networks. We
proved that our algorithm guarantees exponential convergence
at any desired rate (including finite-time convergence) under
graph-theoretic conditions that are far milder than those ex-
isting. In particular, we showed that these results hold even
when the inter-communication intervals grow unbounded over
time. We then extended our framework to account for the
possibility of worst-case adversarial attacks. In terms of future
research directions, it would be interesting to explore the
performance of our algorithm when the underlying network
changes stochastically, as in [33]. We believe that the notion
of a “freshness-index”, as employed in this paper, should be
applicable to other related classes of problems that involve
some form of collaborative estimation or inference - investi-
gations along this line also merit attention.

APPENDIX A
PROOF OF THEOREM 1

The goal of this section is to prove Theorem 1. Before
delving into the technical details, we first provide an informal
discussion of the main ideas underlying the proof of Theorem
1. To this end, let us fix a sub-state j ∈ {1, . . . , N}. The
starting point of our analysis is Lemma 3 which establishes
that for any non-source node i ∈ V\{j}, its error in estimation
of sub-state j at time-step k can be expressed as a delayed
version of the corresponding error of the source node j, where
the delay is precisely the freshness-index τ

(j)
i [k]. Given this

result, we focus on bounding the delay τ
(j)
i [k] by exploiting

the graph connectivity condition (C3). This is achieved in
Lemma 4 where we first establish that τ (j)

i [k] gets triggered
after a finite period of time, and then show that it can be
bounded above by the function g̃(k) = 2(N − 1)g(k), where
g(k) is as defined in Section II. At this point, we appeal to
condition (C2) (which caps the rate of growth of g̃(k)) in
designing the observer gain Lj at node j. Specifically, in the
proof of Theorem 1, we carefully design Lj such that despite
a potentially growing delay, every non-source node i ∈ V\{j}
inherits the same exponential convergence to the true dynamics
z(j)[k] as that of the corresponding source node j. With these
ideas in place, we begin with a simple result that will be useful
later on; it states that a non-source node for a certain sub-state
will always adopt the information of the corresponding source
node, whenever it is in a position to do so.

Lemma 2. Consider any sub-state j, and suppose that at some
time-step k, we have j ∈ Ni[k], for some i ∈ V \ {j}. Then,
based on Algorithm 1, we have:

(i) If τ (j)
i [k] = ω, then j = argmin

l∈M(j)
i [k]

τ
(j)
l [k].

(ii) If τ (j)
i [k] 6= ω, then j = argmin

l∈F(j)
i [k]

τ
(j)
l [k].

Lemma 3. Suppose all nodes employ Algorithm 1. Consider
any sub-state j, and suppose that at some time-step k, we have
τ

(j)
i [k] = m, where i ∈ V \ {j}, and m ∈ N+. Then, there

exist nodes v(τ) ∈ V \{j}, τ ∈ {k−m+ 1, . . . , k}, such that
the following is true:12

ẑ
(j)
i [k] = (Ajj)

m
ẑ

(j)
j [k −m] +

(j−1)∑
q=1

(k−1)∑
τ=(k−m)

(Ajj)
k−τ−1

Ajqẑ
(q)
v(τ+1)[τ].

(23)

For the proofs of Lemma 2 and 3, please refer to the
conference version [29].

Lemma 4. Suppose the sequence {G[k]}∞k=0 satisfies condi-
tion (C3) in Section II. Then, for each sub-state j, Algorithm
1 guarantees the following.

τ
(j)
i [k] 6= ω, ∀k ≥

N−2∑
q=0

h(tq), ∀i ∈ V , and (24)

τ
(j)
i [tp(N−1)] ≤

p(N−1)−1∑
q=(p−1)(N−1)

h(tq), ∀p ∈ N+, ∀i ∈ V . (25)

Proof. Fix a sub-state j, and notice that both (24) and (25)
hold for the corresponding source node j, since τ

(j)
j [k] =

0, ∀k ∈ N. To establish these claims for the remaining nodes,
we begin by making the following simple observation that
follows directly from (9) and (13), and applies to every node
i ∈ V \ {j}:

τ
(j)
i [k + 1] ≤ τ (j)

i [k] + 1, whenever τ (j)
i [k] 6= ω. (26)

Our immediate goal is to establish (25) when p = 1 and, in
the process, establish (24). Let C(j)

0 = {j}, and define:

C(j)
1 , {i ∈ V \ C(j)

0 : {
t1−1⋃
τ=t0

Ni[τ]} ∩ C(j)
0 6= ∅}. (27)

In words, C(j)
1 represents the set of non-source nodes (for

sub-state j) that have a direct edge from node j at least
once over the interval [t0, t1). Based on condition (C3), C(j)

1

is non-empty (barring the trivial case when V = {j}). For
each i ∈ C(j)

1 , it must be that j ∈ M(j)
i [k̄] for some

k̄ ∈ [t0, t1). Thus, based on (9) and (13), it must be that
τ

(j)
i [k] 6= ω, ∀k ≥ t1 = h(t0), ∀i ∈ C(j)

1 . In particu-
lar, we note based on (26) that τ (j)

i [t1] ≤ t1, and hence
τ

(j)
i [tN−1] ≤ tN−1 =

∑N−2
q=0 h(tq), ∀i ∈ C(j)

1 . We can keep

12Throughout the Appendix, superscripts within parentheses should be
interpreted as indices, while those without parentheses should be interpreted
as exponents.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

11

repeating the above argument by recursively defining the sets
C(j)
r , 1 ≤ r ≤ (N − 1), as follows:

C(j)
r , {i ∈ V \

(r−1)⋃
q=0
C(j)
q : {

tr−1⋃
τ=tr−1

Ni[τ]} ∩ {
(r−1)⋃
q=0
C(j)
q } 6= ∅}.

(28)
We proceed via induction on r. Suppose the following is true
for all r ∈ {1, . . . ,m − 1}, where m ∈ {2, . . . , N − 1}:
τ

(j)
i [tr] 6= ω and τ

(j)
i [tr] ≤ tr, ∀i ∈

r⋃
q=0
C(j)
q . Now suppose

r = m. If V \
(m−1)⋃
q=0

C(j)
q is empty, then we are done

establishing (24), and (25) for the case when p = 1. Else,
based on condition (C3), it must be that C(j)

m is non-empty.
Consider a node i ∈ C(j)

m . Based on the way C(j)
m is defined,

note that at some time-step k̄ ∈ [tm−1, tm), node i has

some neighbor v (say) from the set
(m−1)⋃
q=0

C(j)
q . Based on the

induction hypothesis and (26), it must be that τ (j)
v [k̄] 6= ω

and τ
(j)
v [k̄] ≤ k̄. At this point, if τ (j)

i [k̄] = ω, then since
v ∈M(j)

i [k̄], node i would update τ (j)
i [k̄] based on (9). Else,

if τ (j)
i [k̄] 6= ω, there are two possibilities: (i) v ∈ F (j)

i [k̄],
implying F (j)

i [k̄] 6= ∅; or (ii) v /∈ F (j)
i [k̄], implying τ (j)

i [k̄] ≤
τ

(j)
v [k̄] ≤ k̄. The above discussion, coupled with the freshness-

index update rules for Case 2 of the algorithm (line 5 of Algo.
1), and (26), imply τ

(j)
i [tm] 6= ω and τ

(j)
i [tm] ≤ tm. This

completes the induction step. Appealing to (26) once again,
and noting that

⋃N−1
q=0 C

(j)
q = V and tN−1 =

∑N−2
q=0 h(tq),

establishes (24), and (25) when p = 1.
In order to establish (25) for any p ∈ N+, one can follow a

similar line of argument as above to analyze the evolution of
the freshness indices over the interval [t(p−1)(N−1), tp(N−1)].
In particular, for any p > 1, we can set D(j)

0 = {j}, and define
the sets D(j)

r , 1 ≤ r ≤ (N − 1) recursively as follows:

D(j)
r , {i ∈ V \

(r−1)⋃
q=0
D(j)
q : {

td(p,N,r)−1⋃
τ=td(p,N,r)−1

Ni[τ]} ∩ {
(r−1)⋃
q=0
D(j)
q } 6= ∅},

(29)
where d(p,N, r) = (p−1)(N−1)+r. One can then establish
that τ (j)

i [td(p,N,r)] ≤
∑d(p,N,r)−1
q=(p−1)(N−1) h(tq), ∀i ∈ D(j)

r , ∀r ∈
{1, . . . , N − 1}, via induction.

We are now in position to prove Theorem 1.

Proof. (Theorem 1) The proof is divided into two parts. In the
first part, we describe a procedure for designing the observer
gains {Li}Ni=1. In the second, we establish that our design
indeed leads to the desired convergence rate ρ.

Design of the observer gains: We begin by noting that for
each sub-state j, one can always find scalars βj , γj ≥ 1, such
that

∥∥∥(Ajj)
k
∥∥∥ ≤ βjγkj , ∀k ∈ N [34].13 Define γ , max

1≤j≤N
γj .

Next, fix a δ̄ ∈ (δ, 1), where δ is as in (3). Given a desired
rate of convergence ρ ∈ (0, 1), we now recursively define two
sets of positive scalars, namely {ρj}Nj=1 and {λj}Nj=1, starting

13We use ‖A‖ to refer to the induced 2-norm of a matrix A.

with j = N . With λN = ρ, let ρj , j = N , be chosen to satisfy:

γ δ̄ρ1−δ̄
j ≤ λj . (30)

Having picked ρj ∈ (0, 1) to meet the above condition, we set
λj−1 to be any number in (0, ρj), pick ρj−1 to satisfy (30), and
then repeat this process till we reach j = 1. Observe that the
sets {ρj}Nj=1 and {λj}Nj=1 as defined above always exist, and
satisfy: ρ1 < λ1 < ρ2 < λ2 < · · · < λN−1 < ρN < λN = ρ.
For each sub-state j ∈ {1, . . . , N}, let the corresponding
source node j design the observer gain Lj (featuring in
equation (8)) in a manner such that the matrix (Ajj−LjCjj)
has distinct real eigenvalues with spectral radius equal to ρj .
Such a choice of Lj exists as the pair (Ajj ,Cjj) is observable
by construction. This completes our design procedure.

Convergence analysis: We first note that there exists a set
of positive scalars {α1, . . . , αN}, such that [34]:∥∥∥(Ajj − LjCjj)

k
∥∥∥ ≤ αjρkj , ∀k ∈ N. (31)

For a particular sub-state j, let e
(j)
i [k] = ẑ

(j)
i [k] − z(j)[k].

Consider the first sub-state j = 1, and observe that based on
(4), (5), and (8), the following is true: e(1)

1 [k + 1] = (A11 −
L1C11)e

(1)
1 [k]. Thus, we obtain

e
(1)
1 [k] = (A11 − L1C11)

k
e

(1)
1 [0]. (32)

Based on (31) and (32), we then have:∥∥∥e(1)
1 [k]

∥∥∥ ≤ c1ρk1 , ∀k ∈ N, (33)

where c1 , α1

∥∥∥e(1)
1 [0]

∥∥∥. Given that node 1’s error for sub-
state 1 decays exponentially as per (33), we want to now relate
the errors e(1)

i [k], i ∈ V\{1} of the non-source nodes (for sub-
state 1) to e

(1)
1 [k]. To this end, consider any i ∈ V \ {1}, and

note that for any k ≥ tN−1, Eq. (24) in Lemma 4 implies that
τ

(1)
i [k] 6= ω, and hence τ (1)

i [k] ∈ N+. Invoking Lemma 3, and
using the fact that z(1)[k] = (A11)

m
z(1)[k−m], ∀m ∈ N, we

then obtain the following ∀i ∈ V \ {1}:

e
(1)
i [k] = (A11)

τ
(1)
i [k]

e
(1)
1 [k − τ (1)

i [k]], ∀k ≥ tN−1. (34)

Our next goal is to bound the delay term τ
(1)
i [k] in the above

relation. For this purpose, consider any time-step k ≥ tN−1,
and let p(k) be the largest integer such that tp(k)(N−1) ≤ k.
Then, for any sub-state j, and any i ∈ V \ {j}, we observe:

τ
(j)
i [k]

(a)

≤ τ
(j)
i [tp(k)(N−1)] + (k − tp(k)(N−1))

(b)

≤
p(k)(N−1)−1∑

q=(p(k)−1)(N−1)

h(tq) + (k − tp(k)(N−1))

(c)

≤ 2(N − 1)h(m(k))
(d)
= 2(N − 1)g(k).

(35)

In the above inequalities, (a) follows from (24) in Lemma
4 and (26); (b) follows from (25) in Lemma 4; and (c)
follows from the monotonicity of h(·) in condition (C1), and
by recalling that m(k) , max{tq ∈ I : tq ≤ k}. Finally,
(d) follows by recalling that g(k) = h(m(k)). Recalling that∥∥∥(A11)

k
∥∥∥ ≤ β1γ

k
1 , using the bounds in (33) and (35), the fact

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

12

that γ1 ≥ 1 and ρ1 < 1, and the sub-multiplicative property
of the 2-norm, we obtain the following by taking norms on
both sides of (34):∥∥∥e(1)

i [k]
∥∥∥ ≤ c̄1(γ1

ρ1

)g̃(k)

ρk1 , ∀k ≥ tN−1, ∀i ∈ V \ {1}, (36)

where g̃(k) = 2(N − 1)g(k) and c̄1 , c1β1. Based on condi-
tion (C3), and our choice of δ̄, observe that there exists k̄(δ̄)
such that g̃(k) ≤ δ̄k, ∀k ≥ k̄(δ̄). With k1 , max{tN−1, k̄(δ̄)},
we then obtain the following based on (30) and (36), for all
k ≥ k1 and for all i ∈ V \ {1}:∥∥∥e(1)

i [k]
∥∥∥ ≤ c̄1(γ δ̄1ρ1−δ̄

1

)k
≤ c̄1

(
γ δ̄ρ1−δ̄

1

)k
≤ c̄1λk1 . (37)

Note that since c̄1 ≥ c1 and λ1 > ρ1, the above bound applies
to node 1 as well (see equation (33)). We have thus established
that exponential convergence at rate λ1 for sub-state 1 holds
for each node in the network.

Our aim is to now obtain a bound similar to that in
(37) for each sub-state j ∈ {2, . . . , N}. To this end, with
gjq = ‖(Ajq − LjCjq)‖ and hjq = ‖Ajq‖, let us define the
following quantities recursively for j ∈ {2, . . . , N}:

kj ,
kj−1

(1− δ̄)
,

cj ,
αj

ρ
kj−1

j

∥∥∥e(j)
j [kj−1]

∥∥∥+

(j−1)∑
q=1

gjq c̄q
(ρj − λq)

λkj−1
q

 ,

c̄j , βj

cj +

(j−1)∑
q=1

hjq c̄q
(γj − λq)

 ,

(38)

where k1 , max{tN−1, k̄(δ̄)}, c1 , α1

∥∥∥e(1)
1 [0]

∥∥∥, and c̄1 =

c1β1. Based on the above definitions, we claim that for each
sub-state j ∈ {1, . . . , N}, the following is true:∥∥∥e(j)

i [k]
∥∥∥ ≤ c̄jλkj , ∀k ≥ kj , ∀i ∈ V . (39)

We will prove the above claim via induction on the sub-state
number j. We have already established (39) for the base case
when j = 1. For j ≥ 2, our strategy will be to first analyze the
evolution of e(j)

j [k] at the source node j. From (4) and (5), we
note that the dynamics of the j-th sub-state are coupled with
those of the first j − 1 sub-states. Thus, e(j)

j [k] will exhibit
exponential decay only when the errors for the first j−1 sub-
states have already started decaying exponentially, with kj−1

(as defined in (38)) representing the instant when exponential
decay for the (j − 1)-th sub-state kicks in. Let us now prove
that as soon as this happens, the following holds:∥∥∥e(j)

j [k]
∥∥∥ ≤ cjρkj , ∀k ≥ kj−1. (40)

To do so, suppose (39) holds for all j ∈ {1, . . . , l− 1}, where
l ∈ {2, . . . , N}. Now let j = l and observe that equations (4)
and (5) yield:

z(l)[k + 1] = Allz
(l)[k] +

(l−1)∑
q=1

Alqz
(q)[k]

= (All − LlCll)z
(l)[k] +

(l−1)∑
q=1

(Alq − LlClq)z
(q)[k] + Llyl[k].

(41)

Based on the above equation and (8), we obtain:

e
(l)
l [k + 1] = (All − LlCll)e

(l)
l [k] +

(l−1)∑
q=1

(Alq − LlClq)e
(q)
l [k].

Rolling out the above equation starting from kl−1 yields:

e
(l)
l [k] = (Fll)

k−kl−1e
(l)
l [kl−1] +

(l−1)∑
q=1

(k−1)∑
τ=kl−1

(Fll)
k−τ−1

Glqe
(q)
l [τ],

(42)
where Fll = (All − LlCll), and Glq = (Alq − LlClq).
Taking norms on both sides of the above equation, using the
triangle inequality, and the sub-multiplicative property of the
two-norm, we obtain:

∥∥∥e(l)
l [k]

∥∥∥ (a)

≤ αlρ
k
l


∥∥∥e(l)

l [kl−1]
∥∥∥

ρ
kl−1

l

+
1

ρl

(l−1)∑
q=1

glq

(k−1)∑
τ=kl−1

ρ−τl

∥∥∥e(q)
l [τ]

∥∥∥


(b)

≤ αlρ
k
l


∥∥∥e(l)

l [kl−1]
∥∥∥

ρ
kl−1

l

+
1

ρl

(l−1)∑
q=1

glq c̄q

∞∑
τ=kl−1

(
λq
ρl

)τ
(c)

≤ clρ
k
l , ∀k ≥ kl−1.

(43)
In the above inequalities, (a) follows from (31) and by re-
calling that glq = ‖Glq‖; (b) follows by first applying the
induction hypothesis noting that q ≤ (l − 1) and τ ≥ kl−1,
and then changing the upper limit of the inner summation
(over time); (c) follows by simplifying the preceding inequality
using the fact that λq < ρl, ∀q ∈ {1, . . . , l− 1}, and using the
definition of cl in (38). We have thus obtained a bound on the
estimation error of sub-state l at node l. To obtain a similar
bound for each i ∈ V \ {l}, note that equation (41) can be
rolled out over time to yield the following for each m ∈ N:

z(l)[k] = (All)
m
z(l)[k−m]+

(l−1)∑
q=1

(k−1)∑
τ=(k−m)

(All)
k−τ−1

Alqz
(q)[τ].

Leveraging Lemma 3, we can then obtain the following error
dynamics for a node i ∈ V \ {l}, ∀k ≥ tN−1.

e
(l)
i [k] = (All)

τ
(l)
i [k]

e
(l)
l [k − τ (l)

i [k]]

+

(l−1)∑
q=1

(k−1)∑
τ=(k−τ (l)

i [k])

(All)
k−τ−1

Alqe
(q)
v(τ+1)[τ].

(44)

Based on the above equation, we note that since All can
contain unstable eigenvalues, and since τ

(l)
i [k] may grow

over time (owing to potentially growing inter-communication
intervals), we need the decay in e

(l)
l [k − τ (l)

i [k]] to dominate

the growth due to (All)
τ
(l)
i [k] in order for e(l)

i [k] to eventually
remain bounded. To show that this is indeed the case, we begin
by noting the following inequalities that hold when k ≥ kl:

kl−1

k

(a)

≤ 1− δ̄
(b)

≤ 1− g̃(k)

k

(c)

≤ 1− τ
(l)
i [k]

k
, (45)

where g̃(k) = 2(N − 1)g(k). In the above inequalities, (a)
follows directly from (38); (b) follows by noting that k ≥
kl =⇒ k ≥ k̄(δ̄); and (c) follows from (35) and by noting
that k ≥ kl =⇒ k ≥ tN−1. We conclude that if k ≥ kl,
then k − τ (l)

i [k] ≥ kl−1. Thus, when k ≥ kl, at any time-step

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

13

τ ≥ k − τ (l)
i [k], the errors of the first l − 1 sub-states would

exhibit exponential decay based on the induction hypothesis.
With this in mind, we fix i ∈ V \ {l}, k ≥ kl, and bound
e

(l)
i [k] by taking norms on both sides of (44), as follows:

∥∥∥e(l)
i [k]

∥∥∥ (a)

≤ βl

cl(γl
ρl

)g̃(k)

ρkl + γk−1
l

(l−1)∑
q=1

hlq c̄q

(k−1)∑
τ=(k−τ (l)

i [k])

(
λq
γl

)τ
(b)

≤ βl

cl(γl
ρl

)g̃(k)

ρkl + γk−1
l

(l−1)∑
q=1

hlq c̄q

∞∑
τ=(k−g̃(k))

(
λq
γl

)τ
(c)
= βl

cl(γl
ρl

)g̃(k)

ρkl +

(l−1)∑
q=1

hlq c̄q
(γl − λq)

(
γl
λq

)g̃(k)

λkq


(d)

≤ c̄l

(
γ δ̄ρ1−δ̄

l

)k (e)

≤ c̄lλ
k
l .

(46)
In the above steps, (a) follows by first recalling that∥∥∥(All)

k
∥∥∥ ≤ βlγ

k
l , ∀k ∈ N, hlq = ‖Alq‖, g̃(k) = 2(N −

1)g(k), and then using the induction hypothesis, equations
(35), (39), and (43), and the facts that ρl < 1, γl ≥ 1; (b)
follows by suitably changing the upper and lower limits of the
inner summation (over time), a change that is warranted since
each summand is non-negative; (c) follows by simplifying the
preceding inequality; (d) follows by noting that λq < ρl, ∀q ∈
{1, . . . , l − 1}, using the definition of c̄l in (38), and the fact
that g̃(k) ≤ δ̄k, ∀k ≥ kl; and finally (e) follows from (30).
This completes the induction step. Let ei[k] = ẑi[k] − z[k].
Recalling that λj ≤ ρ, ∀j ∈ {1, . . . , N}, we obtain as desired:

‖ei[k]‖ =

√
N∑
j=1

∥∥∥e(j)
i [k]

∥∥∥2

≤

(√
N∑
j=1

c̄2j

)
ρk, ∀k ≥ kN , ∀i ∈ V .

APPENDIX B
PROOF OF PROPOSITION 1

Proof. (Proposition 1) For each sub-state j ∈ {1, . . . , N}, let
the corresponding source node j design the observer gain Lj
(featuring in equation (8)) in a manner such that the matrix
(Ajj−LjCjj) has all its eigenvalues at 0. Such a choice of Lj
exists based on the fact that the pair (Ajj ,Cjj) is observable
by construction. Let nj = dim(Ajj). Given the above choice
of observer gains, we will prove the result by providing an
upper bound on the number of time-steps it takes the error
of each node to converge to 0. To this end, we first define a
sequence {τ̄j}Nj=1 of time-steps as follows:

τ̄1 = inf{τ ∈ N+, τ ≥ tN−1 : k− g̃(k) ≥ n1, ∀k ≥ τ}, (47)

where g̃(k) = 2(N − 1)g(k), and

τ̄j = inf{τ ∈ N+ : k − g̃(k) ≥ τ̄j−1 + nj , ∀k ≥ τ}. (48)

Based on condition (C3), namely lim supk→∞ g(k)/k = δ <
1, observe that τ̄j as defined above is finite ∀j ∈ {1, . . . , N}.
Next, note that by construction, (Ajj −LjCjj) is a nilpotent
matrix of index at most nj . Thus, it is easy to see that e(1)

1 [k] =
0, ∀k ≥ n1, based on (32). Recall from (35) that for each
sub-state j, τ (j)

i [k] ≤ g̃(k), ∀k ≥ tN−1, ∀i ∈ V . From the

definition of τ̄1 in (47), and equation (34), we immediately
obtain that e

(1)
i [k] = 0, ∀k ≥ τ̄1, ∀i ∈ V . One can easily

generalize this argument to the remaining sub-states by using
an inductive reasoning akin to that in the proof of Theorem 1.
In particular, for any sub-state j ∈ {2, . . . , N}, one can roll
out the error dynamics for node j as in (42), starting from
time-step τ̄j−1. By this time, the induction hypothesis would
imply that the estimation errors of all nodes on all sub-states
q ∈ {1, . . . , j − 1} have converged to zero. The nilpotentcy
of (Ajj − LjCjj) would then imply that e(j)

j [k] = 0, ∀k ≥
τ̄j−1 +nj . From the definition of τ̄j in (48), and (35), we note
that k ≥ τ̄j =⇒ k−τ (j)

i [k] ≥ τ̄j−1+nj , ∀i ∈ V . Referring to
(44), we conclude that e(j)

i [k] = 0, ∀k ≥ τ̄j , ∀i ∈ V . Based on
the above reasoning, the overall error for each node converges
to 0 in at most τ̄N time-steps.

APPENDIX C
PROOF OF THEOREM 2

In this section, we develop the proof of Theorem 2. We be-
gin with the following lemma that characterizes the evolution
of the vector of freshness-indices di[k].

Lemma 5. Suppose at any time-step k ∈ N+, τi[k] 6= ω for
some i ∈ {V\S}∩R. Then, Algorithm 2 implies the following.

di[k + 1] ≤ di[k] + 12f+1, (49)
τi[k + 1] ≤ τi[k] + 1, (50)

where the first inequality holds component-wise.

Proof. Consider a node i ∈ {V \S}∩R, and suppose τi[k] 6=
ω. This implies that |Mi[k]| = 2f+1, and hence, all entries of
the vector di[k] are populated with non-negative integers. Now
fix any component p ∈ {1, . . . , 2f + 1} of di[k], and suppose
that it corresponds to node l ∈ Mi[k], i.e., focus on di,l[k].
This entry undergoes the following three operations (in order)
prior to the end of time-step k+1: (i) It gets incremented by 1
as per (17); (ii) It gets potentially replaced by a value strictly
smaller than di,l[k] + 1 if node i hears from node l at time
k + 1 (line 15 of Algo. 2); and (iii) It gets subjected to the
operation in line 16 of Algo. 2. Clearly, after operations (i) and
(ii), the entry corresponding to node l can increase by at most
1. At the end of operation (iii), node l either gets retained in
Mi[k+1], or gets replaced. In case it is the former, we clearly
have di,l[k+ 1] ≤ di,l[k] + 1, and di,l[k+ 1] gets stored in the
p-th component of di[k + 1] (see footnote 11). If node l gets
removed from Mi[k + 1], then given that the 2f + 1 nodes
with the lowest freshness-indices populate Mi[k+ 1] (line 16
of Algo. 2), it must be that the node replacing l in Mi[k+ 1]
has freshness-index at most di,l[k] + 1 at time k + 1. Thus,
regardless of whether node l gets retained or removed, we
have argued that the p-th component of di[k] can increase by
at most 1 by the end of time-step k+1. Noting that the above
argument holds for any component p of di[k] establishes (49);
Eq. (50) then follows readily from (20) and (49).

The next lemma is the analogue of Lemma 4 for the
adversarial case. It tells us that the freshness-index of a regular
node gets “triggered” (i.e., assumes a value other than ω) after

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

14

a finite period of time, and that it is eventually uniformly
bounded above. Here, uniformity is w.r.t. all graph sequences
that are jointly strongly (3f + 1)-robust w.r.t. S .

Lemma 6. Suppose the conditions in the statement of Theorem
2 hold. Then, Algorithm 2 guarantees the following.

τi[k] 6= ω, ∀k ≥ (N − |S|)T, ∀i ∈ R, and (51)

τi[k] ≤ 2(N − |S|)T, ∀k ≥ (N − |S|)T, ∀i ∈ R, (52)

where T has the same meaning as in Definition 3.

Proof. The proof of this result mirrors that of Lemma 4; hence,
we only sketch the essential details. First, observe that the
claims made in the statement of the lemma hold trivially for
any i ∈ S ∩ R, since each such node maintains τi[k] = 0 for
all time. Let us now focus on establishing (51) for all regular
non-source nodes. To this end, let C0 = S , and define:

C1 , {i ∈ V \ C0 : |{
T−1⋃
τ=0
Ni[τ]} ∩ C0| ≥ 3f + 1}. (53)

In words, i ∈ C1 if and only if node i has at least 3f + 1
neighbors from the source set C0 = S over the interval [0, T).
Suppose V \ S 6= ∅ (else, there is nothing to prove). Then, C1
must also be non-empty based on the definition of joint strong
(3f + 1)-robustness w.r.t. S . Now consider any i ∈ C1 ∩ R.
Since at most f nodes are adversarial, node i must have heard
from at least 2f + 1 regular source nodes (not necessarily all
at the same time-step) over the interval [0, T), with each such
node reporting a freshness-index of 0. Regardless of whether
or not node i appends all such nodes toMi, the fact that it has
the opportunity to do so, implies that τi[T] 6= ω. Moreover,
given the fact that node i appends a node l to Mi[k] only if
τl[k] ≤ k, and appealing to (50), we see that τi[T] ≤ T . Using
(50) again, we have τi[(N−|S|)T] ≤ (N−|S|)T. Now define
the sets Cr, 1 ≤ r ≤ (N − |S|), recursively as follows:

Cr , {i ∈ V \
(r−1)⋃
q=0
Cq : |{

rT−1⋃
τ=(r−1)T

Ni[τ]} ∩ {
(r−1)⋃
q=0
Cq}| ≥ 3f + 1}.

(54)
We can now employ an inductive argument similar to that in
Lemma 4 to establish (51). In particular, proceeding as in the
base case when r = 1, joint strong (3f+1)-robustness w.r.t. S

implies that Cr 6= ∅, whenever V\
(r−1)⋃
q=0
Cq 6= ∅. Since |A| ≤ f ,

any node i ∈ Cr∩R must then hear from at least 2f+1 regular

nodes in
(r−1)⋃
q=0
Cq over the interval [(r − 1)T, rT). Moreover,

based on an inductive reasoning, each such node would be a
potential candidate for getting appended upon making contact
with node i. It is easy to then see that for each i ∈ Cr ∩ R,
τi[rT] 6= ω and, in particular, τi[rT] ≤ rT based on (50).
This establishes the claim in equation (51).

We now turn to establishing the correctness of (52). Let
T̄ = (N − |S|)T. We claim τi[pT̄] ≤ T̄ , ∀p ∈ N+, ∀i ∈ R.
Note that the argument for the case when p = 1 follows from
the above discussion, and by using (50). To prove the claim, it
suffices to prove it for the case when p = 2, since an identical
reasoning applies for all p ≥ 2. For analyzing the case when

p = 2, let D0 = S , and define the sets Dr, 1 ≤ r ≤ (N−|S|),
recursively as follows:

Dr , {i ∈ V \
(r−1)⋃
q=0
Dq : |{

T̄+rT−1⋃
τ=T̄+(r−1)T

Ni[τ]} ∩ {
(r−1)⋃
q=0
Dq}| ≥ 3f + 1}.

(55)
Let us first consider the case when r = 1, and accordingly
focus on the interval [T̄ , T̄ + T). Fix τ ∈ [0, T − 1], and
suppose a regular non-source node i ∈ D1 ∩ R hears from
m regular source nodes over the interval [T̄ , T̄ + τ]. We then
claim that at least m components of di[T̄ + τ] are at most τ .
This is immediate when m = 1 based on (49). In particular,
whenever a regular source node transmits to node i, given
that it always reports a freshness-index of 0, at least one of
the entries of di will take on a value of 0 at that instant.
Now suppose m = 2, and let node i hear from regular source
nodes v1 and v2 at time-steps T̄ + τ1 and T̄ + τ2, respectively,
where 0 ≤ τ1 ≤ τ2 ≤ τ . Given that node i hears from v1 at
T̄ + τ1, based on (49), it must be that at least one component
of di[T̄ + τ2] is at most τ2 − τ1 ≤ τ2. Given this, the fact
that node i hears from v2 at T̄ + τ2, and noting that node i
appends/retains those 2f + 1 nodes in Mi[T̄ + τ2] that have
the lowest freshness-indices (see line 16 of Algo. 2), observe
that at the end of time-step T̄ + τ2, at least two components
of di[T̄ +τ2] are at most τ2; from (49), it follows that each of
these components in di[T̄ + τ] are at most τ . It is easy to see
that the above argument can be generalized for m ≥ 2. Now
based on joint strong (3f + 1)-robustness w.r.t. S , D1 6= ∅
whenever V \D0 6= ∅. Since |A| ≤ f , any node i ∈ D1∩R is
guaranteed to hear from m = 2f+1 regular source nodes over
the interval [T̄ , T̄ +T −1]. The above discussion then implies
that each component of di[T̄ +T −1] is at most T −1. It then
follows from (20) that for each i ∈ D1∩R, τi[T̄+T] ≤ T , and
hence τi[2T̄] ≤ T̄ based on (50). To establish that τi[2T̄] ≤
T̄ , ∀i ∈ R, one can proceed via induction to establish that
τi[T̄ + rT] ≤ rT, ∀i ∈ Dr ∩ R. This can be done using
arguments similar to when r = 1, and hence we omit them.
The rest of the proof can be completed as in Lemma 4.

The next lemma reveals the implication of τi[k] taking on a
finite value, based on Algo. 2. To state the result, let us define
Ω(r)[k] , {arx̂s[k − r] : s ∈ S ∩ R}, where r ∈ N. Let
Conv(Ω) represent the convex hull of a finite set of points Ω.

Lemma 7. Suppose that at any k ∈ N+, τi[k] = m for some
i ∈ {V \ S} ∩ R, where m ∈ N+. Then, Algo. 2 implies:

x̂i[k] ∈ Conv

(
m⋃
r=1

Ω(r)[k]

)
. (56)

Proof. We will prove the result via induction on m. For the
base case of induction with m = 1, suppose that τi[k] = 1 for
some node i ∈ {V\S}∩R at some time-step k. Based on (20),
it must then be the case that maxl∈Mi[k−1] di,l[k − 1] = 0.
Since each entry of di[k − 1] is non-negative by definition,
we have di,l[k − 1] = 0, ∀l ∈ Mi[k − 1]. Since Mi[k − 1]
consists of 2f + 1 distinct nodes, and |A| ≤ f , at least f + 1
entries inMi[k−1] correspond to regular nodes, each of which

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

15

are source nodes (all regular non-source nodes have freshness-
indices strictly larger than 1). Thus, node i must have appended
at least f + 1 regular source nodes at time k − 1. For each
l ∈Mi[k−1]∩{S ∩R}, observe that x̄i,l[k−1] = x̂l[k−1].
Given the fact that |A| ≤ f , it is easy to see that the following
holds based on the filtering operation in line 12 of Algo. 2:

x̄i[k − 1] ∈ Conv({x̄i,l[k − 1] : l ∈Mi[k − 1] ∩R}). (57)

Based on the above discussion, we then have that x̄i[k− 1] ∈
Conv(Ω(0)[k − 1]), and hence x̂i[k] ∈ Conv(Ω(1)[k]), since
x̂i[k] = ax̄i[k−1]. This completes the proof of the base case.

To generalize the above result, let us first observe the
following identity which holds for any l ∈ Mi[k] ∩ R, and
follows directly from the rules of Algo. 2:14

τl[φi,l[k]] + (k − φi,l[k]) = di,l[k]. (58)

Now fix an integer q ≥ 2, and suppose the inclusion in (56)
holds for all m ∈ {1, . . . , q− 1}. Suppose τi[k] = q for some
i ∈ {V \S}∩R at some time-step k. Then, based on (20), we
have maxl∈Mi[k−1] di,l[k − 1] = q − 1. Combining this with
(58), we obtain the following for each l ∈Mi[k − 1] ∩R:

τl[φi,l[k − 1]] + ((k − 1)− φi,l[k − 1]) ≤ q − 1. (59)

Fix l ∈Mi[k−1]∩R. The above relation can be now exploited
to make certain inferences about the estimate of node l at the
time-step φi,l[k− 1] when it was last appended by node i. To
see this, consider the case when l is a non-source node. Since
((k− 1)− φi,l[k− 1]) is non-negative, τl[φi,l[k− 1]] ≤ q− 1
based on (59). The induction hypothesis thus applies to node
l, and we have:

x̂l[φi,l[k−1]] ∈ Conv

τl[φi,l[k−1]]⋃
r=1

Ω(r)[φi,l[k − 1]]

 . (60)

On the other hand, if l is a source node, then clearly x̂l[φi,l[k−
1]] ∈ Conv(Ω(0)[φi,l[k−1]]). Combining the two cases above,
and noting that x̄i,l[k− 1] = agi,l[k−1]x̂l[φi,l[k− 1]] based on
(21), where gi,l[k − 1] = ((k − 1)− φi,l[k − 1]), we have:

x̄i,l[k − 1] ∈ Conv

gi,l[k−1]+τl[φi,l[k−1]]⋃
r=gi,l[k−1]

Ω(r)[k − 1]


∈ Conv

(
q−1⋃
r=0

Ω(r)[k − 1]

)
,

(61)
where the last inclusion follows by noting that gi,l[k−1] ≥ 0,
and that gi,l[k − 1] + τl[φi,l[k − 1]] ≤ q − 1 based on (59).
Appealing to (57), and using (61), we conclude that

x̄i[k − 1] ∈ Conv

(
q−1⋃
r=0

Ω(r)[k − 1]

)
. (62)

14Essentially, (58) suggests that the difference between node i’s internal
copy of node l’s freshness-index at time k, namely di,l[k], and the actual
freshness-index τl[φi,l[k]] of node l when it was last appended by node i, is
simply the time that has elapsed since node l was last appended by node i,
namely (k − φi,l[k]): this observation follows directly from (17).

Since x̂i[k] = ax̄i[k − 1], we then have

x̂i[k] ∈ Conv

(
q⋃
r=1

Ω(r)[k]

)
, (63)

which is precisely the desired conclusion.

We are now in position to prove Theorem 2.

Proof. (Theorem 2) Let us begin by noting that given any
desired convergence rate ρ ∈ (0, 1), each node i ∈ S ∩R can
choose its observer gain li to guarantee |ei[k]| ≤ αρk, ∀k ∈ N,
based on the observer (15). Here, ei[k] = x̂i[k]− x[k], and α
is some suitable constant. Now consider any i ∈ {V \S}∩R,
and suppose k ≥ (N − |S|)T . From Lemma 6, we know that
τi[k] 6= ω, and hence τi[k] ∈ N+. Based on Lemma 7, we
conclude that there exist non-negative weights w(r)

is [k], such
that

∑
s∈S∩R

∑τi[k]
r=1 w

(r)
is [k] = 1, and

x̂i[k] =
∑

s∈S∩R

τi[k]∑
r=1

w
(r)
is [k]arx̂s[k − r]. (64)

Based on the convexity of the weights w(r)
is [k], note that x[k] =∑

s∈S∩R
∑τi[k]
r=1 w

(r)
is [k]arx[k−r]. Using this and (64) yields:

ei[k] =
∑

s∈S∩R

τi[k]∑
r=1

w
(r)
is [k]ares[k − r]. (65)

Taking norms on both sides of the above equation, we obtain:

|ei[k]| ≤ α
∑

s∈S∩R

τi[k]∑
r=1

w
(r)
is [k]

(
|a|
ρ

)r
ρk (66)

≤ α
(
|a|
ρ

)τi[k]

ρk ≤ α
(
|a|
ρ

)2(N−|S|)T

ρk. (67)

In the above steps, we have assumed |a| ≥ 1 (to avoid
trivialities) and exploited the convexity of the weights w(r)

is [k]
to arrive at the second inequality, and used (52) to arrive at
the final inequality. This concludes the proof.

REFERENCES

[1] C.-T. Chen, Linear system theory and design. Oxford University Press,
Inc., 1998.

[2] U. Khan, S. Kar, A. Jadbabaie, and J. M. Moura, “On connectivity,
observability, and stability in distributed estimation,” in Proc. of the
49th IEEE Conference on Decision and Control, 2010, pp. 6639–6644.

[3] V. Ugrinovskii, “Conditions for detectability in distributed consensus-
based observer networks,” IEEE Trans. on Autom. Control, vol. 58,
no. 10, pp. 2659–2664, 2013.

[4] T. Kim, H. Shim, and D. D. Cho, “Distributed luenberger observer
design,” in Proc. of the 55th IEEE Decision and Control Conference,
2016, pp. 6928–6933.

[5] S. Park and N. C. Martins, “Design of distributed LTI observers for
state omniscience,” IEEE Trans. on Autom. Control, vol. 62, no. 2, pp.
561–576, 2017.

[6] A. Mitra and S. Sundaram, “Distributed observers for LTI systems,”
IEEE Trans. on Autom. Control, vol. 63, no. 11, pp. 3689–3704, 2018.

[7] L. Wang and A. S. Morse, “A distributed observer for a time-invariant
linear system,” IEEE Trans. on Autom. Control, vol. 63, no. 7, 2018.

[8] W. Han, H. L. Trentelman, Z. Wang, and Y. Shen, “A simple approach to
distributed observer design for linear systems,” IEEE Trans. on Autom.
Control, vol. 64, no. 1, pp. 329–336, 2019.

[9] F. F. Rego, A. P. Aguiar, A. M. Pascoal, and C. N. Jones, “A design
method for distributed Luenberger observers,” in Proc. of the 56th IEEE
Conference on Decision and Control, 2017, pp. 3374 – 3379.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3130882, IEEE
Transactions on Automatic Control

16

[10] Á. R. del Nozal, P. Millán, L. Orihuela, A. Seuret, and L. Zaccarian,
“Distributed estimation based on multi-hop subspace decomposition,”
Automatica, vol. 99, pp. 213–220, 2019.

[11] T. Kim, C. Lee, and H. Shim, “Completely decentralized design of
distributed observer for linear systems,” IEEE Trans. on Autom. Control,
2019.

[12] L. Wang, A. Morse, D. Fullmer, and J. Liu, “A hybrid observer for a
distributed linear system with a changing neighbor graph,” in Proc. of
the 56th IEEE Conf. on Decision and Control, 2017, pp. 1024–1029.

[13] S. Wang and W. Ren, “On the convergence conditions of distributed
dynamic state estimation using sensor networks: A unified framework,”
IEEE Trans. on Cont. Sys. Tech., vol. 26, no. 4, pp. 1300–1316, 2018.

[14] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman, “Decentralized
environmental modeling by mobile sensor networks,” IEEE transactions
on robotics, vol. 24, no. 3, pp. 710–724, 2008.

[15] R. Graham and J. Cortés, “Adaptive information collection by robotic
sensor networks for spatial estimation,” IEEE Transactions on Automatic
Control, vol. 57, no. 6, pp. 1404–1419, 2011.

[16] W. Han, H. L. Trentelman, Z. Wang, and Y. Shen, “Towards a minimal
order distributed observer for linear systems,” Systems & Control Letters,
vol. 114, pp. 59–65, 2018.

[17] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Resilient
distributed state estimation with mobile agents: overcoming Byzantine
adversaries, communication losses, and intermittent measurements,”
Autonomous Robots, vol. 43, no. 3, pp. 743–768, 2019.

[18] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving
a linear algebraic equation,” IEEE Trans. on Autom. Control, vol. 60,
no. 11, pp. 2863–2878, 2015.

[19] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. on Autom.
Control, vol. 48, no. 6, pp. 988–1001, 2003.

[20] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. on Autom. Control, vol. 54, no. 1,
p. 48, 2009.

[21] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear
systems: a survey of recent results,” IEEE Trans. on Autom. control,
vol. 54, no. 2, pp. 308–322, 2009.

[22] M. Deghat, V. Ugrinovskii, I. Shames, and C. Langbort, “Detection
and mitigation of biasing attacks on distributed estimation networks,”
Automatica, vol. 99, pp. 369–381, 2019.

[23] J. Kim, J. G. Lee, C. Lee, H. Shim, and J. H. Seo, “Local identification of
sensor attack and distributed resilient state estimation for linear systems,”
in Proc. of the 57th IEEE Conference on Decision and Control, 2018,
pp. 2056–2061.

[24] X. He, X. Ren, H. Sandberg, and K. H. Johansson, “Secure dis-
tributed filtering for unstable dynamics under compromised observa-
tions,” arXiv:1903.07345, 2019.

[25] A. Mitra and S. Sundaram, “Byzantine-resilient distributed observers for
LTI systems,” Automatica, vol. 108, p. 108487, 2019.

[26] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in IEEE INFOCOM, 2012, pp. 2731–2735.

[27] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Transactions
on Information Theory, vol. 62, no. 4, pp. 1897–1910, 2016.

[28] R. Talak, S. Karaman, and E. Modiano, “Minimizing age-of-information
in multi-hop wireless networks,” in Proc. Annual Allerton Conf. on
Comm., Control, and Computing, 2017, pp. 486–493.

[29] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Finite-time
distributed state estimation over time-varying graphs: Exploiting the age-
of-information,” in Proc. of the American Control Conference. IEEE,
2019, pp. 4006–4011.

[30] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” Journal of
the ACM (JACM), vol. 33, no. 3, pp. 499–516, 1986.

[31] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient
asymptotic consensus in robust networks,” IEEE Journal on Selected
Areas in Comm., vol. 31, no. 4, pp. 766–781, 2013.

[32] N. H. Vaidya, L. Tseng, and G. Liang, “Iterative approximate Byzantine
consensus in arbitrary directed graphs,” in Proc. of the ACM Symp. on
Principles of Distributed Comp., 2012, pp. 365–374.

[33] A. Tahbaz-Salehi and A. Jadbabaie, “A necessary and sufficient con-
dition for consensus over random networks,” IEEE Trans. on Autom.
Control, vol. 53, no. 3, pp. 791–795, 2008.

[34] R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix analysis. Cambridge
university press, 1990.

Aritra Mitra is a Postdoctoral Researcher in the
Department of Electrical and Systems Engineering,
University of Pennsylvania. He received the Ph.D.
degree from Purdue University, USA, the M.Tech.
degree from the Indian Institute of Technology
Kanpur, India, and the B.E. degree from Jadavpur
University, Kolkata, India, in 2020, 2015, and 2013,
respectively, all in Electrical Engineering. His cur-
rent research interests include distributed learning
and optimization, statistical signal processing, net-
worked control systems, and secure control. He was

a recipient of the University Gold Medal at Jadavpur University and the
Academic Excellence Award at IIT Kanpur.

John A. Richards is a Distinguished Member of
Technical Staff in the Autonomy for Hypersonics
Department of Sandia National Laboratories. Dr.
Richards has led numerous projects involving sen-
sor exploitation, autonomy, and signal and image
processing applications. He is widely recognized
as a leading figure in the field of automatic tar-
get recognition (ATR) for synthetic aperture radar
(SAR) and high range-resolution radar (HRR). Dr.
Richards is the author of numerous conference and
journal papers, including the article on SAR in the

Encyclopedia of Optical Engineering (Taylor & Francis Press, 2015). He is
a member of the Executive Committee of the Automatic Target Recognition
Working Group (ATRWG), a consortium of developers, sponsors, and users
of sensor exploitation systems. Dr. Richards received his Ph.D. in Electrical
Engineering and Computer Science from the Massachusetts Institute of
Technology (MIT) in 2001. He previously received his S.B. and M.Eng. in
Electrical Engineering, also from MIT, in 1996.

Saurabh Bagchi is a Professor in the School of
Electrical and Computer Engineering and the De-
partment of Computer Science at Purdue University
in West Lafayette, Indiana. He is the founding Direc-
tor of a university-wide resiliency center at Purdue
called CRISP (2017-present). He serves on the IEEE
Computer Society Board of Governors for the 2017-
19 term. Saurabh’s research interest is in distributed
systems and dependable computing. He is proudest
of the 20 PhD students who have graduated from
his research group and who are in various stages

of building wonderful careers in industry or academia. In his group, he
and his students have far too much fun building and breaking real systems.
Saurabh received his MS and PhD degrees from the University of Illinois at
Urbana-Champaign and his BS degree from the Indian Institute of Technology
Kharagpur, all in Computer Science.

Shreyas Sundaram is an Associate Professor in the
School of Electrical and Computer Engineering at
Purdue University. He received his MS and PhD de-
grees in Electrical Engineering from the University
of Illinois at Urbana-Champaign in 2005 and 2009,
respectively. He was a Postdoctoral Researcher at
the University of Pennsylvania from 2009 to 2010,
and an Assistant Professor in the Department of
Electrical and Computer Engineering at the Uni-
versity of Waterloo from 2010 to 2014. He is a
recipient of the NSF CAREER award, and an Air

Force Research Lab Summer Faculty Fellowship. At Purdue, he received the
Hesselberth Award for Teaching Excellence and the Ruth and Joel Spira
Outstanding Teacher Award. At Waterloo, he received the Department of
Electrical and Computer Engineering Research Award and the Faculty of
Engineering Distinguished Performance Award. He received the M. E. Van
Valkenburg Graduate Research Award and the Robert T. Chien Memorial
Award from the University of Illinois, and he was a finalist for the Best
Student Paper Award at the 2007 and 2008 American Control Conferences. His
research interests include network science, analysis of large-scale dynamical
systems, fault-tolerant and secure control, linear system and estimation theory,
game theory, and the application of algebraic graph theory to system analysis.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:35:42 UTC from IEEE Xplore. Restrictions apply.

