Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Parallel Clique Counting and Peeling Algorithms *

Jessica Shit

Abstract

We present a new parallel algorithm for k-clique counting/list-
ing that has polylogarithmic span (parallel time) and is work-
efficient (matches the work of the best sequential algorithm)
for sparse graphs. Our algorithm is based on computing low
out-degree orientations, which we present new linear-work
and polylogarithmic-span algorithms for computing in paral-
lel. We also present new parallel algorithms for producing
unbiased estimations of clique counts using graph sparsifi-
cation. Finally, we design two new parallel work-efficient
algorithms for approximating the k-clique densest subgraph,
the first of which is a 1/k-approximation and the second of
which is a 1/(k(1 + €))-approximation and has polylogarith-
mic span. Our first algorithm does not have polylogarithmic
span, but we prove that it solves a P-complete problem.

In addition to the theoretical results, we also implement
the algorithms and propose various optimizations to improve
their practical performance. On a 30-core machine with
two-way hyper-threading, our algorithms achieve 13.23—
38.99x and 1.19-13.76x self-relative parallel speedup for
k-clique counting and k-clique densest subgraph, respectively.
Compared to the state-of-the-art parallel k-clique counting
algorithms, we achieve up to 9.88x speedup, and compared
to existing implementations of k-clique densest subgraph, we
achieve up to 11.83x speedup. We are able to compute the
4-clique counts on the largest publicly-available graph with
over two hundred billion edges for the first time.

1 Introduction

Finding k-cliques in a graph is a fundamental graph-theoretic
problem with a long history of study both in theory and
practice. In recent years, k-clique counting and listing
have been widely applied in practice due to their many
applications, including in learning network embeddings [43],
understanding the structure and formation of networks [59,
56], identifying dense subgraphs for community detection [53,
48, 21, 26], and graph partitioning and compression [22].
For sparse graphs, the best known sequential algorithm
is by Chiba and Nishizeki [12], and requires O(ma*~2)
work (number of operations), where « is the arboricity of the

The full version of this paper is available at https://arxiv.org/abs/2002.
10047.
TMIT CSAIL, Cambridge, MA (jeshi@mit.edu, laxman@mit.edu,
jshun@mit.edu)

Laxman Dhulipalaf

Julian Shun'

graph.! The state-of-the-art clique parallel k-clique counting
algorithm is KCLIST [15], which achieves the same work
bound, but does not have a strong theoretical bound on the
span (parallel time). Furthermore, KCLIST as well as existing
parallel k-clique counting algorithms have limited scalability
for graphs with more than a few hundred million edges,
but real-world graphs today frequently contain billions to
hundreds of billions of edges [34].
k-clique Counting. In this paper, we design a new parallel
k-clique counting algorithm, ARB-COUNT that matches the
work of Chiba-Nishezeki, has polylogarithmic span, and
has improved space complexity compared to KCLIST. Our
algorithm is able to significantly outperform KCLIST and
other competitors, and scale to larger graphs than prior work.
ARB-COUNT is based on using low out-degree orientations
of the graph to reduce the total work. Assuming that
we have a low out-degree ranking of the graph, we show
that for a constant & we can count or list all k-cliques in
O(ma*—2) work, and O(klogn + log? n) span with high
probability (whp),> where m is the number of edges in the
graph and « is the arboricity of the graph. Having work
bounds parameterized by « is desirable since most real-world
graphs have low arboricity [17]. Theoretically, ARB-COUNT
requires O(«) extra space per processor; in contrast, the
KCLIST algorithm requires O(a?) extra space per processor.
Furthermore, KCLIST does not achieve polylogarithmic span.
We also design an approximate k-clique counting algo-

rithm based on counting on a sparsified graph. We show in the
full version of the paper that our approximate algorithm pro-
duces unbiased estimates and runs in O(pma*~2 4 m) work
and O(klogn + log? n) span whp for a sampling probability
of p.
Parallel Ranking Algorithms. We present two new parallel
algorithms for efficiently ranking the vertices, which we use
for k-clique counting. We show that a distributed algorithm
by Barenboim and Elkin [5] can be implemented in linear
work and polylogarithmic span. We also parallelize an
external-memory algorithm by Goodrich and Pszona [25]
and obtain the same complexity bounds. We believe that our
parallel ranking algorithms may be of independent interest, as
many other subgraph finding algorithms use low out-degree
Tgraph has arboricity « if the minimum number of spanning forests
needed to cover the graph is a.

2We say O(f(n)) with high probability (whp) to indicate O(cf(n))
with probability at least 1 — n™¢ for ¢ > 1, where n is the input size.

Copyright © 2021 by SIAM

135 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

orderings (e.g., [25, 41, 28]).

Peeling and k-Clique Densest Subgraph. We also present
new parallel algorithms for the k-clique densest subgraph
problem, a generalization of the densest subgraph problem
that was first introduced by Tsourakakis [53]. This problem
admits a natural 1/k-approximation by peeling vertices in
order of their incident k-clique counts. We present a parallel
peeling algorithm, ARB-PEEL, that peels all vertices with
the lowest k-clique count on each round and uses ARB-
COUNT as a subroutine. The expected amortized work
of ARB-PEEL is O(ma*~2 + pj(G)logn) and the span is
O(pr(G)klogn + log? n) whp, where py(G) is the number
of rounds needed to completely peel the graph. We also prove
in the full version of the paper that the problem of obtaining
the hierarchy given by this process is P-complete for k£ > 2,
indicating that a polylogarithmic-span solution is unlikely.

Tsourakakis also shows that naturally extending the Bah-
mani et al. [4] algorithm for approximate densest subgraph
gives an 1/(k(1 + €))-approximation in O(logn) parallel
rounds, although they were not concerned about work. We
present an O(ma”*~2) work and polylogarithmic-span algo-
rithm, ARB-APPROX-PEEL, for obtaining a 1/(k(1 + €))-
approximation to the k-clique densest subgraph problem. We
obtain this work bound using our k-clique algorithm as a
subroutine. Danisch et al. [15] use their k-clique counting
algorithm as a subroutine to implement these two approxi-
mation algorithms for k-clique densest subgraph, but their
implementations do not have provably-efficient bounds.
Experimental Evaluation. We present implementations of
our algorithms that use various optimizations to achieve good
practical performance. We perform a thorough experimental
study on a 30-core machine with two-way hyper-threading
and compare to prior work. We show that on a variety of real-
world graphs and different k, our k-clique counting algorithm
achieves 1.31-9.88x speedup over the state-of-the-art parallel
KCLIST algorithm [15] and self-relative speedups of 13.23—
38.99x. We also compared our k-clique counting algorithm
to other parallel k-clique counting implementations including
Jain and Seshadhri’s PIVOTER [28], Mhedhbi and Salihoglu’s
worst-case optimal join algorithm (WCO) [35], Lai et al.’s
implementation of a binary join algorithm (BINARYJOIN)
[30], and Pinar et al.’s ESCAPE [41], and demonstrate
speedups of up to several orders of magnitude.

Furthermore, by integrating state-of-the-art parallel
graph compression techniques, we can process graphs with
tens to hundreds of billions of edges, significantly improving
on the capabilities of existing implementations. As far as we
know, we are the first to report 4-clique counts for Hyper-
link2012, the largest publicly-available graph, with over two
hundred billion undirected edges.

We study the accuracy-time tradeoff of our sampling
algorithm, and show that is able to approximate the clique
counts with 5.05% error 5.32-6573.63 times more quickly

than running our exact counting algorithm on the same graph.
We compare our sampling algorithm to Bressan et al.’s serial
MOTIVO [11], and demonstrate 92.71-177.29x speedups.
Finally, we study our two parallel approximation algorithms
for k-clique densest subgraph and show that our we are able to
outperform KCLIST by up to 29.59x and achieve 1.19—-13.76x
self-relative speedup. We demonstrate up to 53.53x speedup
over Fang et al.’s serial COREAPP [21] as well.
The contributions of this paper are as follows:

(1) A parallel algorithm with O(ma*~?2) and polylogarith-
mic span whp for k-clique counting.

(2) Parallel algorithms for low out-degree orientations with
O(m) work and O(log® n) span whp.

(3) An O(ma*~2) amortized expected work parallel algo-
rithm for computing a 1/k-approximation to the k-clique
densest subgraph problem, and an O(ma*~2) work and
polylogarithmic-span whp algorithm for computing a
1/(k(1 + €))-approximation.

(4) Optimized implementations of our algorithms that achieve
significant speedups over existing state-of-the-art meth-
ods, and scale to the largest publicly-available graphs.

Our code is publicly available at: https://github.com/
ParAlg/gbbs/tree/master/benchmarks/CliqueCounting.

2 Preliminaries

Graph Notation. We consider graphs G = (V, E) to be
simple and undirected, and let n = |V| and m = |E|. For
any vertex v, N (v) denotes the neighborhood of v and deg(v)
denotes the degree of v. If there are multiple graphs, N¢(v)
denotes the neighborhood of v in G. For a directed graph
DG, N(v) = Npg(v) denotes the out-neighborhood of v in
DG@. For analysis, we assume that m = §2(n). The arboricity
(o) of a graph is the minimum number of spanning forests
needed to cover the graph. « is upper bounded by O(y/m)
and lower bounded by (1) [12].

A k-clique is a subgraph G’ C G of size k where all
(]2“) edges are present. The k-clique densest subgraph is a
subgraph G’ C @ that maximizes across all subgraphs the
ratio between the number of k-cliques induced by vertices in
G’ and the number of vertices in G’ [53]. An c-orientation
of an undirected graph is a total ordering on the vertices,
where the oriented out-degree of each vertex (the number of
its neighbors higher than it in the ordering) is bounded by c.
Model of Computation. For analysis, we use the work-
span model [29, 13]. The work W of an algorithm is the
total number of operations, and the span S is the longest
dependency path. We can execute a parallel computation in
W/P + S running time using P processors [9]. We aim for
work-efficient parallel algorithms in this model, that is, an
algorithm with work complexity that asymptotically matches
the best-known sequential time complexity for the problem.
We assume concurrent reads and writes and atomic adds are

Copyright © 2021 by SIAM

136 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

supported in the model in O(1) work and span.

Parallel Primitives. We use the following primitives.
Reduce-Add takes as input a sequence A of length n, and
returns the sum of the entries in A. Prefix sum takes as input
a sequence A of length n, an identity ¢, and an associative
binary operator @, and returns the sequence B of length n
where B[i] = @, _; A[j]©e. Filter takes as input a sequence
A of length n and a predicate function f, and returns the se-
quence B containing a € A such that f(a) is true, in the
same order that these entries appeared in A. These primitives
take O(n) work and O(logn) span [29].

We also use parallel integer sort, which sorts n integers

in the range [1,n] in O(n) work whp and O(logn) span
whp [42]. We use parallel hash tables that support n
operations (insertions, deletions, and membership queries) in
O(n) work and O(log n) span whp [24]. Given hash tables
71 and T3 containing n and m elements respectively, the
intersection 7; N 7z can be computed in O(min(n, m)) work
and O(log(n + m)) span whp.
Parallel Bucketing. A parallel bucketing structure main-
tains a mapping from keys to buckets, which we use to group
vertices by their k-clique counts in our k-clique densest sub-
graph algorithms. The bucket value of keys can change, and
the structure updates the bucket containing these keys.

In practice, we use the bucketing structure by Dhulipala
et al. [16]. However, for theoretical purposes, we use the
batch-parallel Fibonacci heap by Shi and Shun [49], which
supports b insertions in O(b) amortized expected work and
O(logn) span whp, b updates in O(b) amortized work and
O(log? n) span whp, and extracts the minimum bucket in
O(logn) amortized expected work and O(log n) span whp.
Graph Storage. In our implementations, we store our graphs
in compressed sparse row (CSR) format, which requires
O(m + n) space. For large graphs, we compress the edges
for each vertex using byte codes that can be decoded in
parallel [50]. For our theoretical bounds, we assume that
graphs are represented in an adjacency hash table, where each
vertex is associated with a parallel hash table of its neighbors.

3 Clique Counting

In this section, we present our main algorithms for counting
k-cliques. We describe our parallel algorithm for low out-
degree orientations in Section 3.1, our parallel k-clique
counting algorithm in Section 3.2, and practical optimizations
in Section 3.4. We discuss briefly our parallel approximate
counting algorithm in Section 3.3.

3.1 Low Out-degree Orientation (Ranking) Recall that
an c-orientation of an undirected graph is a total ordering
on the vertices, where the oriented out-degree of each vertex
(the number of its neighbors higher than it in the ordering) is
bounded by c. Although this problem has been widely studied

in other contexts, to the best of our knowledge, we are not
aware of any previous work-efficient parallel algorithms for
solving this problem. We show that the Barenboim-Elkin
and Goodrich-Pszona algorithms, which are efficient in the
CONGEST and I/0 models of computation respectively, lead
to work-efficient low-span algorithms.

Both algorithms take as input a user-defined parameter
€. The Barenboim-Elkin algorithm also requires a parameter,
«, which is the arboricity of the graph (or an estimate of
the arboricity). As an estimate of the arboricity, we use the
approximate densest-subgraph algorithm from [17], which
yields a (2 + €)-approximation and takes O(m -+ n) work and
O(log2 n) span. The algorithms peel vertices in rounds until
the graph is empty; the peeled vertices are appended to the
end of ordering. Both algorithms peel a constant fraction of
the vertices per round. For the Goodrich-Pszona algorithm,
an €/(2 + ¢) fraction of vertices are removed on each round,
so the algorithm finishes in O(log n) rounds. The Barenboim-
Elkin algorithm peels vertices with induced degree less than
(2 4 €)a on each round. By definition of arboricity, there
are at most na/d vertices with degree at least d. Thus, the
number of vertices with degree at least (2 + €)« is at most
n/(2 + €), and a constant fraction of the vertices have degree
at most (2 + ¢)a. Since a subgraph of a graph with arboricity
« has arboricity at most «, each round peels at least a constant
fraction of remaining vertices, and the algorithm terminates in
O(log n) rounds. We provide pseudocode for the algorithms
in the full version of the paper.

For the c-orientation given by the Barenboim-Elkin
algorithm, vertices have out-degree less than (2 + €)a by
construction. For the c-orientation given by the Goodrich-
Pszona algorithm, the number of vertices with degree at least
(2+ €)ais at most n/(2 + €), so the €/(2 + ¢€) fraction of the
lowest degree vertices must have degree less than (2 + €)av.

We implement each round of the Goodrich-Pszona
algorithm using parallel integer sorting to find the /(2 +
€) fraction of vertices with lowest induced degree. Our
parallelization of Barenboim-Elkin uses a parallel filter to
find the set of vertices to peel. We can implement a round in
both algorithms in linear work in the number of remaining
vertices, and O(log n) span. We obtain the following theorem,
which we prove in the full version of the paper.

THEOREM 3.1. The Goodrich-Pszona and Barenboim-Elkin
algorithms compute O(c)-orientations in O(m) work (whp
for Goodrich-Pszona), O(log® n) span (whp for Goodrich-
Pszona), and O(m) space.

Finally, in the rest of this paper, we direct graphs in CSR
format after computing an orientation, which can be done in
O(m) work and O(logn) span using prefix sum and filter.

3.2 Counting algorithm Our algorithm for k-clique count-
ing is shown as ARB-COUNT in Algorithm 1. On Line 12,

Copyright © 2021 by SIAM

137 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Algorithm 1 Parallel k-clique counting algorithm

1: procedure REC-COUNT-CLIQUES(DG, I, £)
2: > I is the set of potential neighbors to complete the clique, and £ is
the recursive level

3: if £ = 1 then return || > Base case
4: Initialize T to store clique counts per vertex in I

5: parfor v in I do

6: I’ < INTERSECT(I, Npg (v)) > Intersect I with directed

neighbors of v

7: t' < REC-COUNT-CLIQUES(DG, I’, £ — 1)

8: Store t/ in T’

9: t < REDUCE-ADD(T) > Sum clique counts in 1"

10: return ¢

11: procedure ARB-COUNT(G = (V, E), k, ORIENT)

12: DG < ORIENT(G) > Apply a user-specified orientation algorithm
13: return REC-COUNT-CLIQUES(DG, V, k)

ARB-COUNT first directs the edges of G such that every vertex
has out-degree O(«), as described in Section 3.1. Then, it
calls a recursive subroutine REC-COUNT-CLIQUES that takes
as input the directed graph DG, candidate vertices I that
can be added to a clique, and the number of vertices ¢ left
to complete a k-clique (Line 13). With every recursive call
to REC-COUNT-CLIQUES, a new candidate vertex v from [
is added to the clique and [is pruned to contain only out-
neighbors of v (Line 6). REC-COUNT-CLIQUES terminates
when precisely one vertex is needed to complete the k-clique,
in which the number of vertices in I represents the number
of completed k-cliques (Line 3). The counts obtained from
recursive calls are aggregated using a REDUCE-ADD and re-
turned (Lines 9-10).

Finally, by construction, ARB-COUNT and REC-COUNT-
CLIQUES can be easily modified to store k-clique counts
per vertex. We append -V to indicate the corresponding
subroutines that store counts per vertex, which are used in our
peeling algorithms. Similarly, ARB-COUNT can be modified
to support k-clique listing.

Complexity Bounds. Aside from the initial call to REC-
COUNT-CLIQUES which takes I = V, in subsequent calls,
the size of I is bounded by O(«). This is because at every
recursive step, I is intersected with the out-neighbors of some
vertex v, which is bounded by O(«). The additional space
required by ARB-COUNT per processor is O(«), and since the
space is allocated in a stack-allocated fashion, we can bound
the total additional space by O(P«) on P processors when
using a work-stealing scheduler [8]. Thus, the total space
for ARB-COUNT is O(m + Pa). In contrast, the KCLIST
algorithm requires O(m + Pa?) space.

Moreover, considering the first call to REC-COUNT-
CLIQUES, the total work of INTERSECT is given by O(m)
whp, because the sum of the degrees of each vertex is bounded
by O(m). Also, using a parallel adjacency hash table, the
work of INTERSECT in each subsequent recursive step is given
by the minimum of || and |Np¢(v)|, and thus is bounded
by O(«) whp. We recursively call REC-COUNT-CLIQUES k

times as ¢ ranges from 1 to k, but the first call involves a
trivial intersect where we retrieve all directed neighbors of
v, and the final recursive call returns immediately with |I|.
Hence, we have k — 2 recursive steps that call INTERSECT
non-trivially, and so in total, ARB-COUNT takes O(ma*~2)
work whp.

The span of ARB-COUNT is defined by the span of
INTERSECT and REDUCE-ADD in each recursive call. As
discussed in Section 2, the span of INTERSECT is O(logn)
whp, due to the use of the parallel hash tables, and the span
of REDUCE-ADD is O(logn). Thus, since we have k — 2
recursive steps with O(log n) span, and taking into account
the O(log? n) span whp in orienting the graph, ARB-COUNT
takes O(k log n + log® n) span whp. ARB-COUNT-V obtains
the same work and span bounds as ARB-COUNT, since the
atomic add operations do not increase the work or span. The
total complexity of k-clique counting is as follows.

THEOREM 3.2. ARB-COUNT takes O(ma*~2) work and
O(klogn + log? n) span whp, using O(m + Pa) space on
P processors.

3.3 Sampling We discuss in the full version of the paper a
technique, colorful sparsification, that allows us to produce
approximate k-clique counts, based on previous work on
approximate triangle and butterfly (biclique) counting [39,
45]. The technique uses our k-clique counting algorithm
(Algorithm 1) as a subroutine, and we prove the following
theorem in the full version of the paper.

THEOREM 3.3. Our sampling algorithm with parameter p =
1/c gives an unbiased estimate of the global k-clique count
and takes O(pma*=2 4+ m) work and O(klogn + log®n)
span whp, and O(m + P«) space on P processors.

3.4 Practical Optimizations We now introduce practical
optimizations that offer tradeoffs between performance and
space complexity. First, in the initial call to REC-COUNT-
CLIQUES, for each v, we construct the induced subgraph on
Npc(v) and replace DG with this subgraph in later recursive
levels. Thus, later recursive levels can skip edges that have
already been pruned in the first level. Because the out-degree
of each vertex is bounded above by O(«), we require O(a?)
extra space per processor to store these induced subgraphs.

Moreover, as mentioned in Section 2, we store our
graphs (and induced subgraphs) in CSR format. To efficiently
intersect the candidate vertices in I with the requisite out-
neighbors, we relabel vertices in the induced subgraph
constructed in the second level of recursion to be in the range
[0,...,0(«)], and then use an array of size O(«) to mark
vertices in /. For each vertex I, we check if its out-neighbors
are marked in our array to perform INTERSECT.

While this would require O (k) extra space per proces-
sor to maintain a size O(«) array per recursive call, we find

Copyright © 2021 by SIAM

138 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

-1 ® o S

B000
QESESES]

Soooe
BE0D0D
T o o |
LR
©-ren

W o G

Mulitplicative slowdown

E

com-dblp
Figure 1: Multiplicative slowdowns of KCLIST’s parallel k-clique
counting implementation, compared to ARB-COUNT. The best
runtimes between node and edge parallelism for KCLIST and ARB-
COUNT, and among different orientations for ARB-COUNT are used.

com-orkut com-friendster ~com-lj

that in practice, parallelizing up to the first two recursive lev-
els is sufficient. Subsequent recursive calls are sequential, so
we can reuse the array between recursive calls by using the
labeling scheme from Chiba and Nishizeki’s serial k-clique
counting algorithm [12]. We record the recursive level ¢ in
our array for each vertex in I, perform INTERSECT by check-
ing if the out-neighbors have been marked with £ in the array,
and then reset the marks. This allows us to use only O(«)
extra space per processor to perform INTERSECT operations.

In our implementation, node parallelism refers to par-
allelizing only the first recursive level and edge parallelism
refers to parallelizing only the first two recursive levels. These
correspond with the ideas of node and edge parallelism in
Danisch et al.’s KCLIST algorithm [15]. We also implemented
dynamic parallelism, where more recursive levels are paral-
lelized, but this was slower in practice—further parallelization
did not mitigate the parallel overhead introduced.

Finally, for the intersections on the second recursive
level (the first set of non-trivial intersections), it is faster in
practice to use an array marking vertices in Npg(v). If we
let I; = Npg(v) denote the set of neighbors obtained after
the first recursive level, then to obtain the vertices in /5 in
the second level, we use a size n array to mark vertices in I3
and perform a constant-time lookup to determine for u € I,
which out-neighbors v’ € Npg(u) are also in I7; these o’
form I5. Past the second level, we relabel vertices in the
induced subgraph as mentioned above and only require the
O(«) array for intersections. Thus, we use linear space per
processor for the second level of recursion only.

In total, the space complexity for intersecting in the
second level of recursion and storing the induced subgraph
on Npg(v) dominates, and so we use O(max(n, o)) extra
space per processor.

3.5 Comparison to KCLIST Some of the practical opti-
mizations for ARB-COUNT overlap with those in KCLIST [15].
Specifically, KCLIST also stores the induced subgraph on
Npe(v), offers node and edge parallelism options, and uses
a size n array to mark vertices to perform intersections. How-
ever, ARB-COUNT is fundamentally different due to the low
out-degree orientation and because it does not inherently re-
quire labels or subgraphs stored between recursive levels.

Notably, the induced subgraph that ARB-COUNT com-
putes at the first level of recursion takes O(a?) space per
processor because of the low out-degree orientation, whereas
KCLIST takes O(n?) space per processor for their induced
subgraph. Then, ARB-COUNT further saves on space and com-
putation by maintaining only the subgraph computed from
the first level of recursion to intersect with vertices in later
recursive levels, which is solely possible due to the low out-
degree orientation, whereas KCLIST necessarily recomputes
an induced subgraph on every recursive level. As a result,
ARB-COUNT is also able to compute intersections using only
an array of size O(«) per recursive level, whereas KCLIST
requires an array of size O(n) per level.

In total, KCLIST uses O(n?) extra space per processor,
whereas ARB-COUNT uses O(max(n, a?)) extra space per
processor. Compared to KCLIST, ARB-COUNT has lower
memory footprint, span, and constant factors in the work,
which allow us to achieve speedups between 1.31-9.88x over
KCLIST’s best parallel runtimes and which allows us to scale
to the largest publicly-available graphs, considering the best
optimizations, as shown in Figure 1. Note that for large k£ on
large graphs, the multiplicative slowdown decreases because
KCLIST incurs a large preprocessing overhead due to the large
induced subgraph computed in the first recursive level, which
is mitigated by higher counting times as k increases. These
results are discussed further in Section 5.1.

4 k-Clique Densest Subgraph

We present our new work-efficient parallel algorithms for
approximating the k-clique densest subgraph problem, using
the vertex peeling algorithm.

4.1 Vertex Peeling

Algorithm. Algorithm 2 presents ARB-PEEL, our paral-
lel algorithm for vertex peeling, which also gives a 1/k-
approximate to the k-clique densest subgraph problem. An
example of this peeling process is shown in Figure 2. The
algorithm uses ARB-COUNT to compute the initial per-vertex
k-clique counts (C'), which are given as an argument to the
algorithm. The algorithm first initializes a parallel bucketing
structure that stores buckets containing sets of vertices, where
all vertices in the same bucket have the same k-clique count
(Line 11). Then, while not all of the vertices have been peeled,
it repeatedly extracts the vertices with the lowest induced k-
clique count (Line 14), updates the count of the number of
peeled vertices (Line 15), and updates the k-clique counts of
vertices that are not yet finished that participate in k-cliques
with the peeled vertices (Line 16). UPDATE also returns the
number of k-cliques that were removed as well as the set
of vertices whose k-clique counts changed. We then update
the buckets of the vertices whose k-clique counts changed
(Line 17). Lastly, the algorithm checks if the new induced sub-
graph has higher density than the current maximum density,

Copyright © 2021 by SIAM

139 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Algorithm 2 Parallel vertex peeling algorithm

1: procedure UPDATE(G = (V, E), k, DG, C, A)

2 Initialize 71" to store k-clique counts per vertex in A

3: parfor v in A do

4 I <+ {u | u € Ng(v) and u has not been previously peeled or
u€ Aandu € Npg(v) } > To avoid double counting

5 (t,U) < REC-COUNT-CLIQUES-V(DG, I,k —1,C)

6 Store t' in T’

7 t <— REDUCE-ADD(T)

8: return (¢, U)

9

0

> Sum k-clique counts in T°

: procedure ARB-PEEL(G = (V, E), k, DG, C, t)
> C'is an array of k-clique counts per vertex and ¢ is the total # of
k-cliques
11: Let B be a bucketing structure mapping V' to buckets based on # of
k-cliques
12: d* «—t/|V],f+<0
13: while f < |V]|do

14: A < vertices in next bucket in B (to be peeled)

15: f—f+14

16: (¢',U) +UPDATE(G, k, DG, C, A) > Update # of k-cliques
17: Update the buckets of vertices in U, peeling A

18: ift’/(JV| — f) > d* then

19: &« t/(|V] - f) > Update maximum density

20: return d*

Density: 0.5 Density: 0.6
Figure 2: An example of our peeling algorithm ARB-PEEL for k = 4.
Each vertex is labeled with its current 4-clique count. At each step,
we peel the vertices with the minimum 4-clique count, highlighted in
red, and then recompute the 4-clique counts on the unpeeled vertices.
If there are multiple vertices with the same minimum 4-clique count,
we peel them in parallel. Each step is labeled with the k-clique
density of the remaining graph.

Density: 0.625 Density: 0.25

and if so updates the maximum density (Lines 18—19).

The UPDATE procedure (Line 1-8) performs the bulk of
the work in the algorithm. It takes each vertex in A (vertices
to be peeled), builds its induced neighborhood, and counts
all (k — 1)-cliques in this neighborhood using ARB-COUNT,
as these (k — 1)-cliques together with a peeled vertex form
a k-clique (Line 5). On Line 4, we avoid double counting
k-cliques by ignoring vertices already peeled in prior rounds,
and for vertices being peeled in the same round, we first mark
them in an auxiliary array and break ties based on their rank
(i.e., for a k-clique involving multiple vertices being peeled,
the highest ranked vertex is responsible for counting it).

This algorithm computes a density that approximates the
density of the k-clique densest subgraph. A subgraph with
this density can be returned by rerunning the algorithm.

In the full version of the paper, we prove that ARB-PEEL
correctly generates a subgraph with the same approxima-
tion guarantees of Tsourakakis’ sequential k-clique densest
subgraph algorithm [53], and the following bounds on the

complexity of ARB-PEEL. pi(G) is defined to be the k-clique
peeling complexity of GG, or the number of rounds needed to
peel the graph where in each round, all vertices with the mini-
mum k-clique count are peeled. Note that pi(G) < n. The
proof requires applying bounds from the batch-parallel Fi-
bonacci heap [49] and using the Nash-Williams theorem [36].

THEOREM 4.1. ARB-PEEL computes a 1/k-approximation
to the k-clique densest subgraph problem in O(ma*=2 +
pr(G)logn) expected amortized work, O(pr(G)klogn +
log? n) span whp, and O(m + Pa) space, where py,(G) is
the k-clique peeling complexity of G.

Discussion. To the best of our knowledge, Tsourakakis
presents the first sequential algorithm for this problem,
although the work bound is worse than ours in most cases.
Sariyuce et al. [46] present a sequential algorithm for a more
general problem, but in the case that is equivalent to k-
clique peeling, their fastest algorithm runs in O(R(G, k))
work and O(C(G, k)) space, where R(G, k) is the cost of
an arbitrary k-clique counting algorithm and C(G, k) is the
number of k-cliques in G. They provide another algorithm
which runs in O(m + n) space, but requires O(3", d(v)*)
work, which could be as high as O(n*). Our sequential
bounds are asymptotically better than theirs in terms of either
work or space, except in the highly degenerate case where
C(G, k) = o(plogn). Sariyuce et al. [47] also give a parallel
algorithm, which is similarly not work-efficient.

4.2 Approximate Vertex Peeling We present a 1/(k(1 +
€))-approximate algorithm ARB-APPROX-PEEL for the k-
clique densest subgraph problem based on approximate
peeling. The algorithm is similar to ARB-PEEL, but in
each round, it sets a threshold t = k(1 + €)7(S) where
7(5) is the density of the current subgraph S, and removes
all vertices with at most 7 k-cliques. Tsourakakis [53]
describes this procedure and shows that it computes a
1/(k(1 + €))-approximation of the k-clique densest subgraph
in O(logn) rounds. Although the round complexity in
Tsourakakis’ implementation is low, no non-trivial bound
was known for its work. ARB-APPROX-PEEL is similar to
Tsourakakis’ algorithm, except we utilize the fast, parallel
k-clique counting methods introduced in this paper. We prove
the following in the full version of the paper.

THEOREM 4.2. ARB-APPROX-PEEL computes a 1/(k(1 +
€))-approximation to the k-clique densest subgraph and
runs in O(ma*=2) work and O(klog®n) span whp, and
O(m + Pa) space.

Note that the span for ARB-APPROX-PEEL matches or
improves upon that for ARB-PEEL; notably, when py(G) =
o(logn), then ARB-APPROX-PEEL takes O(py(G)klogn +
log? n) span whp, which is better than what is stated in
Theorem 4.2.

Copyright © 2021 by SIAM

140 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

n m
com-dblp [31]. 317,080 1,049,866
com-orkut [31]. 3,072,441 117,185,083

com-friendster [31]. 65,608,366 1.806 x 10°

com-lj [31]. 3,997,962 34,681,189

ClueWeb [14] 978,408,098 7.474 x 10™

Hyperlink2014 [34] 1.725 x 107 1.241 x 10™

Hyperlink2012 [34] 3.564 x 10° 2.258 x 10"
Table 1: Sizes of our input graphs. ClueWeb, Hyperlink2012, and
Hyperlink2014 are symmetrized to be undirected graphs, and are
stored and read in a compressed format from the Graph Based
Benchmark Suite (GBBS) [17].

com-orkut com-friendster
100 - AR]?é(]i?Sl;'rNT 0 < ARB-COUNT
e ~= KCLIST
80 T Pl 5 = Weo
60 -+ BINARYJOIN 0 -+ BINARYJOIN

Slowdown over ARB-COUNT
Slowdown over ARB-COUNT

45 6 7 8 9 1011 4
I3

o
-
3
©|

%
Figure 3: Multiplicative slowdowns of various parallel k-clique
counting implementations, compared to ARB-COUNT, on com-orkut
and com-friendster. The best runtimes for each implementation
were used, and we have excluded any running time over 5 hours for
WCO and BINARYJOIN. Note that PIVOTER was unable to perform
k-clique counting on com-friendster due to memory limitations, and
as such is not included in this figure.

4.3 Practical Optimizations We use the same optimiza-
tions described in Section 3.4 for updating k-clique counts.
Also, we use the bucketing structure given by Dhulipala et
al. [16], which keeps buckets relating k-clique counts to ver-
tices, but only materializes a constant number of the lowest
buckets. If large ranges of buckets contain no vertices, this
structure skips over such ranges, allowing for fast retrieval of
vertices to be peeled in every round using linear space.

5 Experiments

Environment. We run most of our experiments on a machine
with 30 cores (with two-way hyper-threading), with 3.8GHz
Intel Xeon Scalable (Cascade Lake) processors and 240 GiB
of main memory. For our large compressed graphs, we use a
machine with 80 cores (with two-way hyper-threading), with
2.6GHz Intel Xeon E7 (Broadwell E7) processors and 3844
GiB of main memory. We compile our programs with g++
(version 7.3.1) using the —03 flag. We use OpenMP for our k-
clique counting runtimes, and we use a lightweight scheduler
called Homemade for our k-clique peeling runtimes [7]. We
terminate any experiment that takes over 5 hours, except for
experiments on the large compressed graphs.

Graph Inputs. We test our algorithms on real-world graphs
from the Stanford Network Analysis Project (SNAP) [31],
CMU’s Lemur project [14], and the WebDataCommons
dataset [34]. The details of the graphs are in Table 1, and we
show additional statistics in the full version of the paper.

Algorithm Implementations. We test different orientations
for our counting and peeling algorithms, including the
Goodrich-Pszona and Barenboim-Elkin orientations from
Section 3.1, with ¢ = 1. We also test other orientations that
do not give work-efficient and polylogarithmic-span bounds,
but are fast in practice, including the orientation given by
ranking vertices by non-decreasing degree, the orientation
given by the k-core ordering [33], and the orientation given
by the original ordering of vertices in the graph.

Moreover, we compare our algorithms against
KCLIST [15], which contains state-of-the-art parallel and
sequential k-clique counting algorithms, and parallel k-clique
peeling implementations. KCLIST additionally includes a
parallel approximate k-clique peeling implementation. We
include a simple modification to their k-clique counting
code to support faster k-clique counting, where we simply
return the number of k-cliques instead of iterating over each
k-clique in the final level of recursion. KCLIST also offers
the option of node or edge parallelism, but only offers a
k-core ordering to orient the input graphs. Note that KCLIST
does not offer a choice of orientation.

We additionally compare our counting algorithms to
Jain and Seshadhri’s PIVOTER algorithm [28], Mhedhbi and
Salihoglu’s worst-case optimal join algorithm (WCO) [35],
Lai er al’s implementation of a binary join algorithm
(BINARYJOIN) [30], and Pinar er al.’s ESCAPE algo-
rithm [41]. Note that PIVOTER is designed for counting all
cliques, and the latter three algorithms are designed for gen-
eral subgraph counting. Finally, we compare our approximate
k-clique counting algorithm to Bressan et al.’s MOTIVO
algorithm for approximate subgraph counting [11], which is
more general. For k-clique peeling, we compare to Fang et
al.’s COREAPP algorithm [21] and Tsourakakis’s [53] trian-
gle densest subgraph implementation.

5.1 Counting Results Table 2 shows the best parallel run-
times for k-clique counting over the SNAP datasets, from
ARB-COUNT, KCLIST, PIVOTER, WCO, and BINARYJOIN,
considering different orientations for ARB-COUNT, and con-
sidering node versus edge parallelism for ARB-COUNT and
for KCLIST. We also show the best sequential runtimes from
ARB-COUNT. We do not include triangle counting results, be-
cause for triangle counting, our k-clique counting algorithm
becomes precisely Shun and Tangwongsan’s [51] triangle
counting algorithm. Furthermore, we performed experiments
on ESCAPE by isolating their 4- and 5-clique counting code,
but KCLIST consistently outperforms ESCAPE; thus, we
have not included ESCAPE in Table 2. Figure 3 shows the
slowdowns of the parallel implementations over ARB-COUNT
on com-orkut and com-friendster.

We also obtain parallel runtimes for k& = 4 on large
compressed graphs, using degree ordering and node paral-
lelism, on a 80-core machine with hyper-threading; note that

Copyright © 2021 by SIAM

141 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

k=4 k=5 k=6 k=717 k=8 k=9 k=10 k=11

com- ARB-COUNT Tgo 0.10 0.13 0.30 2.05¢ 24.06¢ 281.39¢ 2981.74*¢ > 5 hrs
dblp ARB-COUNT T} 1.57 1.71 5.58 64.27 837.82 9913.01 > 5 hrs > 5 hrs
KCLIST Teo 0.16 0.17 0.43¢ 4.28° 55.78¢ 640.48° 6895.16° > 5 hrs
PIVOTER Tgo 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88
WCO Tgo 0.19 0.37 3.84 66.06 1126.69 9738.00 > 5 hrs > 5 hrs
BINARYJOIN Tgo 0.12 0.42 2.08 39.29 627.48 7282.79 > 5 hrs > 5 hrs
com- ARB-COUNT Tgo 3.10 4.94 12.57 42.09 150.87° 584.39° 2315.89° 8843.51°¢
orkut ARB-COUNT T} 79.62 158.74 452.47 1571.49 5882.83 > 5 hrs > 5 hrs > 5 hrs
KCLIST Tgo 25.27 27.40 42.23 91.67°¢ 293.92¢ 1147.50¢ 4666.03¢ > 5 hrs
PIVOTER Tg0 292.35 385.04 462.05 517.29 559.75 598.88 647.18 647.18
WCO Tso 10.71 50.51 267.47 1398.89 6026.99 > 5 hrs > 5 hrs > 5 hrs
BINARYJOIN T§o 12.74 29.09 93.06 413.50 1938.06 9732.86 > 5 hrs > 5 hrs
com- ARB-COUNT 750 109.46 111.75 115.52 139.98 300.62 1796.12¢ 16836.41°¢ > 5 hrs
friendster ARB-COUNT T} 2127.79 232848 2723.53 3815.24 8165.76 > 5 hrs > 5 hrs > 5 hrs
KCLIST Tgo 1079.22 110428 1117.31 1162.84 1576.61¢ 4449.81° > 5 hrs > 5 hrs
WCO Tso 201.82 379.59 1001.52 4229.20 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
BINARYJOIN T§o 163.90 212.53 221.93 632.40 4532.60 > 5 hrs > 5 hrs > 5 hrs
com-lj ARB-COUNT Tgo 1.77 7.52 258.46 10733.21 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
ARB-COUNT T1 33.04 231.15 8956.53 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
KCLIST 750 7.53 22.13 647.77¢ > 5hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
PIVOTER Tgo 268.06 147599 7816.13 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
WCO Tso 6.62 80.78 344870 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
BINARYJOIN Tio 4.10 42.32 1816.87 > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs

Table 2: Best runtimes in seconds for our parallel (7o) and single-threaded (77) k-clique counting algorithm (ARB-COUNT), as well as the
best parallel runtimes from KCLIST [15], PIVOTER [28], WCO [35], and BINARYJOIN [30]. Note that we cannot report runtimes from
PIVOTER for the com-friendster graph, because for all k£, PIVOTER runs out of memory and is unable to complete k-clique counting. The
fastest runtimes for each experiment are bold and in green. All runtimes are from tests in the same computing environment, and include
time spent preprocessing and counting (but not time spent loading the graph). For our parallel and serial runtimes and KCLIST, we have
chosen the fastest orientations and choice between node and edge parallelism per experiment. For the runtimes from ARB-COUNT, we
have noted the orientation used; ° refers to the Goodrich-Pszona orientation, * refers to the orientation given by k-core, and no superscript
refers to the orientation given by degree ordering. For the runtimes from ARB-COUNT and KCLIST, we have noted whether node or edge
parallelism was used; © refers to edge parallelism, and no superscript refers to node parallelism.

k=3 k=4 k=5 k=6 k=17 k=8 k=9

com-dblp ARB-PEEL 19 0.14 0.21 0.23° 1.29° 18.77 276.69° 3487.09°
ARB-PEEL T} 0.27 0.37 1.378 17.99 258.24 3373.05 > 5 hrs
KCLIST T 0.19 0.25 1.10 14.98 221.98 2955.87 > 5 hrs
COREAPP T} 0.10 0.23 1.09 12.21 244.81 7674.55 > 5 hrs

com-orkut ARB-PEEL T 33.15° 76.91 221.28 721.73 2466.99° 9062.99° > 5hrs
ARB-PEEL T} 130.04 184.28 422.20 1032.19 3123.72 > 5 hrs > 5 hrs
KCLIST T 87.71 218.94 587.24 2029.43 7414.77 > 5 hrs > 5 hrs
COREAPP T} 113.27 546.13 2460.65 16320.24 > 5 hrs > 5 hrs > 5 hrs

com-friendster ARB-PEEL Tgg 371.52 1747.92 4144.96 6870.06 > 5 hrs > 5 hrs > 5 hrs
ARB-PEEL T} 3297.14 11540.73 1293228 1411295 > 5hrs > 5 hrs > 5 hrs

KCLIST T} 2225770 3216.92 4325.73 6933.32 > 5 hrs > 5 hrs > 5 hrs
COREAPP T} >5hrs > 5hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs > 5 hrs
com-lj ARB-PEEL 159 6.46 26.36 324.77 12920.08 > 5 hrs > 5 hrs > 5 hrs
ARB-PEEL T} 17.74 70.12 822.10 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
KCLIST T} 16.64 42.16 839.13 > 5 hrs > 5 hrs > 5 hrs > 5 hrs
COREAPP T} 7.20 27.53 1595.04 > 5 hrs > 5 hrs > 5 hrs > 5 hrs

Table 3: Best runtimes in seconds for our parallel and single-threaded k-clique peeling algorithm (ARB-PEEL), as well as the best sequential
runtimes from previous work (KCLIST and COREAPP) [15, 21]. KCLIST and COREAPP do not have parallel implementations of k-clique
peeling; they are only serial. The fastest runtimes for each experiment are bolded and in green. All runtimes are from tests in the same
computing environment, and include only time spent peeling. For our parallel runtimes, we have chosen the fastest orientations per
experiment, while for our serial runtimes, we have fixed the degree orientation. For the parallel runtimes from ARB-PEEL, we have noted
the orientation used; ° refers to the Goodrich-Pszona orientation, and no superscript refers to the orientation given by degree ordering.

Copyright © 2021 by SIAM
142 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

KCLIST, PIVOTER, WCO, and BINARYJOIN cannot handle
these graphs. The runtimes are: 5824.76 seconds on ClueWeb
with 74 billion edges (< 2 hours), 12945.25 seconds on Hy-
perlink2014 with over one hundred billion edges (< 4 hours),
and 161418.89 seconds on Hyperlink2012 with over two hun-
dred billion edges (< 45 hours). As far as we know, these are
the first results for 4-clique counting for graphs of this scale.

Overall, on 30 cores, ARB-COUNT obtains speedups
between 1.31-9.88x over KCLIST, between 1.02-46.83x over
WCO, and between 1.20-28.31x over BINARYJOIN. Our
largest speedups are for large graphs (e.g., com-friendster)
and for moderate values of k, because we obtain more
parallelism relative to the necessary work.

Comparing our parallel runtimes to KCLIST’s serial run-
times (which were faster than those of WCO and BINA-
RYJOIN), we obtain between 2.26—-79.20x speedups, and con-
sidering only parallel runtimes over 0.7 seconds, we obtain
between 16.32-79.20x speedups. By virtue of our orienta-
tions, our single-threaded runtimes are often faster than the se-
rial runtimes of the other implementations, with up to 23.17x
speedups particularly for large graphs and large values of k.
Our self-relative parallel speedups are between 13.23-38.99x.

We also compared with PIVOTER [28], which is designed
for counting all cliques, but can be truncated for fixed k.
Their algorithm is able to count all cliques for com-dblp and
com-orkut in under 5 hours. However, their algorithm is not
theoretically-efficient for fixed k, taking O(na?3/3) work,
and as such their parallel implementation is up to 196.28x
slower compared to parallel ARB-COUNT, and their serial
implementation is up to 184.76x slower compared to single-
threaded ARB-COUNT. These slowdowns are particularly
prominent for small k. Also, PIVOTER’s truncated algorithm
does not give significant speedups over their full algorithm,
and PIVOTER requires significant space and runs out of
memory for large graphs; it is unable to compute k-clique
counts at all for £ > 4 on com-friendster.

Of the different orientations, using degree ordering is
generally the fastest for small k because it requires little
overhead and gives sufficiently low out-degrees. However,
for larger k, this overhead is less significant compared to the
time for counting and other orderings result in faster counting.
The cutoff for this switch occurs generally at £ = 8. Note
that the Barenboim-Elkin and original orientations are never
the fastest orientations. The slowness of the former is because
it gives a lower-granularity ordering, since it does not order
between vertices deleted in a given round. We found that
the self-relative speedups of orienting the graph alone were
between 6.69—19.82x across all orientations, the larger of
which were found in large graphs. We discuss preprocessing
overheads in more detail in the full version of the paper.

Moreover, in both ARB-COUNT and KCLIST, node
parallelism is faster on small k, while edge parallelism is
faster on large k. This is because parallelizing the first level

of recursion is sufficient for small k, and edge parallelism
introduces greater parallel overhead. For large k, there is
more work, which edge parallelism balances better, and the
additional parallel overhead is mitigated by the balancing.
The cutoff for when edge parallelism is generally faster than
node parallelism occurs around k£ = 8. We provide more
detailed analysis in the full version of the paper.

We also evaluated our approximate counting algorithm
on com-orkut and com-friendster, and compared to MO-
TIVO [11]. We defer a detailed discussion to the full version
of the paper. Overall, we obtain significant speedups over
exact k-clique counting and have low error rates over the
exact global counts, with between 5.32-2189.11x speedups
over exact counting and between 0.42-5.05% error. We also
see 92.71-177.29x speedups over MOTIVO for 4-clique and
5-clique approximate counting on com-orkut.

5.2 Peeling Results Table 3 shows the best parallel and
sequential runtimes for k-clique peeling on SNAP datasets for
ARB-PEEL, KCLIST, and COREAPP (KCLIST and COREAPP
only implement sequential algorithms).

Overall, our parallel implementation obtains between
1.01-11.83x speedups over KCLIST’s serial runtimes. The
higher speedups occur in graphs that require proportionally
fewer parallel peeling rounds pj, compared to its size; notably,
com-dblp requires few parallel peeling rounds, and we see
between 4.78—11.83x speedups over KCLIST on com-dblp
for £ > 5. As such, our parallel speedups are constrained
by pr. Similarly, we obtain up to 53.53x speedup over
COREAPP’s serial runtimes. COREAPP outperforms our
parallel implementation on triangle peeling for com-dblp,
again owing to the proportionally fewer parallel peeling
rounds in these cases. ARB-PEEL achieves self-relative
parallel speedups between 1.19-13.76x. Our single-threaded
runtimes are generally slower than KCLIST’s and COREAPP’s
sequential runtimes owing to the parallel overhead necessary
to aggregate k-clique counting updates between rounds. In
the full version of the paper, we present a further analysis of
the distributions of number of vertices peeled per round.

Moreover, the edge density of the approximate k-clique
densest subgraph found by ARB-PEEL converges towards
1 for £ > 3, and as such, ARB-PEEL is able to efficiently
find large subgraphs that approach cliques. In particular, the
k-clique densest subgraph that ARB-PEEL finds on com-lj
contains 386 vertices with an edge density of 0.992. Also,
the k-clique densest subgraph that ARB-PEEL finds on com-
friendster contains 141 vertices with an edge density of 0.993.

We also tested Tsourakakis’s [53] triangle densest sub-
graph implementation; however, it requires too much memory
to run for com-orkut, com-friendster, and com-1j on our ma-
chines. It completes 3-clique peeling on com-dblp in 0.86
seconds, while our parallel ARB-PEEL takes 0.27 seconds.

Finally, we compared our parallel approximate ARB-

Copyright © 2021 by SIAM

143 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

APPROX-PEEL to KCLIST’s parallel approximate algorithm
on com-orkut and com-friendster. ARB-APPROX-PEEL is up
to 29.59x faster than KCLIST for large k, and we see between
5.95-80.83% error on the maximum k-clique density obtained
compared to the density obtained from k-clique peeling.

6 Related Work

Theory. A trivial algorithm can compute all k-cliques in
O(n*) work. Using degree-based thresholding enables clique
counting in O(m¥*/?) work, which is asymptotically faster
for sparse graphs. Chiba and Nishizeki give an algorithm
with improved complexity for sparse graphs, in which all
k-cliques can be found in O(ma*~2) work [12], where « is
the arboricity of the graph.

For arbitrary graphs, the fastest theoretical algorithm
uses matrix multiplication, and counts 3/ cliques in O(n!~)
time where w is the matrix multiplication exponent [37].
The k-clique problem is a canonical hard problem in the
FPT literature, and is known to be W/[1]-complete when
parametrized by k [19]. We refer the reader to [57], which
surveys other theoretical algorithms for this problem.

Recent work by Dhulipala et al. [18] studied k-clique
counting in the parallel batch-dynamic setting. One of their
algorithms calls our ARB-COUNT as a subroutine.

Practice. The special case of counting and listing triangles
(k = 3) has received a huge amount of attention over
the past two decades (e.g., [55, 54, 51, 39], among many
others). Finocchi et al. [23] present parallel k-clique counting
algorithms for MapReduce. Jain and Seshadri [27] provide
algorithms for estimating k-clique counts. The state-of-the-
art k-clique counting and listing algorithm is KCLIST by
Danisch et al. [15], which is based on the Chiba-Nishizeki
algorithm, but uses the k-core ordering (which is not parallel)
to rank vertices. It achieves O(ma*~2) work, but does
not have polylogarithmic span due to the ordering and only
parallelizing one or two levels of recursion. Concurrent with
our work, Li et al. [32] present an ordering heuristic for k-
clique counting based on graph coloring, which they show
improves upon KCLIST in practice. It would be interesting in
the future to study their heuristic applied to our algorithm.

Additionally, many algorithms have been designed for
finding 4- and 5-vertex subgraphs (e.g., [41, 40, 2, 58, 44]) as
well as estimating larger subgraph counts (e.g., [10, 11]),
and these algorithms can be used for counting exact or
approximate k-clique counting as a special case. Worst-case
optimal join algorithms from the database literature [1, 38,
35, 30] can also be used for k-clique listing and counting as a
special case, and would require O(m*/?) work.

Very recently, Jain and Seshadri [28] present a sequential
and a vertex parallel PIVOTER algorithm for counting all
cliques in a graph. However, their algorithm cannot be used
for k-clique listing as they avoid processing all cliques, and
requires much more than O(ma*~2) work in the worst case.

Low Out-degree Orientations. A canonical technique in
the graph algorithms literature on clique counting, listing,
and related tasks [20, 28, 41] is the use of a low out-degree
orientation. Matula and Beck [33] show that k-core gives
an O(«) orientation. However, the problem of computing
this ordering is P-complete [3], and thus unlikely to have
polylogarithmic span. More recent work in the distributed
and external-memory literature has shown that such orderings
can be efficiently computed in these settings. Barenboim
and Elkin give a distributed algorithm that finds an O(«)-
orientation in O(log n) rounds [5]. Goodrich and Pszona give
a similar algorithm for external-memory [25]. Concurrent
with our work, Besta et al. [6] present a parallel algorithm for
generating an O(«a)-orientation in O(m) work and O (log? n)
span, which they use for parallel graph coloring.

Vertex Peeling and k-clique Densest Subgraph. An im-
portant application of k-clique counting is its use as a sub-
routine in computing generalizations of approximate densest
subgraph. In this paper, we study parallel algorithms for k-
clique densest subgraph, a generalization of the densest sub-
graph problem introduced by Tsourakakis [53]. Tsourakakis
presents a sequential 1/k-approximation algorithm based on
iteratively peeling the vertex with minimum k-clique-count,
and a parallel 1/(k(1 + €))-approximation algorithm based
on a parallel densest subgraph algorithm of Bahmani et al. [4].
Sun et al. [52] give additional approximation algorithms that
converge to produce the exact solution over further iterations;
these algorithms are more sophisticated and demonstrate the
tradeoff between running times and relative errors. Recently,
Fang et al. [21] propose algorithms for finding the largest
(j, ¥)-core of a graph, or the largest subgraph such that all
vertices have at least j subgraphs ¥ incident on them. They
propose an algorithm for ¥ being a k-clique that peels vertices
with larger clique counts first and show that their algorithm
gives a 1/k-approximation to the k-clique densest subgraph.

7 Conclusion

We presented new work-efficient parallel algorithms for k-
clique counting and peeling with low span. We showed
that our implementations achieve good parallel speedups
and significantly outperform state-of-the-art. A direction for
future work is designing work-efficient parallel algorithms for
the more general (7, s)-nucleus decomposition problem [48].

Acknowledgments

This research was supported by NSF Graduate Research
Fellowship #1122374, DOE Early Career Award #DE-
SC0018947, NSF CAREER Award #CCF-1845763, Google
Faculty Research Award, Google Research Scholar Award,
DARPA SDH Award #HR0011-18-3-0007, and Applications
Driving Architectures (ADA) Research Center, a JUMP Cen-
ter co-sponsored by SRC and DARPA.

Copyright © 2021 by SIAM

144 Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

References

[1] C. R. Aberger, A. Lamb, S. Tu, A. Notzli, K. Olukotun,
and C. Ré. EmptyHeaded: A relational engine for graph
processing. ACM Trans. Database Syst., 42(4), 2017.

[2] N. K. Ahmed, J. Neville, R. A. Rossi, N. G. Duffield, and T. L.
Willke. Graphlet decomposition: framework, algorithms, and
applications. Knowl. Inf. Syst., 50(3), 2017.

[3] R. Anderson and E. W. Mayr. A P-complete problem and
approximations to it. Technical report, 1984.

[4] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph
in streaming and MapReduce. Proc. VLDB Endow., 5(5), Jan.
2012.

[5] L. Barenboim and M. Elkin. Sublogarithmic distributed MIS
algorithm for sparse graphs using Nash-Williams decomposi-
tion. Distributed Computing, 22(5), 2010.

[6] M. Besta, A. Carigiet, K. Janda, Z. Vonarburg-Shmaria,
L. Gianinazzi, and T. Hoefler. High-performance parallel
graph coloring with strong guarantees on work, depth, and
quality. In ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis,
2020.

[7]1 G. E. Blelloch, D. Anderson, and L. Dhulipala. Brief
announcement: ParlayLib — a toolkit for parallel algorithms
on shared-memory multicore machines. In ACM Symposium
on Parallelism in Algorithms and Architectures, 2020.

[8] R.D. Blumofe and C. E. Leiserson. Space-efficient scheduling
of multithreaded computations. SIAM J. Comput., 27(1), 1998.

[9] R. P. Brent. The parallel evaluation of general arithmetic
expressions. J. ACM, 21(2), Apr. 1974.

[10] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Pan-
conesi. Motif counting beyond five nodes. ACM Trans. Knowl.
Discov. Data, 12(4), 2018.

[11] M. Bressan, S. Leucci, and A. Panconesi. Motivo: Fast motif
counting via succinct color coding and adaptive sampling.
Proc. VLDB Endow., 12(11), July 2019.

[12] N. Chiba and T. Nishizeki. Arboricity and subgraph listing
algorithms. SIAM J. Comput., 14(1), Feb. 1985.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[14] B. Croft and J. Callan. The Lemur project. https://www.
lemurproject.org/, 2016.

[15] M. Danisch, O. Balalau, and M. Sozio. Listing k-cliques in
sparse real-world graphs*. In International Conference on
World Wide Web, 2018.

[16] L. Dhulipala, G. Blelloch, and J. Shun. Julienne: A framework
for parallel graph algorithms using work-efficient bucketing.
In ACM Symposium on Parallelism in Algorithms and Archi-
tectures, 2017.

[17] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically ef-
ficient parallel graph algorithms can be fast and scalable. In
ACM Symposium on Parallelism in Algorithms and Architec-
tures, 2018.

[18] L. Dhulipala, Q. C. Liu, J. Shun, and S. Yu. Parallel
batch-dynamic k-clique counting. In SIAM Symposium on
Algorithmic Principles of Computer Systems, 2021.

[19] R. G.Downey and M. R. Fellows. Fixed-parameter tractability

145

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

and completeness I: Basic results. SIAM J. Comput., 24(4),
1995.

D. Eppstein, M. Loffler, and D. Strash. Listing all maximal
cliques in sparse graphs in near-optimal time. In International
Symposium on Algorithms and Computation, 2010.

Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and X. Lin.
Efficient algorithms for densest subgraph discovery. Proc.
VLDB Endow., 12(11), July 2019.

T. Feder and R. Motwani. Clique partitions, graph compres-
sion and speeding-up algorithms. Journal of Computer and
System Sciences, 51(2), 1995.

I. Finocchi, M. Finocchi, and E. G. Fusco. Clique counting in
MapReduce: Algorithms and experiments. J. Exp. Algorith-
mics, 20, Oct. 2015.

J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly
constant time parallel algorithms. In IEEE Symposium on
Foundations of Computer Science, 1991.

M. T. Goodrich and P. Pszona. External-memory network
analysis algorithms for naturally sparse graphs. In European
Symposium on Algorithms, 2011.

E. Gregori, L. Lenzini, and S. Mainardi. Parallel k-clique
community detection on large-scale networks. IEEE Trans.
Parallel Distrib. Syst., 24(8), Aug 2013.

S. Jain and C. Seshadhri. A fast and provable method
for estimating clique counts using Turdn’s theorem. In
International Conference on World Wide Web, 2017.

S. Jain and C. Seshadhri. The power of pivoting for exact
clique counting. In ACM International Conference on Web
Search and Data Mining, 2020.

J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley
Professional, 1992.

L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao,
X. Lin, L. Qin, W. Zhang, Y. Zhang, Z. Qian, and J. Zhou.
Distributed subgraph matching on timely dataflow. Proc.
VLDB Endow., 12(10), June 2019.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/data,
2019.

R.-H. Li, S. Gao, L. Qin, G. Wang, W. Yang, and J. X. Yu.
Ordering heuristics for k-clique listing. Proc. VLDB Endow.,
13(12), July 2020.

D. W. Matula and L. L. Beck. Smallest-last ordering and
clustering and graph coloring algorithms. J. ACM, 30(3), July
1983.

R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. The graph
structure in the web—analyzed on different aggregation levels.
J. Web Sci., 1(1), 2015.

A. Mhedhbi and S. Salihoglu. Optimizing subgraph queries by
combining binary and worst-case optimal joins. Proc. VLDB
Endow., 12(11), July 2019.

C. S.J. Nash-Williams. Edge-disjoint spanning trees of finite
graphs. Journal of the London Mathematical Society, 1(1),
1961.

J. Nesetfil and S. Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Car-
olinae, 026(2), 1985.

H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal
join algorithms. J. ACM, 65(3), Mar. 2018.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/29/21 to 64.112.177.6. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

(39]

(40]

(41]

(42]

[43]

(44]

[45]

[46]

(47]

(48]

[49]

(501

[51]

(52]

(53]
[54]

[55]

[56]

[57]

(58]

R. Pagh and C. E. Tsourakakis. Colorful triangle counting and
a MapReduce implementation. Inf. Process. Lett., 112(7), Mar.
2012.

H.-M. Park, F. Silvestri, R. Pagh, C.-W. Chung, S.-H. Myaeng,
and U. Kang. Enumerating trillion subgraphs on distributed
systems. ACM Trans. Knowl. Discov. Data, 12(6), Oct. 2018.
A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE: Efficiently
counting all 5-vertex subgraphs. In International Conference
on World Wide Web, 2017.

S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic
time randomized parallel sorting algorithms. SIAM J. Comput.,
18(3), June 1989.

R. A. Rossi, N. K. Ahmed, and E. Koh. Higher-order network
representation learning. In International Conference on World
Wide Web, 2018.

R. A. Rossi, R. Zhou, and N. K. Ahmed. Estimation of
graphlet counts in massive networks. [EEE Trans. Neural
Netw. Learning Syst., 30(1), 2019.

S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura. Butterfly
counting in bipartite networks. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2018.
A. E. Sariyiice and A. Pinar. Peeling bipartite networks for
dense subgraph discovery. In ACM International Conference
on Web Search and Data Mining, 2018.

A. E. Sariyiice, C. Seshadhri, and A. Pinar. Local algorithms
for hierarchical dense subgraph discovery. Proc. VLDB
Endow., 12(1), Sept. 2018.

A. E. Sariyiice, C. Seshadhri, A. Pinar, and U. V. Catalyiirek.
Nucleus decompositions for identifying hierarchy of dense
subgraphs. ACM Trans. Web, 11(3), July 2017.

J. Shi and J. Shun. Parallel algorithms for butterfly compu-
tations. In SIAM Symposium on Algorithmic Principles of
Computer Systems, 2020.

J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster:
Parallel processing of compressed graphs with Ligra+. In
IEEE Data Compression Conference, 2015.

J. Shun and K. Tangwongsan. Multicore triangle computations
without tuning. In /EEE International Conference on Data
Engineering, 2015.

B. Sun, M. Danisch, T.-H. H. Chan, and M. Sozio. KClist++:
A simple algorithm for finding k-clique densest subgraphs in
large graphs. Proc. VLDB Endow., 13(10), June 2020.

C. Tsourakakis. The k-clique densest subgraph problem. In
International Conference on World Wide Web, 2015.

C. E. Tsourakakis. Counting triangles in real-world networks
using projections. Knowl. Inf. Syst., 26(3), 2011.

C. E. Tsourakakis, P. Drineas, E. Michelakis, 1. Koutis, and
C. Faloutsos. Spectral counting of triangles via element-wise
sparsification and triangle-based link recommendation. Social
Network Analysis and Mining, 1(2), Apr 2011.

C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher. Scal-
able motif-aware graph clustering. In International Confer-
ence on World Wide Web, 2017.

V. Vassilevska. Efficient algorithms for clique problems. Inf.
Process. Lett., 109(4), 2009.

P. Wang, J. Zhao, X. Zhang, Z. Li, J. Cheng, J. C. S. Lui,
D. Towsley, J. Tao, and X. Guan. MOSS-5: A fast method
of approximating counts of 5-node graphlets in large graphs.

146

IEEE Trans. Knowl. Data Eng., 30(1), Jan 2018.

[59] H. Yin, A. R. Benson, and J. Leskovec. Higher-order

clustering in networks. Physical Review E, 97(5), 2018.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

