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ABSTRACT
This paper studies the hierarchical clustering problem, where the

goal is to produce a dendrogram that represents clusters at varying

scales of a data set. We propose the ParChain framework for design-

ing parallel hierarchical agglomerative clustering (HAC) algorithms,

and using the framework we obtain novel parallel algorithms for

the complete linkage, average linkage, and Ward’s linkage crite-

ria. Compared to most previous parallel HAC algorithms, which

require quadratic memory, our new algorithms require only linear

memory, and are scalable to large data sets. ParChain is based on

our parallelization of the nearest-neighbor chain algorithm, and en-

ables multiple clusters to be merged on every round. We introduce

two key optimizations that are critical for efficiency: a range query

optimization that reduces the number of distance computations

required when finding nearest neighbors of clusters, and a caching

optimization that stores a subset of previously computed distances,

which are likely to be reused.

Experimentally, we show that our highly-optimized implemen-

tations using 48 cores with two-way hyper-threading achieve 5.8–

110.1x speedup over state-of-the-art parallel HAC algorithms and

achieve 13.75–54.23x self-relative speedup. Compared to state-of-

the-art algorithms, our algorithms require up to 237.3x less space.

Our algorithms are able to scale to data set sizes with tens of mil-

lions of points, which existing algorithms are not able to handle.
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1 INTRODUCTION
Clustering is an unsupervised machine learning method that has

been widely used in many fields including computational biol-

ogy, computer vision, and finance to discover structures in a data

set [2, 6, 24, 32, 39, 46, 64, 68]. To group similar objects at all res-

olutions, a hierarchical clustering can be used to produce a tree

that represents clustering results at different scales. The resulting

hierarchical cluster structure is called a dendrogram, which is a tree

representing the agglomeration of clusters, as shown in Figure 1(b).
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There is a rich literature on designing hierarchical agglomerative

clustering (HAC) algorithms [46]. Unfortunately, exact HAC algo-

rithms usually require Ω(𝑛2) work, since the distances between
all pairs of points have to be computed. To accelerate exact HAC

algorithms due to their significant computational cost, there have

been several parallel exact HAC algorithms proposed in the liter-

ature [23, 31, 33, 41, 42, 58, 66, 70], but most of them maintain a

distance matrix, which requires quadratic memory, making them

unscalable to large data sets. The only parallel exact algorithm that

works for the metrics that we consider and uses subquadratic space

is by Zhang et al. [70], but it has not been shown to scale to large

data sets. In this paper, we propose the ParChain framework for

designing parallel exact HAC algorithms that use linear memory,
based on the classic nearest-neighbor chain algorithm.

The nearest-neighbor chain (NNC) algorithm [45] is a popular

algorithm that can be used for a wide range of HAC metrics [5,

19, 28, 34, 53]. A nearest-neighbor chain (NNC) is a linked list

of nodes, where each node represents a cluster and all except at

most one node have a pointer to its nearest neighbor (its successor).

The chain can start from an arbitrary cluster. If a node does not

have a pointer, its nearest neighbor is not yet computed, and this

node is called a terminal node. If we follow the pointers on the

nodes, we obtain a "chain" of clusters, which either terminates at a

terminal node, or at a reciprocal nearest neighbor (R-NN) pair,
which is a pair of clusters that are each other’s nearest neighbor.

The sequential NNC algorithm [5, 19] works by iteratively adding a

node to a single chain through finding the nearest neighbor of the

terminal node until an R-NN pair is found. Each point is initially a

singleton cluster and a terminal node of a single-node chain. The

sequential algorithm picks an arbitrary node to start growing from.

After an R-NN pair is found, the R-NN pair is then merged, and the

chain is grown again to find another R-NN pair to merge. After 𝑛−1
merges, the algorithm finishes, producing a hierarchy of clusters.

Example. We now give an example of the definitions above by

briefly describing running our ParChain framework for parallel

HAC on the small data set in Figure 1. This example uses the com-

plete linkage metric, where the distance between two clusters is

the distance of the farthest pair of points, one from each cluster.

Our framework is based on the key insight that all R-NN pairs

can be merged simultaneously, which provides parallelism. On each

round, it merges all R-NN pairs in parallel (breaking ties lexico-

graphically
1
to prevent cycles). Before the first round, each point

in {𝑎, . . . , 𝑓 } is represented by a chain with only one node, and all

points are singleton terminal nodes. The R-NN pairs are found by

finding the nearest neighbors of all terminal nodes, which by defi-

nition are the clusters whose nearest neighbors are unknown at the

1
We use the ID of the lexicographically first point in each cluster as the cluster’s ID.
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Figure 1: (a) The four rounds of the nearest-neighbor chain algorithm on a six point data set using the complete linkage metric. The black circles are

clusters containing more than one point. An arrow from point 𝑥 to point 𝑦 means that 𝑥 ’s cluster’s nearest neighbor is 𝑦’s cluster. The orange arrows are new

neighbors found on this round; the green arrow means the nearest neighbor is not updated on this round due to the reducibility property. On Round 2, we

avoided a nearest neighbor search for cluster {𝑓 }. The numbers on the arrows between pairs of points are the distances between the clusters that the points

belong to according to the complete linkage metric (furthest distance between a pair of points, one from each cluster). Ties are broken lexicographically. (b)
The dendrogram for complete linkage clustering. The label on each internal node corresponds to the furthest point pair in the two clusters that are merged in

the algorithm, and its distance is equal to the node’s height in the dendrogram.

beginning of a round. On the first round, we find the nearest neigh-

bors for all points in parallel. Now we have two chains, {𝑓 , 𝑒, 𝑑, 𝑐}
and {𝑎, 𝑏}. {𝑒}, for example, is {𝑓 }’s successor. (𝑎, 𝑏) and (𝑐, 𝑑) are
two R-NN pairs, and so we merge them in parallel and create den-

drogram nodes for clusters {𝑎, 𝑏} and {𝑐, 𝑑}. At the beginning of

the second round, {𝑎, 𝑏}, {𝑐, 𝑑}, and 𝑒 are terminal nodes. After we

find their nearest neighbors and grow the chain, ({𝑎, 𝑏}, 𝑒) is the
only R-NN pair (we broke the tie for 𝑒’s two nearest neighbors,

{𝑎, 𝑏} and 𝑓 , by choosing {𝑎, 𝑏}), and so we merge it and create a

dendrogram node for cluster {𝑎, 𝑏, 𝑒}. We do not need to find the

nearest neighbor of 𝑓 in this round, because it is not a terminal

node and we know that its nearest neighbor 𝑒 will not change (due

to the reducibility property which will be defined more formally in

Section 2). On the third round, {𝑎, 𝑏, 𝑒}, {𝑐, 𝑑}, and 𝑓 are terminal

nodes. We find the nearest neighbors for them and merge the R-NN

pair ({𝑎, 𝑏, 𝑒}, {𝑐, 𝑑}). Finally, on the fourth round, the R-NN pair

({𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑓 ) is merged.

ParChain achieves high space efficiency and parallelism, which

enables it to scale HAC to large data sets that are orders of mag-

nitude larger than those used in previous work. There are two

challenges in achieving both space efficiency and high parallelism.

The first challenge is to maintain all chains and merge recipro-

cal nearest neighbor clusters correctly and efficiently in parallel.
Unlike Jeon and Yoon’s algorithm [33], which is based on locks

(and has limited parallelism for large core counts), we use lock-free

approaches based on filtering and atomic operations (Section 3).

The second challenge is to efficiently find the nearest neighbors

of clusters when growing the chain, without storing the distance
matrix. We introduce a range query optimization that significantly

reduces the number of distance computations used to find the near-

est neighbor of a cluster for low-dimensional data sets in Euclidean

space (Section 4), as well as a new caching technique that stores a

subset of previous distance computations that are likely to be reused

to further accelerate nearest neighbor searches (Section 5). In the

example in Figure 1, the range query optimization avoids comput-

ing the distance between clusters {𝑒} and {𝑐, 𝑑} in round 2 when

{𝑒} searches for its nearest neighbor, because only clusters {𝑎, 𝑏}
and {𝑓 } will be within the range. The caching technique avoids

storing all pairs of distances among the six points. In contrast, many

previous methods [23, 31, 33, 51, 52, 58] require a quadratic-space

distance matrix and compute distances to all other clusters when

searching for the nearest neighbor of a cluster.

We apply ParChain to develop new linear-space parallel HAC

algorithms for the complete, Ward’s, and average linkage criteria.

Our framework can be applied for any linkage criteria that satisfies

the reducibility property, which ensures that the nearest neighbor

distance of clusters can never be smaller as clusters merge (defined

more formally in Section 2).

Though the worst case time complexity of our algorithms is

𝑂 (𝑛3), we observe that the running time is close to quadratic in

practice on low-dimensional data sets because the range query is

able to filter out many clusters. Many spatial, sensor, and computer

vision data sets, where HAC is applicable, are low dimensional.

In Section 6, we show experimentally on a variety of real-world

and synthetic data sets (up to 16 dimensions) that our algorithms

achieve 13.75–54.23x self-relative speedup on a 48-core machine

with two-way hyper-threading.We also achieve 5.8–110.1x speedup

over the state-of-the-art parallel implementations. Our algorithms

use up to 237.3x less space than existing implementations, and are

able to scale to larger data sets with tens of millions of points, which

existing algorithms are not able to handle.

We summarize our contributions below:

• The ParChain framework for parallel HAC using linear space.

• A range query optimization for fast nearest neighbor search for

the complete, Ward’s, and average linkage criteria.

• A cache table optimization for reducing the number of cluster

distance computations.

• Experiments showing that the algorithms in ParChain achieve

significant speedups over state-of-the-art.

2 BACKGROUND
The input to the hierarchical agglomerative clustering (HAC)
problem is a data set to be clustered and a linkage criteria that

specifies how distances between clusters are computed. The out-

put of HAC is a tree called a dendrogram, where the height of

each dendrogram node represents the dissimilarity between the

merged two clusters according to the desired linkage criteria. A

flat clustering, which assigns the same ID to every object in the

same cluster and different IDs to objects in different clusters, can be

obtained by cutting the dendrogram at some height. Thus, cutting

the dendrogram at different heights gives clusterings at different

scales. An example of a dendrogram is shown in Figure 1(b). In

the rest of the section, we present our notations, the three linkage

criteria considered in this paper, and some relevant techniques used

by our algorithm.
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Notation. Let 𝑣 be a length-𝑑 vector in 𝑑-dimensional space, and

let ∥𝑣 ∥ denote the 𝐿2 norm of 𝑣 , i.e., ∥𝑣 ∥ =

√︃𝑑
𝑖=1 |𝑣 [𝑖] |2 where

𝑣 [𝑖] is the 𝑖’th coordinate of 𝑣 . 𝑥𝐴 denotes the centroid of cluster𝐴,

i.e., 𝑥𝐴 = 1

|𝐴 |

𝑥 ∈𝐴 𝑥 , where the 𝑥 ’s are points in cluster 𝐴. Var(𝐴)

denotes the variance of cluster𝐴, where Var(𝐴) = 
𝑥 ∈𝐴 ∥𝑥−𝑥𝐴∥2.

Δ(𝐴, 𝐵) denotes the distance between clusters 𝐴 and 𝐵, and its

formula depends on the linkage criteria.

2.1 Linkage Criteria
We now formally define the linkage criteria considered in this paper.

We use the Euclidean distance metric for all linkage criteria. For

average linkage, we also consider the squared Euclidean distance

metric. The definitions of cluster distance under each linkage cri-

teria and distance metric are included in Table 1. We also include

the work of each distance computation, the radius, and criteria-

specific optimizations used in our range query optimization for

different linkage criteria. The radius and optimizations will be dis-

cussed in more detail in Section 4. We use comp, Ward, avg-1, and
avg-2 to refer to complete linkage, Ward’s linkage, average linkage

with Euclidean distance metric, and average linkage with squared

Euclidean distance metric, respectively.

Complete Linkage. In complete linkage [51, 58], the distance

between two clusters is the maximum distance between a pair of

points, one from each cluster.

Ward’s Linkage. In Ward’s linkage [55, 67], or minimum variance

linkage, the distance between two clusters is the increase in total

variance if the two clusters merge.

UnweightedAverage Linkage. In unweighted average linkage [39,
62], the distance between two clusters is the average distance be-

tween pairs of points, one from each cluster.

For Ward’s linkage and average linkage with the squared Eu-

clidean distancemetric, we can bemore space-efficient and compute

the distance between two clusters in constant time by storing the

mean and variance of every cluster, which takes only linear space

overall. The newly merged cluster’s mean and variance can be com-

puted in constant time, where the new cluster’s mean is an average

of the means of the two original clusters, weighted by their sizes,

i.e., 𝑥𝐴∪𝐵 =
|𝐴 |

|𝐴 |+ |𝐵 |𝑥𝐴 + |𝐵 |
|𝐴 |+ |𝐵 |𝑥𝐵 . The variance is:

Var(𝐴 ∪ 𝐵) = |𝐴|∥𝑥𝐴 − 𝑥𝐴∪𝐵 ∥2 + |𝐵 |∥𝑥𝐵 − 𝑥𝐴∪𝐵 ∥2
|𝐴| + |𝐵 |

+ |𝐴|Var(𝐴) + |𝐵 |Var(𝐵)
|𝐴| + |𝐵 |

Lance-Williams Formula. Many clustering metrics can be de-

scribed using the Lance-Williams formula [38]. Given the distance

between three clusters 𝐴, 𝐵, and 𝐶 , we can obtain the distance be-

tween𝐴∪𝐵 and𝐶 using the following formula, with the coefficients

for the metrics described above given in Table 2:

Δ(𝐴∪𝐵,𝐶) = 𝑎1Δ(𝐴,𝐶)+𝑎2Δ(𝐵,𝐶)+𝑏Δ(𝐴, 𝐵)+𝑐 |Δ(𝐴,𝐶) − Δ(𝐵,𝐶) |

The Lance-Williams formula allows for constant time distance

computation if we have the distances among clusters 𝐴, 𝐵, and 𝐶 .

However, maintaining all these distances requires a distance matrix

that takes quadratic space.

Reducibility.We say a metric has the reducibility property [8, 33,

53, 54] if we have Δ(𝐴, 𝐵) < Δ(𝐴 ∪ 𝐵,𝐶) when Δ(𝐴, 𝐵) < Δ(𝐴,𝐶)

or Δ(𝐴, 𝐵) < Δ(𝐵,𝐶). All of the metrics introduced above satisfy

the reducibility property. The reducibility property ensures that

the nearest neighbor of a cluster does not change unless one of

the clusters merged is its nearest neighbor. For metrics that satisfy

the reducibility property [53], we can perform clustering using the

nearest-neighbor chain algorithm [5, 19, 28, 33, 34, 53] introduced in

Section 1. The reducibility property provides the parallelism in the

nearest-neighbor chain algorithms since we can merge multiple

reciprocal pairs simultaneously.

2.2 Relevant Techniques
𝑘d-tree. A 𝑘d-tree is a binary spatial tree where each internal node

contains a splitting hyperplane that partitions the points contained

in the node between its two children. The root node contains all of

the points, and the 𝑘d-tree is constructed by recursing on each of

its two children after splitting, until a leaf node is reached. A leaf

node contains at most 𝑐 points for a predetermined constant 𝑐 . The

𝑘d-tree can be constructed in parallel by performing the split and

constructing each child in parallel. The bounding box of a node is

the smallest rectangular box that encloses all of its points.

Nearest-Neighbor Query. A nearest-neighbor query takes a

set of points P and a query point 𝑞, and returns for 𝑞 its nearest

neighbor in P (besides itself if 𝑞 ∈ P). An all-nearest-neighbor
query takes a set of points P, and returns for all points in P its

nearest neighbor in P besides itself. The all-nearest-neighbor query

can be performed efficiently using a dual-tree traversal [14, 15, 47],

which we have parallelized.

Range Query. A range query takes a set of points P, constructs a

data structure to store the points, and reports or counts all points

in some range 𝐵. In this paper, we use balls to represent the ranges,

and we use 𝑘d-trees to store the points.

Other Parallel Primitives. A parallel filter takes an array 𝐴 and

a predicate function 𝑓 , and returns a new array containing 𝑎 ∈ 𝐴

for which 𝑓 (𝑎) is true, in the same order that they appear in 𝐴. A

parallel reduce takes as input a sequence [𝑎1, 𝑎2, . . . , 𝑎𝑛] and an

associative binary operator ⊕, and returns the overall sum (using

⊕) of the elements (𝑎1 ⊕𝑎2 ⊕ . . .⊕𝑎𝑛). A parallel hash table stores
key-value pairs, and supports concurrent insertions, updates, and

finds. WriteMin is a priority concurrent write that takes as input

two arguments, where the first argument is the location to write

to and the second argument is the value to write; on concurrent

writes, the smallest value is written [61]. WriteMax is similar but

writes the largest value.

3 THE PARCHAIN FRAMEWORK
In this section, we present our framework ParChain for parallelizing

the nearest-neighbor chain (NNC) algorithm, which works for all

linkage criteria that satisfy the reducibility property explained in

Section 2.1. The NNC algorithm exposes more parallelism than the

naive generic algorithm, where only the R-NN pair with minimum

distance is merged, by allowing multiple R-NN pairs to be merged

simultaneously. Hence, our framework grows multiple chains and

merges all R-NN pairs simultaneously in parallel.

Jeon and Yoon’s algorithm [33] uses a similar approach for to

grow multiple chains in parallel, but it does merges R-NN pairs

asynchronously. It designates some threads for updating chains, and

other threads for updating the cluster distances. Their algorithm
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Table 1: Definitions, work, radius value, and optimizations used in our range query for different linkage criteria.

Linkage Cluster Distance Δ(𝐴, 𝐵) Work Radius Optimizations

comp max𝑥∈𝐴,𝑥′∈𝐵 ∥𝑥 − 𝑥′ ∥ 𝑂 (𝑛2) 𝛽 build 𝑘d-tree on all points

Ward

√︁
2(Var(𝐴 ∪ 𝐵) − Var(𝐴) − Var(𝐵)) =

√︃
2|𝐴| |𝐵 |
|𝐴|+|𝐵 | ∥𝑥𝐴 − 𝑥𝐵 ∥2 𝑂 (1) 𝛽

√︃
|𝐶𝑖 |+𝑛min

2𝑛
min

|𝐶𝑖 | maintain cluster centroids and sizes

avg-1
1

|𝐴| |𝐵 |


𝑥∈𝐴


𝑥′∈𝐵 ∥𝑥 − 𝑥′ ∥ 𝑂 (𝑛2) 𝛽 –

avg-2
1

|𝐴| |𝐵 |


𝑥∈𝐴


𝑥′∈𝐵 ∥𝑥 − 𝑥′ ∥2 = ∥𝑥𝐴 − 𝑥𝐵 ∥2 + Var(𝐴)
|𝐴| + Var(𝐵)

|𝐵 | 𝑂 (1)
√︁
𝛽 maintain cluster centroids, variances, and sizes

Table 2: Coefficients for the Lance-Williams Formula [38].

𝑎1 𝑎2 𝑏 𝑐

Complete linkage
1

2

1

2
0

1

2

Ward’s linkage
|𝐴|+|𝐶 |

|𝐴|+|𝐵 |+|𝐶 |
|𝐵 |+|𝐶 |

|𝐴|+|𝐵 |+|𝐶 |
−|𝐶 |

|𝐴|+|𝐵 |+|𝐶 | 0

Average linkage
|𝐴|

|𝐴|+|𝐵 |
|𝐵 |

|𝐴|+|𝐵 | 0 0

Algorithm 1: ParChain Framework

Input: 𝑛 points P, distance structure𝔇, and cache size 𝑠
Output: Dendrogram tree T𝐻

1 Initialize 𝑛 dendrogram leaf nodes𝐶0, . . . ,𝐶𝑛−1 to each represent a

singleton cluster (a point).

2 Initialize L, a set of 𝑛 chain nodes, where each L𝑖 represents a

singleton cluster.

3 Initialize A = {𝐶0, . . . ,𝐶𝑛−1 }, the set of active clusters.
4 Create cache tables {H𝑖 } for clusters, each of size 𝑠 .

5 Terminal nodes Z = {L0, . . . , L𝑛−1 }.
6 T = 𝑘d-tree TP
7 while |A | > 1 do
8 E = find_nearest_neighbors(T,𝔇, L, Z)

9 // Below, 𝐶𝑖 is the terminal node and 𝐶 𝑗 is its
nearest neighbor.

10 par_for (𝐶𝑖 ,𝐶 𝑗 , 𝑑) ∈ E do
11 L𝑖 .succ = 𝑗

12 WriteMin(L𝑖 .pred, ( 𝑗, 𝑑)) // The pair with the
minimum 𝑑 is written.

13 M = parallel_filter(E, is_R-NN())
14 par_for (𝐶𝑖 ,𝐶 𝑗 , 𝑑) ∈ M do
15 𝐶𝑖,𝑗,new = merge(𝐶𝑖 ,𝐶 𝑗 , 𝑑)

16 if 𝑠 > 0 then
17 par_for (𝐶𝑖 ,𝐶 𝑗 , 𝑑) ∈ M do
18 update_cached_dists(𝐶𝑖 ,𝐶 𝑗 , 𝑑)

19 𝔇.update(T , M)

20 A = parallel_filter(A, not_in_M())


{𝐶𝑖,𝑗,new | (𝐶𝑖 ,𝐶 𝑗 , 𝑑) ∈ M}

21 Z = parallel_filter(A, is_terminal())

22 return dendrogram root node

also uses locks and requires quadratic memory for maintaining

the distance matrix. In contrast, our algorithm proceeds in rounds

where on each round, all chains are grown and all R-NN pairs

are merged. Our algorithm is lock-free, and uses linear space as

we avoid using the distance matrix. In addition, Jeon and Yoon’s

algorithm searches for the nearest cluster naively by computing

the distances to all other clusters, whereas we have optimizations

for finding the nearest clusters when growing the chain, which will

be discussed in Sections 4 and 5.

3.1 ParChain Framework
We now formally describe the ParChain framework (Algorithm 1).

ParChain gives rise to fast and space-efficient HAC algorithms. The

main idea of ParChain is to avoid storing most cluster distances,

and compute them on the fly using an optimized range search that

considers only a small number of neighboring clusters. We also

cache some of the cluster distances to reduce computational cost.

The input to the algorithm is a set of 𝑛 points P, a structure𝔇

that is used to compute the distances between clusters based on the

linkage criteria, and an integer 𝑠 ≥ 0 for the cache size. We store

(cache) only 𝑂 (𝑛𝑠) cluster distances for an integer 𝑠 ≥ 0 chosen at

run time. The highlighted parts of Algorithm 1 (Lines 4 and 16–18)

are only required for 𝑠 > 0, and we will discuss them in Section 5.

𝔇 is able to compute the distance between two clusters, and may

maintain some extra data to accelerate distance computations, such

as the means and variances of clusters. It also specifies the Lance-

Williams formula if 𝑠 > 0, which will be used for updating the

entries of cached distances between clusters.

Initialization. On Lines 1–6, the algorithm initializes the required

data structures. It first creates 𝑛 dendrogram nodes (Line 1) and

L, a set of 𝑛 chain nodes (Line 2). These nodes are used for the

singleton clusters at the beginning. We create a set of active clusters

A, initialized to contain all of the singleton clusters (Line 3). We

also create a parallel hash table for each cluster to cache cluster

distances if 𝑠 > 0 (Line 4). In each chain node, we store its successor

(succ), its predecessor (pred), and the distance to its predecessor

(pred.𝑑) if there is one. All chain nodes initially do not have any

successor or predecessor. Z represents the set of terminal nodes

at the beginning of the round, and is initialized to contain the 𝑛

singleton chains (Line 5). The algorithm also initializes a 𝑘d-tree

on the points 𝑃 . The 𝑘d-tree (Line 6) is used to accelerate nearest

cluster searches.

Chain Growing and Merging. On Lines 8–15, in parallel we grow

all of the chains using the information in Z. We merge a node

in Z with its nearest neighboring cluster if they form an R-NN

pair. Specifically, on Line 8, to grow the chains we find the nearest

neighbors of all current terminal nodes in Z using a 𝑘d-tree range

search optimization, which will be described in Section 4. ParChain

can quickly compute the distances of a cluster to other clusters by

considering only a small number of candidates, without needing to

maintain a distance matrix. The nearest neighbors and the distances

are stored in E. On Lines 10–12, we update the successor and

predecessor of each terminal node in parallel to maintain the chains.

If a terminal node is the nearest neighbor of multiple clusters, the

WriteMin ensures that its predecessor is the cluster closest to it.

Then on Line 13, we find all R-NN pairs using a parallel filter by

checking for each terminal node if its successor has a successor

that is itself. All R-NN pairs are stored in an array M with their

distances. On Line 15, we create a new dendrogram node 𝐶𝑖, 𝑗,new
to represent the merged cluster for each R-NN pair in M, which

will have 𝐶𝑖 and 𝐶 𝑗 as children, and store the distance between the

merged clusters.

After the merges, we need to update the other data structures to

prepare for next round. On Lines 16–18, we update the cache tables

with new distances Section 5. On Line 19, we update the extra data

structures, such as the 𝑘d-tree and clusters’ mean and variance. On

Line 20, we update the set of active clusters by including active

clusters not inM (not merged this round) and the newly merged
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Table 3: Worst-case work and space bounds of state-of-the-art HAC algo-

rithms.
∗
The authors of [43, 57, 63] do not report the work complexity.

Algorithm Work Space Restrictions

ParChain 𝑂 (𝑛3) 𝑂 (𝑛) Reducibility

NN-Chain [33, 52, 65] 𝑂 (𝑛2) 𝑂 (𝑛2) Reducibility

Generic [31, 52, 58, 59] 𝑂 (𝑛2 log𝑛) 𝑂 (𝑛2) Lance-Williams

Althaus et al. [3] 𝑂 (𝑛3) 𝑂 (𝑛) Complete Linkage

Batch Processing [43, 57, 63]
∗ 𝑂 (𝑛2) Disk-based

clusters from this round. Finally, on Line 21, we obtain the new set

of terminal nodes Z using a parallel filter on the active clusters A.

Work and Space Complexity. We summarize the time and space

complexity of the state-of-the-art algorithms in Table 3. ParChain

is the only algorithm that requires linear memory and works for

a broad set of linkage criteria (any that satisfy the reducibility

property). The main computational cost in our framework is in

finding the nearest neighbors of the terminal nodes on each round,

and updating the cache tables and other data structures maintained

by the distance structure 𝔇. Sections 4 and 5 present our novel

approaches for efficiently computing nearest neighbors efficiently

with low space.

We now analyze the work of our framework. Let Z𝑖 and A𝑖 be

the sets Z and A at the beginning of round 𝑖 , respectively. The

initialization (Lines 1–6) take𝑂 (𝑛 log𝑛) work, dominated by the 𝑘d-

tree construction work on Line 6. Lines 10–18 and Lines 20–21 take

𝑂 ( |Z𝑖 |) work across all rounds, plus the cost of all cluster dis-

tance computations, denoted by𝐷 . Line 19 takes𝑂 ( |A𝑖 | log |A𝑖 |)
work because we need to re-construct the 𝑘d-tree of cluster cen-

troids in this step. Finally, Line 8 takes𝑂 ( |A𝑖 | |Z𝑖 |) work because
for each terminal node, we need a range query on the𝑘d-tree of clus-

ter centroids. Thus, we have that the work of ParChain is𝑂 (𝐷 +𝑀),
where𝑀 =

 |A𝑖 | ( |Z𝑖 | + log |A𝑖 |). In the worst case, the work is

𝑂 (𝑛3), but we show in Section 6 that in practice both𝑀 and 𝐷 are

close to quadratic and ParChain is orders of magnitude faster than

the 𝑂 (𝑛2) work algorithms [52], even using a single thread. We ex-

pect our algorithm to give improvements on most low-dimensional

data sets.

The space usage of our framework is𝑂 (𝑛(1+𝑠)) because all data
structures except the caches require linear memory, and the caches

require 𝑂 (𝑛𝑠) memory. The 𝑘d-tree requires memory linear in the

number of points in the tree.

4 NEAREST-NEIGHBOR FINDING
We will now describe how to efficiently perform nearest-neighbor

finding (Line 8 of Algorithm 1) for the three linkage criteria: com-

plete, Ward’s, and average linkage. We assume that we compute

distances between clusters on the fly. We describe an optimization

in Section 5 that uses cache tables to store some of the distances.

While a standard nearest-neighbor search is done on points, we

are searching for nearest neighbors of clusters with distances based

on the linkage criteria. Our 𝑘d-trees store centroids of clusters of
points, which we use to find nearby clusters to our query cluster. We

then perform exact distance computations from our query cluster

to these clusters. Unlike in standard nearest-neighbor searches, it is

harder to prune in our case as the distances between clusters cen-

troids do not necessarily correspond to distances between clusters.

Instead, we compute a different search area for each cluster based

on an upper bound on the distance between the query cluster and
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Figure 2: Runtimes on 48 cores with two-way hyper-threading of using

our optimized range query compared to not using the range query and

computing the distances to all other clusters on the fly to find the nearest

neighbor.

Algorithm 2: Find Nearest Neighbor

Input: 𝑘d-tree T , distance structure𝔇, chains L, and set of

terminal nodes Z
Output: nearest neighbors of nodes in Z

1 Initialize E with a (Null, ∞) entry for each terminal node.

2 par_for𝐶𝑖 ∈ Z do
3 /* L𝑖 is the chain node of 𝐶𝑖 */
4 if L𝑖 .pred ≠ Null then
5 𝛽 = L𝑖 .pred.𝑑

6 else
7 𝛽 = distance to a nearby cluster

8 // range query updates E
9 range_query(𝐶𝑖 , T, 𝑔𝑒𝑡𝐵𝑎𝑙𝑙𝔇 (𝑖, 𝛽),𝔇, E)

10 return E

Algorithm 3: RangeQuery
Input: query node𝐶𝑖 , 𝑘d-tree node𝑄 , 𝐵𝑎𝑙𝑙 ,𝔇, E

1 if 𝑄 does not overlap with 𝐵𝑎𝑙𝑙 then return
2 if 𝑄 is a leaf node then
3 for 𝑥𝐶 𝑗

∈ 𝑄 and 𝑥𝐶 𝑗
∈ Ball do update_nearest_neighbor(𝐶𝑖 ,

𝐶 𝑗 , E,𝔇)

4 else
5 par_do (RangeQuery(𝐶𝑖 ,𝑄 .left, 𝐵𝑎𝑙𝑙 ,𝔇, E),
6 RangeQuery(𝐶𝑖 ,𝑄 .right, 𝐵𝑎𝑙𝑙 ,𝔇, E))

Algorithm 4: Update Nearest Neighbor
Input: cluster𝐶𝑖 , cluster𝐶 𝑗 , distance structure𝔇, cache tables H𝑖

and H𝑗 , and set E
1 if 𝑠 > 0 then
2 d = get_cached_dist(𝑖, 𝑗 )

3 if 𝑑 ≠ NOT_FOUND then
4 WriteMin (E [cid𝑖 ], (cid𝑗 , 𝑑))
5 WriteMin (E [cid𝑗 ], (cid𝑖 , 𝑑))
6 return
7 𝑑 = 𝔇.dist(𝐶𝑖 ,𝐶 𝑗 )

8 if 𝑠 > 0 then insert {cid𝑖 , 𝑖 } into H𝑗 and {cid𝑗 , 𝑗 } into H𝑖

9 WriteMin(E [cid𝑖 ], (cid𝑗 , 𝑑))
10 WriteMin(E [cid𝑗 ], (cid𝑖 , 𝑑))

its nearest neighbor. This upper bound can be a distance between

the query cluster and any other cluster. We provide a novel heuris-

tic for finding a good upper bound on the distance to the nearest

cluster, and only search within this distance in Sections 4.1–4.3. In

Figure 2, we present the performance of using our optimized range

query compared to the naive method of computing the distances

to all other clusters to find the nearest neighbor. We see that our

optimized range query gives a 7.8–1892.4x speedup on the two

example data sets.

Algorithm. Given the 𝑘d-tree T built on the centroid of clusters,

distance structure𝔇, chain nodes L, and set of terminal nodesZ,

Algorithm 2 finds the nearest cluster and the distance to it for each

terminal node’s cluster and stores them in E.
When finding the nearest neighbor of cluster 𝐶𝑖 , we search all

points within some ball 𝐵𝑎𝑙𝑙 (𝑥𝐶𝑖
, 𝑟 ) obtained from 𝑔𝑒𝑡𝐵𝑎𝑙𝑙𝔇 (𝑖, 𝛽),
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which is a ball centered at centroid 𝑥𝐶𝑖
with radius 𝑟 . The radius

𝑟 depends on the linkage method of𝔇 and an distance 𝛽 between

𝐶𝑖 and another cluster (Lines 2–9 of Algorithm 2). Since we use

centroid distances,𝔇 rebuildsT to be a𝑘d-tree of only the centroids

of current clusters at the end of each round of Algorithm 1 (Line 19

of Algorithm 1). If 𝐶𝑖 has a predecessor, we set the distance 𝛽

to be the distance between 𝐶𝑖 and its predecessor (Lines 4–5 of

Algorithm 2). Otherwise, we find the distance to another cluster for

computing the radius for the search. Specifically, we use the distance

to the cluster whose centroid is the closest to the current cluster,

which can be computed using a parallelized nearest-neighbor query

on the 𝑘d-tree of centroids [9] (Lines 6–7 of Algorithm 2).

For the range query on Line 9 of Algorithm 2, we use the parallel

range query in Algorithm 3. Given a query cluster 𝐶𝑖 , a 𝑘d-tree

node 𝑄 , a ball representing the range, a linkage function 𝔇, and

a set E of pairs of nearest neighbor candidates and distances of

terminal nodes, the algorithm processes all of 𝑄’s points that are

in the ball to update the nearest neighbor candidates in E. Since
we only process the points in the ball, on Line 1, the range query

terminates if the bounding box of the tree node does not over-

lap with the query range. Otherwise, the range query will either

process all of the points both in the node and in the ball using the

update_nearest_neighbor subroutine (Algorithm 4) if it is a leaf node

(Lines 2–3 of Algorithm 3) or recurse on its two children in parallel

(Lines 4–6 of Algorithm 3).

In each update_nearest_neighbor(𝐶𝑖 ,𝐶 𝑗 ) call, we check if some

cluster𝐶 𝑗 is closer to𝐶𝑖 than its current nearest neighbor candidate,

and if so we update 𝐶𝑖 ’s nearest neighbor in E with Algorithm 4.

We also update 𝐶 𝑗 ’s nearest neighbor to be 𝐶𝑖 if 𝐶𝑖 is closer to 𝐶 𝑗

than its current nearest neighbor candidate. In Algorithm 4, if 𝑠 = 0,

we will compute the distance between𝐶𝑖 and𝐶 𝑗 on the fly (Lines 7,

9, and 10). If 𝑠 > 0, we will first check the cache and use a cached

distance if possible (we describe more details in Section 5).

As an optimization for the first round, we know that the dis-

tances between clusters is exactly the same as the distances between

their centroids in the first round, and thus we can efficiently prune

searches in the 𝑘d-trees. Therefore, we use an all-nearest-neighbor

query for the first round, which we implemented by parallelizing

the dual-tree traversal algorithm by March et al. [47]. At a high

level, our algorithm processes recursive calls of the dual-tree traver-

sal in parallel and uses WriteMin to update the nearest neighbors

of points. A dual-tree traversal allows more pruning than when

running individual nearest neighbor queries for each point.

In the rest of the section, we will describe the radius of the search

ball for each linkage method. We will show that a cluster’s nearest

neighbor must have its centroid inside the ball.

4.1 Ward’s Linkage

In Ward’s linkage, Δ(𝐶𝑖 , 𝐵)Ward =

√︃
2 |𝐶𝑖 | |𝐵 |
|𝐶𝑖 |+ |𝐵 | | |𝑥𝐶𝑖

− 𝑥𝐵 | |2. For the

range query, we can use a ball with radius 𝑟 = 𝛽

√︃
|𝐶𝑖 |+𝑛min

2𝑛min |𝐶𝑖 | , where
𝛽 is the distance between𝐶𝑖 and some cluster𝐴 and 𝑛min is the size

of the smallest current cluster. We can obtain 𝑛min using a parallel

reduce on the sizes of all clusters. Figure 3(a) illustrates the range

search for Ward’s linkage.

Since 𝛽 = ΔWard (𝐶𝑖 , 𝐴), any cluster 𝐵 that is closer to 𝐶𝑖 than

𝐴 must have ∥𝑥𝐶𝑖
− 𝑥𝐵 ∥2 ≤ 𝛽2

|𝐶𝑖 |+ |𝐵 |
2 |𝐶𝑖 | |𝐵 | . The right-hand side of

Ward: 𝑟 = 𝛽√( 𝐶 + 𝑛)/ 2𝑛 𝐶
avg-1: 𝑟 = 𝛽
avg-2: 𝑟 = 𝛽
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Figure 3: Search area ball with radius 𝑟 in range queries for the linkage

metrics. The blue circles are clusters. The red points are cluster centroids.

The green arrows specify the predecessor𝐴 of𝐶𝑖 , and the distance between

them is 𝛽 . The red boxes are the bounding boxes of a 𝑘d-tree node𝑄 and

its four descendants. In (a), Δ(𝐶𝑖 , 𝐵) is computed because 𝑥𝐵 is in the ball;

however, Δ(𝐶𝑖 , 𝐷) is not computed because 𝑥𝐷 is outside the ball. 𝑛min is

the size of the smallest current cluster. In (b), Δ(𝐶𝑖 , 𝐵) is computed because

𝐵 is completely in the ball. Δ(𝐶𝑖 , 𝐷) will not be computed, because the

three shaded bounding boxes of 𝑘d-tree nodes do not intersect with the

ball, and so some of 𝐷’s points will not be included in the count. We only

compute the distance to a cluster if all of its points are included in the count.

the inequality becomes smaller for larger |𝐵 |, thus we can upper

bound the distance between 𝐶𝑖 ’s centroid and 𝐵’s centroid (i.e.,

∥𝑥𝐶𝑖
− 𝑥𝐵 ∥) by 𝑟 = 𝛽

√︃
|𝐶𝑖 |+𝑛min

2𝑛min |𝐶𝑖 | . Therefore, no cluster outside of

the ball centered at 𝑥𝐶𝑖
with radius 𝑟 can be closer to 𝐶𝑖 than 𝐴,

and thus we only need to search for 𝐶𝑖 ’s nearest neighbor inside

this ball.

4.2 Average Linkage
In average linkage, the distance between two clusters is the average

distance between all pairs of points, one from each cluster. For

the range query, we use a ball centered at 𝑥𝐶𝑖
with radius 𝑟 = 𝛽

and 𝑟 =
√︁
𝛽 for Euclidean distance metric and squared Euclidean

distance metric, respectively. As before, 𝛽 is the distance between

𝐶𝑖 and some cluster 𝐴. The nearest neighbor 𝐵 of 𝐶𝑖 must have its

centroid inside the ball, i.e., ∥𝑥𝐶𝑖
− 𝑥𝐵 ∥ ≤ Δavg-1 (𝐶𝑖 , 𝐵). The proof

is provided in the full version of our paper [69].

Similarly, for the squared Euclidean metric, we have ∥𝑥𝐶𝑖
−

𝑥𝐵 ∥2 ≤ Δavg-2 (𝐶𝑖 , 𝐵), which leads to ∥𝑥𝐶𝑖
− 𝑥𝐵 ∥2 ≤ Δavg-2 (𝐶𝑖 , 𝐵) ≤

Δavg-2 (𝐶𝑖 , 𝐴) = 𝛽 = 𝑟2. ∥𝑥𝐶𝑖
−𝑥𝐵 ∥2 ≤ Δavg-2 (𝐶𝑖 , 𝐵) holds since vari-

ances are non-negative and Δ(𝐶𝑖 , 𝐵)avg-2 = ∥𝑥𝐶𝑖
− 𝑥𝐵 ∥2 + Var(𝐶𝑖 )

|𝐶𝑖 | +
Var(𝐵)
|𝐵 | . Figure 3(a) illustrates the range search for average linkage

with the Euclidean and squared Euclidean distance metrics.

4.3 Complete Linkage
In complete linkage, the distance between two clusters is the max-

imum distance between a pair of points, one from each cluster.

For the range query, we use a ball with radius 𝑟 = 𝛽 centered at

centroid 𝑥𝐶𝑖
, where 𝛽 is the distance between 𝐶𝑖 and some cluster.

By definition of the complete linkage function, the cluster distance

must be no smaller than distance between their centroids, and so

the nearest neighbor of 𝐶𝑖 has its centroid within the search ball.

Range Query Optimization. For complete linkage, we can reduce

the number of cluster distance computations by only computing the

distance to a cluster if it is completely within the search ball. With

this observation, we can optimize the algorithm by keeping the

𝑘d-tree to be T𝑃 , the 𝑘d-tree of all points, and avoiding updating it

to be the 𝑘d-tree of centroids on every round. Figure 3(b) illustrates
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the optimized range search for complete linkage. We will prove the

correctness of this optimization at the end of the subsection.

Since now T is always T𝑃 , we need to slightly modify Algo-

rithm 2 and Algorithm 3. On Line 7 of Algorithm 2, we search

for the point 𝑝 ∉ 𝐶𝑖 closest to 𝑥𝑖 in T𝑃 , and let 𝛽 be the distance

between 𝐶𝑖 and the cluster of this point. We can use a parallel

union-find structure [22] to ignore points in 𝐶𝑖 . For Algorithm 3,

the range query might be able to terminate before Line 2 if the tree

node satisfies some conditions. For each range search, we keep a

count that eventually upper bounds the number of points within

the ball for each cluster. In each for-loop on Line 3 of Algorithm 3,

we now loop over points 𝑝 instead of centroids, and we atomically

increment the count for 𝑝’s cluster by 1 because this means we have

found one more point in this cluster that is within the ball. The

cluster IDs can also be maintained and queried using the parallel

union-find data structure. Right before Line 2 of Algorithm 3, if all

points in the 𝑘d-tree node 𝑄 are from the same cluster 𝐶 , we atom-

ically increment the count of cluster 𝐶 by the size of the node and

prune the search; otherwise, we continue the search and recurse on

the children. This gives an upper bound on the number of points in

the cluster within the ball, because the ball lies inside the 𝑘d-tree

bounding boxes traversed.

We preprocess the tree such that in the range search we can

determine in constant time if all points in the node are from the

same cluster, and if so which cluster it is. Specifically, we mark the

𝑘d-tree nodes with a cluster ID if all points in the node are from

the same cluster, or with NULL if the points in the node belong to

multiple clusters. This can be computed by recursively checking

the ID of the two children of a node starting from the root, and

storing the cluster ID of the children if all of their points are from

the same cluster. We update this information on every round.

After processing a point or a node, if we incremented the count

of a cluster 𝐶 , we check if the count of 𝐶 is equal to the size of

𝐶 . If so, this means that all of 𝐶’s points may be within distance

𝑟 = 𝛽 . In this case, we compute the distance between the 𝐶𝑖 and

this cluster, and use aWriteMin to update the nearest neighbor of

𝐶𝑖 in E (Lines 7, 9, and 10 of Algorithm 4).

Finally, we show below that 𝐶𝑖 ’s nearest neighbor 𝐵 must be

a cluster completely within search area by claiming that clusters

with points outside the ball must have a distance larger than 𝑟 to

𝐶𝑖 . Since 𝑟 is the distance between 𝐶𝑖 and some cluster, 𝐵 must

have a distance no larger than 𝑟 to 𝐶𝑖 . Suppose the distance of the

furthest point pair between𝐶𝑖 and 𝐵 is Δcomp (𝐶𝑖 , 𝐵) = 𝑑 (𝑝, 𝑞). Since
the average Euclidean distance between points in two clusters is

not smaller than the distance between their centroids (shown in

the full paper [69]), applying this property to 𝐶𝑖 and {𝑞′} for any
point 𝑞′ ∈ 𝐵, we see there must exists some 𝑝 ′ ∈ 𝐶𝑖 such that

𝑑 (𝑥𝐶𝑖
, 𝑞′) ≤ 𝑑 (𝑝 ′, 𝑞′). Since (𝑝, 𝑞) is the furthest point pair, we

have that 𝑑 (𝑥𝐶𝑖
, 𝑞′) ≤ 𝑑 (𝑝 ′, 𝑞′) ≤ 𝑑 (𝑝, 𝑞). Thus, if Δcomp (𝐶𝑖 , 𝐵) =

𝑑 (𝑝, 𝑞) ≤ 𝑟 , then all points in 𝐵 must be within 𝐵𝑎𝑙𝑙comp (𝑥𝐶𝑖
, 𝑟 ). As

a result, we only need to consider a cluster as the nearest neighbor

candidate of 𝐶𝑖 and actually compute the distance to it if all of its

points are inside the ball.

Dual-Tree Traversal.When computing cluster distances (Line 7

of Algorithm 4) for complete linkage, we use our parallel dual-tree

traversal algorithm described earlier in the section. We need to find

   
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
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Figure 4: Running times of using ParChain with average linkage and the

Euclidean distance metric using 48-cores with two-way hyper-threading

for varying cache sizes (values of 𝑠). The data sets are labeled on the 𝑥-axis

and are described in Section 6 (caption of Table 4).

the distance of the farthest pair of points, and so we useWriteMax

instead of WriteMin for storing the farthest distance seen. In order

to perform the dual-tree traversals, 𝔇 creates a 𝑘d-tree for each

cluster at the end of each round (Line 19 in Algorithm 1).

5 CACHING INTER-CLUSTER DISTANCES
For some linkage function andmetric combinations, such as average

linkage with the Euclidean distance metric, computing inter-cluster

distances can be expensive. We can avoid some recomputations of

cluster distances by caching some previously computed distances

for each cluster 𝐶𝑖 using a cache table H𝑖 , represented using a

parallel hash table. Users can specify a constant size 𝑠 of each

cache based on the available memory. The total memory usage is

𝑂 (𝑛(1 + 𝑠)), which is less than the quadratic memory required by

the distance matrix approaches. Sometimes, a larger table will lead

to faster computations because we can cache more distances and

avoid more recomputations. Due to the optimizations in Section 4,

the distances that we compute will tend to be close to𝐶𝑖 , and hence

stored inH𝑖 . These distances are more likely to be reused in future

nearest neighbor queries.

We present a comparison of running times of average linkage

with the Euclidean distance metric on several data sets using dif-

ferent cache sizes in Figure 4. We see that using caching improves

the running times by up to a factor of 8.98x compared to not using

caching. We found similar trends on other data sets. We will discuss

more about our implementation’s memory usage in Section 6.

In the rest of the section, we assume 𝑠 > 0 and describe how to

query cluster distances from the cache tables, insert new entries

after computing cluster distances during nearest neighbor queries,

and update the tables after merging clusters.

Querying and InsertingDistances betweenClusters. The cache
tables can be used to reduce cluster distance computations because

we can insert the computed distances to the tables and query for

them if we want to use them again. Now we describe how the cache

is used to update the nearest neighbor candidate in the nearest

neighbor search (Algorithm 4). With 𝑠 > 0, we might have already

cached the distance Δ(𝐶𝑖 ,𝐶 𝑗 ) in one or both of the tablesH𝑖 and

H𝑗 when we find𝐶 𝑗 in𝐶𝑖 ’s range. Therefore, we first query for the

distance in the cache tables (Line 2), and only compute the distance

if the return value is NOT_FOUND; otherwise we can directly use

the queried distance to update the nearest neighbor candidate in E
(Lines 3–6). If we compute the distance (Line 7), we will attempt

to insert it into both of the tables (Line 8). The insertion may fail

for a cache table if it is full, i.e., it already contains 𝑠 entries. Since

we insert distances between 𝐶𝑖 and the clusters that are within its

search range in all rounds so far, the distances stored in H𝑖 are

likely to be between 𝐶𝑖 and nearby clusters. Thus in later rounds,

these cached distances are more likely to be queried. On Lines 9–10,

WriteMin updates the nearest neighbors of 𝐶𝑖 and 𝐶 𝑗 in E.
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Algorithm 5: Updating Cached Distance

Input:𝐶𝑘 merged from𝐶𝑖 and𝐶 𝑗 , and distance structure𝔇

1 // 𝐶 is either 𝐶𝑖 (from H𝑖) or 𝐶 𝑗 (from H𝑗)
2 par_for (𝑑′ = Δ(𝐶,𝐶ℓ )) ∈ H𝑖 ∪ H𝑗 do
3 if {𝐶,𝐶ℓ } == {𝐶𝑖 ,𝐶 𝑗 } then continue

4 if 𝐶ℓ is merged in this round then
5 𝐶𝑔 = the cluster that𝐶ℓ merged into

6 𝑑 =𝔇 computes Δ(𝐶𝑘 ,𝐶𝑔) from the distances among𝐶𝑖 ,

𝐶 𝑗 , and the children of𝐶𝑔 using 𝑑′

7 else
8 𝐶𝑔 =𝐶ℓ

9 𝑑 =𝔇 computes Δ(𝐶𝑘 ,𝐶𝑔) from the distances among𝐶𝑖 ,

𝐶 𝑗 , and𝐶ℓ using 𝑑
′

10 Insert 𝑑 into H𝑘 and H𝑔

𝑑′ = ∆(𝐶, 𝐶)

𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝑑’

ℋ

ℋ

𝐶

𝐶 𝐶

Case 1:  𝐶 merged this round Case 2: 𝐶 not merged this round
𝑔 = 𝑙

𝑑 = ∆(𝐶, 𝐶)
ℋ

𝐶/
𝑑’

𝑑 = ∆(𝐶, 𝐶)…

…

…

Figure 5: An illustration of the cache table update in Algorithm 5. The

gray boxes show an entry in each of cache tables H𝑘 , H𝑔 , and H𝑖 . The

dark orange boxes are clusters merged in this round; the light orange boxes

are clusters merged in previous rounds. The blue lines connect dendrogram

children to their parent. The dotted green lines and boxes mark the cached

distance between clusters. In case (1),𝐶ℓ is merged in this round into𝐶𝑔 ;

in case (2),𝐶ℓ is not merged in this round, and it is the same as𝐶𝑔 .

When querying Δ(𝐶𝑖 ,𝐶 𝑗 ) with get_cached_dist(𝑖, 𝑗 ) (Line 2), we

search for the entry with key 𝑖 in H𝑗 , and the entry with key 𝑗

in H𝑖 . If in a cache table, the key does not exist, then the query

fails. If the queries in both tables fail, we return NOT_FOUND. If

the search is successful in one of the tables, we return the distance

stored in the table. We search in both cache tables since the caches

are of limited size, and so the distance could potentially be stored

in just one of the two tables.

Updating Cache Tables after Merging Clusters. We now de-

scribe how to update the entries in the cache tables after clusters

are merged (Lines 16–18 of Algorithm 1). If during a round 𝐶𝑖 and

𝐶 𝑗 are merged into a new cluster𝐶𝑘 , we will try to compute the dis-

tance between𝐶𝑘 and all clusters𝐶𝑔 whose subclusters’ distance(s)

with𝐶𝑖 or𝐶 𝑗 are stored inH𝑖 ∪H𝑗 . These distances can be used to

accelerate the computation of Δ(𝐶𝑘 ,𝐶𝑔) using the Lance-Williams

formula described in Section 2.1.

The update_cached_dists function called on Line 18 of Algo-

rithm 1 is presented in Algorithm 5. On Line 2, we loop over the

distances 𝑑 ′ in the cache tables of H𝑖 and H𝑗 . Without loss of gen-

erality, assume 𝑑 ′ = Δ(𝐶𝑖 ,𝐶ℓ ) is a distance in H𝑖 between 𝐶 and

some cluster𝐶ℓ (the case for an entry inH𝑗 is similar). Line 3 skips

over the entries that represent distances between 𝐶𝑖 and 𝐶 𝑗 , since

they are now merged. Otherwise, there are two cases. In case (1),

𝐶ℓ is also a cluster merged in this round (Lines 4–6), and we let 𝐶𝑔
be the cluster that 𝐶ℓ merged into. We compute the new distance

Δ(𝐶𝑘 ,𝐶𝑔) on Line 6 and insert the new distance into the caches

of both clusters 𝐶𝑘 and 𝐶𝑔 on Line 10. In case (2), 𝐶ℓ is not a new

cluster merged in this round (Lines 7–9), and we have 𝐶𝑔 = 𝐶ℓ . We

can also use 𝑑 ′ to accelerate the computation of Δ(𝐶𝑘 ,𝐶𝑔). Figure 5

illustrates one loop of the algorithm where the entry being con-

sidered is 𝑑 ′ = Δ(𝐶𝑖 ,𝐶ℓ ) ∈ H𝑖 (shown in the bottom gray box). In

both cases, we store entry 𝑑 = Δ(𝐶𝑘 ,𝐶𝑔) computed from 𝑑 ′ into
bothH𝑘 andH𝑔 on Line 10.

Nowwe describe the update rule for computing𝑑 . For case (2), we

can just directly apply the Lance-Williams formula [38] introduced

in Section 2 and compute Δ(𝐶𝑖 ∪𝐶 𝑗 ,𝐶𝑔) from Δ(𝐶𝑖 ,𝐶𝑔), Δ(𝐶 𝑗 ,𝐶𝑔),
and Δ(𝐶𝑖 ,𝐶 𝑗 ). For case (1), we can apply the Lance-Williams for-

mula and compute Δ(𝐶𝑖 ∪ 𝐶 𝑗 ,𝐶ℓ ∪ 𝐶ℓ′) = Δ(𝐶𝑘 ,𝐶ℓ ∪ 𝐶ℓ′) from
Δ(𝐶𝑘 ,𝐶ℓ ), Δ(𝐶𝑘 ,𝐶ℓ′), and Δ(𝐶ℓ ,𝐶ℓ′), where 𝐶ℓ′ is the cluster that

𝐶ℓ merges with to form 𝐶𝑔 . To compute Δ(𝐶𝑘 ,𝐶ℓ ) and Δ(𝐶𝑘 ,𝐶ℓ′),
which are not cached since 𝐶𝑘 is a newly merged cluster, we can

apply the Lance-Williams formula again since 𝐶𝑘 = 𝐶𝑖 ∪𝐶 𝑗 . Below

we give the update rule for average linkage with Euclidean distance

metric as an example. For case (2), where 𝐶𝑔 = 𝐶ℓ , we have

𝑑 =
|𝐶𝑖 |

|𝐶𝑖 | + |𝐶 𝑗 |
Δavg-1 (𝐶𝑖 ,𝐶𝑔) +

|𝐶 𝑗 |
|𝐶𝑖 | + |𝐶 𝑗 |

Δavg-1 (𝐶 𝑗 ,𝐶𝑔) . (1)

For case (1), let 𝐶ℓ and 𝐶ℓ′ be 𝐶𝑔’s children. We have

𝑑 =
|𝐶𝑖 | |𝐶ℓ |
|𝐶𝑘 | |𝐶𝑔 |

Δavg-1 (𝐶𝑖 ,𝐶ℓ ) +
|𝐶 𝑗 | |𝐶ℓ |
|𝐶𝑘 | |𝐶𝑔 |

Δavg-1 (𝐶 𝑗 ,𝐶ℓ )

+
|𝐶𝑖 | |𝐶ℓ′ |
|𝐶𝑘 | |𝐶𝑔 |

Δavg-1 (𝐶𝑖 ,𝐶ℓ′) +
|𝐶 𝑗 | |𝐶ℓ′ |
|𝐶𝑘 | |𝐶𝑔 |

Δavg-1 (𝐶 𝑗 ,𝐶ℓ′) . (2)

If the distances between 𝐶ℓ′ (𝐶𝑔) and one or both of 𝐶𝑖 and 𝐶 𝑗

are also cached in case (1) (case (2)), we can also query them and

accelerate the computation of 𝑑 by avoiding some distance recom-

putation. For example, in update rule (1), if 𝑑 ′ = Δavg-1 (𝐶𝑖 ,𝐶𝑔) is
cached, we can compute 𝑑 = Δavg-1 (𝐶𝑘 ,𝐶𝑔) by 𝑑 =

|𝐶𝑖 |
|𝐶𝑖 |+ |𝐶 𝑗 |𝑑

′ +
|𝐶 𝑗 |

|𝐶𝑖 |+ |𝐶 𝑗 |Δavg-1 (𝐶 𝑗 ,𝐶𝑔). If Δ(𝐶 𝑗 ,𝐶𝑔) is also cached, we can query

for it and compute 𝑑 in constant time; otherwise, we need |𝐶 𝑗 | |𝐶𝑔 |
point distance computations to find𝑑 , which is less than the |𝐶𝑘 | |𝐶𝑔 |
point distance computation required by a brute force method.

During the nearest neighbor range search, two clusters𝐶𝑖 and𝐶 𝑗

might find each other as nearest neighbor candidates, and bothwant

to compute Δ(𝐶𝑖 ,𝐶 𝑗 ) in parallel. A similar situation can happen

when updating the cache entries for 𝐶𝑘 and 𝐶𝑔 . Our implementa-

tion avoids these duplicate distance computations by having each

cluster first insert a special entry into the hash tableH
min(𝑖, 𝑗) (or

H
max(𝑖, 𝑗) ifHmin(𝑖, 𝑗) is full), and then only compute the distance

if the insertion was successful. The special entry can only be suc-

cessfully inserted once for each pair of clusters 𝐶𝑖 and 𝐶 𝑗 , and so

Δ(𝐶𝑖 ,𝐶 𝑗 ) will only be computed once.

6 EXPERIMENTS
Testing Environment.Weperform experiments on a c5.24xlarge
machine on Amazon EC2, with 2 Intel Xeon Platinum 8275CL

(3.00GHz) CPUs for a total of 48 hyper-threaded cores, and 192

GB of RAM. By default, we use all cores with hyper-threading. We

use the g++ compiler (version 7.5) with the -O3 flag, and use Cilk

Plus, which is supported in g++, for parallelism in our code [40].

For parallel experiments, we use numactl -i all to balance the

memory allocation across nodes. We also perform three runs of

each parallel experiment and report the smallest running time. We

allocate a maximum of 15 hours for each run of a running time test,

and do not report the times for tests that exceed this limit.
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We test the following implementations for HAC. We refer to

complete linkage as comp, Ward’s linkage asWard, average linkage
with Euclidean distance metric as avg-1, and average linkage with

squared Euclidean distance metric as avg-2.
• PC Our parallel ParChain framework is implemented in C++,

using the range query and caching optimizations.

• PC-mr A parallel C++ NNC implementation that uses a distance

matrix and merges all R-NNs in each round. All cluster distances

are obtained from the distance matrix. It uses the range query

optimization to find the nearest neighbors.

• PC-m A naive parallel C++ NNC implementation that uses a

distance matrix and merges all R-NNs in each round. All cluster

distances are obtained from the distancematrix. A parallel reduce

is used over the distance matrix rows to find the nearest neighbor

instead of using a range query.

• scipy (sc) [51] Scipy’s serial implementation in Cython, which

uses the NNC algorithm with a distance matrix for all of the

linkage criteria tested.

• sklearn (sk) [59] Scikit-learn’s serial implementation in Cython,

which uses a distance matrix. It has a heap for all distances and

merges the global closest neighbor pair on each round.

• fastcluster [52] A serial C++ implementation of HAC with a

Python interface. It contains two approaches of implementations

of HAC—one generic implementation (fc-gen) uses the naive
algorithm where the global R-NN pair is merged in each round,

and the other (fc-nnc) is based on the NNC algorithm using a

distance matrix. ForWard’s linkage, fastcluster has a linear space

implementation for the naive method that work by computing

the cluster distances on the fly using the cluster centroids. We

also wrote linear-space implementations for the NNC algorithm

that compute distances on the fly for Ward’s linkage and average

linkage with squared Euclidean distance metric. We report the

running time of the linear space implementation when available.

• fastprotein (fp) [31] A parallel C++ implementation that paral-

lelizes the naive NNC algorithm by computing the global R-NN

and updating the distance matrix in parallel on each of the 𝑛 − 1

rounds. It only supports complete and average linkage.

• Jeon (Je) [33] A parallel C++ implementation of the parallel NNC

algorithm by Jeon and Yoon. [33], which only supports average

linkage with the Euclidean distance metric.

• Althaus (Al) [3] Our parallel C++ implementation of Althaus

et al.’s complete linkage algorithm that uses linear memory.

Data Sets. We use both synthetic and real-world datasets, all of

which fit in the RAM of our machine. Let 𝑛 be the number of points.

The GaussianDisc data set contains points inside a bounding hy-

pergrid with side length 5

√
𝑛. 90% of the points are equally divided

among five clusters, each with a Gaussian distribution. Each cluster

has its mean randomly sampled from the hypergrid, a standard

deviation of 1/6, and a diameter of

√
𝑛. The remaining points are

randomly distributed. The UniformFill data set contains points
distributed uniformly at random inside a bounding hypergrid with

side length

√
𝑛. We generate the synthetic data sets with 10 million

points for dimensions 𝑑 = 2 and 𝑑 = 5.

We also use two existing simulation datasets. UCI1 [7] is a 10-

dimensional data set with 19, 020 data points. This data set is gener-

ated to simulate registration of high energy gamma particles [29].

UCI4 [35] is a 10-dimensional data set with 100, 000 data points.

This data set has a pseudo-periodic time series for each of its di-

mension, and hence is likely to form long chains.

We use the following real-world data sets. GeoLife [71] is a 3-
dimensional data set with 24, 876, 978 data points. This data set

contains user location data, and is extremely skewed. HT [30] is a

10-dimensional data set with 928, 991 data points containing home

sensor data. CHEM [25] is a 16-dimensional data set with 4, 208, 261

data points containing chemical sensor data.

When referring to the data sets in this section, we use a pre-

fix to indicate its dimensionality and suffix to indicate its size.

To obtain smaller data sets, we randomly sample from the cor-

responding larger data sets. The letter "U" indicates UniformFill

and "G"indicates "GaussianDisc".

Cache Sizes. In our experiments, we use a cache size of 𝑠 = 64 for

avg-1 and 𝑠 = 0 for complete, Ward, and avg-2 except otherwise

noted. The choice of 𝑠 = 64 will be discussed in more detail in

Section 6.3 along with the benefit of our range query and caching

optimizations. We use 𝑠 = 0 for complete, Ward, and avg-2 to show

our framework achieves good performance on cheaper linkage

criteria even without caching.

6.1 Comparison with Other Implementations
Figure 6 shows the running times vs. number of threads for all of

the serial and parallel implementations on three small data sets

(2D-GaussianDisc-10K, 10D-UCI1-19K, and 10D-UCI4-100K). Im-

plementations with a single data point are serial. We only compare

them on the small data sets because the algorithms that require

quadratic memory run out of memory for larger data sets.

We see that our implementation PC almost always outperforms

existing implementations across all thread counts. Even the version

of our algorithm using the distance matrix without the range query

optimization (PC-m) is faster than all other implementations at

higher thread counts. Unlike the existing parallel implementations,

fastprotein (fp) and Jeon (Je), our implementations are more scal-

able since we merge all R-NN pairs on each round, and do not use

locks. On the small data sets, using 48 cores with hyper-threading,

PC is 5.8–88.0x faster than fp and 37.5–110.1x faster than Je. Table 4

shows the running times for PC, fc-gen, and fc-nnc on larger data

sets (Je does not scale to these data sets due to its quadratic mem-

ory requirement), and we see that PC is 64.77–733.90x faster than

fastcluster on these data sets. On a single thread, we find that PC is

2.19–47.92x faster than the next fastest implementation (except on

10D-UCI1-19K for complete linkage, where PC is 1.58x slower than

fc-nnc and fc-gen).

In Figure 6, PC shows limited scalability on higher thread counts,

because these data sets are small and the overhead of using more

threads is high relative to the work of the algorithm. However, in

the next subsection, we show that PC is able to achieve higher

parallel scalability on larger data sets.

6.2 Scalability
Scalability with Thread Count. Table 4 and Figure 7 present

the runtime and scalability of PC on different numbers of threads

for larger data sets, which most existing implementations do not

scale to. For average linkage with the Euclidean distance metric,

the speedups for several data sets are not shown since the single-

threaded experiments timed out. We see that using 48 cores with

293



     



















 

     









 

     









 

     











 

     










 

     









 

     



















 

     









 

     









 

     









 

     










 

     









 

         

Figure 6: Runtimes (seconds) of our algorithms compared with other implementations with varying thread counts. (48h) indicates 48 cores with two-way

hyper-threading. Implementations with a single data point are serial. Je only supports average linkage with Euclidean distance and fp only supports complete

and average linkage with Euclidean distance. sc and sk have very similar running times and overlap on some plots. For avg-2, sk runs out of memory for the

UCI4 data set. Our algorithm PC is faster than all other implementations for all number of threads, except on a single thread for the UCI1 data set using

complete linkage. See Table 4 and Figure 7 for running times and scalability of PC on larger data sets.

Table 4: Runtimes (seconds) and self-relative parallel speedups of fastcluster and PC. “PC-1” is our runtime on 1 thread and “PC-48h” is our runtime using 48

cores with two-way hyper-threading. PC on avg-1 timed out on several larger data sets. For fastcluster on several larger data sets, we only have runtimes for

Ward and avg-2 because it requires quadratic memory for comp and avg-1 and runs out of memory. For Ward, we report fc-gen because it is faster than fc-nnc.

"–" means that the running time exceeds 15 hours. For the data set names, the first number indicates dimension, the letter "U" indicates UniformFill, "G"

indicates "GaussianDisc", "1M" indicates 1 million data points, and "10M" indicates 10 million data points.

2U1M 2G1M 5U1M 5G1M HT 2U10M 2G10M 5U10M 5G10M CHEM Geolife

comp

PC-1 (sec) 47.21 50.47 2119.10 2282.00 56.80 677.88 609.08 53008.00 49052.00 4972.90 1948.90

PC-48h (sec) 1.34 1.61 40.40 46.74 3.68 19.01 21.29 977.47 1038.82 126.54 123.34

self-speedup 35.12 31.39 52.45 48.83 15.42 35.66 28.61 54.23 47.22 39.30 15.80

Ward

fc-gen (sec) 3537.11 3845.04 7284.11 6676.75 8760.04 – – – – – –

PC-1 (sec) 11.31 12.23 79.11 103.09 23.13 175.70 156.53 1475.50 1230.30 1096.40 681.63

PC-48h (sec) 0.50 0.52 1.95 2.69 1.50 5.69 5.20 30.36 34.99 24.83 32.14

self-speedup 22.42 23.70 40.52 38.36 15.43 30.90 30.11 48.59 35.17 44.16 21.21

avg-1

PC-1 (sec) 859.22 857.07 1627.80 1734.10 2652.70 – – – – – –

PC-48h (sec) 23.59 26.83 38.10 45.27 58.25 2969.93 3206.48 6323.56 5772.03 2323.38 19213.60

self-speedup 36.42 31.95 42.72 38.30 45.54 – – – – – –

avg-2

fc-nnc (sec) 4602.83 4022.04 8907.50 11425.99 13244.60 – – – – – –

PC-1 (sec) 10.28 11.11 62.10 81.21 18.05 159.65 141.52 1146.20 955.77 833.06 575.39

PC-48h (sec) 0.47 0.49 1.65 2.27 1.31 5.30 4.80 24.60 28.51 20.93 28.34

self-speedup 21.78 22.76 37.64 35.73 13.75 30.14 29.49 46.60 33.52 39.79 20.30
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Figure 7: Self-relative parallel speedup vs. thread counts for complete, Ward’s, and average linkage using our “PC” algorithm on large datasets. (48h)

indicates 48 cores with two-way hyper-threading. For average linkage with the Euclidean distance metric, the speedups for several data sets are not shown

since the single-threaded experiments timed out.

two-way hyper-threading, PC achieves 15.42–54.23x speedups on

complete linkage, 15.43–44.16x speedups on Ward’s linkage, 31.95–

45.54x speedups on average linkage with Euclidean distance, and

13.75–46.6x speedups on average linkage using squared Euclidean

distance. From Figure 7, we can see that on most data sets, our

algorithm keeps scaling up until 48 threads.

Scalability with Data Size. Figure 8 shows the runtimes of our

algorithm PC on three data sets of varying sizes using 48 cores with

two-way hyper-threading. We observe that PC scales well with data
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Figure 8: Runtimes (seconds) of our algorithm “PC” on three data sets of

varying sizes using 48 cores with two-way hyper-threading. The “Ward” and

“avg-2” lines overlapped because they have similar runtimes. The results

show that the scalability is very similar across datasets.
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Figure 9: Self-relative parallel speedup and runtimes (seconds) of steps

of avg-1 using 48 cores with two-way hyper-threading on different thread

counts and data set sizes. From Algorithm 1, "init" corresponds to Lines 1–6;

"nn" corresponds to Lines 8–12; "merge" corresponds to Lines 13–18; and

"update" corresponds to Lines 19–21.

set size. The scalability is better for comp, Ward, and avg-2 than for

avg-1 because avg-1 always requires quadratic work to compute

cluster distances, while Ward and avg-2 require constant time to

compute them and comp usually requires less than quadratic time

to compute them due to pruning.

Runtime Decomposition. We now describe the breakdown of

running time across different steps of ParChain, as well as the scal-

ability of each step. Figure 9 shows the speedups and running times

of steps of avg-1 using 48 cores with hyper-threading on different

data sets. From Algorithm 1, “init” corresponds to Lines 1–6 where

we initialize the data structures; “nn” corresponds to Lines 8–12

where we find the nearest neighbors of all terminal nodes and up-

date the chains; “merge” corresponds to Lines 13–18 where we

merge the R-NNs and update the cache tables if 𝑠 > 0; and “update”

corresponds to Lines 19–21 where we update the data structures to

prepare for next round.

From Figure 9 (top), we see that the “nn” and “merge” steps are

more scalable with respect to thread count than the “update” and

“init” steps. The reason is that in the “nn” step, we find the nearest

neighbor of all terminal nodes in parallel, and in the “merge” step,

we merge all R-NNs in parallel. The numbers of terminal nodes

and R-NNs are usually much larger than the number of available

threads, and thus there is a lot of opportunity for parallelism. The

“init” and “update” step are less scalable because they have less work

to be divided across threads.

From Figure 9 (bottom), we see that the “nn” and “merge” steps

are less scalable with respect to data size than the “update” and “init”

steps. This is because the “nn” and “merge” steps asymptotically

dominate the work of the whole algorithm.

6.3 Analysis of Our Framework
We now discuss the effects of our range query and caching optimiza-

tions and show our running time is close to quadratic in practice.

From Figure 6, PC-mr is 1.67x faster on average than PC-m on 48

cores with two-way hyper-threading, which shows that the bene-

fit of using our optimized range query is larger than its overhead

even on these small datasets. PC is 15.06x faster on average than

PC-mr because although PC needs to compute some distances on

the fly, PC avoids the overhead of computing the distance matrix

and updating the matrix in each round. This shows the benefit of

avoiding a distance matrix.

To further show the benefit of our range query and caching

optimizations, we measure the maximum average cache usage
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Figure 10: Statistics for avg-1 on different datasets with 𝑠 = 64. (Left)

Blue crosses denotes𝑀 =
( |Z𝑖 | + log |A𝑖 |) |A𝑖 | for different data sets.

Orange triangles denote the total number of distance computations between

points (𝐷). 𝑀̂ and 𝐷̂ are least squares fitted lines of𝑀 and 𝐷 , respectively.

(Right) Fraction of clusters in the range queries and fraction of distance

computations required between clusters.

Table 5:Memory usage (MB) vs. data set size for 2D-GaussianDisc data sets

for the different implementations. The smallest memory for each linkage

criteria and data set is in bold.

n fc-gen fc-nnc PC PC-m PC-mr sc sk fp Je Al

comp

1K 17.5 17.5 5.8 8.5 8.7 21.6 31.4 4.2 – 3.40
3K 49.5 49.5 11.1 41.4 42.1 85.8 95.5 36.4 – 7.29
10K 414.6 414.4 27.6 407.7 410.2 814.2 824.0 401.1 – 20.75

Ward

1K 15.4 15.4 3.5 8.6 8.7 21.6 31.4 – – –

3K 20.2 20.2 4.8 41.4 41.9 85.8 95.5 – – –

10K 27.6 27.6 9.2 407.7 409.3 814.2 824.0 – – –

avg-1

1K 17.5 17.5 6.0 8.5 8.7 21.6 31.4 3.2 3.0 –

3K 49.5 49.5 12.5 41.3 42.1 85.8 95.5 21.3 20.7 –

10K 414.7 414.5 32.7 407.7 410.2 814.2 824.0 210.7 208.7 –

avg-2

1K 17.5 15.4 3.6 8.6 8.7 21.6 47.4 – – –

3K 49.5 20.2 5.1 41.3 42.1 85.8 239.5 – – –

10K 414.7 27.6 10.2 407.7 410.2 814.2 2423.9 – – –

max𝑟 ∈rounds


avg

𝐶∈clusters
(# of cache slots used by 𝐶 in round 𝑟 )


for

avg-1 using 𝑠 = 256 for all clusters (we used 𝑠 = 128 for GeoLife due

memory limitations). We use a larger cache size than our previous

experiments so that fewer clusters hit the size limit, which gives us a

more accurate analysis of cache usage. We found that the maximum

average cache usage ranges from 6.7–84.5 slots. This explains why

runtimes stop decreasing for cache sizes larger than 64 in Figure 4.

If the cache is too large and many of the entries are empty, the

runtime could be slower than using a smaller cache because when

we merge the caches, we need to filter out the non-empty entries,

and thus larger caches incur more overhead.

We use 𝑠 = 64 for avg-1 in all other experiments to show that our

framework can achieve good performance with a relatively small

cache so that our memory overhead is minimal. Figure 4 shows that

𝑠 = 64 gives good performance across different data sets. Section 6.4

shows our memory usage is very small with 𝑠 = 64.

We now show that our running time is close to quadratic in

practice. As described in Section 3, the work of our framework is

bounded by𝑀 =
 |A𝑖 | ( |Z𝑖 | + log |A𝑖 |) plus the cost of distance

computations, 𝐷 . Figure 10 (left) shows that𝑀 and 𝐷 are quadratic

in the number of points in practice. Figure 10 (right) shows that only

a very small fraction of clusters are included in the range queries

and an even smaller fraction of distance computations between

clusters are required in practice.
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6.4 Memory Usage
Table 5 shows the memory usage (in megabytes) vs. data set size for

2D-GaussianDisc data sets for the different implementations. We

measure the memory usage using the Valgrind Massif heap profiler

tool [56]. For PC and PC-m, we use 48 cores with two-way hyper-

threading. For fastprotein (fp) we use 36 threads, for Jeon (Je) we

use 4 threads, and for Althaus (Al) we use 36 threads. The number

of threads are chosen for best performance based on Figure 6.

Our algorithm PC shows linear memory increase vs. data size

on all methods while most other methods, except Al, fc-gen for

Ward, and fc-nnc for Ward and avg-2 (which require linear space),

show quadratic memory increase vs. data size, which is consistent

with the fact that they use a distance matrix. PC uses less memory

than all other implementations, except that Al uses less memory

for complete linkage, and Je uses less memory for the small 1K data

set for avg-1. However, Al only works for complete linkage and is

orders of magnitude slower than PC (Figure 6). PC uses less than

2x of the memory used by Al. Overall, PC uses up to 237.3x less

memory than existing implementations.

7 RELATEDWORK
There is a rich literature in designing HAC algorithms. In the most

naive algorithm, a distance matrix is used to maintain all pairwise

distances between clusters. On each iteration, the matrix is searched

to find the closest pair of clusters, which are then merged, and

distances to this newly merged cluster are computed. The algorithm

runs for 𝑛 − 1 iterations, after which a single cluster remains. A

straightforward implementation of this algorithm gives𝑂 (𝑛3) time,

but it can be improved to𝑂 (𝑛2 log𝑛) time by storing matrix entries

in heap-based priority queues [52, 58].

The two popular Python libraries scipy [65] and scikit-learn [59]

both provide sequential algorithms for HAC. The two libraries’ im-

plementations both compute and store a distance matrix. Fastclus-

ter [52] contains three implementations of HAC—two heap-based

naive algorithms for general linkage functions, where one uses the

distance matrix and the other compute cluster distances on the

fly, and an NNC algorithm that uses the distance matrix. Lopez-

Sastre et al. [44] propose a sequential NNC algorithm that speeds

up the chain construction using a dynamic slicing strategy that

only searches for the nearest neighbor within some slices. Their

algorithm only works for linkage functions where the distance can

be expressed using centroids and variances.

There have been implementations that focus on reducing the

in-memory space usage of HAC from quadratic to linear by writing

the quadratic-space distance matrix to disk, and loading it into

memory in smaller chunks [43, 57]. These algorithms are sequential,

and only merge one pair of clusters at a time. In contrast, our

algorithm is parallel, and also does not require writing or loading

additional information to and from disk. Moreover, the algorithms

above are designed to take advantage of sparse distance metrics,

where only some distances between data points are defined while

other distances are considered to be "missing" and the points have

"large" dissimilarity between them, making them less suitable for

the Euclidean distance or squared Euclidean distance metrics.

There have also been many parallel algorithms developed for

HAC, although it is difficult to parallelize in theory [27]. Olson [58]

gives parallel algorithms, some of which parallelize the NNC algo-

rithm by finding the nearest neighbor in parallel on each round,

but still only merges one pair per round, and so there will always

be 𝑛 − 1 rounds. Li [41] gives parallel HAC algorithms that store

the distance matrix, based on an older theoretical model for a SIMD

machine with distributed memory. Li and Fang [42] give parallel

HAC algorithms on hypercube and butterfly network topologies.

Du and Lin [23] give a parallel HAC algorithm on a cluster of com-

pute nodes. Zhang et al. [70] propose a distributed algorithm for

HAC that partitions the datasets using 𝑘d-trees or quadtrees, and

then for each leaf node, finds a region where the R-NN pairs might

exist. In parallel, each compute node finds the local R-NN pairs

in a region, and then global R-NN pairs are found from the local

pairs. This method merges multiple R-NN pairs, but their paper

does not specify how the distances between clusters are updated or

computed after merges. Fastprotein [31] is a naive parallelization of

fastcluster. Sun et al. [63] develop a parallel version of algorithms

that write the distance matrix to disk and load chunks of it into

memory [43, 57]. However, they still only merge one pair of clusters

at a time. Jeon and Yoon [33] present a parallel NNC algorithm us-

ing a distance matrix, which we discussed earlier. Althaus et al. [3]

present a parallel complete linkage algorithm that uses linear main

memory; however their algorithm requires 𝑛 − 1 rounds because

they only merge the global R-NN pair on each round.

Besides the linkage criteria considered in this paper, other pop-

ular criteria for HAC include single, centroid, and median link-

age. Single linkage with the Euclidean metric is closely related

to the Euclidean minimum spanning tree problem, and can be

solved efficiently using variants of minimum spanning tree algo-

rithms [47, 66]. Centroid and median linkage do not satisfy the

reducibility property and cannot take advantage of the NNC algo-

rithm. There has also been work on other hierarchical clustering

methods, such as partitioning hierarchical clustering algorithms

and algorithms that combine agglomerative and partitioning meth-

ods [10, 18, 41, 48, 60]. Finally, there has been work on analyz-

ing the cost function of the HAC problem [13, 16, 17, 21, 50] and

approximating the HAC problem on various linkage criteria and

metrics [1, 4, 11, 12, 20, 26, 36, 37, 49].

8 CONCLUSION
In this paper, we presented ParChain, a framework that supports

fast and space-efficient parallel HAC algorithms based on the nearest-

neighbor chain method. We introduced two key optimizations for

efficiency, a range query optimization and a caching optimization.

Using ParChain, we designed new parallel HAC algorithms for com-

plete, average, and Ward linkage that outperform existing parallel

implementations by 5.8–110.1x, while using up to 237.3x less space.

It would be interesting future work to study how to improve the

efficiency of ParChain by allowing approximation.
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