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a b s t r a c t

In this paper, we discuss the computational complexity of reconstructing the state of a linear system
from sensor measurements that have been corrupted by an adversary. The first result establishes that
the problem is, in general, NP-hard. We then introduce the notion of eigenvalue observability and
show that the state can be reconstructed in polynomial time when each eigenvalue is observable by
at least 2s + 1 sensors and at most s sensors are corrupted by an adversary. However, there is a gap
between eigenvalue observability and the possibility of reconstructing the state despite attacks — this
gap has been characterized in the literature by the notion of sparse observability. To better understand
this, we show that when the A matrix of the linear system has unitary geometric multiplicity, the
gap disappears, i.e., eigenvalue observability coincides with sparse observability, and there exists a
polynomial time algorithm to reconstruct the state provided the state can be reconstructed.

© 2021 Elsevier Ltd. All rights reserved.
2
s
z

t
H
i
T
i
B
w
&
e
b
g
e
e
f
s
t

1. Introduction

This paper is concerned with the detection of attacks on
yber–Physical Systems (CPSs). The distributed nature of these
arge-scale systems often leads to increased vulnerabilities. Of
articular concern are adversaries that exploit the distributed
ature of CPSs to gain access to sensors and launch attacks by
odifying their measurements (Cárdenas, Amin, & Sastry, 2008;
iraldo et al., 2018; Special issue on secure control of cyber phys-
cal systems, 2017). The most notorious example is the Stuxnet
alware (Langner, 2011), which attacked numerous industrial
ontrol systems.
Over the last decade, a significant amount of research has

ocused on reconstructing the state in the presence of sensor
ttacks — we will refer to this as the Secure State-Reconstruction
SSR) problem throughout the paper. The first experimental
emonstration of a stealthy attack on a control system was
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reported in Amin, Litrico, Sastry, and Bayen (2010) and it was fol-
lowed by the first theoretical results developed for special classes
of systems (Gupta, Langbort, & Başar, 2010; Sandberg, Teixeira, &
Johansson, 2010). Stealthy attacks were then formalized in Smith
(2011, 2015). An important step in the conceptual understanding
of these attacks was given in Pasqualetti, Dörfler, and Bullo (2012,
013), Sundaram and Hadjicostis (2010), where the existence of
uch attacks was characterized by the system theoretic notion of
ero-dynamics.
In addition to detecting and identifying attacks, it is impor-

ant to mitigate their effect by continuing to control the plant.
ence, researchers have invested a significant effort in develop-
ng algorithms to reconstruct the state since the papers (Fawzi,
abuada, & Diggavi, 2011, 2014). However, the SSR problem is
ntrinsically an NP-hard problem (as we show in this paper).
ased on how the NP-hardness is tackled, we classify the existing
ork in two classes: (1) brute force search (Chong, Wakaiki,
Hespanha, 2015; Lu & Yang, 2017), and (2) computationally

fficient relaxations. The methods reported in the first class are
etter suited for small systems as the computational complexity
rows combinatorially with the number of sensors. Noteworthy
xamples of the second class include: convex relaxations (Fawzi
t al., 2014; Yong, Foo, & Frazzoli, 2016), distributed detection
ilters (Pasqualetti et al., 2013), specialized observers under spar-
ity constraints (Shoukry & Tabuada, 2015), satisfiability modulo
heory techniques (Shoukry et al., 2018), and safety envelopes (Ti-

ari et al., 2014).
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The distributed version of the SSR problem has also attracted
a substantial amount of interest given the distributed nature
of CPSs. Several authors have studied the problem of estimat-
ing a static vector from a set of corrupted measurements, ei-
ther over a distributed sensor network (Chen, Kar, & Moura,
2018a; Su & Shahrampour, 2019), or over a connected-on-average
etwork (Chen, Kar, & Moura, 2018b). A control-theoretic ap-
roach to distributed function calculation was developed in Sun-
aram and Hadjicostis (2010). Follow-up works have analyzed the
esilient consensus problem, both for discrete (LeBlanc, Zhang,
outsoukos, & Sundaram, 2013), and continuous-time (LeBlanc,
hang, Sundaram, & Koutsoukos, 2013) systems. The work in
seng and Vaidya (2015) also evaluates this method in various
etwork topologies. The problem of guaranteeing resilience in the
ontext of distributed state estimation, when the state of the sys-
em evolves over time (based on potentially unstable dynamics)
as been recently explored in Deghat, Ugrinovskii, Shames, and
angbort (2019), Mitra and Sundaram (2016), and Mitra and Sun-
aram (2019). In particular, the authors in Mitra and Sundaram
2019) develop a fully-distributed algorithm that reconstructs the
volving state despite attacks on certain sensors in the network.
Despite the wealth of literature on the security of CPSs, to the

est of the authors’ knowledge, a detailed characterization of the
omplexity of the SSR problem is still lacking. On the one hand,
he papers (Fawzi et al., 2014; Pasqualetti et al., 2013; Shoukry
t al., 2018; Shoukry & Tabuada, 2015; Tiwari et al., 2014; Yong

et al., 2016) suggest that the SSR problem is computationally hard
since they propose efficient relaxations to the problem. On the
other hand, the paper (Mitra & Sundaram, 2019) implicitly pro-
poses a polynomial-time solution to the SSR problem for certain
cases. These observations naturally call for a better understanding
of the complexity of the SSR problem, which is precisely the goal
of this paper.

As we shall soon see, two alternate notions of observability,
namely ‘‘sparse observability" introduced in Fawzi et al. (2014),
Shoukry and Tabuada (2015) (see also (Sundaram & Hadjicostis,
2010) for an equivalent notion in continuous time), and ‘‘eigen-
value observability" (Chen, 1998), Mitra and Sundaram (2018),
ill play key roles in our characterization of the SSR problem
omplexity. Our contributions are the following:

(1) We show that the SSR problem is NP-hard.
(2) We provide a decomposition that identifies portions of the

state that can be reconstructed in polynomial time and
portions that are NP-hard to reconstruct.

(3) We offer a polynomial-time solution for the SSR problem
under an eigenvalue observability assumption.

(4) We show that checking sparse observability is coNP-
complete.

(5) We show that the notions of sparse observability and
eigenvalue observability are equivalent when the geomet-
ric multiplicity of each eigenvalue of the system matrix A
is 1.

These results can be understood as follows. Although the SSR
roblem is NP-hard, in general, there may be portions of the
tate that can be reconstructed in polynomial time. We perform a
ystem decomposition to identify these different portions of the
tate. In particular, when all the eigenvalues of the system matrix
have unitary geometric multiplicity, the decomposition results

n scalar SSR problems. This establishes the equivalence between
parse observability, a necessary and sufficient condition for the
SR problem to be solvable, and eigenvalue observability, a suffi-
ient condition for the existence of a polynomial time algorithm.
nterestingly, even if the unitary geometric multiplicity condition
s not satisfied, we may still check eigenvalue observability and, if
uccessful, solve the SSR problem in polynomial time. When the
 w

2

system does not satisfy the eigenvalue observability condition,
we conjecture that the SSR problem is intractable since even
checking sparse observability is coNP-complete. This paper im-
proves upon the preliminary results in Mao, Mitra, Sundaram, and
Tabuada (2019) by introducing a decomposition technique that is
key to the aforementioned contributions 1 and 2.

The rest of the paper is organized as follows. In Section 2,
we define the notation used throughout the paper. In Section 3,
we introduce the system model and give a formal definition of
the SSR problem, sparse observability, and eigenvalue observ-
ability. We prove that the SSR problem is NP-hard in Section 4.
This is then followed by a result on breaking the overall SSR
problem into several smaller independent SSR problems. As a
special case, we show in Section 6 that under an eigenvalue
observability assumption, the SSR problem can be solved in poly-
nomial time. While checking eigenvalue observability can be done
in polynomial time, in Section 7 we show that checking sparse
bservability is coNP-complete. We connect these two notions in
ection 8 by showing that they are equivalent when the geomet-
ic multiplicity of each eigenvalue of the system matrix A is 1.
inally, we conclude the paper in Section 9.

. Preliminaries and notations

The cardinality of a finite set I = {i1, . . . , ip} is denoted
y |I| = p. For matrices Qi1 , . . . ,Qip over the same field and
ith the same number of columns, we define the matrix QI =

QT
i1
|QT

i2
| . . . |QT

ip

]T
by stacking the individual matrices vertically.

We use R to denote the field of real numbers, Q to denote the
ield of rational numbers, and C to denote the field of complex
umbers. For a matrix A ∈ Rn×n, we use ker A to denote the
ernel of A, Im(A) to denote the image of A and A|V to denote
he restriction of the linear map defined by A to the subspace V .
e also denote by A(V ) the set {y ∈ Rn

|y = Ax, x ∈ V }.
Let V be a vector space. The collection of vector spaces

V j
}j=1,...,r , with V j

⊆ V , is said to be an internal direct sum of V ,
enoted by V =

⨁
j=1,...,r V

j, if any vector v ∈ V can be uniquely
ritten as v = v1 + . . . + vr with vj ∈ V j. The direct sum comes
quipped with canonical inclusions ıj : V j

→ V taking vj ∈ V j

o ıj(vj) = vj ∈ V , and canonical projections πj : V → V j taking
∈ V to πj(v) = vj ∈ V j.
As an example, consider V = R4 and let V 1

= Im(M1),
2

= Im(M2), and V 3
= Im(M3) where M1, M2, and M3 are the

ollowing linear transformations:

1 =

⎡⎢⎣ 2 0
−1 1
1 1
0 0

⎤⎥⎦ , M2 =

⎡⎢⎣ 0
1

−1
0

⎤⎥⎦ , M3 =

⎡⎢⎣−1
1
0
1

⎤⎥⎦ . (1)

he collection {V 1, V 2, V 3
} is an internal direct sum of V since

ll the column vectors are linearly independent. The canonical
nclusions ıj can be represented by I4|V j , the identity matrix I4 of
rder 4 restricted to the subspace V j, since ıj maps any vector

∈ V j to v ∈ V . Conversely, the canonical projections πj
re represented by the matrices Pj = MiUjM−1, where U1 =

1 0 0 0
0 1 0 0

]
, U2 =

[
0 0 1 0

]
, U3 =

[
0 0 0 1

]
, as

ell as M =
[
M1 M2 M3

]
.

Let V =
⨁

j=1,...,r V
j, W =

⨁
j=1,...,r W

j, and consider a linear
ap F : V → W satisfying F (V j) ⊆ W j. Then, the linear map
(j)

: V j
→ W j defined by F (j)

= πj ◦ F ◦ ıj satisfies:
(j)

◦ πj = πj ◦ F (2)

ıj ◦ F (j)
= F ◦ ıj, (3)

here ◦ denotes function composition.
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Continuing with our example, let F be represented by the
matrix:

F =
1
2

⎡⎢⎣ 2 0 0 −4
1 3 −1 4

−1 −1 3 0
0 0 0 6

⎤⎥⎦ , (4)

and note that F(V j) ⊆ V j. The maps F(j) are then given by F(1) =

1F ◦ ı1 = P1F|V1 = I4|V1 , F(2) = P2F ◦ ı2 = P2F|V2 = 2I4|V2 ,
s well as F(3) = P3F ◦ ı3 = P3F|V3 = 3I4|V3 . Since the vector

subspaces V j are the generalized eigenspaces of F corresponding
to each different eigenvalue, the matrices F(j) are simply the
identity matrix restricted to V j multiplied by the corresponding
eigenvalue.

We denote by λ1, . . . , λr ∈ C the (counted without repetition)
eigenvalues of A and by sp(A) = {λ1, . . . , λr} its spectrum. The
algebraic multiplicity of an eigenvalue λj, denoted by α(λj), is the
number of times (counted with repetition) that λj is a solution of
det(A− λjIn) = 0. The geometric multiplicity of an eigenvalue λj,
enoted by γ (λj), is the dimension of the vector space ker(A −

jIn). We denote the space of generalized eigenvectors associated
ith λj, ker(A − λjIn)α(λj), by Vj. Note that Vj has dimension α(λj)

and γ (λj) Jordan chains.
Given a vector b ∈ Rn, we denote by ∥b∥0 the number of

non-zero entries in b.

3. Problem formulation

3.1. System model

Consider a discrete-time linear time-invariant system under
sensor attacks of the following form:

x(k + 1) = Ax(k) (5)
yi(k) = Cix(k) + ei(k), (6)

where x(k) ∈ Rn and yi(k) ∈ Rpi represent the state of the
system and the measurement acquired by sensor i respectively.
The vector ei(k) ∈ Rpi models the attack on sensor i. If sensor i is
attacked by an adversary, then ei(k) can be arbitrary, otherwise,
ei(k) remains zero for any k. Let V denote the set of sensors, and
let N = |V|. We use C =

[
CT
1 |C

T
2 | · · · |C

T
N

]T to denote the collection
of the sensor observation matrices, y(k) =

[
yT1(k) · · · yTN (k)

]T
and e(k) =

[
eT1(k) · · · eTN (k)

]T to represent the collective
measurement vector and the collective attack vector, respectively.

We define Oi =
[
CT
i |(CiA)T | . . . |(CiAτi−1)T

]T to be the ob-
servability matrix of sensor i with τi being the observability
index of the pair (A, Ci). We also define two more vectors Yi =[
yTi (0) . . . yTi (τi − 1)

]T and Ei =
[
eTi (0) . . . eTi (τi − 1)

]T to
be the collection of measurements and attacks of sensor i over the
time horizon [0, τi−1], respectively. An equivalent expression for
the measurements is:

Yi = Oix(0) + Ei. (7)

In the remainder of the paper, we drop the time indices to
simplify notation.

3.2. The Secure State-Reconstruction problem

Problem 1 (Secure state-reconstruction).
Input: Matrices A ∈ Rn×n, Ci ∈ Rpi×n, i = 1, . . . ,N , and a set

of vectors Yi ∈ Rpiτi , i = 1, . . . ,N .
Question: Find a vector x ∈ Rn and a set I of minimal

cardinality such that Y = O x for all j /∈ I.
j j

3

In other words, the SSR problem requires the reconstruction of
a state x and the simplest attack explanation in the form of the
least number of attacked sensors. Note that when the solution x
is unique, we have found the state of the linear system. Although
uniqueness of solutions is essential when handling attacks, we
can study the complexity of the SSR problem independently of
the number of solutions. To make this clear, we will explicitly
state the uniqueness requirements when needed.

3.3. Sparse observability and eigenvalue observability

The notions of sparse observability and eigenvalue observabil-
ity are instrumental to the results in this paper.

Definition 1 (Sparse Observability Index). The sparse observability
index of the pair (A, C) in system (5)–(6) is the largest integer
k such that ker OV\K = {0} for any K ⊆ V, |K| ≤ k. When
the sparse observability index is r , we say that system (5)–(6) is
r−sparse observable.

It is proved in Fawzi et al. (2014), Shoukry and Tabuada (2015)
(see also Chong et al. (2015) for a similar notion in continuous
time) that the possibility of uniquely reconstructing the state x(k)
is characterized by the sparse observability index.

Theorem 1 (Chong et al., 2015; Fawzi et al., 2014; Shoukry &
abuada, 2015). Consider the linear system (5)–(6) where at most
sensors are subject to attacks. The state x(k) can be uniquely

econstructed if and only if the sparse observability index of the pair
A, C) is at least 2s.

In view of this result, computing the sparse observability index
f a system is of great interest since it characterizes the maximum
umber of arbitrary sensor attacks that can be tolerated without
ompromising the ability to uniquely reconstruct the state.
In addition to sparse observability, we will require the no-

ion of eigenvalue observability (Chen, 1998; Mitra & Sundaram,
018).

efinition 2 (Eigenvalue Observability Index). We say that an
igenvalue λ ∈ sp(A) is observable w.r.t. sensor i if the linear map

efined by
[
A − λIn

Ci

]
is injective.

If the above condition is satisfied, we say that ‘‘sensor i can
bserve the states in the generalized eigenspace corresponding
o λ’’, or briefly, we say ‘‘sensor i can observe eigenvalue λ’’.
et the set of all sensors that can observe an eigenvalue λ be
enoted Sλ. The eigenvalue observability index of system (5)–(6)
s the largest integer k such that each eigenvalue of the matrix
is observable by at least k + 1 distinct sensors. When the

igenvalue observability index is k, we say that system (5)–(6)
s k-eigenvalue observable.

We study the SSR problem under the following assumptions.

ssumption 1. For each sensor i ∈ {1, . . . ,N} under attack, the
dversary can only manipulate sensor i’s measurements through
he signal ei(k) in (6).

ssumption 2. The adversary is omniscient, i.e., we assume the
dversary has full knowledge of the system state, measurements,
nd plant model. Moreover, all the attacked sensors are allowed
o work cooperatively.
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. SSR is hard

Fawzi et al. established in Fawzi et al. (2014) a connection
etween the SSR problem and compressed sensing by drawing
nspiration from the ideas of Candes and Tao in Candes and Tao
2005). We take this approach further by also using the ideas
n Candes and Tao (2005) to establish that the SSR problem
s NP-hard. To do so, we first define the compressed sensing
roblem.

roblem 2 (Compressed Sensing).
Input: A full row rank matrix F ∈ Qm×n, a vector b ∈ Qm.
Question: Find the sparsest solution of Fx = b.

The compressed sensing problem yields the solution to the
inimization problem:

in
x

∥x∥0

s.t. Fx = b.
(8)

heorem 2 (Fawzi et al., 2014). The SSR problem is NP-hard.

roof. Given an instance of the compressed sensing problem, we
enerate an instance of the SSR problem as follows. Let the sys-
em matrix be of the form A = In, and the collective observation
atrix C satisfy ImC = ker F. Let the measurements of the sensors
e scalar-valued, i.e., let Ci be the ith row of C. Note that based
n the above A matrix, the observability index for each sensor
∈ {1, . . . ,N} is given by τi = 1, and thus Oi = Ci. Finally, let Y
e any solution to the equation FY = b. Since the linear equation
Y = b is underdetermined, finding a solution Y can be done
n polynomial time (Laub, 2004). For each i ∈ {1, . . . ,N}, set Yi
o be the ith row of Y. Thus, given an instance of the compressed
ensing problem, the instance of the SSR problem described above
an be constructed in polynomial time.
The SSR problem for the constructed instance degenerates to:

in
x,e

∥e∥0

s.t. Cx + e = Y.
(9)

We now show these two problems have the same solution. It
s simple to see that any solution (x, e) of Cx + e = Y provides a
olution to Fe = b, since by applying F we obtain:

(Cx + e) = FY
⇔ Fe = b.

(10)

To prove the converse, we show that for every e such that
e = b, there exists some x satisfying Cx + e = Y. Recalling
hat FY = b, we obtain F(Y − e) = 0, i.e., Y − e ∈ ker F. Since
er F = ImC, there exists an x such that Cx = Y − e, as desired.
Noticing that the equations Fe = b and Cx + e = Y have

he same solutions for e, we conclude that they also have the
ame sparsest solution. In other words, if there exists an algo-
ithm A that solves the SSR problem for the specific instance
onstructed by us, such an algorithm will also yield a solution
o the given instance of the compressed sensing problem. It
hen follows that since the compressed sensing problem is NP-
ard (Natarajan, 1995), the secure state reconstruction problem
s also NP-hard. □

. System decomposition

In the previous section, we proved that the SSR problem is in
eneral NP-hard. This means there does not exist a polynomial-
ime solution unless P = NP . Despite this fact, we show in
his section how to decompose the SSR problem into smaller
4

nstances. In the next section, we identify which of these smaller
nstances are NP-hard, and which ones are solvable in polynomial
ime.

emma 1. Assume the existence of a collection of vector spaces
X j

}j=1,...,r satisfying:

(1) Cn
=

⨁
j=1,...,r X

j;
(2) A(X j) ⊆ X j for j = 1, . . . , r;
(3) Oi(Cn) =

⨁
j=1,...,r O

j
i(X

j) for i = 1, . . . , p,

hen for any Yi, a solution x of the equation:

i = Oix, (11)

henever it exists, can be written as x = x1 + x2 + . . . + xr with
j = πj(x) ∈ X j given by the solution of:
j
i = Oj

ixj, (12)

or Yj
i = πj(Yi) ∈ Oj

i(X
j) and Oj

i = πj ◦ Oi ◦ ıj.

roof. Let xj be the solution of (12) and note that:
j
i = Oj

ixj ⇒ ıj(Y
j
i) = ıj ◦ Oj

i(xj) = Oi ◦ ıj(xj) = Oixj, (13)

here the third equality follows from (3). By summing over j we
btain:

i =

r∑
j=1

ıj(Y
j
i) =

r∑
j=1

Oixj = Oi

r∑
j=1

xj = Oix. (14)

ence, the solutions to (12) provide a solution to (11). Consider
ow (11):

i =Oix ⇒ πj(Yi) = πj ◦ Oi(x)

⇒Yj
i = Oj

i ◦ πj(x) = Oj
ixj.

(15)

here the third equality follows from (2). Hence, if x is a solution
o (11), then xi is a solution to (12). □

Intuitively, we treat the state–space Rn as the direct sum
f multiple subspaces. If the images of these subspaces under
he linear map Oi are pairwise non-overlapping, we are able
o project the state vector x onto these subspaces, project the
easurement Yi onto the image under the linear map Oi of these
ubspaces, and then establish a one-to-one correspondence be-
ween the projected state vector and the projected measurement.
his effectively decomposes the original problem into r sub-
roblems, each of dimension dim(X j). As formalized in the next
esult, the spaces X j can always be taken to be the generalized
igenspaces of A.

roposition 1. The generalized eigenspaces V 1, . . . , V r of A satisfy
roperties (1)-(3) in Lemma 1.

roof. Properties (1) and (2) in Lemma 1 follow directly from
he definition of generalized eigenspace. To simplify notation, we
ill drop the sensor index i in this proof.
It also follows from the definition of generalized eigenspace

hat ∪j=1,...,rV j spans Cn. Therefore, the set ∪j=1,...,rO(V j) spans
(Cn). Given this, to conclude property (3) we only need to show:

(V j) ∩ O(V k) = {0}, ∀j ̸= k.

oreover, it suffices to show that for any xj ∈ V j and xk ∈ V k,
ith j ̸= k, the equality O(xj + xk) = 0 can only be satisfied if
x = 0 = Ox .
j k
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We have the following sequence of equalities that is explained
thereafter:

0 = O(xj + xk) (16)

= O(A − λkIn)α(λk)(xj + xk) (17)

= O(A − λkIn)α(λk)(xj) (18)

= Oxj. (19)

The second step follows from kerO ⊆ kerO(A − λkIn)α(λk), the
third step follows from xk ∈ V k

= ker(A − λkIn)α(λk), and the
fourth from the following sequence of steps:

dim kerO
⏐⏐
V j ≤ dim kerO(A − λkIn)α(λk)

⏐⏐
V j (20)

= dim ker(A − λkIn)α(λk)
⏐⏐
V j (21)

+ dim kerO
⏐⏐
(A−λkIn)α(λk)V j (22)

= dim kerO
⏐⏐
(A−λkIn)α(λk)V j (23)

≤ dim kerO
⏐⏐
V j . (24)

The first step comes from kerO ⊆ kerO(A − λkIn). To show that
the second step is true, we observe that dim ker MN
= dim ker N + dim ker(M

⏐⏐
N(Cn)) for any matrices M,N ∈ Cn×n.

The third step comes from the map (A−λjIn)α(λj)
⏐⏐
V j being injective

if j ̸= k, as the generalized eigenspaces V j and V k intersect
only at the origin, and ker(A − λjIn)α(λj) = V j. The fourth step
follows by the A−invariant nature of eigenspace V j. This shows
dim kerO

⏐⏐
V j = dim kerO(A − λkIn)α(λk)

⏐⏐
V j which, combined with

kerO
⏐⏐
V j ⊆ kerO(A− λkIn)α(λk)

⏐⏐
V j , can only hold when kerO

⏐⏐
V j =

kerO(A−λkIn)α(λk)
⏐⏐
V j . A symmetric argument can be used to show

that Oxk = 0 and the claim is thus proved. □

Combining Lemma 1 and Proposition 1 results in a decompo-
sition of the sensor measurements in (7):

Yj
i = Oj

ixj, j = 1, 2, . . . , r, (25)

where Yj
i = πj(Yi) is the projection of measurement Yi onto the

vector space Oi(V j), the linear transformation Oj
i is defined by

Oj
i = πj ◦ Oi ◦ ıj, xj is given by xj = πj(x), πj : Rn

→ V j is the
canonical projection and ıj : V j

→ Rn is the canonical inclusion.

Theorem 3. A solution x of the SSR problem with inputs A, Ci,Yi
is given by x = x1 +x2 +· · ·+xj where xi is the solution to the SSR
problem with inputs A(j)

= πj ◦ A ◦ ıj, C
j
i = Ci ◦ ıj, Y

j
i.

Proof. Follows directly from Lemma 1, Proposition 1, and the
properties of generalized eigenspaces. □

Theorem 3 lays the theoretical foundation for decomposing
the SSR problem with n states into r sub-problems of the form:

xj(k + 1) = A(j)xj(k),

Yj
i(k) = Oj

ixj(k) + Ej
i(k),

(26)

each with α(λ1), α(λ2), . . . , α(λr ) states. The attack vector Ej
i is

identically zero when sensor i is not under attack. The state of
the original problem can be reconstructed by summing up the
state reconstructions of each sub-problem.

We now illustrate the decomposition of (5)–(6) into (26)
through an example. The matrix A is the same as the matrix F
defined in (4) and the matrices Ci are given by:

C1 =
[
3 2 0 2

]
, C2 =

[
2 3 1 −1

]
,

C3 =
[
2 2 0 0

]
, C4 =

[
2 3 −1 0

]
.

As we discussed below (4), the generalized eigenspaces of A are
V 1

= Im(M ), V 2
= Im(M ), and V 3

= Im(M ) corresponding to
1 2 3 a

5

eigenvalues 1, 2, and 3 respectively, where Mj are defined in (1)
for j = 1, 2, 3. Also, recall that the projections π1, π2, and π3
are Pj = Mj(MT

j Mj)−1MT
j for j = 1, 2, 3. By definition, we have

x1 = P1x, x2 = P2x, x3 = P3x, and A(1)
= P1A|V1 , A(2)

= P2A|V2 ,
A(3)

= P3A|V3 . Hence the decomposition of x(k + 1) = Ax(k) is
given by:

Pjx(k + 1) = (PjA|V j )(Pjx(k)), j = 1, 2, 3.

We now illustrate how to decompose the measurement equa-
tion Y1(k) = O1x(k)+E1(k) for sensor 1. The observability matrix
O1 of sensor 1 is given by:

O1 =

⎡⎢⎣ 3 2 0 2
4 3 −1 4
6 5 −3 10
10 9 −7 28

⎤⎥⎦ .

We first compute the projections π̃1
1 , π̃2

1 and π̃3
1 that map O1(R4)

to O1(V 1),O1(V 2), and O1(V 3), respectively. To do this, we define
the matrices:

M̃1 =

⎡⎢⎣1
1
1
1

⎤⎥⎦ , M̃2 =

⎡⎢⎣1
2
4
8

⎤⎥⎦ , and M̃3 =

⎡⎢⎣ 1
3
9
27

⎤⎥⎦ ,

which satisfy O1(V 1) = Im(M̃1), O1(V 2) = Im(M̃2), and O1(V 3) =

Im(M̃3). We also remark that the collection {O1(V 1),O1(V 2),
O1(V 3)} is an internal direct sum of the vector space O1(R4).
Therefore, by defining M̃ =

[
M̃1 M̃2 M̃3

]
and Ũ1 =

[
1 0 0

]
,

Ũ2 =
[
0 1 0

]
, Ũ3 =

[
0 0 1

]
, each projection π̃ i

1 can be
represented by the projection matrix:

Pi
1 = M̃iŨi(M̃T M̃)−1M̃T , i = 1, 2, 3.

By definition, Yj
1 = P̃j

1Y1, E
j
1 = P̃j

1E1 and Oj
1 = P̃j

1O1|V j for
j = 1, 2, 3. In summary, the decomposition of measurement
Y1(k) = O1x(k) + E1(k) is given by:

Pj
1Y1(k) = (̃Pj

1O1|V j )(Pj
1x(k)) + P̃j

1E1(k), j = 1, 2, 3.

6. Classes of SSR problems solvable in polynomial time

While in the previous section we established that the SSR
problem is NP-hard, in this section we leverage the results in
Section 5 to answer a simple but important question: when can
e solve the SSR problem in polynomial time? Our answer relies
eavily on the system decomposition technique introduced in
ection 5. The first result establishes that the decomposition can
e done in polynomial time.

roposition 2. The computational complexity of decomposing the
ystem (5)–(6) into sub-systems (26) is within O(pn3).

roof. To prove this result, we list all the steps involved in the
ecomposition from (5)–(6) to (26) and list the computational
omplexity of each step.
Offline preparation 1: compute the observability matrix of

each sensor Oi. The computational complexity of this step is
(pn2).
Offline preparation 2: find the eigenvalues of the matrix A as

well as its generalized eigenspaces V j. This can be done by finding
he Jordan form of A. The computational complexity of this step
s O(n3).

Offline preparation 3: determine the image of each general-
ized eigenspace V j under the observability matrix Oi, i.e., Oi(V j).
n this step, we perform p times two n×n matrix multiplications
nd thus the complexity of this step is O(pn3).
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Offline preparation 4: find the projection matrix for each
generalized eigenspace and each sensor. The computational com-
plexity of this step is O(pn3).

Online task: at each time instance, project the measurements
Yi(k) of each sensor i onto each generalized eigenspace. In this
step, for each sensor we multiply a n×n matrix by a n×1 vector
times. This requires O(pn2r) time.
We thus conclude that we can decompose the system (5)–(6)

nto sub-systems (26) within O(pn3) and finish the proof. □

Before giving an answer to the question we stated at the
eginning of this section, we relate the sparse observability index
efined for the system (5)–(6) and the sparse observability index

for each subsystem (26) with j ranging from 1 to r in the following
wo results. Note that, since the state space of (26) is V j, sparse
bservability is characterized by the injectivity of Oj

i|V j whereas
igenvalue observability is characterized by injectivity of the

inear map
[
A(j)

− λjI
(j)
n

Cj
i

]
, where we define I(j)n = πj ◦ In ◦ ıj. We

ow have the following results.

heorem 4. The system (5)–(6) is k-sparse observable if and only
f for each j ∈ {1, 2, . . . , r}, the system (26) is k-sparse observable.

roof. This result can be easily established by observing that
er Oi = ⊕

r
j=1ker Oj

i holds for any sensor i. We omit the proof
ere in the interest of space. □

Similarly, to relate the eigenvalue observability index defined
or the overall system and the eigenvalue observability index for
ach subsystem, we have the following result.

heorem 5. The system (5)–(6) is k-eigenvalue observable if and
nly if for each j ∈ {1, 2, . . . , r}, the system (26) is k-eigenvalue
bservable.

roof. By the definition of eigenvalue observability, it suffices to

how the matrix
[
A − λjIn

Ci

]
has full column rank if and only if

ach matrix
[
A(j)

− λjI
(j)
n

Cj
i

]
defines an injective map with domain

j, for j ranging from 1 to r .
Consider the map F : V → V × Rpi defined by the matrix

A − λjIn
Ci

]
and note that F being injective is equivalent to ker F =

0}. Note also that the result immediately follows if we establish
hat ker F ⊆ V j. This can be seen by noting that Fx = 0 for x ∈ Rn

egenerates to Fx = 0 for x ∈ V j and (given x = ıjx) can be
ritten as Fıjx = 0:[
A ◦ ıj − λjıj

Ci ◦ ıj

]
x = 0. (27)

oreover, since (A − λjIn)(V j) ⊆ V j we have the equality πj(A −

jIn)ıjx = (A − λjIn)ıjx. Therefore, (27) degenerates into:

πj ◦ A ◦ ıj − λjπj ◦ ıj
Ci ◦ ıj

]
x =

[
A(j)

− λjI
(j)
n

Cj
i

]
x = 0. (28)

herefore, we proceed by showing that ker F ⊆ V j. The equality
x = 0 implies (A − λjIn)x = 0. If we write x as xj + xj with

xj = πj(x) and xj =
∑r

k=1,k̸=j πk(x) we have (A−λjIn)(xj+xj) = 0.
We now make two observations. The first is that (A− λjIn)xj = 0
implies xj = 0 since xj ̸= 0 would imply that xj ∈ V j, by definition
f V j. The second observation is that (A − λjIn)(V ℓ) ⊆ V ℓ, for
∈ {1, . . . , r}, implies that (A−λjIn)(xj+xj) = 0 iff (A−λjIn)xj = 0

and (A−λjIn)xj = 0. Together with the first observation we have
= 0 which implies that x ∈ V j and concludes the proof. □
j

6

Based on the above decomposition and the assumption that at
most s sensors are attacked, we partition the set of eigenvalues
{λ1, λ2, . . . , λr} as follows:

• We define J1 ⊆ {λ1, λ2, . . . , λr} to be the set of eigenval-
ues whose corresponding subsystems (26) are not 2s-sparse
observable.

• We define J2 ⊆ {λ1, λ2, . . . , λr} \ J1 to be the set of
eigenvalues whose corresponding subsystems (26) are 2s-
eigenvalue observable.

• We define J3 = {λ1, λ2, . . . , λr} \ {J1 ∪ J2} to be the set
of eigenvalues whose corresponding subsystems (26) are
2s-sparse observable but not 2s−eigenvalue observable.

.1. Impossibility of reconstructing substates corresponding to eigen-
alues in the set J1

It is established in Section 3 that the SSR problem does not
dmit a unique solution if it is not 2s−sparse observable. There-
ore, it is impossible to reconstruct the substates corresponding to
igenvalues in J1. Furthermore, by Theorem 4 if J1 is not empty,

the overall system defined in (5)–(6) is not 2s−sparse observable,
which in turn means the solution is not unique.

6.2. Reconstructing the substates corresponding to eigenvalues in the
set J2

We learned from Theorem 5 that if λj is observable w.r.t.
sensor i, then after decomposing the system, λj is also observ-
able w.r.t. to sensor i in the jth sub-system corresponding to
this sensor. By the Popov–Belevitch–Hautus (PBH) test, the jth
sub-system (A(j), Cj

i) is observable, which shows that xj can be
reconstructed using only measurements from sensor i.

We now explain how to reconstruct the substates correspond-
ing to eigenvalues in J2 based on majority voting. Consider any
eigenvalue λj ∈ J2. Let Sλj represent the set of sensors w.r.t.
which λj is observable. The result of the PBH test implies that xj
can be recovered using the measurements of each of the sensors
in the set Sλj . We denote by x(l)j the lth component of xj. Based
on the definition of the set J2, we have |Sλj | ≥ (2s + 1).
Consequently, since at most s sensors have been compromised,
we are guaranteed at least s + 1 consistent copies of the state
x(l)j . Thus, each component of the vector x(l)j can be recovered via
majority voting and therefore all the substates corresponding to
eigenvalues in J2 can be reconstructed in polynomial time.

6.3. Computational complexity of reconstructing substates corre-
sponding to eigenvalues in the set J3

The NP-hardness of solving the SSR problem has been es-
tablished in Section 4. In this subsection, we argue that with
the prescribed decomposition technique, the computational com-
plexity of solving the SSR problem for substates corresponding to
eigenvalues in J3 could be reduced whenever we only need to re-
construct substates whose dimension is smaller than n. Assuming
s is the upper bound of the number of attacked sensors, we have
the following theorem.

Theorem 6. By applying the decomposition (26), the SSR problem
can be solved in time

∑
λj∈J3

C(p, nj) + O(pn3) if the system (5)–
(6) is 2s−sparse observable, where C(p, n) is the time complexity of
solving an instance of the SSR problem with n states and p sensors
whose corresponding system is 2s−sparse observable.
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Before providing a proof we first discuss how this result may
reduce the computational complexity of solving the SSR problem.
For a large-scale CPS, it is not uncommon for the number of sen-
sors to greatly exceed the number of states, i.e., p ≫ n. We note
that the computational complexity of brute force search grows
exponentially with p. Also, the computational complexity of some
brute force search algorithms (such as Chong et al. (2015)) to
determine whether a set of sensors is attacked is at least O(n2). In
ther words, for such algorithms C(p, n) ≥ O(p2n2). By assuming
≫ n we make the following observations:

(1) O(p2n2) ≥
∑r

j=1 O(p
2n2

j ), and equality holds only when
r = 1.

(2) O(pn3) ≪
∑r

j=1 O(p
2n2

j ).

The first observation shows that the computation required
o solve all the sub-problems is smaller than what is required
o solve the original problem. The second observation shows
hat, compared with the computational complexity of solving the
SR problem, the computation required for decomposition of the
riginal system is negligible. These two facts indicate that by
ecomposing the SSR problem into simpler instances, we reduce
he computational complexity of solving the SSR problem.

roof of Theorem 6. We already established that reconstructing
he state of each decomposed system is also an SSR problem and
he solution x of the original problem is obtained by summing
ver all the projections, i.e., x = x1 + x2 + · · · + xr . Therefore
ny algorithm that solves the SSR problem can be applied to
olve each subproblem, i.e., we may solve each subproblem cor-
esponding to λj ∈ J3 within time complexity C(p, nj) since there
re p sensors and nj states. By the assumption that the system

(5)–(6) is 2s−sparse observable as well as Theorem 4, all sub-
systems are 2s−sparse observable and hence J1 = {φ}, and for
each subproblem corresponding to λj ∈ J2 the time complexity
of the majority voting algorithm is within O(pn2). In summary,
the total computational complexity is:∑

λj∈J2

O(pn2
j ) +

∑
λj∈J3

C(p, nj) + O(pn3) (29)

=

∑
λj∈J3

C(p, nj) + O(pn3), (30)

which finishes the proof. □

Remark 1. The actual complexity might be even smaller than∑
λj∈J3

C(p, nj)+O(pn3). This can be seen by noting that we solve
each smaller SSR problem sequentially, and thus we can remove
measurements from sensors that have been identified as being
attacked when solving subsequent problems.

To conclude, we have the following result which answers the
question at the beginning of this section by pointing out when the
SSR problem can be solved in polynomial time, which actually is
a corollary of Theorem 6.

Corollary 1. Consider the system (5)–(6), and suppose at most
s sensors are attacked. Let the eigenvalue observability index of
system (5)–(6) be at least 2s. Then, the SSR problem can be solved
in polynomial time.

Remark 2. Another understanding of this classification of eigen-
values into J1, J2, and J3 is provided by the vulnerability of the
corresponding substates. Substates in J1 are the most vulnerable
to attack since the defender may not even be able to identify the
attacked set of sensors. Substates in J2 are robust against attacks

since attacked sensors can be easily determined. For substates J3,

7

the defender is able to identify the attacked sensors, but this task
requires a substantially higher computational effort.

In other words, in the view of the adversary, a wise attacking
strategy is to attack the substates corresponding to eigenvalues
in J1, and it should avoid attacking states in J2 since majority
voting will allow the defender to easily identify the compromised
sensors.

6.4. Example — continued

In this subsection we continue the example in Sections 2 and 5
and show how to classify each subsystem under the assumption
that the adversary can attack at most s = 1 sensor. We recall
that V 1, V 2, V 3 are the eigenspaces corresponding to eigenvalues
1, 2, and 3, respectively. Also, after decomposition, we have A(j)

=

PjA|V j as well as Oj
i = P̃j

iOi|V j for i = 1, 2, 3, 4 and j = 1, 2, 3.
We first claim that λ3 = 3 belongs to J1. To see why this

is true, we remove 2s = 2 sensors, sensor 1 and sensor 4, and
explicitly compute O3

2 and O3
3 . We have:

O2 =

⎡⎢⎣2 3 1 −1
3 4 0 −1
5 6 −2 −1
9 10 −6 −1

⎤⎥⎦ ,O3 =

⎡⎢⎣2 2 0 0
3 3 −1 0
5 5 −3 −0
9 9 −7 0

⎤⎥⎦ ,

and O2(V 3) = O3(V 3) = {0} which yields (̃P3
2O2)x′

3 = 0 and
(̃P3

3O3)x′′

3 = 0 for any x′

3 and x′′

3 in V 3. Therefore, we have
O3

2 = O3
3 = 0. By the definition of sparse observability, we

have ker O3
{2,3} = V 3 and hence the subsystems corresponding

to eigenvalue 3 are not 2s−sparse observable. Also, a similar
analysis reveals that subsystems corresponding to eigenvalues λ1
and λ2 are both 2s−sparse observable, hence 1 /∈ J1 and 2 /∈ J1.

Next we argue that λ2 = 2 belongs to J2. To see why this is
true, we first recall that A(2)

= P2A|V2 , I(2)4 = I4|V2 , C2
i = Ci|V2 ,

and then check that for sensor 1, the matrix:

[
A(2)

− 2I(2)4
C2
1

]
=

⎡⎢⎢⎢⎣
−2 0 0 0
1 −1 −1 0

−1 −1 −1 0
0 0 0 −2
3 2 0 2

⎤⎥⎥⎥⎦
⏐⏐⏐⏐⏐⏐⏐⏐⏐
V2

,

defines an injective map. We also run the same check on sen-
sor 2, 3, and 4 to conclude that eigenvalue λ2 is observable by
all 4 sensors. Hence the subsystems corresponding to λ2 are
2s−eigenvalue observable. Proceeding in the same fashion we
conclude that subsystems corresponding to eigenvalue λ1 are
not 2s−eigenvalue observable. Therefore, the eigenvalue λ1 = 1
belongs to J3.

In summary, the substates in V 3 cannot be securely recon-
structed, the substates in V 1 can be securely reconstructed in the
presence of at most 1 attacked sensor, and the substates in V 2

can be securely reconstructed and the reconstruction can be done
efficiently.

7. Complexity of checking sparse observability

In the previous two sections, we studied the complexity of
the SSR problem, and in particular, identified instances of the
problem that can be solved in polynomial time. Recall that un-
der at most s sensor attacks on the system (5)–(6), 2s-sparse
observability is necessary and sufficient for the SSR problem to
yield a unique solution, namely the true initial state vector x(0).
Given this result, we now take a step back and ask: what is the
complexity of deciding whether a given system is 2s-sparse ob-
servable? This question is highly relevant since it aims to identify
the maximum number of sensor attacks that can be tolerated by a

given system of the form (5)–(6). In what follows, we show that
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o

etermining the sparse-observability index (see Definition 1) of
system is computationally hard; we will focus on the case of
calar-valued sensors throughout, as it suffices to establish the
omputational complexity of the problem.

roblem 3 (r-sparse Observability).
Input: A matrix A ∈ Qn×n, a matrix C ∈ Qp×n and a positive

integer r .
Question: Is the pair (A, C) r-sparse observable?

Note that if the answer to an instance of the r-sparse observ-
ability problem is ‘‘no’’, then there is a simple proof: one can
provide a set of r rows of C that, if removed, result in a system
that is no longer observable. However, it is not clear whether
there is a similarly simple proof for ‘‘yes’’ instances. Thus, the
r-sparse observability problem is in the class coNP.1

The complement of a decision problem is the problem ob-
tained by switching the ‘‘yes’’ and ‘‘no’’ answers to all instances
of that problem. If a problem is in the class coNP, then its
complement is in the class NP, and vice versa.

We will show that the r-sparse observability problem is coNP-
hard by showing that its complement is NP-hard. Specifically, we
define the following complement problem to r-sparse observabil-
ity.

Problem 4 (r-sparse Unobservability).
Input: A matrix A ∈ Qn×n, a matrix C ∈ Qp×n and a positive

integer r .
Question: Is there a set of r rows that can be removed from C

in order to yield a matrix C̄ such that (A, C̄) is unobservable?

Note that the answer to an instance of r-sparse unobservabil-
ity is ‘‘yes’’ if and only if the answer to the corresponding instance
of r-sparse observability is ‘‘no’’ and vice versa. Further note that
r-sparse unobservability is in the class NP.

We show that r-sparse unobservability is NP-complete by pro-
viding a reduction from the following Linear Degeneracy problem.
This problem was shown to be NP-complete in Khachiyan (1995).

Problem 5 (Linear Degeneracy (Khachiyan, 1995)).
Input: A full column rank matrix F ∈ Qp×n.
Question: Does F contain a degenerate (i.e., noninvertible)

n × n submatrix?

In other words, the linear degeneracy problem asks whether
it is possible to remove p − n rows from matrix F so that the
resulting (square) matrix is not full rank. We are now ready to
prove the following result.

Theorem 7 (Mao et al., 2019). The r-sparse unobservability prob-
lem is NP-complete. Thus, the r-sparse observability problem is
coNP-complete.

Proof. Given an instance of the linear degeneracy problem (with
matrix F ∈ Qp×n), we construct an instance of the r-sparse
unobservability problem as follows: set A = In, C = F, and
r = p − n.

We now show that the answer to the constructed instance of
r-sparse unobservability is ‘‘yes’’ if and only if the answer to the
given instance of linear degeneracy is ‘‘yes’’.

First, suppose that the answer to the constructed instance of
r-sparse unobservability is ‘‘yes’’. Then there exists a set of r rows
of C that can be removed such that the remaining rows are not
sufficient to yield observability. However, since A = In, the above

1 See, e.g., Cormen, Leiserson, Rivest, and Stein (2009) for additional details
n the complexity classes NP and coNP.
8

implies that there is a set of r rows of C that can be removed such
that the remaining rows are not full column rank. Since C = F and

= p − n, this means that there is an n × n submatrix of F that
oses rank, and thus the answer to the linear degeneracy problem
s ‘‘yes’’.

Next, we show that if the answer to the given instance of linear
egeneracy is ‘‘yes’’, then the answer to the constructed instance
f r-sparse unobservability is ‘‘yes’’. We will do this by showing
he contrapositive: if the answer to the constructed instance of
-sparse unobservability is ‘‘no’’, then the answer to the given
nstance of linear degeneracy is ‘‘no’’. Suppose the answer to the
onstructed instance of r-sparse unobservability is ‘‘no’’. Then,
y definition, the pair (A, C) is observable even after removing
ny arbitrary r rows from C. However, since A = In, in order
or the system to remain observable after removing r rows from
, it must be the case that the remaining rows of C have full
olumn rank. Thus, if the answer to the constructed instance of r-
parse unobservability is ‘‘no’’, then C has full column rank after
emoving any arbitrary r = p − n rows. This means that every
× n submatrix of C is invertible. Since C = F, the answer to the
iven instance of linear degeneracy is ‘‘no’’ (i.e., there is no n× n
ubmatrix of F that is degenerate).
Thus, we have shown that the answer to the constructed

nstance of r-sparse unobservability is ‘‘yes’’ if and only if the
nswer to the given instance of linear degeneracy is ‘‘yes". Since
inear degeneracy is NP-complete, so is r-sparse unobservability.

Finally, since r-sparse observability is the complement of r-
parse unobservability, we have that r-sparse observability is
oNP-complete. □

emark 3. In Mitra and Sundaram (2019), certain necessary
onditions were presented for estimating the state of a plant
espite attacks in a distributed setting, i.e., where measurements
f the plant are dispersed over a network of sensors. Specifically,
hese conditions impose certain requirements on the observa-
ion model (in addition to requirements on the communication
tructure), the complexity of checking which was left open. In-
erestingly, Theorem 7 resolves this question, and establishes
hat checking the necessary conditions in Mitra and Sundaram
2019) is computationally hard; since the focus of our paper is
n centralized systems, we do not present details of this result
ere.

. Connections between sparse observability and eigenvalue
bservability

In Sections 4 and 7, we showed that the SSR problem and
the problem of determining the sparse observability index of a
system are each computationally hard. At the same time, Sec-
tion 6 gave us the positive result that certain instances of the
SSR problem can be efficiently solved. In line with this find-
ing, we are now motivated to ask: Can the sparse observability
index of a system be computed in polynomial time for cer-
tain specific instances? In this section, we show that this is
indeed the case by identifying instances of the problem where
the notions of sparse observability and eigenvalue observabil-
ity coincide. Given that the eigenvalue observability index of a
system can always be computed in polynomial time based on
simple rank tests, an equivalence between the two notions of
observability immediately yields instances of the problem where
the sparse observability index of the system can also be computed
in polynomial time. With this in mind, in this section we will
prove each of the implications indicated in Fig. 1. We begin with

the following simple result.
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Fig. 1. Figure illustrating the hierarchy of relationships between different
notions of observability.

Proposition 3 (Mao et al., 2019). Consider the linear system (5)–(6),
nd suppose its eigenvalue observability index is 2s. Then, the pair
A, C) is at least 2s-sparse observable.

roof. Consider any subset of sensors F ⊂ V , such that |F| ≤ 2s.
o establish that the pair (A, C) is at least 2s-sparse observable,
e need to show that the pair (A, CV\F ) is observable. Based
n the PBH test, this amounts to checking that each eigenvalue
∈ sp(A) is observable w.r.t. the observation matrix CV\F . Let

λ represent the set of sensors w.r.t. which λ is observable. A
ufficient condition for this to happen is |(V \ F) ∩ Sλ| ≥ 1, which
s indeed true given that an eigenvalue observability index of 2s
mplies |Sλ| ≥ (2f +1), ∀λ ∈ sp(A), and the fact that |F| ≤ 2s. □

To see that the reverse implication does not hold in general,
onsider the following example.

xample 1. Consider an LTI system of the form (5)–(6) monitored
y 6 sensors, with parameters as follows:

=

[
λ 0
0 λ

]
, Ci =

⎧⎨⎩
[
1 0

]
, if i ∈ {1, 2, 3},[

0 1
]
, if i ∈ {4, 5, 6}.

(31)

ere λ ∈ R, |λ| ≥ 1. Suppose s = 1. Then, the removal
f at most 2 sensors will ensure that at least one sensor from
ach of the sets {1, 2, 3} and {4, 5, 6} remains unattacked; given
he measurement model in (31), this is sufficient to preserve
bservability w.r.t. the remaining sensors. In other words, the
ystem is 2-sparse observable. However, it is easy to verify that
he eigenvalue λ is not observable w.r.t. any sensor.

In view of Proposition 3 and Example 1, we conclude that
s-sparse observability of a system is in general less restrictive
han the condition that the eigenvalue observability index of the
ystem is 2s. In what follows, we establish that the two aforemen-
ioned notions coincide when additional structure is imposed on
he spectrum of A.

roposition 4 (Mao et al., 2019). Consider the linear system model
iven by (5)–(6), and suppose λ ∈ sp(A) has geometric multiplicity 1.
onsider any non-empty subset of sensors S = {i1, i2, . . . , i|S|} ⊆ V .
hen, the eigenvalue λ is observable w.r.t. the pair (A, CS ) if and only
f there exists a sensor ip ∈ S such that λ is observable w.r.t. sensor
p, i.e., λ is observable w.r.t. the pair (A, Cip ).

Proof. Consider a similarity transformation that maps A to its
ordan canonical form J. Let this transformation map CS to C̄S ,
nd Cij to C̄ij , for each ij ∈ S . Since λ has geometric multiplicity 1,
here exists a single Jordan block corresponding to λ in J. Let this
Jordan block be denoted J . Without loss of generality, suppose J
λ

9

is of the following form:

J =

[
Jλ 0
0 J̄

]
, (32)

here J̄ is the collection of the Jordan blocks corresponding to
igenvalues in sp(A)\{λ}. Based on the PBH test, λ is observable

w.r.t. the pair (J, C̄S ) if and only if the following condition holds:

rank
[
J − λIn
C̄S

]
= n. (33)

Given the structure of J in (32), and the fact that λ has geometric
multiplicity 1, it is easy to see that (33) holds if and only if there is
at least one non-zero entry in the first column of C̄S . However, the
preceding condition holds if and only if there exists some sensor
ip ∈ S with at least one non-zero entry in the first column of C̄ip ;
the latter is precisely the condition for observability of λ w.r.t.
the sensor ip, given that gA(λ) = 1. To complete the proof, it
suffices to notice that a similarity transformation preserves the
observability of an eigenvalue. □

We now make use of the previous result to establish an equiv-
alence between sparse observability and eigenvalue observability.

Proposition 5. Consider the linear system model (5)–(6), and
suppose every eigenvalue of A has geometric multiplicity 1. Then,
the pair (A, C) is 2s-sparse observable if and only if the eigenvalue
observability of the system is 2s.

Proof. For necessity, we proceed via contradiction. Suppose the
pair (A, C) is 2s-sparse observable, but there exists some λ ∈ sp(A)
that is observable w.r.t. at most 2s distinct sensors. Recall that the
set of sensors w.r.t. which λ is observable is denoted Sλ. Based on
our hypothesis, |Sλ| ≤ 2s. Suppose |Sλ| = 2s (since an identical
argument can be sketched when |Sλ| < 2s). Since (A, C) is 2s-
sparse observable, the pair (A, CV\Sλ

) is observable. However,
based on Proposition 4, this requires λ to be observable w.r.t. at
least one sensor in V \ Sλ, leading to the desired contradiction.
This completes the proof of necessity. For sufficiency, note from
Proposition 3 that the pair (A, C) is at least 2s-sparse observable
whenever its eigenvalue observability index is 2s; the fact that the
observability index is no more than 2s follows from the additional
assumption on the geometric multiplicity of eigenvalues, and
arguments similar to those used for establishing necessity. □

It directly follows from the definition of eigenvalue observ-
ability that the eigenvalue observability index of a system can
be computed in polynomial time. Hence, we have the following
corollaries of Proposition 5.

Corollary 2. When all the eigenvalues of the matrix A have
geometric multiplicity 1, the sparse observability index of the system
can be computed in polynomial time.

Corollary 3. For a 2s-sparse observable system (5)–(6), when all
the eigenvalues of the matrix A have geometric multiplicity 1, the
SSR problem can be solved in polynomial time.

Proof. It is shown in Proposition 5 that under the unitary geo-
metric multiplicity assumption, a 2s-sparse observable system is
also 2s-eigenvalue observable. Thus, such a system satisfies the
hypotheses in the statement of Corollary 1, and we immediately
obtain the existence of a polynomial-time solution for the SSR
problem. □
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. Conclusion

In this paper, we showed that when the eigenvalues of the
ystem matrix A have unitary geometric multiplicity, the SSR
roblem is tractable since both checking the sparse observability
see Corollary 2) as well as solving the SSR problem (see Corol-
ary 1) can be performed in polynomial time. When at least one of
he eigenvalues has geometric multiplicity greater than one, we
an still compute the eigenvalue observability index and, if it is
t least 2s, solve the SSR problem in polynomial time if at most
sensors are attacked. However, in this case, eigenvalue observ-
bility is no longer necessary for the SSR problem to be solvable.
ince even checking sparse observability is coNP-complete, we
onjecture that the SSR problem may be intractable in this case.
he authors are currently investigating this conjecture. However,
ven in this case, the computational complexity of solving the SSR
roblem can be reduced, when the system matrix A has at least
distinct eigenvalues.
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