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Abstract—We consider the problem of distributed inference
where agents in a network observe a stream of private signals
generated by an unknown state, and aim to uniquely identify
this state from a finite set of hypotheses. We focus on scenarios
where communication between agents is costly, and takes place
over channels with finite bandwidth. To reduce the frequency of
communication, we develop a novel event-triggered distributed
learning rule that is based on the principle of diffusing low beliefs on
each false hypothesis. Building on this principle, we design a trigger
condition under which an agent broadcasts only those components
of its belief vector that have adequate innovation, to only those
neighbors that require such information. We prove that our rule
guarantees convergence to the true state exponentially fast almost
surely despite sparse communication, and that it has the poten-
tial to significantly reduce information flow from uninformative
agents to informative agents. Next, to deal with finite-precision
communication channels, we propose a distributed learning rule
that leverages the idea of adaptive quantization. We show that
by sequentially refining the range of the quantizers, every agent
can learn the truth exponentially fast almost surely, while using
just 1 bit to encode its belief on each hypothesis. For both our
proposed algorithms, we rigorously characterize the trade-offs
between communication-efficiency and the learning rate.

Index Terms—Distributed inference, bayesian
distributed hypothesis testing, communication-efficiency.

learning,

I. INTRODUCTION

VER the last couple of decades, there has been a sig-
nificant shift in the model of computation - driven in
part by the nature of emerging applications, and partly due to
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concerns of reliability and scalability - from that of a single
centralized computing node to parallel, distributed architectures
comprising of several devices. Depending upon the context,
these devices could be smart phones interacting with the cloud
in a Federated Learning setup, or embedded sensors in a modern
Internet of Things (IoT) network. Typically, the devices in the
above applications - henceforth referred to as agents - run
on limited battery power, and setting up communication links
between such agents incurs significant latency. Thus, the need
arises to reduce the amount of communication to achieve a
given objective. Moreover, the communication links themselves
have finite bandwidth, dictating the need to compress messages
appropriately. These communication bottlenecks pose a major
technical challenge. Our goal in this paper is to take a step
towards resolving this challenge for the canonical problem of
distributed inference. We now briefly describe this problem.

Consider a network of agents, where each agent receives a
stream of private signals sequentially over time. The obser-
vations of each agent are generated by a common underlying
distribution, parameterized by an unknown static quantity which
we call the true state of the world. The task of the agents is to
collectively identify this unknown quantity from a finite family
of hypotheses, while relying solely on local interactions. The
problem described above arises in a variety of scenarios ranging
from detection and object recognition using autonomous robots,
to statistical inference and learning over multiple processors.
As such, the distributed inference/hypothesis testing problem
enjoys arich history [1]-[11], where a variety of techniques have
been proposed over the years, with more recent efforts directed
towards improving the convergence rate. These techniques can
be broadly classified in terms of the data aggregation mecha-
nism: while consensus-based linear [1]-[4] and log-linear [5]—
[9] rules have been well studied, [10] and [11] propose a min-
protocol that leads to improved asymptotic learning rates over
previous approaches.

In general, for the problem described above, no one agent can
eliminate every false hypothesis on its own to uniquely learn
the true state. This leads to a fundamental tension: although
communication is costly (due to battery power constraints)
and imprecise (due to finite communication bandwidth), it is
also necessary. How should the agents interact to learn the
true state despite sparse and imprecise communication? At the
moment, a theoretical understanding of this question is lacking
in the distributed inference literature. In this context, our main
contributions are described below.
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A. Contributions

To reduce the frequency of communication, one needs to first
answer a few basic questions. (i) When should an agent exchange
information with a neighbor? (ii) What piece of information
should the agent exchange? To address these questions in a
principled way, our first contribution is to develop a novel
distributed learning rule in Section III by drawing on ideas
from event-triggered control [12], [13]. The premise of our
rule is based on diffusing low beliefs on each false hypothesis
across the network. Building on this principle, we design a
trigger condition that carefully takes into account the specific
structure of the problem, and enables an agent to decide, using
purely local information, whether or not to broadcast its belief!
on a given hypothesis to a given neighbor. Specifically, based
on our event-triggered strategy, an agent broadcasts only those
components of its belief vector that have adequate “innovation,”
to only those neighbors that are in need of the corresponding
pieces of information. Thus, our approach not only reduces the
communication frequency, but also the amount of information
transmitted in each round.

Our second contribution is to provide a detailed theoretical
characterization of the proposed event-triggered learning rule
in Section IV. Specifically, in Theorem 1 we establish that
our rule enables each agent to learn the true state exponen-
tially fast almost surely, under standard assumptions on the
observation model and the network topology. We characterize
the learning rate of our algorithm as a function of the agents’
relative entropies, the network structure, and parameters of the
communication model. In particular, we show that even when
the inter-communication intervals between the agents grow geo-
metrically at arate p > 1, our rule guarantees exponentially fast
learning at a network-dependent rate that scales inversely with p.
However, when such intervals grow polynomially, the learning
rate remains the same as the network-independent learning rate
in [11]. Thus, our results provide various interesting insights into
the relationship that exists between the rate of convergence and
the sparsity of the communication pattern.

Next, in Proposition 1 and Corollary 2, we demonstrate that
our event-triggered scheme has the potential to significantly
reduce information flow from uninformative agents to informa-
tive agents. Finally, in Theorem 2, we argue that if asymptotic
learning of the true state is the only consideration, then one can
allow for communication schemes with arbitrarily long intervals
between successive communication time-steps.

While our results above concern the aspect of sparse com-
munication, in Section V we turn our attention to learning over
communication channels with finite precision, i.e., channels that
can support only a finite number of bits. In a recent paper [7]
that looks at the same problem as us, the authors demonstrated in
simulations that with a quantized variant of their log-linear rule,
the beliefs of the agents might converge to a wrong hypothesis,
if not enough bits are used to encode the beliefs. It is natural
to then ask whether the above phenomenon is to be expected
of any rule, or whether it is specific to the one explored in [7].
We argue that it is in fact the latter by resolving the following

By an agent’s “belief vector.,” we mean a distribution over the set of hy-
potheses; this vector gets recursively updated over time as an agent acquires
more information.
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fundamental question. In order to learn the true state, how many
bits must an agent use to encode its belief on each hypothesis?
To answer this question, we develop a distributed learning rule
based on the idea of adaptive quantization. The key feature of
our rule is to successively refine the range of the quantizers
as the agents acquire more information over time and narrow
down on the truth. In Theorem 3, we prove that even if every
agent uses just 1 bit to encode its belief on each hypothesis,
all agents end up learning the truth exponentially fast almost
surely. The rate of learning, however, exhibits a dependence on
the precision of the quantizer - a dependence that we explicitly
characterize. In doing so, we show that if the number of bits
used for encoding each hypothesis is chosen to be large enough
w.r.t. certain relative entropies, then one can recover the exact
same long-run learning rate as with infinite precision, i.e., the
rate obtained in [11]. This constitutes our final contribution.

To summarize, this paper (i) develops novel communication-
efficient distributed inference algorithms; (ii) provides detailed
theoretical characterizations of their performance; and, in partic-
ular, (iii) highlights various interesting trade-offs between sparse
and imprecise communication, and the learning rate.

This paper significantly expands upon our preliminary work
in [14] where we only consider the effect of sparse communica-
tion. In particular, Sections V=VII that deal with the aspect of
imprecise communication are entirely new additions.

B. Related Work

Our work is closely related to the papers [15] and [16], each
of which explores the theme of event-driven communication
for distributed learning. In [15], the authors propose a rule
where an agent queries the log-marginals of its neighbors only
if the total variation distance between its current belief and the
Bayesian posterior after observing a new signal falls below a
pre-defined threshold. That is, an agent communicates only if
its current private signal is not adequately informative. Among
various other differences, the trigger condition we propose is not
only a function of an agent’s local observations, but also care-
fully incorporates feedback from neighboring agents. Moreover,
while we provide theoretical results to substantiate that our rule
leads to sparse communication patterns, [15] does so only via
simulations. The algorithm in [16] comes with no theoretical
guarantees of convergence.

The aspect of sparse communication has been studied in the
context of a variety of coordination problems on networks, such
as average consensus [17], distributed optimization [18], [19],
and static parameter estimation [20] - settings that differ from
the one we investigate in this paper. To promote communication-
efficiency, [18] and [20] propose algorithms where inter-agent
interactions become progressively sparser over time. However,
these algorithms are essentially time-triggered, i.e., they do not
adhere to the principle that “an agent should communicate only
when it has something useful to say”. On the other hand, the
strand of literature that deals with event-driven communications
for multi-agent systems focuses primarily on variations of the
basic consensus problem; we refer the reader to [21] for a survey
of such techniques.

Our work is also related to the classical literature on de-
centralized hypothesis testing under communication constraints
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[22]-[24]. However, unlike our formulation, these papers as-
sume the presence of a centralized fusion center, and do not
deal with sequential data, i.e., each agent only receives one
signal. Finally, the adaptive quantization idea used in this paper
bears conceptual similarities to the encoding strategy in [25] for
stabilizing an LTI plant over a bit-constrained channel, and also
to a recent work on distributed optimization [26].

II. MODEL AND PROBLEM FORMULATION

Network Model: We consider a group of agents V =
{1,...,n}, and model interactions among them via an undi-
rected graph G = (V, E). Anedge (i, j) € £ indicates that agent
¢ can directly transmit information to agent j, and vice versa.
The set of all neighbors of agent i is defined as A; = {j € V:
(4,1) € £}. We say that G is rooted at C C V, if for each agent
i € V '\ C, there exists a path to it from some agent j € C. For
a connected graph G, we will use d(4, j) to denote the length of
the shortest path between ¢ and j.

Observation Model: Let © = {0,0,,...,60,,} denote m
possible states of the world, with each state representing a
hypothesis. A specific state * € ©, referred to as the true state
of the world, gets realized. Conditional on its realization, at each
time-step ¢t € N, every agent ¢ € )V privately observes a signal
si+ € S;, where S; denotes the signal space of agent i.2 The joint
observation profile generated across the network is denoted s; =
(S1,6:82,4,---+8n,t). Where s, € S,and S = &1 X Sy x ... S,,.
Specifically, the signal s; is generated based on a conditional
likelihood function I(-|6*), the i-th marginal of which is denoted
1;(+]6*), and is available to agent i. The signal structure of each
agent ¢ € ) is thus characterized by a family of parameterized
marginals ; = {l;(w;|0) : 0 € ©,w; € S;}. We make certain
standard assumptions [1]-[5], [7], [8], [10], [11]: (i) The signal
space of each agent i, namely S;, is finite. (ii) Each agent 7 has
knowledge of its local likelihood functions {/;(-0,)};-;, and it
holds that I; (w;|6) > 0,Vw; € S;, and V0 € O. (iii) The obser-
vation sequence of each agent is described by an i.i.d. random
process over time; at each time-step, agents make independent
observations. (iv) There exists a fixed true state of the world
0* € © (unknown to the agents) that generates the observations
of all the agents. The probability space for our model is denoted
(Q, F,P9), where Q 2 {w:w = (s1,52,...),Vs; € S,Vt €
N, }, F is the o-algebra generated by the observation profiles,
and P?” is the probability measure induced by sample paths in ).
Specifically, P9 = [];2, I(-|0*). We will use the abbreviation
a.s. to indicate almost sure occurrence of an event w.r.t. P¢".

The goal of each agent in the network is to eventually learn
the true state 8*. However, the key challenge in achieving this
objective arises from an identifiability problem that each agent
might potentially face. To make this precise, define ©¢" £ {0 €
O : 1;(w;]0) = l;(w;|6*),Yw; € S;}. In words, " represents
the set of hypotheses that are observationally equivalent to 6*
from the perspective of agent i. Thus, if |©¢"| > 1, it will be
impossible for agent 7 to uniquely learn the true state §* without
interacting with its neighbors.

Our broad goal in this paper is to develop distributed learning
algorithms that resolve the identifiability problem described

2We use N and N to represent the set of non-negative integers and positive
integers, respectively.
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above despite sparse and imprecise communication. To this end,
we will first separately explore the ideas of event-triggering for
sparse communication, and adaptive quantization for imprecise
communication, in Sections III and V, respectively. We do so to
reveal in a clear, understandable way the main ideas underlying
each of our algorithms. Later, in Section VII, we will see how
these ideas can be effectively combined. Let us begin by recalling
the following definition from [10].

Definition 1: (Source agents) An agent i is said to be a
source agent for a pair of distinct hypotheses 0,,,0, € O if it
can distinguish between them, i.e., if D(1;(-10,)||l:(:|04)) > 0,
where D(1;(-|0,)||1;(:|04)) represents the KL-divergence [27]
between the distributions 1;(-|0,) and 1;(-|0,). The set of source
agents for pair (0,,0,) is denoted S(0,,0,).

Throughout the rest of the paper, we will use K;(6,,6,) as
a shorthand for D(1;(-|0,)]|1:(-|0,)). For our analysis, we will
make the following standard assumption.

Assumption 1: (Global Identifiability) For every pair
0,,0, € © such that ¢, # 0,, the corresponding source set
S(6,,0,) is non-empty.

Note that global identifiability implies ()., ©¢" = {6*}.i.e.,
the collective information dispersed across the network allows
one to distinguish 6* from every 6 = 6*.

III. AN EVENT-TRIGGERED DISTRIBUTED LEARNING RULE

o Belief-Update Strategy: In this section, we develop an
event-triggered distributed learning rule that enables each agent
to eventually learn the truth, despite infrequent information
exchanges with its neighbors. Our approach requires each agent
¢ to maintain a local belief vector 7;;, and an actual belief
vector p; ,, each of which are probability distributions over the
hypothesis set ©, and hence of dimension m. While agent 4
updates 7; ; in a Bayesian manner using only its private signals
(see Eq. (2)), to formally describe how it updates g, ,, we need to
first introduce some notation. Accordingly, let 1 ;; .(¢) € {0,1}
be an indicator variable which takes on a value of 1 if and
only if agent j broadcasts j; ,(6) to agent 7 at time ¢. Next, we
define NV; ;(0) £ {j € N;|1,;.(0) = 1} as the subset of agent
1’s neighbors who broadcast their belief on f to i at time ¢. As part
of our learning algorithm, each agent ¢ keeps track of the lowest
belief on each hypothesis # € © that it has heard up to any given
instant ¢, denoted by fi; (6). More precisely, fi; 0(6) = p;,0(0),
and Vt € N,

fit+1(0) = min{fi; +(0), {115.4+1(0) }jeriyun o) 3 (D
We are now in position to describe the belief-update rule at each
agent: 7; ; and p, , are initialized with 7; o(6) > 0, pi,0(0) >
0,V0 € ©,Vi € V (but otherwise arbitrarily), and subsequently
updated as follows V¢ € N:

7Ti,t+1(9) _ l1(817t+1|9)7r7/,t(9) ’ (2)
Li(sie4110p) i (6)

NIE

min{fi; +(0), mi +1(0)} _
Z::1 min{fi; +(0p), Tie+1(0p) }

e Communication Strategy: We now focus on specifying
when an agent broadcasts its belief on a given hypothesis

P

ui,t+1(9) = 3)
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Algorithm 1: (Event-Triggered Min-Rule) Each Agent: €
)V Executes This Algorithm in Parallel.

Initialization: 1i; o(0) > 0, m; o(0) > 0,
fii0(0) = pi0(0),V0 € ©,and 3 5 g pio(0) = 1,
2966 7T7;70(9) = 1.
1:fort € N do
for 0 € © do
Update m; ;4+1(6) via (2), and p1; 4+1(6) via (3).
If t + 1 = t,then
Broadcast p; 1+1(0) to each j € N;.
else
For each j € N;, broadcast p; 1+1(f) to j if and
only if t + 1 € 1 and the event condition (4) holds.
end if
9: Receive f1;,,41(6) from each j € N; ;41(6), and
update fi; ;+1(0) via (1).
10: end for
11: end for

AR A

*®

to a neighbor. To this end, we first define a sequence I =
{t1,t2,t3,...} € N of event-monitoring time-steps, where
t1 =1, and tg41 —tp = g(k),Vk € No. Here, g: [1,00) —
[1,00) is a continuous, non-decreasing function that takes on
integer values at integers. We will henceforth refer to g(k) as the
event-interval function. At any given time t € N, let f1;;,(6)
represent agent ¢’s belief on 0 the last time (excluding time )
it transmitted its belief on 6 to agent j. Our communication
strategy is as follows. At ¢, each agent 7 € V broadcasts its
entire belief vector u; , to every neighbor. Subsequently, at each
ty € I,k > 2, i transmits i, 4, (0) to j € N; if and only if the
following event occurs:

it (0) < y(te) min{fiise, (0), f1jie, (0)}, “)
where v : N — (0, 1] is a non-increasing function that we will
henceforth call the threshold function. If ¢ ¢ I, then an agent
1 does not communicate with its neighbors at time ¢, i.e., all
inter-agent interactions are restricted to time-steps in I, subject
to the trigger-condition given by (4). Notice that we have not yet
specified the functional forms of ¢(-) and ~y(-); we will comment
on these quantities later in Section I'V.

e Summary: At each time-step ¢t + 1 € N, and for each
hypothesis 6 € O, the sequence of operations executed by an
agent ¢ is summarized as follows. (i) Agent ¢ updates its local
and actual beliefs on 6 via (2) and (3), respectively. (ii) For
each neighbor j € N;, it decides whether or not to transmit
prie41(0) to 7, and collects {11j.441(0)}jen; .. (o)~ (iii) It up-
dates fi; 4+1(6) via (1) using the (potentially) new information
it acquires from its neighbors at time ¢ + 1. We call the above
algorithm the Event-Triggered Min-Rule and outline
its steps in Algorithm 1.

e Intuition: The premise of our belief-update strategy is based
on diffusing low beliefs on each false hypothesis. For a given
false hypothesis 6, the local Bayesian update (2) will generate
a decaying sequence m; + () for each i € S(6*, ¢). Update rules
(1) and (3) then help propagate agent 7’s low belief on 6 to the

SIft + 1 ¢ 1, this step gets bypassed, and \V; +11(0) = 0,70 € ©.
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Fig. 1. The figure shows a network where only agent 1 is informative. In
Section III, we design an event-triggered algorithm under which all upstream
broadcasts along the path 3 — 2 — 1 stop eventually almost surely. At the same
time, all agents learn the true state. We demonstrate these facts both in theory
(see Section IV), and in simulations (see Section VIII).

rest of the network. We point out that in contrast to our earlier
work [10], [11], where for updating f1; ;+1(6), agent ¢ used the
lowest neighboring belief on 6 at the previous time-step ¢, our
approach here requires an agent i to use the lowest belief on
that it has heard up to time ¢, namely fi; ,(6). This modification
will be crucial in the convergence analysis of Algorithm 1.

To build intuition regarding our communication strategy, let us
consider the network in Fig 1. Suppose © = {61, 0-},0* = 6,
and S(61,02) =1, i.e., agent 1 is the only informative agent.
Since our principle of learning is based on eliminating each
false hypothesis, it makes sense to broadcast beliefs only if
they are low enough. Based on this observation, one naive
approach to enforce sparse communication could be to set a
fixed low threshold, say (3, and wait until beliefs fall below
such a threshold to broadcast. While this might lead to sparse
communication initially, in order to learn the truth, there must
come a time beyond which the beliefs of all agents on the false
hypothesis 62 always stay below 3, which will subsequently
lead to dense communication. The obvious fix is to introduce
an event-condition that is state-dependent. Consider the fol-
lowing candidate strategy: an agent broadcasts its belief on a
state @ only if it is sufficiently lower than what it was when
it last broadcasted about #. While an improvement over the
“fixed-threshold” strategy, this new scheme has the following
demerit: broadcasts are not agent-specific. In other words, going
back to our example, agent 2 (resp., agent 3) might transmit
unsolicited information to agent 1 (resp., agent 2) - information,
that agent 1 (resp., agent 2) does not require. To remedy this,
one can consider a request/poll based scheme as in [15] and [28],
where an agent receives information from a neighbor only by
polling that neighbor. However, now each time agent 2 needs
information from agent 1, it needs to place a request, the request
itself incurring extra communication.

Given the above issues, we ask: Is it possible to devise
an event-triggered scheme that eventually stops unnecessary
broadcasts from agent 3 to 2, and agent 2 to 1, while preserving
essential information flow from agent 1 to 2, and agent 2 to
3?7 More generally, we seek a triggering rule that can reduce
transmissions from uninformative agents to informative agents.
This leads us to the event condition in Eq. (4). Foreach § € ©, an
agent ¢ broadcasts p; (6) toaneighbor j € N; onlyif 1; +(6) has
adequate “innovation” w.r.t. ¢’s last broadcast about 6 to j, and
j’s last broadcast about 6 to i. A decreasing threshold function
~(t) makes it progressively harder to satisfy the event condition
in Eq. (4), demanding more innovation to merit broadcast as time
progresses.* The rationale behind checking the event condition

4We will see later (Corollary 2) that for the network in Fig. 1, this scheme
provably stops communications from agent 3 to 2, and agent 2 to 1, eventually.
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only at time-steps in I is twofold.? First, it saves computations
since the event condition need not be checked all the time. Sec-
ond, and more importantly, it provides an additional instrument
to control communication-sparsity on top of event-triggering.
Indeed, a monotonically increasing event-interval function g(-)
implies fewer agent interactions with time, since all potential
broadcasts are restricted to [. In particular, without the event
condition in Eq. (4), our communication strategy would boil
down to a simple time-triggered rule, akin to the one studied in
our recent work [30].

We close this section by highlighting that our event condition
(i) is O-specific, since an agent may not be equally informative
about all states; (ii) is neighbor-specific, since not all neighbors
might require information; (iii) is problem-specific, since it is
builtupon the principle of eliminating false hypotheses by diffus-
ing low beliefs; and (iv) can be checked using local information
only. While the event condition (4) can significantly reduce
communication (as we shall see in the next section), checking
this condition imposes additional memory requirements for each
agent: in addition to maintaining the vectors 7; ¢, t; 4, and fi; 4,
each agent 7 has to maintain a vector fi;; , for each neighbor
J € N;. Recall that fi;;,(0) stores the most recent belief on 0
that ¢ has received from j. Thus, overall, each agent 7 needs
to maintain and dynamically update (|JN;| + 3) m-dimensional
vectors. Note that this memory overhead need not necessarily
scale with the size of the network (e.g., in sparse or bounded-
degree graphs).

IV. THEORETICAL GUARANTEES FOR ALGORITHM 1

In this section, we state the main theoretical results pertaining
to our Event-Triggered Min-Rule, and then discuss
their implications. Proofs of these results are deferred to Ap-
pendix A. To state the first result concerning the convergence
of our learning rule, let us define G(2) £ [; g(7)dr,Vz €
[1,00). Let G1(-) represent the inverse of G(-), i.e., Vz €
[1,00), G"Y(G(z)) = z. Since g¢(-) is continuous and takes
values in [1, c0) by definition, G(-) is strictly increasing, un-
bounded, and continuous, with G(1) = 0, and hence, G~ (z2) is
well-defined for all z € [0, 00).

Theorem 1: Suppose the functions ¢(-) and ~y(+) satisfy:

GG (1) ~2) i log(1/9()
t

t—o0

=0.
®)
Furthermore, suppose global identifiability (Assumption 1)
holds, and the communication graph G is connected. Then,
Algorithm 1 guarantees the following.
e (Consistency): For each agenti € V, p1; ,(6*) — 1 a.s.
¢ (Exponentially Fast Rejection of False Hypotheses): For
each agent 7 € V, and for each false hypothesis 6 € O \

lim
t—00

=a € (0,1];

SWhile this might appear similar to the Periodic Event-Triggering (PETM)
framework [29] where events are checked periodically, the sequence I can be
significantly more general than a simple periodic sequence.

This is precisely the motivation behind tracking changes in individual
components of the belief vector, as opposed to looking at changes in the overall
belief vector using, for instance, the total variation metric.
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{6*}, the following holds:
lim inf _710g it (0) >

t—00 t

(6)

At this point, it is natural to ask: For what classes of functions

g(+) does the result of Theorem 1 hold? The following result

provides an answer.

Corollary 1: Suppose the conditions in Theorem 1 hold.

e (i) Suppose g(z) = 2P, Vo € R, where p is any positive

integer. Then, for each § € © \ {6*}, and i € V:

lim inf — 710{5 it (0)

t—00 t

> max K,(6%,0)as. (7)
veS(6*,0)
e (ii) Suppose g(x) = p®,Vx € R, where p is any positive

integer. Then, for each § € © \ {6*}, and i € V:

liminffM > max w a.s. (8)
=00 t ves(0%,0) p2dvd)

Proof: The proof follows by directly computing the limit in
Eq. (5). For case (i), o = 1, and for case (ii), o = 1/p2. |

Clearly, the communication pattern between the agents is at
least as sparse as the sequence I. Our event-triggering scheme
introduces further sparsity, as we next establish.

Proposition 1: Suppose the conditions in Theorem 1 are met.
Then, there exists 0 C Q such that P () = 1, and for each
w € Q, 3T (w), Ta(w) < oo such that the following hold.

® (i) At each ¢ € I such that t5 > Th(w), 1,5, (6%) #

1,Vi € Vand Vj € N;.
e (ii) For all § # 0%, and i ¢ S(0*,0), it holds that at each
ty > To(w), 3j € N; such that 1,5, (0) # 1.

The following result is an immediate application of the above
proposition.

Corollary 2: Suppose the conditions in Theorem 1 are met.
Additionally, suppose G is a tree graph, and for each pair 6,,, ¢, €
©,|S(6p,60,)| = 1. Consider any 6 # 6*, and let S(8*, 6) = vy.
Then, each agent i € V' \ {vy} stops broadcasting its belief on
0 to its parent in the tree rooted at vy eventually almost surely.

A few comments are now in order.

e On the nature of g(-) and ~(-): Intuitively, if the event-
interval function g(-) does not grow too fast, and the threshold
function 7(-) does not decay too fast, one should expect things to
fall in place. This intuition is made precise by the limit conditions
in Eq. (5). In particular, the parameter « is a measure of how fast
g(+) grows: roughly speaking, smaller the value of «, the faster
g(+) grows, as alluded to by Corollary 1. To achieve exponen-
tially fast learning based on our rule, we require « to be strictly
greater than 1. Corollary 1 reveals that up to integer constraints,
any polynomial or exponential event-interval function meets this
requirement. Regarding the threshold function, we note from (5)
that any sub-exponentially decaying ~y(-) works for our purpose.

o Trade-offs between sparse communication and learning
rate: What is the price paid for sparse communication? To
answer the above question, we set as benchmark the scenario
studied in our previous work [11], where we did not account
for communication efficiency. There, we showed that each false
hypothesis 6 gets rejected exponentially fast by every agent at

"In this claim, j might depend on #j,.
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the network-independent rate max,¢y K, (0*,6).% From (6), we
note that under highly sparse communication regimes which
correspond to o < 1, although learning occurs exponentially
fast, the learning rate gets lowered relative to [11]. Moreover,
unlike [11], (6) reveals that the asymptotic learning rate is
network-dependent and agent-specific, i.e., different agents may
discover the truth at different rates. In particular, when con-
sidering the asymptotic rate of rejection of a particular false
hypothesis at a given agent ¢, notice from the R.H.S. of (6) that
one needs to account for the attenuated relative entropies of
the corresponding source agents, where the attenuation factor
scales exponentially with the distances of agent 7 from such
source agents. An instance of the above scenario is when the
inter-communication intervals grow geometrically atrate p > 1;
see case (ii) of Corollary 1.

On the other hand, from case (i) of Corollary 1, we glean that
polynomially growing inter-communication intervals, coupled
with our proposed event-triggering strategy, lead to no loss
in the long-term learning rate relative to the benchmark case
in [11], i.e., as far as asymptotic performance is concerned,
communication-efficiency comes essentially for “free” under
this regime. However, even when g(x) grows polynomially, the
transient behavior induced by our algorithm will depend on how
g(x) is chosen. While in this paper we focus on the asymptotic
learning rate as our sole performance metric of interest, striking
a desired balance between transient performance and sparse
communication will require a finer non-asymptotic analysis of
Algorithm 1.

e Sparse communication introduced by event-triggering:
Observe that being able to eliminate each false hypothesis is
enough for learning the true state. In other words, agents need not
exchange their beliefs on the true state (of course, no agent knows
a priori what the true state is). Our event-triggering scheme
precisely achieves this, as evidenced by claim (i) of Proposition
1: on almost all sample paths, there exists a (sample-path depen-
dent) time 73 (w) after which every agent stops broadcasting its
belief on the true state 0*.

In addition, an important property of our event-triggering
strategy is that it reduces information flow from uninformative
agents to informative agents. To see this, consider any false hy-
pothesis 6 # 6*, and an agent i ¢ S(6*,0). Since ¢ ¢ S(6*,0),
agent i’s local belief m; ,(f) will stop decaying eventually,
making it impossible for agent 7 to lower its actual belief 11, ;(6)
without the influence of its neighbors. Consequently, when left
alone between consecutive event-monitoring time-steps, ¢ will
not be able to leverage its own private signals to generate enough
“innovation” in f; .(6) to broadcast to the neighbor who most
recently contributed to lowering p; ;(#). The intuition here is
simple: an uninformative agent cannot outdo the source of its
information. This idea is made precise in claim (ii) of Proposition
1: on almost all sample paths, there exists a (sample-path depen-
dent) time T5(w), such that at each event-monitoring time-step
ty > To(w), agent i never transmits 1, 4, () to all its neighbors.

81n contrast, for linear [1]-[4] and log-linear [5]-[9] rules, the corresponding
rate is a convex combination of the relative entropies K, (6%, 0),v € V.
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That is, there exists at least one j € N; to which i does not
transmit j1; ¢, ().

To further demonstrate that our rule promotes sparse commu-
nication, we consider the setting described in Corollary 2 where
the baseline graph is a tree, and for every pair of states, there is
a unique informative agent that can distinguish between them.
Our result states that all upstream broadcasts to such informative
agents stop after a finite period of time, almost surely. In other
words, for this setting, our rule provably ensures that eventually,
information flows only from informative agents to uninformative
agents.

Remark 1: Tt should be noted that the limit conditions in Eq.
(5) are specific to Algorithm 1, and, as such, are only sufficient
conditions for learning the true state. The condition on graph
connectivity is also not necessary, and can be relaxed. However,
the assumption of global identifiability is in fact necessary when
agents make conditionally independent observations; see [11]
for more details on this topic.

A. Asymptotic Learning of the Truth

If asymptotic learning of the true state is all one cares about,
i.e., if the convergence rate is no longer a consideration, then
one can allow for arbitrarily sparse communication patterns, as
we shall soon demonstrate. In particular, our goal is to show
that as long as each agent transmits its belief vector to every
neighbor infinitely often, all agents will asymptotically learn
the truth. We will establish the above claim as an immediate
consequence of a much stronger statement that even allows the
baseline network to change over time. To this end, let G(t) =
(V, £(t)) denote the changing neighbor graph. To allow for this
general setting, we let [ = N, i.e., the event condition (4) is
now monitored at each time-step. Furthermore, we set (t) =
~v € (0,1],Vt € N. At each time-step t € N, and for each 6 €
©, an agent ¢ € V decides whether or not to broadcast 1, +(6)
to an instantaneous neighbor j € A;(t) by checking the event
condition (4). While checking this condition, if agent ¢ has not
yet transmitted to (resp., heard from) agent 5 about # prior to
time ¢, then it sets fi;;,(6) (resp., fj;¢(#)) to 1. Update rules
(1), (2), (3) remain the same, with ; (6) now interpreted as
Nii(0) 2 {j € Ni(t)|1;;.(0) = 1}.Finally, by an union graph
over an interval [t1, t5], we will imply the graph with vertex set
V), and edge set Utf:tlf (7). With these modifications in place,
we have the following result.

Theorem 2: Suppose global identifiability (Assumption 1)
holds. Furthermore, suppose for each ¢ € N, the union graph
over [t, 00) is rooted at S(6), 6;). Then, the event-triggered dis-
tributed learning rule described above guarantees fi; +(6%) — 1
as. Vi e V.

While a result of the above flavor is well known for the
basic consensus setting [31], we are unaware of its analogue for
the distributed inference problem. When G(t) = G,Vt € N, we
observe from Theorem 2 that, as long as each agent ¢ transmits
p; , infinitely often to each neighbor j € A, all agents will
asymptotically learn the true state. In particular, other than
the above requirement, our result places no constraints on the
frequency of agent interactions.
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V. A DISTRIBUTED LEARNING RULE BASED
ON ADAPTIVE QUANTIZATION

The focus of Section III was on designing an algorithm
that guarantees learning despite sparse communication. In this
section, we turn our attention to promoting communication-
efficiency via a complementary mechanism, namely, by com-
pressing the amount of information transmitted by each agent.
Our investigations here are motivated by the fact that in practice,
communication channels modeling the interactions between
agents have finite bandwidth. Accordingly, let us suppose that
V6 € ©, each agent i uses only B(6) bits to encode its belief on
0. Under what conditions on B(0) will each agent eventually
learn the true state?

To answer the above question, we need to design an appropri-
ate quantization scheme, which, in turn, requires resolving the
following issues. (1) The scheme should be such that the belief
of each agent on 6* converges exactly to 1, as opposed to getting
stuck in a neighborhood of 1. There are in fact various examples
in the literature where due to quantization effects, the algorithm
converges to a neighborhood of the desired point [32]-[34]. (2)
Precaution needs to be taken to ensure that the belief of an agent
on A" never gets quantized to 0. Indeed, it might very well be
that during an initial transient phase, the belief of some agent on
0" falls inadvertently. If the quantization scheme is not designed
appropriately, such a low belief on 6* might get quantized to a
0 value, causing every agent to eventually place a 0 belief on
the true state due to diffusion. This is a serious issue that needs
to be addressed, and, in fact, this exact phenomenon has been
reported in a simulation study conducted in [7]. Specifically, the
authors in [7] present an example where using 12 bits to represent
each hypothesis leads to learning the true state, but using 8 bits
results in convergence to a false hypothesis. In what follows,
we propose an algorithm that tackles the above issues; later, we
argue that our algorithm guarantees exponentially fast learning
even when merely 1 bit is used to encode each hypothesis.

To proceed, suppose we wish to encode a scalar x that belongs
to the interval [L, U] using B bit precision. Then, we first divide
the interval [L,U] into 2% bins, each of equal width. Next,
we identify the bin to which z belongs, and let the quantized
value of x simply be the upper end point of that bin. Let this
entire operation be described formally by a map Qr p(-) with
range parameter R = [L, U] and bit parameter B. Then, we have
Orp(z)=L+d[(x—L)/d], where d = (U — L)/2%; note
here that we use the ceil function for quantization. The above
encoder will serve as a basic building block for encoding each
component of an agent’s belief vector, and our key idea will be
to sequentially refine the range of the quantizer over time.

e Encoding Beliefs: As with Algorithm 1, each agent i
maintains a local belief vector m;,, and an actual belief
vector u; ., which are updated via (2) and (3), respectively.
In addition, for encoding its belief on 6, an agent ¢ main-
tains a quantity ¢;.(0), with ¢;(0) = 1,V0 € ©. At each
time-step t + 1 € N, and for each 6 € ©, an agent checks
whether 1; 4+1(0) € [0, ¢;¢(0)). If so, it quantizes fu; 4+1(6)
to gii11(0) = QRi,,,(a),B(e)(Mz‘,tH(9))» with range parameter
R;(0) =1[0,¢;+(0)], and a bit parameter B(f) that will be
specified later on. More precisely, if 1;,41(6) € [0, ¢:.(6)),
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Algorithm 2: (Quantized Min-Rule) Each Agent i € V
Executes This Algorithm in Parallel.

Initialization: 7, ¢ (), 11; 0(0) and fi; o () initialized as in
Algorithm 1; ¢; o(0) = 1,V0 € O.

1: forte Ndo
2: forf € ©do
3: Update 7; ;+1(6) via (2), and p; ¢+1(0) via (3).
4 I p41(0) € [0,¢;,4(0))then
3 Quantize p; 441(6) to g; 1+1(6) via (9), and
broadcast J; ;+1(0) to each j € N;.
6: else
7: Set g; 1+1(0) = ¢i,+(6), and do not broadcast about
0.
8: end if
9: for j € \V; do
10: if j € Ni++1(0) then
11: Decode gj 441(0) from J; 141(6).
12: else
13: Set qj,t+1(9) = Qj,t(o)-
14: end if
15: end for
16:  Update fi; 4+1(0) via (10).
17:  end for
18: end for

then f1; 441 (0) is quantized as:

i1 (0
G (O) = B 00270 g 0] ©)

Let J;¢11(0) denote the binary representation of the index
of the bin to which s ,41(0) belongs. The quantized belief
qi1+1(0) is encoded as J; ;+1(6), and the latter is broadcasted
to each neighbor j € N;. If u; 1+1(0) > ¢;..(0), then agent ¢
sets ¢; ¢+1(0) = ¢;,+(6), and does not broadcast about 6 to any
neighbor. In words, at each ¢t + 1 € N, an agent ¢ broadcasts
about ¢ if and only if 1;;41(0) is strictly lower than the last
quantized belief on 6 that it broadcasted, namely ¢; (6). This
last transmitted belief ¢; ;(#) also serves as the upper limit of
the range R; ;(0) of the quantizer used for encoding fu; 141(6),
while the lower limit remains at O for all time. The above steps
constitute our adaptive quantization scheme.’

e Decoding Beliefs: For decoding beliefs, we make the
following natural assumptions. For every 6 € ©, each agent
is aware of (i) the initial quantizer range, i.e., the fact that
gi,0(0) = 1,V0 € O©,Vi € V; (ii) the nature of the encoding op-
eration Qp p(-); and (iii) the bit precision B(f). Now consider
any agent j € N;. At any time-step ¢ + 1 € N, if j receives
Ji1+1(0) from 4, then it can exactly recover ¢; ;4+1(6). This
follows from the assumptions we made above, and the fact that
node j has access to ¢; ,(6), since it was the last quantized
belief on 6 that was transmitted by i to each of its neighbors.
If 5 does not hear about # from node 7, then on its end, it sets

Qit+1(0) = qi(0).

9The adaptive nature of our encoding strategy stems from the fact that the
range of the quantizer used to encode each hypothesis is dynamically updated.
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Based on the above discussion, it should be apparent that
at each time-step ¢ € N, and for each 6 € ©, the value of
¢i,+(0) held by an agent 7 is consistent with those held by each
of its neighbors - a fact that is crucial for correctly decoding
the messages transmitted by <. Finally, upon completion of the
decoding step, an agent ¢ updates fi; ;41(6) as:

fit+1(0) = min{fi; +(0), i 14+1(0),{qjt4+1(0) }jen; }. (10)

We call the above algorithm the Quantized Min-Rule,
and outline its steps in Algorithm 2. In Line 10 of this algorithm,
N;.++1(0) has the same meaning as in the rest of this paper: it
represents the neighbors of 7 who broadcast their beliefs (in
this case, quantized beliefs) on 6 to ¢ at time ¢ + 1. Similar
to Algorithm 1, implementing Algorithm 2 imposes certain
memory requirements on the part of each agent. Specifically, in
addition to the vectors 7; ¢, u; ,, fi; ., and g; ,, an agent ¢ needs
to store the vector g; , for each neighbor j € N;. The entries of
g, . are the most recent quantized beliefs broadcasted by agent
7, and storing them is necessary in order to decode the beliefs
transmitted by agent j. Overall, for running Algorithm 2, each
agent 7 needs to maintain and update (|N;| + 4) m-dimensional
vectors.

It is important to emphasize the rationale behind using a ceil
operator for our quantization scheme (see Eq. (9)) as opposed
to a floor operator. If at any point in time, the belief y; ;(6*) of
an agent ¢ falls in the lowest quantization bin of its quantizer
range for 0%, then using a floor operator will cause j; +(6*) to
get quantized to 0. Performing a min operation on this quantized
value (as in Eq. (10)) will cause the output to be 0, and eventually,
via diffusion, all agents will end up with a O belief on the true
state 6*. To avoid the above phenomenon, we use a ceil operator
for encoding beliefs. Doing so ensures that the quantized belief
on any hypothesis is greater than or equal to the actual belief
on that hypothesis - a key component of our analysis. See also
Lemma 3.

VI. THEORETICAL GUARANTEES FOR ALGORITHM 2

The following is our main result concerning the convergence
guarantees of Algorithm 2.

Theorem 3: Suppose every agent uses at least one bit to
encode each hypothesis, i.e., let B(#) > 1,V0 € ©. Further-
more, suppose global identifiability (Assumption 1) holds, and
the communication graph G is connected. Then, Algorithm 2
guarantees the following.

* (Consistency): For each agent i € V, 1, ,(6*) — 1 a.s.

¢ (Exponentially Fast Rejection of False Hypotheses): For

each agent i € V, and for each false hypothesis § € © \
{6*}, the following holds:

lim inf — M

t—00 t

> max H,(0",0) a.s.,
veS(0*,0)
where H,(6%,0) = min{B(0) log 2, K,,(0*,0)}.
We prove the above result in Appendix B. Under what con-
ditions on B(#) can one recover the same long-run learning
rate as with infinite precision? The following result, which is an
immediate corollary of Theorem 3, provides an answer.
Corollary 3: Suppose the conditions in Theorem 3 hold.
Moreover, for each 6 € ©, suppose the bit precision B(6) is

Y
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chosen such that

1
B > K; (60" . 12
(0) > Tog 2 (gg{gqu i(0 79)) (12)
Then, foreach 0 € © \ {0*}, and i € V, we have:
1 (0
liminf—%’t() > max K,(0%,0) a.s. (13)
t—00 t veS(0*,0)

We now remark on the implications of the above results.

e 1-bit precision per hypothesis is sufficient for learning:
Under standard assumptions on the observation model and the
network structure, Theorem 3 reveals that based on Algorithm
2, it is possible to learn the true state exponentially fast while
using just 1 bit to encode each hypothesis. Thus, at any given
time-step, it suffices for each agent to broadcast an m-bit binary
vector, where m is the number of hypotheses. This is a key
implication of Theorem 3.

In order for each agent to learn the true state asymptotically,
we conjecture that each agent must necessarily use at least 1 bit
precision to encode each hypothesis. As future work, it would
be interesting to either prove or disprove this conjecture.

e Trade-offs between bit-precision and learning rate:
While 1-bit precision per hypothesis is adequate for expo-
nentially fast learning, the rate of learning may no longer be
that with infinite precision. To understand this better, recall
that with infinite precision, the basic min-rule in [11] allows
each agent to rule out a false hypothesis € exponentially fast
at the rate max;ey K;(60%,0).!1° Let v € arg max; ., K;(0%,0).
Although agent v’s belief on # may decay to zero relatively fast,
its ability to convey such a low belief to its neighbors is limited
by the precision of the quantizer, when beliefs can no longer
be transmitted perfectly. In particular, observe that the R.H.S.
of (11) simplifies to min{B(0) log 2, max;cs(s- 0y Ki(0*,0)}.
This suggests that one can recover the same rate of rejection
of 0 as with infinite precision if and only if B(6)log2 >
max;eso-,9) )i (0%, 0), 1i.e., alow bit-precision can come at the
expense of a reduced learning rate. To sum up, just as Theorem
1 highlighted the trade-offs between sparse communication and
the learning rate under Algorithm 1, Theorem 3 quantifies the
trade-offs between imprecise communication and the learning
rate under Algorithm 2.

e Recovering the same learning rate as with perfect com-
munication: Intuitively, the condition in Eq. (12) can be inter-
preted as follows. To be able to reject  # 6* at the same rate
as with perfect communication, the range of the quantizer used
to encode 6 must shrink at least as fast as the fastest possible
rate at which an agent can reject € on its own, while accounting
for the realization of any state 0* # 0. However, in order to pick
B(0) to satisfy the condition in Eq. (12), an agent requires certain
knowledge of the relative entropies of other agents in the network
- this additional knowledge is the price to be paid for maintaining
the same learning rate as with perfect communication (under the
proposed scheme).

100bserve that setting B(6) = oo in (11) leads to the same conclusion.
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VII. LEARNING UNDER SPARSE AND IMPRECISE
COMMUNICATION

In Section [T and V, we separately treated the aspects of event-
triggering to achieve sparse communication, and adaptive quan-
tization to deal with finite-precision channels. In this section, we
will develop a learning rule that combines these ideas in a natural
way. Let us begin by describing the main components of this
rule. First, define a periodic sequence I = {t1,to,t3,...} € Ny
of event-monitoring time-steps, with ¢; = 1, and period equal
to a positive integer 7, i.e., tx+1 — tx = 7,Vk € Ny. We will
comment on the restriction to periodic sequences later in the
section. Next, as in Algorithm 1, we consider a non-decreasing
threshold functiony : N — (0, 1]. Finally, we consider the same
encoder map Qp p(-) as described in Section V.

e Algorithm Description: Each agent ¢ maintains the vectors
Tits Bit> B> G 0> and {q; 4 }jen;; these vectors have exactly
the same meaning as in Algorithm 2, and are initialized in
the same way. At each time-step ¢ 4+ 1 € Ny, and for each
hypothesis € ©, the following steps are executed by each agent
in parallel. (i) Agent 7 updates 7; ;+1(0) via (2) and f1; 441(6)
via (3). (ii) If t + 1 € I, agent ¢ checks the following event
condition:

pier1(0) <yt +1)qi +(0). (14)

If the above condition holds, then p;.+1(6) is quantized to
gi,1+1(60) based on equation (9). Agent ¢ then encodes g; ;+1(6)
as J; ;+1(6) — the binary representation of the index of the bin to
which p; 141(6) belongs. The index J; ;1 (6) is then transmitted
to every neighbor in AV;. If the event condition in Eq. (14) fails,
then agent ¢ sets g;++1(8) = ¢;+(9), and does not broadcast
about 6 to any neighbor. (iii) If ¢t + 1 ¢ I, then agent ¢ does not
communicate with any neighbor, and sets ¢; ¢+1(0) = ¢;.+(0).
(iv) Beliefs are decoded exactly as in Algorithm 2, and fi; ;1 (6)
is updated based on (10). We call the above algorithm the
Quantized Event-Triggered Min-Rule, or simply,
the QET Min-Rule.

A few points are worth highlighting about the above al-
gorithm. First, note that unlike Algorithm 2, updates to an
agent’s quantizer, and all inter-agent interactions, are restricted
to time-steps in I subject to the event condition (14). Between
two consecutive event-monitoring time-steps, the quantizers
maintained by each agent remain unchanged, and there is no
communication between agents. Unlike the event condition (4),
the one in (14) checks whether an agent’s current belief on 6
has fallen significantly below the last quantized belief on 0 it
broadcasted. One could, in principle, design a more involved
agent-specific event condition (in the spirit of (4)) that also
incorporates feedback from the neighbors. However, this would
require an agent ¢ to maintain specific quantizers for each of its
neighbors, significantly complicating the design and analysis of
the resulting algorithm. We do not investigate such a complex
mechanism here since our main aim is to (i) highlight how one
can, in a simple way, blend the ideas of event-triggering and
quantization; (ii) provide a sense for the flavor of results one
can expect when these ideas are combined. With this in mind,
we now state the main result of this section; for its proof, see
Appendix C.
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Theorem 4: Suppose every agent uses at least one bit to
encode each hypothesis, i.e., let B(#) > 1,V0 € ©, and let
B() = B'/7(#), where T is the communication period. Let
the threshold function ~y(-) satisfy the condition in (5). Fur-
thermore, suppose global identifiability (Assumption 1) holds,
and the communication graph G is connected. Then, the QET
Min-rule guarantees consistency, i.e., for each agent i € V),
i ¢(6%) — 1 almost surely. Moreover, for each ¢ € V, and for
each § € © \ {0*}, the following holds:

lim inf — 710g Hivt ()

t—00 t

> max H,(0%,0) as.,

15
veS(6+,0) 13

where H,(0%,0) = min{B(0)log 2, K,(6*,0)}.

Discussion: From Theorem 4, we note that as long as the
threshold function () does not decay too fast, we essentially
end up getting similar guarantees as in Theorem 3. However, the
key distinction from Theorem 3 lies in the effect of the communi-
cation period 7 on the asymptotic learning rate: whereas we had
a B(0) log(2) term showing up in the rate of learning earlier (see
Eq. (11)), we now have a B'/7(6)log(2) term taking its place
instead. It is instructive to compare this result with that of Corol-
lary 1 where we saw that, in the absence of quantization, even
when the gap between successive event-monitoring steps grows
polynomially, the long-term learning rate remains unaffected. In
contrast, Theorem 4 tells us that even a constant gap of 7 does
impact the convergence rate of the QET Min-rule, suggest-
ing that growing event-interval functions can significantly slow
down the convergence rate. This phenomenon can be essentially
attributed to the fact that between successive event-monitoring
time-steps, the quantizers at any given agent are never updated.
If they were, the neighbors of this agent would not be aware
of such updates, and hence, would perform incorrect decoding
based on stale information. To keep the analysis simple, and at
the same time provide the above insights, we considered periodic
communication patterns in this section.

VIII. SIMULATIONS

To validate our key theoretical findings, we first consider the
simple 3-agent network in Fig. 1. Suppose © = {61,05},0" =
01, and let the signal space for each agent be {0, 1}. The like-
lihood models are as follows: {1(0]0;) = 0.7,1,(0|62) = 0.6,
and [;(0]01) = 1;(0]02) = 0.5,Vi € {2,3}. Clearly, agent 1 is
the only informative agent. To isolate the impact of our event-
triggering strategy, we set g(k) = 1,Vk € N, i.e., the event
condition in Eq. (4) is monitored at every time-step. We set
the threshold function as v(k) = 1/k%. The performance of
Algorithm 1 is depicted in Fig. 2. We make the following ob-
servations. (i) From Fig. 2(a), we note that all agents eventually
learn the truth. (ii) From Fig. 2(b), we note that the asymptotic
rate of rejection of the false hypothesis 02, namely g; .(62) =
—log(u;.¢(02))/t, complies with the theoretical bound in Thm.
1. (iii) From Fig. 2(c), we note that after the first time-step, all
agents stop broadcasting about the true state ¢, complying with
claim (i) of Prop. 1. (iv) From Fig. 2(d), we note that broadcasts
about 05 along the path 3 — 2 — 1 stop after the first time-step,
in accordance with claim (ii) of Prop. 1, and Corr. 2. We also
observe that in the first 4000 time-steps, agent 1 (resp., agent 2)
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Fig.2.  Plots pertaining to the simulation example in Sec. VIII. Fig. 2(a) plots

the belief evolutions on the true state 0. Fig. 2(b) plots the rate at which each
agent rejects the false hypothesis 62, namely ¢; ¢ (602) = —log(us,+(02))/t.
Fig.’s 2(c) and 2(d) demonstrate the sparse communication patterns generated
by our event-triggering scheme.
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Fig. 3. Plots concerning the performance of Algorithm 2 for the network in

Fig 1, when 1 bit is used to encode each hypothesis. Figs. 3(a) and 3(b) are
analogous to Figs. 2(a) and 2(b). These plots demonstrate that while learning is
possible even with 1-bit precision, the learning rate exhibits a dependence on
the quantizer precision level.

broadcasts its belief on 65 to agent 2 (resp., agent 3) only 7 times
(resp., 6 times). Despite such drastic reduction in the number of
communication rounds, all agents still learn the truth with no
loss in learning rate relative to the baseline algorithm in [11].
This demonstrates the effectiveness of our approach.

As our second simulation study, we investigate the perfor-
mance of our quantized learning rule, namely Algorithm 2. To
do so, keeping everything else the same, suppose we now modify
the likelihood model of agent 1 as follows: /;(0|¢;) = 0.8 and
11(0]02) = 0.2. Fig. 3 depicts the performance of Algorithm 2
for this scenario, when B(61) = B(62) = 1, i.e., when 1 bit is
used to encode each hypothesis. From Fig. 3(a), we note that all
agents learn the true state. Fig. 3(b) reveals that the learning rates
of the uninformative agents 2 and 3 are limited by the precision
of the quantizer. In particular, since K;(61,62) = 0.8318 >
log(2), the learning rates for these agents get saturated at log(2),
exactly as suggested by Eq. (11) in Theorem 3. Despite these
quantization effects, we observe that the beliefs of all agents
converge to 6* quite fast.

To show that our framework extends to larger networks, we
evaluate the performance of the QET Min-Rule of Section VII
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Fig.4. Plots concerning the performance of the QET Min-Rule on a 100-agent
ring graph. Figs. 4(a) and 4(b) show the evolution of agent 1’s belief on 8* = 6;
with varying bit-precision, and varying threshold (), respectively.

on a 100-agent ring graph. For this example, we let m = 20,
i.e., there are 20 hypotheses. The common signal space is
still {0,1}. The agents’ likelihood models are generated as
follows. For each agent ¢, we first draw an index r; uniformly
at random from the set {1,...,20}, and then set [;(0|0,,) = 0.7,
and [;(0|0) = 0.5,V0 € © \ {0,,}. Thus, agent 7 is informative
about 0, in the sense that it can distinguish 0., from every other
hypothesis. However, agent i’s observation model is uninforma-
tive w.r.t. every other hypothesis. We let * = ;. Based on the
randomly generated likelihood models, only agents 28,42,79,
and 82 can identify 6; as the true hypothesis on their own;
the remaining agents are thus reliant on information diffusion
for identifying the truth. With the communication period 7 set
to 20, we plot agent 1’s belief evolution on the true state 6;
in Fig. 4. In Fig. 4(a), we study how the bit-precision level
impacts convergence time: as one would expect, using more
bits leads to faster convergence to the truth. Nonetheless, even
for this large 100-agent network with connectivity equal to just
2, Fig. 4(a) reveals that 1-bit precision suffices for learning. In
Fig 4(b), we see that using a smaller threshold ~(-) slows down
convergence, aligning with intuition; for this experiment, we fix
the bit precision to 4 bits.

IX. CONCLUSION

We developed novel learning algorithms to solve the dis-
tributed inference problem in the face of sparse and imprecise
communication. For reducing the communication frequency,
we proposed an event-triggered rule that has the potential to
significantly limit information flow from uninformative agents
to informative agents. To deal with finite bandwidth constraints,
we developed a learning rule based on adaptive quantization that
allows each agent to learn the true state exponentially fast using
just 1 bit to encode each hypothesis. Finally, we showed how
the ideas of event-triggering and adaptive quantization can be
effectively combined. Our analysis provides several new insights
into the trade-offs between communication-efficiency and the
learning rate. As future work, we plan to undertake a finer
non-asymptotic analysis of our algorithms to reveal trade-offs
between communication-efficiency and transient performance.
We also plan to explore more general settings where the un-
known parameter is no longer restricted to a finite set.
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APPENDIX A PROOFS PERTAINING TO SECTION IV

In this section, we provide proofs of all the results stated in
Section IV. We begin by compiling various useful properties of
our update rule which will be useful later on.

Lemma 1: Suppose the conditions in Theorem 1 hold.
Then, there exists a set {2 C Q with the following properties.
(i) P () = 1. (ii) For each w € ), there exist constants
n(w) € (0,1) and ¢'(w) € (0, 00) such that

mi0(0%) > n(w), f@i1(07) > n(w), vt > t'(w),Vi € V. (16)
(iii) Consider a false hypothesis 6 = 0*, and an agent i €
S(6*,0). Then on each sample path w € (2, we have:

lim inf 7710g it (0)
t—00 t

Proof: The proof of claim (ii) rests on the same ideas as that
of [11, Lemma 2]; we thus only sketch the main arguments for
completeness. From [11, Lemma 2], there exists a set QCQ
with P? (Q) = 1 such that for each w € €, the following are
true for every i € V: (i) m;,(6*) > 0,Vt € N; and (ii) 3§ > 0
andt'(w) < oosuchthat; ¢(6*) > §,Vt > #'(w).Fixanw € Q.
Let p(w) = mingep{ft; ¢ (.)-1(0")}. Based on update rules (1)
and (3), observe that p(w) > 0; for if not, this would necessarily
imply that 7; .(6*) = 0 for some agent 7 at some time-step ¢ <
t'(w) — 1, which would be a contradiction given our choice of
w. Let n(w) = min{d, p(w)}, fix an agent 4, and consider the
update of 11; (., (") based on (3):

min{/ji,t’(w)fl (9* ) y Tt (w) (0*)}

> Ki(0%,0). a7

ui,t’(w)(e*) = m ]
Zl mln{ﬂi,t’(w)fl (017)7 Tt (w) (9;0)}
p:
w
S [C) N (18)
Do Tiv(w)(Op)
p=1

where the last equality follows from the fact that the local
belief vectors generated via (2) are valid probability distribu-
tions over © at each time-step, and hence > " | T y1(.) () =
1. The above argument applies identically to every agent in
the graph, and hence we have from (1) that ﬂi7t/(w)(9*) =
min{fi; (w)-1(6"), {15,0:0) (07) }etiyon, v, 00} = 1(w).

We have thus argued that for every agenti € V, p1; () (6) >
N(w), fip(w)(0°) > n(w). We can keep repeating the above
analysis for each ¢ > t/(w) to establish (16). Claim (iii) in
Lemma 1 follows the same reasoning as [11, Lemma 3]. [ |

The above lemma informs us that the belief 1, . () of an agent
v € §(0%,0) decays exponentially fast at a rate lower-bounded
by K, (6*,0) on a set of PY -measure 1. How does this impact
the belief p; +(0) of an agent i € V \ S(0*,0)? The following
result answers this question.

Lemma 2: Consider a false hypothesis § € © \ {6*} and an
agentv € S(6*, ). Suppose the conditions stated in Theorem 1
hold. Then, the following is true for each agent i € V:

lim inf —Lg ui’t(e)
t—00 t

Proof: Let Q C Q be the set of sample paths for which

assertions (i)-(iii) of Lemma 1 hold. Fix a sample path w € €,

an agent v € S(6*,0), and an agent ¢ € V. When i = v, the

> oK (0% 0) a.s.  (19)
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assertion of Eq. (19) follows directly from Eq. (17) in Lemma 1.
In particular, this implies that for a fixed ¢ > 0, 3¢, (w, 0, €) such
that:

po 1 (0) < e”EE0= i > 1 (.6, €). (20)
Moreover, since w € (), Lemma 1 guarantees the existence
of a time-step t'(w) < oo, and a constant 7n(w) > 0, such
that on w, 7, ¢(0*) > n(w), @i (6%) > n(w), vt > t'(w),Vi €
V. Lett,(w,0,€) = max{t'(w),t,(w, b, €)}. Let t;, > t, be the
first event-monitoring time-step in I that is larger than £,,.!' Now
consider any t;, € I such that ¢;, > t,. In what follows, we will
analyze the implications of agent v deciding whether or not to
broadcast its belief on € to a one-hop neighbor j € N, at . To
this end, we consider the following two cases.

Case 1: 1,;,(0) = 1, i.e., v broadcasts fi, 1, (6) to j at t.
Thus, sincev € N 4, (0), wehave fi; 4, (0) < f1, 4, (0) from (1).
Let us now observe that V¢ > ¢, + 1:

,Uj,t(o) (S) m Mj7t71(9)
21 min{fij—1(0p), 75,.(6) }
p=

RN

> min{ie-1(0p): m5(6)) !

(c) e_(K'u (0*,0)—€)ts
<

(21)
In the above inequalities, (a) follows directly from (3), (b)
follows by noting that the sequence {/i;.(6)} is non-increasing
based on (1), and (c) follows from (20) and the fact that all beliefs
on 6* are bounded below by 7 for t > £,,.

Case 2: 1,;+,(0) # 1, i.e., v does not broadcast fi, ¢, (6)
to 7 at tx. From the event condition in (4), it must then
be that at least one of the following is true: (a) fi,¢, (0) >
At 0), and (©) i1, (0) > ¥(tx)jiju.s, (6). Suppose
Lot (8) > Y(t) fvj e, (0). From (20), we then have:

Loty (9) K, (0%,0)—e)ty

7 (tk) v(tk)
In words, the above inequality places an upper bound on the
belief of agent v on 6 when it last transmitted its belief on
0 to agent j, prior to time-step tj; at least one such trans-
mission is guaranteed to take place since all agents broadcast
their entire belief vectors to their neighbors at ¢;. Noting that
B (0) < fiyje, (0), YVt > 1y, using (3), (22), and arguments
similar to those for arriving at (21), we obtain:
e~ (Ko (0%,0)—€)ty — (K (0%,0)=€)ty,

ei(

ﬂvj,tk (9) S (22)

e

thZtk+]-v

(23)
where the last inequality follows from the fact that v(-) is a
non-increasing function of its argument. Now consider the case
when (i, 1, (0) > v(tr) v ¢, (0). Following the same reasoning
as before, we can arrive at an identical upper-bound on (15, ¢, (¢)
as in (22). Using the definition of fi;, 4, (€), and the fact that
agent j incorporates its own belief on # in the update rule (1), we
have that /i ¢ (0) < [ijy+,(0), Vt > t. Using similar arguments
as before, observe that the bound in (23) holds for this case too.

t,e(0) <

0y (tk) nv(t)

"We will henceforth suppress the dependence of various quantities on w, 6,
and e for brevity.

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:44:38 UTC from |IEEE Xplore. Restrictions apply.



MITRA et al.: DISTRIBUTED INFERENCE WITH SPARSE AND QUANTIZED COMMUNICATION

Combining the analyses of cases 1 and 2, referring to (21) and
(23), and noting thaty(¢) € (0, 1], V¢ € N, we conclude that the
bound in (23) holds foreach t;, € I such thatt;, > t,,. Now since
tp+1 — tx = g(k), for any 7 € N we have:

q+7-1

tgrr =tg + Z 9(2). (24)
z=q
Next, noting that ¢(-) is non-decreasing, observe that:
atT q+7
tq + / g(z = 1)dz < tgyr <ty + / g(z)dz. (25)
q q

The above yields: I(q,7) £t, + G(g+7—1)—G(g—1) <
torr <ty + G(qg+7) — G(q) £ u(g, 7). Fixany time-stept >
u(q, 1), let 7(t) be the largest index such that (g, 7(¢)) < ¢, and
7(t) be the largest index such that ¢, 7(;) < t. Observe:
t, < lg <tgp1 Stgpr@) < gz <t (26)
Using the above inequality, the fact that (¢, 7(t)) < tq4-(;),and
referring to (23), we obtain:
e~ (Ko (0%,0)—€)tgir(t)

ny(t)

e~ (Ko (07,0)=€)l(q;7 (1))

n(t)

1,6 (0) <
(27)
From the definition of 7(¢) and u(q, 7(t)), we have g + 7(t) =
*[G71(t — t, + G(q))] — 1. This yields:
g 7(1) =ty + G(+[GTH(t —t, + G(q))] = 2) = G(g — 1)
>ty + GGt —t,+G(q) —2) — G(g—1).
(28)
From (27) and (28), we obtain the following V¢ > u(g, 1):
log 11, ¢ 1 log(1
_ Og/’(’Z,t(e) > Git) (KU(9*79) _ 6) _ Ofc _ Og( /7(0)7
~ (29)
where G(t)=G(G'(t—t,+G(g))—2), and c=
e~ (Ku(07.0)=)(ts=G(a-1)) /5 Now taking the limit inferior
on both sides of (29) and using (5) yields:
log 1;,:(0)
t

lim inf —
t—00

Finally, since the above inequality holds for any sample path
w €, and an arbitrarily small e, it follows that the assertion in
(19) is true for every one-hop neighbor j of agent v.

Now consider any agent ¢ such that d(v, i) = 2. Clearly, there
must existsome j € N, suchthati € ;. Following an identical
line of reasoning as before, it is easy to see that with P? -measure
1, 1151 () decays exponentially at a rate that is at least o times the
rate at which 11, + (6) decays to zero. From (30), the latter rate is at
least K, (0%, 6), and hence, the former is at least o K, (0%, 6).
This establishes the claim of the lemma for all agents that are
two-hops away from agent v. Since G is connected, given any
1 € V, there exists a path P (v, ¢) in G from v to ¢. One can keep
repeating the above argument along the path P (v, 7) to complete
the proof. |

We are now in position to prove Theorem 1.

Proof: (Theorem 1) Fixa@ € © \ {#*}. Based on condition
(i) of the Theorem, S(6*,0) is non-empty, and based on con-
dition (ii), there exists a path from each agent v € S(6*,0) to
every agent i € V \ {v}; Eq. (6) then follows from Lemma 2.

> a(K,(0%,0) —¢).  (30)
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By definition of a source set, K,,(6*,0) > 0,YVv € S(6*,0); Eq.
(6) then implies limy o 11;,:(0) = 0 a.s., Vi € V. [ |

Proof: (Proposition 1) Let the set { have the same mean-
ing as in Lemma 2. Fix any w € €, and note that since the
conditions of Theorem 1 are met, j; ((0*) — 1 on w,Vi € V.
We prove the first claim of the proposition via contradiction.
Accordingly, suppose the claim does not hold. Since there are
only finitely many agents, this implies the existence of some
i € V and some j € N, such that i broadcasts its belief on 0* to
Jj infinitely often, i.e., there exists a sub-sequence {¢,, } of {tx}
at which the event-condition (4) gets satisfied for 6*. From (4),
Hit,, (07) < Y¥ i, (07), Yk € Ny, where ~ £ 7(tp,). This
implies limg o Wit (0*) = 0, contradicting the fact that on
w, limy o0 1 1 (0°) = 1.

For establishing the second claim, fix w € Q, 6 # 6, and
i¢ S(0%,0).Sincei ¢ S(0%,0), there exists 1 < coand 7} > 0,
such that ; .(6) > 7, Vt > t;. This follows from the fact that
since 6 is observationally equivalent to 8 for agent ¢, the claim
regarding 7; +(6*) in Eq. (16) applies identically to 7; ,(¢). Note
also that since the conditions of Theorem 1 are met, 1; .(6) — 0
onw. From (1), fi;,,(6) — 0 as well. Thus, there must exist some
EQ < oo such that min{ﬁi7t(9),7ri7t+1(9)} = m,t(e),Vt > 7?2.
Let £ = max{{y,%5}. Consider any t;, € I, ¢, > . We claim:

(3D
(32)

,uiyt(G) Z /j’lﬂ,tk (9),Vt € [tk + 1,tk+1], and
p/i,t(e) 2 ﬁi7tk (e)th S [tlmtk}-‘rl)'

To see why the above inequalities hold, consider the up-
date of p;4,41(0) based on (3). Since t; > {5, we have
min{fi; ¢, (0), 7 1,+1(0)} = fiie, (0). Noting that the denom-
inator of the fraction on the R.H.S. of (3) is at most 1, we
obtain: p; 4, +1(0) > fi; 4, (0). If ty, + 1 = tx41, then the claim
follows. Else, if t; + 1 < 41, then since no communica-
tion occurs at ¢ + 1, we have from (1) that ;4 4+1(0) =
min{f; ¢, (0), i, +1(0)} > fis¢, (6). We can keep repeating
the above argument for each t € [ty + 1,t,41] to establish the
claim. In words, inequalities (31) and (32) reveal that agent ¢
cannot lower its belief on the false hypothesis 6 between two
consecutive event-monitoring time-steps when it does not hear
from any neighbor. We will make use of this fact repeatedly
during the remainder of the proof. Let ¢,, >t be the first
time-step in I to the right of £. Now consider the following
sequence, where k € N:

tm-+1 = 1nf{t cl:t> tpm,ai,t(e) < ﬂi,t—l(e)}-

The above sequence represents those event-monitoring time-
steps at which [i; ;(0) decreases. We first argue that {t,, } is
well-defined, i.e., each term in the sequence is finite. If not, then
based on (32), this would mean that fi; .(¢) remains bounded
away from 0, contradicting the fact that fi; . (6) — 0 on w. Next,
foreach k € N, let j,, € arg min Nt (O3} oty (0). We
claim that i # j,, . To see why this is true, suppose i = jp, .
Then, based on the definition of ¢, , we would have fi; ¢, (0) =

(33)

Histy, (0) < [, —1(0). However, as t,, > ta, we have from
(3) that fi;¢, 0) > ﬂz’,tpkq(@), leading to the desired contra-
diction. In the final step of the proof, we claim that ¢ does not

broadcast its belief on 6 to j,,, over [t,, + 1,1, ,,].
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To establish this claim, we start by noting that based on
the definitions of j,, and ¢, [, (0) =, +,, (0). Let us
first consider the case when there are no intermediate event-
monitoring time-steps in (t,, ,t,, ., ), i.e.,tp, and t,, . arecon-
secutive terms in I. Then, at iy, . ,. iy, it,, ., (0) = Wy, t,, (0),
since no communication occurs over (t,, , t,, . , ). Moreover, us-
ing (31)”ui’tpk,+1 0) > ity (0) = P, rtoy (9). Thus, the event
condition (4) gets violated at ¢, ,, and 7 does not broad-
cast its belief on ¢ to j,, . Next, consider the scenario when
there is exactly one event-monitoring time-step - say ¢ € I - in
the interval (tp, ,t,, ). Since t,, and t are now consecutive
terms in I, the fact that Lij,, #(0) # 1 follows from exactly
the same reasoning as earlier. We argue that 1 jpki’g(ﬁ) #1
as well. To see this, suppose that j,, does in fact broad-
cast 115, 7(0) to i at t. For this to happen, the event condi-
tion (4) entails: 11;, 1(6) < V(D 4y, (0) = Y(Dfii,, (0) <
[iit,, (0).Since fi; 7-1(0) = fiig,, (0) from (32),1; ;7(0) =1
would then imply that fi; () < fi; 7—1(0), violating the fact
that £ < ,, .. The above reasoning suggests that 1;, ;,:(0) =
iy st (0): VE € (tp,,tp, ] Moreover, since fi;,¢(6) does not
decrease at ¢ (as t < t,, ), we have from (31) that y; ,(6) >
[isty, (0) = W, t,, (0),Vt € (tp,,tp,,,]. 1t follows from the
preceding discussion that (4) gets violated at ¢, , ,, and hence
Lij,, topiy (0) # 1. The above arguments readily carry over to
the case when there are an arbitrary number of event-monitoring
time-steps inthe interval (¢, , tp, . , ). Thus, we omit such details.

We conclude that over each interval of the form
(tprstprii)s kB € Ny, there exists a neighbor j,, € N to which
agent 7 does not broadcast its belief on . We can obtain one
such t,,, for each i ¢ S(0*, ), and take the maximum of such
time-steps to obtain 75 (w). [ |

Proof: (Corollary 2) Let us fix @ # 6*, and partition the set of
agents V \ {vg} based on their distances from vg. Accordingly,
we use L4(6) to represent level-¢ agents that are at distance ¢
from vg, where ¢ € N . Let the agent(s) that are farthest from
vg be at level §. Now consider any agent ¢ € L;(6). Based on
the conditions of the proposition, note that i ¢ S(6*, ), and the
only neighbor of i is its parent in the tree rooted at vy, denoted
by p;(#). Thus, claim (ii) of Proposition 1 applies to agent i,
implying that agent ¢ stops broadcasting its belief on 6 to p; ()
eventually almost surely. Next, consider an agent j € L£;_1(0).
We have already argued that after a finite number of time-steps, j
will stop hearing broadcasts about # from its children in level §.
Thus, for large enough k, Nj 4, (9) can only comprise of p; (),
namely the parent of agent j in level ¢ — 2. In particular, given
that j ¢ S(6*,0), the decrease in fi;.(6) at time-steps defined
by (33) can only be caused by p;(6). It then readily follows
from the proof of Proposition 1 that j will stop broadcasting
wi(6) to p;(0) eventually almost surely. We can essentially
keep repeating the above argument until we reach level 1. W

Proof: (Theorem 2) The proof of this result is similar in
spirit to that of Theorem 1. Hence, we only sketch the essen-
tial details. We begin by noting that the claims in Lemma 1
hold under the conditions of the theorem - this can be easily
verified. Let Q have the same meaning as in Lemma 2. Fix
w € Q and an arbitrarily small ¢ > 0. Since P (Q) = 1, to
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prove the result, it suffices to argue that for each false hy-
pothesis 6 # 0%, 3T (w, 0, €) such that on w, p;((0) < ¢€,Vt >
T(w,0,€),Vi € V. Recall that based on Lemma 1, there exists
a time-step ¢'(w) < oo, and a constant n(w) > 0, such that on
w, i (0%) > n(w), i (0%) > n(w), vVt > t'(w),Vi € V. Set
€(w) = min{e, yn(w)}. Also, from Lemma 1, we know that
there exists £ such that p, +(0) < eV, vt > #,Vi € S(6*,6).12
Letty = max{t,' }. Since the union graph over [to, 00) is rooted
atS(60*,0), thereexistsaset F1(0) € V \ S(0%, 0) of agents such
that each agent in F7(6) has at least one neighbor in S(6*, 6)
in the union graph. Accordingly, consider any j € F;(#), and
suppose j € N;(7), for some i € S(6*,0), and some T > .
Thecases 1,5 -(¢) = 1and 1,5 - () # 1 canbe analyzed exactly
as in the proof of Lemma 2 to yield:
eVl

pin(0) < — < e vt > 7 (34)
ny

where the last inequality follows by noting that € < . Let
t1 > 1o be the first time-step by which every agent in F;(6)
has had at least one neighbor in S(0*, ¢). Then, based on the
above reasoning, 117 +(0) < éVI7V vt > V5 € F1(0). IV \
{8(6%,0) U F1(0)} = 0, then we are done. Else, given the fact
that the union graph over [t , 00) is rooted at S(#*, #), there must
exist a non-empty set F(0) such that each agent in F2(0) has
at least one neighbor from the set S(6*, #) U F1(€) in the union
graph. Reasoning as before, one can conclude that there exists
a time-step o > 77 such that p;,(0) < eVI=2) vt > £, Vj €
F>(0). To complete the proof, we can keep repeating the above
construction until we exhaust the vertex set V. |

APPENDIX B PROOF OF THEOREM 3

We begin with the following lemma.

Lemma 3: Suppose the conditions of Theorem 3 are satisfied.
Then, assertions (i)—(iii) in Lemma 1 hold when each agent
employs Algorithm 2.

Proof: The proof of this lemma mirrors that of Lemma 1. The
key point is that for any agenti € V, g; +(0*) # 0 almost surely,
where ¢ € N. To see this, observe from (9) that whenever an
agent i broadcasts about 6%, we have ¢; ,(60*) > p;,,(6*). Hence,
at such a time-step t, g; 1(6*) = 0 = p;,(6*) = 0. Using the
same arguments as in Lemma 1, one can argue that this is almost
surely impossible. |

We are now ready to prove Theorem 3.

Proof: (Theorem 3) In view of Lemma 3, we know that there
existsaset Q C Q of P? -measure 1 for which assertions (ii) and
(iii) of Lemma 1 hold. Consider any false hypothesis 6 # 6%,
fix a sample path w € 2, and an agent v € S(6*, #). Following
the same reasoning as in the proof of Lemma 2, there exists a
time-step £, such that for all ¢ > ¢, the following are true on w:
@) i, (6%) > n(w), 14,1 (6%) > n(w), Vi € V; and (ii) for a fixed
€>0, pyt(0) < e”Ee070= "We will complete the proof
in two steps. In Step 1, we will establish that the quantization
range R, ;(0) = [0, q,+(0)] contracts exponentially fast. In Step
2, we will analyze the implications of the above phenomenon

12 A5 before, we have suppressed dependence of various quantities on w, 6,
and e, since they can be inferred from context.
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on the beliefs of the remaining agents on 6. In what follows, we
elaborate on these steps.

Step 1. Consider any time-step ¢+ 1 > ¢. At this time-
step, there are two possibilities. The first possibility is that
Hot+1(0) € [0, ¢y,(0)), in which case we have from (9) that:

o, (0
doen®) = SO 027 4,407

B(6)
- qv.£(0) 14 foi+1(0)2
23(0) qv,t(e)

1
< W(L},t(e) + oy t41(0).

~—

(35)

The second possibility is that i, ¢11(0) > ¢, +(6) and, based on
our encoding strategy, node v sets g, 1+1(6) = qu,+(0). Clearly,
the bound on ¢, ;+1(0) in (35) applies to both the cases we dis-
cussed above. To proceed, leta = 1/23(9), K= K,(0%,0) — e,
and p = max{a,e X}. Rolling out the inequality (35) over
7 > 1 time-steps starting from ¢ yields:

=0
(a) e K@) 1 1
<a’ (qv,t(e) + a 1
=0 (aef)
(2) - + e*RT aT
a —
e K —q

(c) 1
<1+ ——— ) (36)
( le= 5 — a> g

In the above inequalities, (a) follows by noting that pi, 711
decays exponentially VI > 0 based on the definition of ¢. For
(b), we simplify the preceding inequality using the facts that
¢y,7(0) < 1,and e K1) < 1 as K > 0; the latter is true since
v € §(0%,0). Finally, (c) follows from straightforward algebra.
We thus obtain:

1 1 _
qui(0) < = (1+~) pLVE> T+ 1. (37)
P e~ —al

Since B(#) > 1, we have a < 1. Moreover, as K > 0, it fol-
lows that p < 1. In view of (37), we thus observe that ¢, ;(6)
eventually decays to 0 exponentially fast at the rate p.

Step 2. Consider any neighbor j of agent v. Let us now make
two simple observations, each of which follow easily from the
rules of Algorithm 2. First, given that 11, 1(0) < 1 = ¢,,0(6),
the condition in line 4 of Algorithm 2 will pass at ¢t = 1, and
hence agent v will broadcast ¢, 1(6) to agent j at time-step
t = 1. Second, at each subsequent time-step ¢ > 1, the value
of ¢,.(6) held by agent v is consistent with that held by agent
7j, irrespective of whether v broadcasts to j at time ¢ about 6, or
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not. We thus have that V¢ > ¢ + 2:
(@) s 1(0
Mj,t(e) < M
n
(b)
< qU,t71(9)
n
() 1 1
. 1+ - Y (38)
npttt ( leK — al) g

where (a) follows from (3) and the fact that all beliefs on #* are
bounded below by 7 for ¢ > t; (b) follows from (10); and (c)
follows from (37). Taking the natural log on both sides of (38),
dividing throughout by ¢, and then taking the limit inferior on
both sides of the resulting inequality yields:

lim inf — 108 15.4(0) ©)
t—00 t

> log l (39)

p
Now let us consider two cases. First, suppose B(6)log2 >
K,(0%,0). Then,log1/p = K = K,(#*,0) — €, where ¢ can be
made arbitrarily small. Hence, in this case, the L.H.S. of (39) is
atleast K, (6%, 6). Next, suppose B(#) log 2 < K, (6%, 6). Then,
there must exist € > 0 such that B(0)log2 < K, (0*,0) —e.
With such a choice of €, we can set K = K,(6*,60) — ¢ and
conduct the above analysis to arrive at log1/p = B(0)log2.
We conclude:

liminf — M
t—00 t

Consider any neighbor [ of agent j, i.e., a two-hop neighbor
of agent v. We can analyze the decay of ¢;.(6) and 1 .(0)
exactly as we did for ¢, ,(6) and 11 + () to conclude that 11; ;(6)
also decays exponentially at a rate that is lower bounded by
H,(6*,0) = min{B(0) log 2, K,,(#*,0)}; this is not too hard
to verify and hence we omit details. Repeating this argument
reveals that every agent reachable from v can reject 6 at a rate that
is at least H, (0*, 0). Since G is connected, the above conclusion
applies to every agent.

An analysis identical to the one above can be carried out for
each v € S(0*, 6). The proof can then be completed following
the same arguments as in Theorem 1. |

> min{B(#)log 2, K, (§*,6)}.  (40)

APPENDIX C PROOF OF THEOREM 4

Proof: (Theorem 4) The proof of this result is a simple
variation on that of Theorem 3. Hence, we will be somewhat
terse in our arguments. First, it is easy to verify that Lemma
3 holds for the QET Min-Rule as well. Accordingly, let
have the same meaning as in Theorem 3, and fix a sample
path w € . Next, consider any 6 # 6*, and v € S(6*,6). Fix
€ > 0, and recall from Theorem 3 that there exists a time-step
t1, such that for all ¢ > ¢;, the following are true on w: (i)
i1 (0%) > n(w), @it (07) > n(w),¥i € V; and (ii) for a fixed
€ >0, p1,4(0) < e (Ke(0".0)=9)t From the condition on the
threshold function ~(-) in Eq. (5), we also know that there exists
t5 such that

1 _
— < eVt > .
(1)
Lett = max{t,?2},andlett, € I be the first event-monitoring
time-step satisfying ¢, > ¢. Now consider any ¢; € I such that

(41)
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ty > t,. At ty, if the event condition (14) holds, then i, ¢, (6)
is quantized to ¢, 1, (#) based on the encoder in (9). This yields:

Qo,ty,_, (0
1o (0) < 2t O (o),

In the above step, we used gy, , (0) = quv,1,—1(6) by noting
that g, () does not change over the interval [ty_1,t; — 1]. If
the event condition (14) fails at time tj, we would then have

(42)

Mot (9)
Qu ity (9) = qv,tk,l(H) é T;k) (43)
Combining the bounds in (42) and (43), we obtain
oty (9) Moty (9)
A ORI TN s

Our immediate goal is to analyze the above periodic recursion
and show that the quantizer range R, () = [0, ¢,,(0)] shrinks
exponentially fast. To proceed, let a = 1/23(0), a=al/T, K=
K,(0%,0) — 2¢,and p = max{e‘k, a}. Next, observe that for
any positive integer h,

h
_p Mt (9)
oty (0) < ah v t, (9> + Za b el
=1 Ttpte
h
(G) h —0 —Kt ¢
Lt (g, (0) + 3 ate Kin
(=1

1 1
< — (14 ———— ) plotr, (45)
ptp ( |6KT_aT|>p
For (a), we used the fact that ¢, > t, > t, and (41). For (b),
we used t,1¢ = t, + 7£.1> We conclude that for any ¢;, € I such
that ¢, > t,,

1 1 "
Goe () < 72 (1 + |6K_a> P

Consider any ¢ > t,,1, and let ¢y = max{ty € I : ¢}, < t}.
Noting that the sequence {¢, ()} is non-increasing (based on
the rules of the QET Min-Rule), and using (46), we obtain

1 1 ot —t
Qvt(0) < Qu,tsip 9) < pr (1 + M) pT®
- ) p'.
arl
47)

- 1 ] 1
- ptp+1 + |67RT _
c

To arrive at the last inequality, we used: (i) p < 1; (i)t — () <
7y and (iii) t, + 7 = t,+1. Now consider any j € N, t > t,41,
and let tyy) = max{t, € I : tx <t}. At tyy), v either broad-
casts qv7t€<t)(0) to j or it does not, depending upon whether
or not the event condition (14) holds. Each of these cases can

(46)

13Recall that the event-monitoring sequence is periodic with period 7.
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be analyzed just as in the proof of Theorem 1 to arrive at the
following conclusion:

C C pt
Wity (0) < —=<pher < ———. (48)
@) S S50 S 55
Using (3), we then have
i 1(0 P . 0 C t
0 (0) < P10  Fite®) — P 49
7 n npT (1)
Thus, for any ¢ > t,,4.1, we have
1 ; 1 logC log(l
_logpii(0) log  — ogC' log( /’v(t>)’ (50)

t =70 t t
where C = C/(np™). Taking the limit inferior on both sides of
the above inequality, and using (5), we obtain (39). The rest of

the proof is similar to that of Theorem 3, and hence, we omit
details in the interest of space. |
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