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A New Approach to Distributed Hypothesis
Testing and Non-Bayesian Learning: Improved
Learning Rate and Byzantine Resilience

Aritra Mitra?, John A. Richards

Abstract—We study a setting where a group of agents,
each receiving partially informative private signals, seek
to collaboratively learn the true underlying state of the
world (from a finite set of hypotheses), which generates
their joint observation profiles. To solve this problem, we
propose a distributed learning rule that differs fundamen-
tally from existing approaches, in that it does not employ
any form of “belief-averaging.” Instead, agents update their
beliefs based on a min-rule. Under standard assumptions
on the observation model and the network structure, we
establish that each agent learns the truth asymptotically
almost surely. As our main contribution, we prove that with
probability 1, each false hypothesis is ruled out by every
agent exponentially fast, at a network-independent rate that
is strictly larger than existing rates. We then develop a
computationally efficient variant of our learning rule that is
provably resilient to agents who do not behave as expected
(as represented by a Byzantine adversary model) and delib-
erately try to spread misinformation.

Index Terms—Fault-tolerant control, inference algo-
rithms, multi-agent systems, statistical Learning.

[. INTRODUCTION

IVEN noisy data, the task of making meaningful infer-
G ences about a quantity of interest is at the heart of various
complex estimation and detection problems arising in signal
processing, information theory, machine learning, and control
systems. When the information required to solve such problems
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is dispersed over a network, several interesting questions arise.
How should the individual entities in the network combine their
own private observations with the information received from
neighbors to learn the quantity of interest? What are the minimal
requirements on the information structure of the entities and
the topology of the network for this to happen? How fast does
information spread as a function of the diffusion rule and the
structure of the network? What can be said when the underlying
network changes with time and/or certain entities deviate from
nominal behavior? In this article, we provide rigorous theoretical
answers to such questions for the setting where a group of agents
receive a stream of private signals generated by an unknown
quantity known as the “true state of the world.” Communication
among such agents is modeled by a graph. The goal of each
agent is to eventually identify the true state from a finite set
of hypotheses. However, while the collective signals across all
agents might facilitate identification of the true state, signals
received by any given agent may, in general, not be rich enough
foridentifying the state in isolation. Thus, the problem of interest
is to develop and analyze local interaction rules that facilitate
inference of the true state at every agent. The setup described
above serves as a common mathematical abstraction for model-
ing and analyzing various decision-making problems in social
and economic networks (e.g., opinion formation and spreading),
and classification/detection problems arising in large-scale en-
gineered systems (e.g., object recognition by a group of aerial
robots).! While the former is typically studied under the moniker
of non-Bayesian social learning, the latter usually goes by the
name of distributed detection/hypothesis testing. In what fol-
lows, we discuss relevant literature.

A. Related Literature

Much of the earlier work on this topic of interest assumed the
existence of a centralized fusion center for performing compu-
tational tasks [4]-[6]. Our work in this article, however, belongs
to a more recent body of literature wherein individual agents
are endowed with computational capabilities, and interactions
among them are captured by a graph [1]-[3], [7]-[16]. These
works are essentially inspired by the model in [1], where each
agent maintains a belief vector (over the set of hypotheses) that

1Although the model of interest to us (see Section II) has been used to study
decision-making in social networks [1]-[3], we do not claim that the rules
developed in this article capture human reasoning in any way.
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is sequentially updated as the convex combination of its own
Bayesian posterior and the priors of its neighbors. Subsequent
approaches share a common theme: They typically involve a
learning rule that combines a local Bayesian update with a
consensus-based opinion pooling of neighboring beliefs. The
key point of distinction among such rules stems from the spe-
cific manner in which neighboring opinions are aggregated.
Specifically, linear opinion pooling is studied in [1], [2], [7], and
[8], whereas log-linear opinion pooling is studied in [9]-[16].
Under appropriate conditions on the observation model and the
network structure, each of these approaches enables every agent
to learn the true state exponentially fast, with probability 1. The
rate of convergence, however, depends on the specific nature of
the learning rule. Notably, finite-time concentration results are
derived in [11]-[13], and a large-deviation analysis is conducted
in [14] and [15] for a broad class of distributions that generate
the agents’ observation profiles. Extensions to different types of
time-varying graphs have also been considered in [7], [10]-[13].
In arecent paper [3], Molavi et al. go beyond specific functional
forms of belief—update rules and, instead, adopt an axiomatic
framework thatidentifies the fundamental factors responsible for
social learning. We point out that belief-consensus algorithms
on graphs have been studied prior to Jadbabaie er al. [1] as well
as in [17] and [18]. The model in [17] and [18] differs from
that in [1], [2], [7]-[16] in one key aspect: While in the former
each agent has access to only one observation, the latter allows
for influx of new information into the network in the form of a
time-series of observations at every agent.

B. Our Contributions

In light of the aforementioned developments, we now elabo-
rate on the main contributions of this article.

1) Novel Distributed Learning Rule: In [12, Sec. III],
Nedi¢ et al. explain that the commonly studied linear and
log-linear forms of belief aggregation are specific instances of
a more general class of opinion pooling known as g-Quasi-
Linear Opinion pools (g-QLOP), introduced in [19]. Our first
contribution is the development of a novel belief update rule
that deviates fundamentally from the broad family of g-QLOP
learning rules. Specifically, the learning algorithm that we pro-
pose in Section III does not rely on any linear consensus-based
belief aggregation protocol. Instead, each agent maintains two
sets of belief vectors: a local belief vector and an actual belief
vector. Each agent updates its local belief vector in a Bayesian
manner based on only its private observations, i.e., without the
influence of neighbors. The actual belief on each hypothesis is
updated (up to normalization) as the minimum of the agent’s
own local belief and the actual beliefs of its neighbors on that
particular hypothesis. We provide theoretical guarantees on the
performance of this algorithm in Section IV. As we explain
later in the article, establishing such guarantees requires proof
techniques that differ substantially from those existing.

2) Strict Improvement in Rate of Learning: While data-
aggregation via arithmetic or geometric averaging of neighbor-
ing beliefs allows asymptotic learning, such schemes may poten-
tially dilute the rate at which false hypotheses are eliminated. In

particular, for the linear consensus protocol introduced in [1], the
limiting rate at which a particular false hypothesis is eliminated
is almost surely upper-bounded by a quantity that depends on the
relative entropies and centralities of the agents [2]. The log-linear
rules in [11]-[15] improve upon such a rate: With probability 1,
the asymptotic rate of rejection of a false hypothesis under such
rules is a convex combination of the agents’ relative entropies,
where the convex weights correspond to the eigenvector cen-
tralities of the agents. In contrast, based on our approach, each
false hypothesis is rejected by every agent exponentially fast, at
a rate that is almost surely lower-bounded by the best relative
entropy (between the true state and the false hypothesis) among
all agents, provided the underlying network is static and strongly
connected. In Theorem 1, we show that the aforementioned
result continues to hold even when the network changes with
time, as long as a mild joint strong-connectivity condition is
met. Thus, to the best of our knowledge, our approach leads
to a strict improvement in the rate of learning over all existing
approaches: This constitutes our main contribution.

3) Resilience to Adversaries: Despite the wealth of liter-
ature on distributed inference, there is limited understanding
of the impact of misbehaving agents who do not follow the
prescribed learning algorithm. Such agents may represent stub-
born individuals or ideological extremists in the context of a
social network, or model faults (either benign or malicious) in a
networked control system. In the presence of such misbehaving
entities, how should the remaining agents process their private
observations and the beliefs of their neighbors to eventually
learn the truth? To answer this question, we capture deviant
behavior via the classical Byzantine adversary model [20], and
develop a provably correct, resilient version of our proposed
learning rule in Section V. Theorem 4 characterizes the perfor-
mance of this rule and, in particular, reveals that each regular
agent can infer the truth exponentially fast. Furthermore, we
identify conditions on the observation model and the network
structure that guarantee applicability of our Byzantine-resilient
learning rule, and argue that such conditions can be checked
in polynomial time. The only related work that we are aware
of in this regard is [16]. As we discuss in detail in Section V,
our proposed approach has various computational advantages
relative to those in [16].

In addition to the main contributions discussed earlier, a
minor contribution of this article is the following. For static
graphs where all agents behave normally, Corollary 1 estab-
lishes consistency of our learning rule under conditions that
are necessary for any belief update rule to work, when agents
make conditionally independent observations. In particular, we
show that the typical assumption of strong-connectivity on the
network can be relaxed, and identify the minimal requirement
for uniquely learning any state that gets realized.> Despite its
various advantages, our approach cannot, in general, handle the
scenario where there does not exist any single true state that
generates signals consistent with those seen by every agent. The
method in [12] and [13], however, is applicable to this case as

2 A strongly connected graph has a path between every pair of nodes.
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well, and enables each agent to identify the hypothesis that best
explains the groups’ observations.

A preliminary version of this article appeared as the work
in [21]. We significantly expand upon the content in [21] by first,
providing detailed convergence rate analyses of our algorithms,
second, extending our results to the case of time-varying graphs,
and third, elaborating on the significance of our results relative to
prior work, and validating them via suitable simulation studies.

Il. MODEL AND PROBLEM FORMULATION

1) Network Model: Let N and N denote the set of nonneg-
ative integers and positive integers, respectively. We consider
a group of agents V = {1,2,...,n} interacting over a time-
varying, directed communication graph G[t] = (V, £[t]), where
t € N. An edge (7,7) € £[t] indicates that agent 4 can directly
transmit information to agent j at time-step t. If (4, j) € Et],
then, at time ¢, agent ¢ will be called a neighbor of agent j, and
agent j will be called an out-neighbor of agent i. The set N[{]
will be used to denote the neighbors of agent ¢ (excluding itself)
at time ¢, whereas the set \;[t] U {i} will be referred to as the
inclusive neighborhood of agent 7 at time ¢. We will use |C| to
denote the cardinality of a set C.

2) Observation Model: Let © = {6;,60,...,0,,} denote
m possible states of the world; each 6; € © will be called
a hypothesis. At each time-step ¢t € N, every agent i € V
privately observes asignal s; ; € S;, where S; denotes the signal
space of agent ¢. The joint observation profile so generated across
the network is denoted s; = (s1¢,S2.¢,- .., 5n.t), Where s, € S,
and § = 51 X Sy x ... S,. The signal s; is generated based
on a conditional likelihood function I(-|#*), governed by the
true state of the world 0* € ©. Let [;(-|0*),7 € V denote the
ith marginal of [(-|0*). The signal structure of each agent ¢ € V
is then characterized by a family of parameterized marginals
{lz(w2|€) 10 € @,wi S 81}3

‘We make the following standard assumptions [1]-[3], [7], [8],
[10]-[16].

i) The signal space of each agent 7, namely S;, is finite.

ii) Each agent ¢ has knowledge of its local likelihood func-
tions {1;(-|0p) ;- , and it holds that [; (w;]0) > 0, Vw; €
S;,and V0 € ©.

iii) The observation sequence of each agent is described
by an i.i.d. random process over time; however, at any
given time-step, the observations of different agents may
potentially be correlated.

iv) There exists a fixed true state of the world 6* € © (un-
known to the agents) that generates the observations of
all the agents.

Finally, we define a probability triple (€2, F, P"), where Q £
{w:w=(s1,82,...),8: € S,t € Ny}, Fisthe o-algebragen-
erated by the observation profiles, and P?" is the probability
measure induced by sample paths in €. Specifically, P/ =
[1;2, 1(-6*). For the sake of brevity, we will say that an event

3While w; € S; will be used to refer to a generic element of the signal space
of agent 4, s; ; will denote the random variable (with distribution ; (-|6*)) that
corresponds to the observation of agent ¢ at time-step ¢.

occurs almost surely to mean that it occurs almost surely w.r.t.
the probability measure P9,

Remark 1: We point out that the existence of a true state that
generates the private signals of all agents is a critical assumption
for our approach to work; the method in [12] does not require
this assumption. Moreover, unlike the work in [9] and [22], our
rules do not apply to continuous parameter spaces.

Note that assumptions (i) and (ii) on the observation model
imply the existence of a constant L € (0, o) such that

Li(wil0p)
< L. 1
T s ontace | V8 Ti(wilfy) M
We will make use of the above fact later in our analysis. O

Given the previous setup, the goal of each agent in the network
is to discern the true state of the world 6*. The challenge
associated with such a task stems from the fact that the private
signal structure of any given agent is in general only partially
informative. To make this notion precise, define @f* £ {0 ¢
O : 1;(w;]0) = Li(w;|0*),Yw; € S;}. In words, ©f" represents
the set of hypotheses that are observationally equivalent to
the true state 6* from the perspective of agent i. In general,
for any agent 7 € V, we may have \@?*\ > 1, necessitating
collaboration among agents subject to the restrictions imposed
by the time-varying communication topology.

Our objective in this article will be to design a distributed
learning rule that allows each agent ¢ € V to identify the true
state of the world asymptotically almost surely. To this end, we
now introduce the following notion of source agents that will be
useful in our subsequent developments.

Definition 1 (Source Agents): An agent ¢ is said to be
a source agent for a pair of distinct hypotheses 6,6, € ©,
if K;(6,,0,) > 0, where K;(0,,0,) represents the Kullback-
Leibler divergence between the distributions ; (-|6,,) and [;(+|6,),
and is given by*

Li(wi|0p)
® Tiwildg)

The set of all source agents for the pair 6,6, is denoted by
S(6,,0,).

In words, a source agent for a pair 6, 6, € © is an agent that
can distinguish between the pair of hypotheses 0,,, 0, based on
its private signal structure. It should be noted that S(6,,6,) =
S(04,0,), since K;(0,,04) >0 <= K;(64,6,) > 0[23]. In
this article, we will assume that each state 6 € © is globally
identifiable w.r.t. the joint observation model of the entire net-
work. Based on our terminology of source agents, this translates
to the following.

Assumption 1 (Global Identifiability): For each pair
0,,0, € O such that 0, # 0,, the set S(0,,0,) of agents that
can distinguish between the pair 6, 8, is nonempty.

The previous assumption is standard in the related literature.
To illustrate the concepts described earlier, let us consider the
following simple example.

K;(0,,0,)

= Y Li(wil6,)

w; €S,

@)

4 Although the standard notation for the Kullback-Leibler divergence between
1;(+|0p) and 1;(-|64) is D(1;(-|0p)|1: (:|04)), we use K; (6, 04) as a shorthand
for the same to avoid cluttering the exposition.
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&= F so=T 8 =H so =T
L(-[61) 1/2 1/2 l2(-]61) 1/3 2/3
L(-l62) | 174 3/4 Io(-|62) 1/3 2/3
(+163) 1/2 1/2 I2(-|63) 1/6 5/6

Fig. 1. Likelihood models for the two agents in Example 1. The model
on the left is that of agent 1, whereas that on the right corresponds to
agent 2.

Example 1: Consider a network of two agents with likeli-
hood models as described in Fig. 1 . At every time-step, each
agent either observes heads H, or tails 7'. Thus, the com-
mon signal space for both agents is S; = So = {H,T'}. From
Fig. 1, note that at each time-step, the probability of agent 1
observing H is 0.5 if either 6y or 03 gets realized, and 0.25
if 0, gets realized. Observe immediately that ©7* = {6, 05}
and 9?2 = {605}, i.e., agent 1 cannot distinguish between the
states 61 and 63; however, it can tell 6> apart from either
of the other two states. Agent 2’s likelihood model can be
interpreted similarly. Based on our terminology, we then have
S(61,02) = 1,5(02,03) = {1,2},and S(05, 61) = 2, implying
global identifiability as per Assumption 1.

In addition to Assumption 1, we will make a mild assumption
on the time-varying communication topology. To this end, let
the union graph over an interval [¢1,t2],0 < ¢; < to, indicate a
graph with vertex set ), and edge set Utf:tl E[7]. Based on this
convention, we will assume (unless stated otherwise) that the
sequence of communication graphs {G[t]}:2, is jointly strongly
connected, in the following sense.

Assumption 2 (Joint Strong-Connectivity): There exists
T € Ny such that the union graph over every interval of the
form [rT, (r 4+ 1)T') is strongly connected, where r € N.

While the previous assumption on the network connectivity
pattern is not necessary for solving the problem at hand, it is
fairly standard in the analysis of distributed algorithms over
time-varying networks [12], [24], [25]. Having introduced the
model and the problem formulation, we now proceed to a formal
description of our learning algorithm.

[ll. PROPOSED LEARNING RULE

In this section, we propose a novel belief update rule (see
Algorithm 1) and discuss the intuition behind it. Every agent ¢
maintains and updates (at every time-step ¢) two separate sets of
belief vectors, namely, 7; ; and p, ;. Each of these vectors is a
probability distribution over the hypothesis set ©. We will refer
to m; ; and p; , as the “local” belief vector (for reasons that will
soon become obvious), and the “actual” belief vector, respec-
tively, maintained by agent i. The goal of each agenti € )V in the
network will be to use its own private signals and the information
available from its neighbors to update p; , sequentially, so that
limy o p14,4(6*) = 1 almost surely. To do so, at each time-step
t + 1 (wheret € N), agent ¢ does the following for each € ©.
It first generates 7; ;11 () via a local Bayesian update rule that
incorporates the private observation s; ;4 using m; .(6) as a
prior (line 5 in Algorithm 1). Having generated 7; ;11 (6), agent

Algorithm 1: Belief update rule for each 7 € V.
1: Initialization: i, o(0) > 0, m; 0(6) > 0,V60 € O, and
> peo Hi0(0) = 1,3 g0 mio(0) =1
Transmit p; (, to out-neighbors at time 0
fort+ 1€ Ny do
for 6 € © do
Update local belief on 6 as

Ti+1(0) = mli(si’tﬂwhiyt(e) 3)

Li(8i,64110p) i1 (0p)
=1

p

6: Update actual belief on 6 as
min{{1;,:(0)}jen;[ugy Tie+1(0)}

pit1(0) = -
Zl min{{;,¢(0p) } jen, gugiys Tier1(0p) }
=

4)
7:  end for

Transmit p; ;¢ to out-neighbors at time ¢ + 1
9: end for

&

i updates f1; 1+1(6) (up to normalization) by setting it to be the
minimum of its locally generated belief 7; ;11 (), and the actual
beliefs y;,(0), 7 € N;[t] U {i} of its inclusive neighborhood at
the previous time-step (line 6 in Algorithm 1). It then reports
1 441 to each of its out-neighbors at time ¢ + 1.3

A. Intuition Behind the Learning Rule

At the core of our learning algorithm are two key principles:
1) preservation of the intrinsic discriminatory capabilities of
the agents, and 2) propagation of low beliefs on each false
hypothesis. We now elaborate on these features.

Consider the set of source agents S(6*,6) that can differ-
entiate between a certain false hypothesis 6 and the true state
0*. By definition, the signal structures of such agents are rich
enough for them to be able to eliminate 6 on their own, i.e.,
without the support of their neighbors. To achieve this, we
require each agent to maintain a local belief vector that is updated
(via (3)) without any network influence using only the agent’s
own private signals. Doing so ensures that ; +(6) — 0 a.s. for
each i € S(0*,0). Next, leveraging this property, we want to be
able to propagate low beliefs on 6 from S(6*,0) toV \ S(6*,0),
i.e., the agents in S(6*, #) should contribute toward driving the
actual beliefs of their out-neighbors (and eventually, of all the
agents in the set V \ S(6*, 0)) on the hypothesis 6 to zero. Using
amin-rule of the form (4), with 7; ;11 (0) featuring as an external
network-independent input, facilitates such propagation without
compromising the abilities of agents in S(6*, 0) to eliminate 6.
When set in motion, our learning rule triggers a process of belief
reduction on 6 originating at S(6*, 6) that eventually propagates
to each agent in the network reachable from S(6*, 0).

SNote that based on our algorithm, agents only exchange their actual beliefs,
and not their local beliefs.
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Remark 2: We emphasize that the proposed learning rule
given by Algorithm 1 does not employ any form of “belief-
averaging.” This feature is in stark contrast with existing ap-
proaches to distributed hypothesis testing that rely either on
linear opinion pooling [1], [2], [7], [8], or log-linear opinion
pooling [9]-[16]. As such, the lack of linearity in our belief
update rule precludes (direct or indirect) adaptation of existing
analysis techniques to suit our needs.

IV. ANALYSIS OF ALGORITHM 1
A. Statement of the Results

In this section, we characterize the performance of Algorithm
1. We start with one of the main results of the article, proven in
Appendix A. Before stating the result, we remind the reader
that for an agent ¢, K;(0,,60,) represents the KL-divergence
between the distributions /;(+|0,,) and [;(-|6,), and captures agent
i’s ability to distinguish between the states ¢, and 0,.
Theorem 1: Suppose the observation model satisfies the
global identifiability condition (see Assumption 1), and the
sequence of communication graphs {G[t]}?2 is jointly strongly
connected (see Assumption 2). Then, Algorithm 1 provides the
following guarantees.
1) (Consistency): For each agenti € V, p; (6*) — 1 ass.
2) (Asymptotic Rate of Rejection of False Hypotheses):
Consider any false hypothesis 6 € © \ {0*}. Then, the
following holds for each agent 7 € V:

lim inf — M

t—00 t

> max K,(0%,0) a.s. (5)
veS(0*,0)

The above result tells us that with probability 1, every agent
7 will be able to rule out each false hypothesis 6 exponen-
tially fast, at a rate that is eventually lower-bounded by the
best KL-divergence across the network between the pair of
hypotheses 6* and 6. In particular, this implies that given any
€ > 0, the probability that agent ¢’s instantaneous rate of re-
jection of #, namely — log 11; +(0)/t, is lower than the quantity
max,es(g+,0) Ko (0%, 0) by an additive factor of €, decays to
zero. The next result, proven in Appendix B, sheds some light
on the rate of decay of this probability.

Theorem 2: Suppose the conditions in Theorem 1 hold.
Fix 6 € ©\ {6*}, and let K (6*,0) = max,cs(p+,9) Ko (6%, 0).
Then, forevery e > 0andd € (0, 1), there existsaset ' (§) C Q
with P9 (Q/(8)) > 1 — §, such that the following holds for each
agenti € V:

hmlnf—flog]P’e* ({_logu”(@
t—o00 ¢
I (% , 62
=R } e (5)) > ©

Our next result pertains to the special case when the com-
munication graph does not change over time, i.e., when G[t] =
G,Vt € N. To state the result, we will employ the following
terminology. Given two disjoint sets C1,Cy C V, we say Cy is
reachable from C; if for every i € Co, there exists a directed path

in G from some j € C; to agent i (note that j will in general be
a function of 7).

Corollary 1: Let the communication graph be time-invariant
and be denoted by G. Suppose the following conditions hold.
(i) The observation model satisfies the global identifiability
condition (see Assumption 1). (ii) For every pair of hypotheses
0, # 0, € O, the set V\ S(0,,0,) is reachable from the set
S(0,,0,) in G. Then, Algorithm 1 guarantees consistency as in
Theorem 1. Furthermore, for every 6 € © \ {6*}, the following
holds for each agent 7 € V:

log .+ (0
Mz max K,(0%,0)a.s. (7)
veS;(6*,0)

liminf —

t—00 t

where S;(0*,0) C S(6*, 0) are those source agents from which

there exists a directed path to 7 in G. O

Proof: Fix 0 € ©\ {#*}, and consider an agent i € V\

S(6*,0). The sets S(6*,0) and S;(6*,6) are nonempty based

on conditions (i) and (ii) of the theorem, respectively. Following

a similar line of argument as in the proof of Theorem 1, one can
establish the following for each v € S;(6*,0):

lim inf
t—o00

,w 2 Kv(e*,e) a.s. (8)

The assertion regarding equation (7) then follows readily. Con-
sistency follows by noting that since S;(6*,6) C S(6*,0),
K, (0*,0) > 0,Yv € S;(6*,0). |

Our next result reveals that the combination of conditions (i)
and (ii) in Corollary 1 constitutes minimal requirements on the
observation model and the network structure for any learning
algorithm to guarantee consistency, when the observations of
the agents are conditionally independent.

Theorem 3: Let the communication graph be time-invariant
and be denoted by G. Then, the following assertions hold.

i) Conditions (i) and (ii) in Corollary 1, taken together,
are equivalent to global identifiability of each source
component of G.°

ii) Suppose the observations of the agents are independent
conditional on the realization of any state, i.e., I(-|0) =
[T 1:(-|0),V6 € ©. Then, global identifiability of each
source component of G is necessary and sufficient for
unique identification of any true state that gets realized,
at every agent, with probability 1. U

The proof of the aforementioned result is fairly straightfor-
ward and hence omitted here. We now leverage the previous re-
sults to quantify the rate at which the overall network uncertainty
about the true state decays to zero. To measure such uncertainty,
we employ the following metric from [2], which captures the
total variation distance between the agents’ beliefs at time-step
t, and the probability distribution that is concentrated entirely
on the true state of the world, namely 14+ (+):

* £ = Z”u’zt Hl ZZMIt

i=1 0£0*

— 1 (-

%A source component of a time-invariant graph G is a strongly connected
component with no incoming edges.
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Given that 6* gets realized, the rate of social learning is then
defined as [2], [14]:
pr(0%) éliminf—lloget(e*). (10)
t—00 t
Notice that the previous expression depends on the state being
realized; to account for the realization of any state, one can
simply look at the quantity ming«co pr,(6*) that provides a
sense for the least rate of learning one can expect given a
certain observation model, a network, and a consistent learning
algorithm. We have the following simple results; their proofs are
trivial and hence omitted.
Corollary 2: Suppose the conditions stated in Theorem 1 are
met. Then, Algorithm 1 guarantees:

6*) > mi K,(0*,0) a.s.
pull) = g g, )

(1)

O
Corollary 3: Suppose the conditions stated in Corollary 1
are met. Then, Algorithm 1 guarantees:

pr(0*) > minmin  max K,(6%,0) a.s.

> 12)
0£0* i€V veS;(0%,0)

O

B. Discussion of the Results

1) Comments on Theorem 1: Let us compare the rate of
learning based on our method to those existing in the lit-
erature. Under identical assumptions of global identifiability
of the observation model, and strong-connectivity (or joint
strong-connectivity as in [12]) of the underlying communication
graph, both linear [1], [2] and log-linear [11], [12], [14] opinion
pooling lead to an asymptotic rate of rejection of the form
> ey VilGi(6%,0) for each false hypothesis 6 € © \ {6*}, for
each agent i € V.” Here, v; represents the eigenvector centrality
ofagents € V, which is strictly positive for a strongly connected
graph. Thus, referring to (5) reveals that the asymptotic rate
of rejection of each false hypothesis (and hence, the rate of
social learning) resulting from our algorithm (see (11)), is a
strict improvement over all existing rates—This constitutes a
significant contribution of our paper. Furthermore, observe from
Corollary 2 that the lower bound on the rate of social learning
is independent of both the size and structure of the network.
A key implication of this result is the fact that as long as the
total information content of the network remains the same,
the specific manner in which signals are allocated to agents
does not impact the long-run learning rate of our approach. In
sharp contrast, existing learning rates that depend on the agents’
eigenvector centralities may suffer under poor signal allocations
(see [2] for a discussion on this topic).

It should, however, be noted that the network independence
aspect of our approach concerns asymptotic learning rates. The

"In [12], the consensus weights are chosen to obtain a network-structure
independent (albeit network-size dependent) rate of rejection of 6 of the form
1/np .., Ki(0*,0). The same rate is obtained with static, undirected net-
works when the consensus weight matrix is symmetric, since the eigenvector
centralities are simply 1/n in such a case.

dependence on the network structure (presumably, on the diam-
eter) is bound to manifest itself in the transients generated by
our rule. Given the nonlinear structure of our update rule (4),
characterizing such a dependence is quite nontrivial.

2) Comments on Theorem 2: Atany given time ¢, for some
1€V and 0 # 0*, let us consider the set of all sample paths
where agent 4’s instantaneous rate of rejection of 6 is lower
than its asymptotic lower bound by a constant additive factor
of €. Theorem 2 complements Theorem 1 by telling us that an
arbitrarily accurate approximation of the measure of such “bad”
sample paths eventually decays to zero at an exponential rate no
smaller than €2 /8L? (the approximation is arbitrarily accurate
since the set ©'(d) can be chosen to have measure arbitrarily
close to 1). It is instructive to compare the concentration result
of Theorem 2 with [12, Th. 2], [14, Th. 2], and [11, Lemma 3].
The analogous results in these papers are more elegant relative
to ours, since they do not involve a set of the form /(9)
that shows up in our analysis. A refinement of Theorem 2 to
obtain a cleaner nonasymptotic result would require a precise
characterization of the transient dynamics generated by our
learning rule: We reserve investigations along this line as future
work.

3) Comments on Corollary 1: While Theorem 3 identi-
fies an algorithm-independent necessary condition for ensuring
unique identifiability of any realized state at every agent (when
the communication graph is time-invariant and agents receive
conditionally independent signals), Corollary 1 reveals that such
a condition is also sufficient for our proposed learning algorithm
to work. We believe that a result of this flavor is missing in
the existing literature on distributed hypothesis testing, where
strong-connectivity is a standard assumption. Molavi et al. [26]
do relax the strong-connectivity assumption, but require every
strongly connected component of G to be globally identifiable
for learning to take place [26, Prop. 4]. In contrast, Corollary
1 requires only the source components of G to satisfy the
global identifiability requirement. Interestingly, our conclusions
in this context align with an analogous result that identifies
joint detectability of each source component as the minimal
requirement for solving the related problem of distributed state
estimation [27], [28].

The more general network condition in Corollary 1 (as op-
posed to strong-connectivity) comes at the cost of a potential
reduction in the rate of social learning, as reflected in Corollary
3. When the underlying graph is strongly connected, S; (6*,0) =
S§(60*,0). Consequently, the min w.r.t. the agent set )V in (12) goes
away, and we recover Corollary 2.

V. LEARNING DESPITE MISINFORMATION

In this section, we will address the problem of learning the
true state of the world despite the presence of certain agents
who do not behave as expected and deliberately try to spread
misinformation. In order to isolate the challenges introduced
by such malicious entities, we will consider a time-invariant
communication graph G for our subsequent discussion; we antic-
ipate that our proposed approach will extend to the time-varying
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case with suitable modifications. We now describe the model of
agent-misbehavior that we consider.®

Adversary Model: We assume that a certain subset of
the agents are adversarial, and model their behavior based on
the Byzantine fault model [30]. Specifically, Byzantine agents
possess complete knowledge of the observation model, the net-
work model, the algorithms being used, the information being
exchanged, and the true state of the world. Leveraging such
information, adversarial agents can behave arbitrarily and in
a coordinated manner, and can in particular, send incorrect,
potentially inconsistent information to their out-neighbors. In
return for allowing such worst case adversarial behavior, we
will restrict the number of adversaries; in particular, we will
consider an f-local adversarial model, i.e., we assume that
there are at most f adversaries in the neighborhood of any
nonadversarial agent, where f € N. Finally, we emphasize that
the nonadversarial agents are unaware of the identities of the
adversaries in their neighborhood. As is fairly standard in the
distributed fault-tolerant literature [31]-[38], we only assume
that nonadversarial agents know the upper bound f on the
number of adversaries in their neighborhood. The adversarial set
will be denoted by A C V, and the remaining agents R = V' \ A
will be called the regular agents.

Our immediate goals are as follows. First, devise an algorithm
that enables each regular agent to asymptotically identify the
true state with probability 1, despite the presence of an f-local
Byzantine adversarial set. Second, identify conditions on the
observation model and the network structure that guarantee
correctness of such an algorithm. Prior to addressing these goals,
we briefly motivate the need for a novel Byzantine-resilient
learning algorithm.

Motivation: A standard way to analyze the impact of ad-
versarial agents while designing resilient distributed consensus-
based protocols (for applications in consensus [31], [32], op-
timization [34], [35], hypothesis testing [16], and multiagent
rendezvous [39]) is to construct an equivalent matrix represen-
tation of the linear update rule that involves only the regular
agents [40]. In particular, this requires expressing the iterates
of a regular agent as a convex combination of the iterates of its
regular neighbors, based on appropriate filtering techniques, and
under certain assumptions on the network structure. While this
canindeed be achieved efficiently for scalar consensus problems,
for problems requiring consensus on vectors (like the belief
vectors in our setting), such an approach typically requires the
computation of sets known as Tverberg partitions. However,
there is no known algorithm that can compute an exact Tver-
berg partition in polynomial time for a general d-dimensional
finite point set [41]. Consequently, since the filtering approach
developed in [16] requires each regular agent to compute a
Tverberg partition at every iteration, the resulting computations
are forbiddingly high. Su and Vaidya [16] do briefly discuss an
alternate pairwise learning rule that requires agents to perform
scalar consensus on relative confidence levels (instead of beliefs)

8Different from our setting, the forceful agents in [29] do not behave arbitrarily
and, in fact, update their beliefs (even if infrequently) by interacting with their
neighbors; our adversary model makes no such assumptions.

of one hypothesis over another. Under such a rule, for each
regular agent, its relative confidence on the true state over every
false hypothesis approaches infinity—a condition that is difficult
to verify in practice. Moreover, the pairwise learning rule in [16]
requires each agent to maintain and update at each time-step
a vector of dimension O(m?). In contrast, we propose a sim-
ple, lightweight Byzantine-resilient learning rule that avoids
the computation of Tverberg partitions, and requires agents to
update two m-dimensional belief vectors.

Algorithm 2: Belief update rule for each 7 € R.
1: Initialization: p; o(0) > 0, m; () > 0, V0 € ©, and
> peo Hio(0) =1, 2 pco mio(0) =1
Transmit p, (, to out-neighbors
fort+1 € N, do
for 0 € © do
Update local belief on 6 as per (3)
if |[V;| > (2f + 1) then
Sort 11+(0), j € N; from highest to lowest, and reject
the highest f and the lowest f of such beliefs.
8 Let M?’t be the set of agents whose beliefs are not
rejected in the previous step. Update 11 ;41(0) as

A A

min{{uj,t (‘9)}ng§¢, T t+1 (0)}

pi+1(0) = —
Zl win{{ ;.6 (0p) } j pgow  Tit41(0p) }
p= it
(13)
9: else
10:  Update yi; ¢+1(0) as
Wit1(0) = i 41(0) (14)
11: endif
12:  end for
13: Transmit p; 4 ; to out-neighbors
14: end for

A. Byzantine-Resilient-Distributed Learning Rule

In this section, we develop an easy to implement and com-
putationally efficient extension of Algorithm 1 that guarantees
learning despite the presence of Byzantine adversaries. We
call it the local-filtering-based resilient hypothesis elimination
(LFRHE) algorithm (see Algorithm 2). Like Algorithm 1, the
LFRHE algorithm requires every regular agent ¢ to maintain and
update (at every time-step t) a local belief vector m; ;, and an
actual belief vector p; ;. While 7r; 4 is updated as before via (3),
the update of p, , is the key feature of Algorithm 2. To update
it+1(0), agenti € R first checks whether it has atleast 2 f + 1
neighbors. If it does, then it rejects the highest f and the lowest
/ neighboring beliefs j; (), j € N; (line 7 in Algorithm 2),
and employs a min-rule as before, but using only the remaining
beliefs (line 8 in Algorithm 2). Thus, agent ¢ filters out the most
extreme neighboring beliefs on each hypothesis, and retains only
the moderate ones to update its own actual belief. If agent ¢
has strictly fewer than 2 f + 1 neighbors, then it decides against
using neighboring information and, instead, updates its actual
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belief vector to be equal to its local belief vector (line 10 in
Algorithm 2).

To state our main result concerning the correctness of Algo-
rithm 2, we require the following definitions.

Definition 2 (r-Reachable Set [32]): For a graph G =
(V,€),asetC CV,and an integer r € N, C is an r-reachable
set if there exists an ¢ € C such that [N \ C| > r. O

Definition 3 (Strongly r-robust graph: w.rt. S(0,,,0,)) For
r € Nyandb,,0, € ©,agraph G = (V, E) is strongly r-robust
w.r.t. the set of source agents S(0,,0,), if for every nonempty
subset C C V\ S(6,,0,), C is r-reachable. O

Theorem 4: Suppose that for every pair of hypotheses
0,0, € O, the graph G is strongly (2f + 1)-robust w.r.t. the
source set S(6,, 0,). Then, Algorithm 2 guarantees the following
despite the actions of any f-local set of Byzantine adversaries.

1) (Consistency): For each agenti € R, 1; +(0*) — 1 as.

2) (Asymptotic Rate of Rejection of False Hypotheses):
Consider any false hypothesis 6 € © \ {0*}. Then, the
following holds for each agent 7 € R.

log 14,4 (6) >

lim inf — >  min  K,(0%,0) a.s
t—00 t veS(0*,0)NR
15)
Proof: See Appendix C. |

Remark 3: For any pair 6,6, € ©, notice that the strong-
robustness condition in Theorem 4 (together with Definition 3)
requires |S(0,,60,)| > (2f + 1), if V\ S(6,,6,) is nonempty.
In particular, it blends requirements on the signal structures of
the agents with those on the communication graph. To gain
intuition about this condition, suppose © = {61, 0>}, and con-
sider an agent i € V \ S(61,65). To enable i to learn the truth
despite potential adversaries in its neighborhood, one requires
(i) redundancy in the signal structures of the agents, and (ii)
redundancy in the network structure to ensure reliable infor-
mation flow from S(61, 63) to agent . These requirements are
encapsulated by Theorem 4. For a fixed source set S(6,,0,),
checking whether G is strongly (2f + 1)-robust w.r.t. S(6,, 6,)
can be done in polynomial time by drawing connections to the
process of bootstrap percolation on networks [36, Prop. 5]. Since
the source sets for each pair 0, 6, € © can also be computed in
polynomial time via a simple inspection of the agents’ signal
structures, it follows that the strong-robustness condition in
Theorem 4 can be checked in polynomial time. O

Leveraging Theorem 4, we can characterize the rate of decay
of the collective uncertainty of the regular agents regarding the
true state. To do so, we employ the following modification of

the metric (9)'
||1 Z Z ;U'z t

6*) £ leum — 1g:(-
iE€R 070~

- (16)
ze'R
Note that this metric only considers the beliefs of the regular
agents as the Byzantine agents can update their beliefs however
they wish. With 0* as the true state, we define the rate of social
learning in the presence of Byzantine adversaries as:
1
PR (%) £ liminf — = log e (6%). (17)
t—00 t

We have the following immediate corollary of Theorem 4.

@ 0O

® ! @ @

©® - O ©)

() (b)

Fig. 2. (a) and (b) Network models for simulation examples 1 and 2,
respectively.
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Fig. 3. Consider the setup of simulation example 1 with n = 5 agents.
Image (a) depicts the evolution of agent 3’s belief on the true state 6-.
Image (b) depicts the evolution of the instantaneous rate of rejection of
0, for agent 3, namely g3 +(61) = —log u3 +(01)/t.

Corollary 4: Suppose the conditions stated in Theorem 4 are
met. Then, Algorithm 2 guarantees:

K,(0%,0) a.s

PX(6*) > min  min

(18)
0£6* veS(0*,0)NR

VI. SIMULATIONS

Example 1 (Impact of Network Size on Rate of Conver-
gence): For our first simulation study, we consider a binary
hypothesis testing problem, i.e., © = {01, 6>}, where the sig-
nal space for each agent is identical and comprises signals
w1y and wy. The (time-invariant) undirected network for this
example is depicted in Fig. 2(a). The likelihood models of the
agents are as follows: Iy (wq]61) = 0.7,11 (w1]|02) = 0.5, and
ll(w1|t91) S li(w1|92) = 05,VZ <% \ {1}, ie., agent 1 is the
only informative agent. In order to compare the performance of
Algorithm 1 to the linear and log-linear belief update rules in [1]
and [12], we implement the latter assuming consensus weights
are assigned based on the lazy Metropolis scheme (see [12] for
details). Based on this weight assignment, it is easy to verify
that the eigenvector centrality of each agent is 1/n. All agents
start out with uniform priors. With §* = 65, and n = 5, Fig. 3
illustrates the performance of the three algorithms w.r.t. agent
3. In particular, Fig. 3(a) reveals that based on our approach,
agent 3’s belief on the true state #> converges to 1 faster than
the other algorithms. Fig. 3(b) makes this observation precise
by plotting the instantaneous rate of rejection of 6, for agent 3,
namely g3 +(01) = —log ps.+(01)/t. Consistent with the respec-
tive theoretical findings, ¢s,.(61) is eventually lower-bounded
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Fig. 4. Consider the setup of simulation example 1 with n = 10 agents.

It illustrates the dilution in the rates of social learning for the linear and
log-linear rules with an increase in the number of uninformative agents.
Images (a) and (b) are analogous to those in Fig. 3.

by K1(6s,01) for our algorithm (see Theorem 1), approaches
K1(05,071)/n for the log-linear rule in [12], and is eventually
upper-bounded by K1 (02, 01) /n for the linear rule in [1]. Similar
conclusions hold for the other agents.

Suppose we now double the number of agents in the network.
Agent 1 continues to remain the only informative agent. Fig. 4
compares the performances of the three algorithms for this
case. Notably, the convergence rate for our approach remains
unaffected, whereas that for the linear and log-linear rules gets
diluted. This observation can be attributed to the fact that while
the rate provided by our algorithm is both network-structure and
network-size independent for strongly connected networks (see
Section I'V-B), the rates of the linear and log-linear rules depend
crucially on the eigenvector centralities of the agents, which, in
this case, correspond to 1/n. Thus, the gap between the per-
formance of our algorithm, and that of the linear and log-linear
update rules (as measured by convergence rates), becomes more
pronounced as the number of uninformative agents increase (i.e.,
as n increases, but the total information content of the network
remains the same).

Example 2 (Impact of Adversaries): While the previous
example highlighted the benefits of Algorithm 1, we now
focus on an example that demonstrates the resilience of
its variant, namely the LFRHE algorithm (see Algorithm
2), to the presence of Byzantine adversaries. To this end,
consider the undirected network in Fig. 2(b). For this
example, O = {01,02,03}, and S&; = {wi,we},VieV.
Suppose the agent likelihood models are given by
ll(w1|91) == 3/4, l7(w1\02) = l,(w1|93) == 1/3,\72 € {1, 2, 3},
ZZ(U)1|91) = li(w1|92) = 2/57 ll(w1|93) = ]./7, Vi € {4, 5, 6},
and li(wl\ﬁl) = li(wl\Hg) = 1/2,lZ(w1|93) = 5/6,V’L S
{7,8,9}. Suppose f =1 and agent 5 is the only adversarial
agent. It is easy to see that condition (i) in Theorem 4 is met. We
will compare the performance of Algorithm 2 with the linear
rule in [1], and the log-linear rule in [12]. For implementing
the latter, we again assign consensus weights based on the
lazy Metropolis scheme. All agents start out with uniform
priors. The adversary, agent 5, maintains a belief of 0.1 on the
true state, and 0.45 on each of the false hypotheses, for all
t > 20. Figures 5(a) and (b) illustrates the repercussions of this
action on agent 7, when 6* = 0; and 0* = 0, respectively:
while the linear and log-linear rules fail to recover from the

12 1.2
1 - 1
. —Algo. 2 —Linear Py —Algo. 2 ——Linear
S—g/ 0.8 Log-linear Qi\l 0.8 Log-linear
— 0.6} S~ 06
= | =
3 04 304
0.2 \ N L R 0.2 t’\‘
0 0
0 100 200 300 400 500 0 100 200 300 400 500
t t
(@) (b)
Fig. 5. Consider the setup of simulation example 2, where agent 5

acts as an adversary. Images (a) and (b) depict the evolution of agent
7’s belief on the true state, when 6* = 60;, and 6* = 05, respectively.

attack, Algorithm 2 enables agent 7 to infer the truth. Similar
conclusions hold for the other regular agents.

VIlI. CONCLUSION

We proposed and analyzed a novel algorithm for addressing
the problem of distributed hypothesis testing. The key distin-
guishing feature of our learning algorithm is that it does not
employ any linear consensus-based data aggregation protocol.
Instead, it relies on a “min-rule” to spread beliefs through
the network. Under mild assumptions of global identifiability
and joint strong-connectivity, we established consistency of
our learning rule. In particular, we showed that the rate of
learning resulting from our approach strictly improves upon all
existing rates. For static networks, we established consistency
of our algorithm under minimal requirements on the observation
model and the network structure. Finally, we proposed a simple
and computationally efficient version of our learning rule that
accounts for worst case adversarial behavior on the part of certain
agents in the network.

As future work, we plan to investigate the transient dynamics
generated by our rule with the goal of deriving finite-time
concentration results. Moreover, as we stated in Remark 1, our
approach cannot handle scenarios where there does not exist a
true state; it would be interesting to see if there are variations
of our rule, which are applicable to these cases as well. Finally,
as part of our ongoing research, we are interested in analyzing
the impacts of communication constraints on the performance
of distributed learning algorithms; preliminary results along this
line are reported in [42].

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 is based on several intermediate
results. We start with the following simple lemma that char-
acterizes the asymptotic behavior of the local belief sequences
generated based on (3); we provide a proof (adapted to our
notation) to keep the article self-contained, and to introduce
certain quantities that will be referenced later in our analysis.

Lemma 1: Consider a false hypothesis § € © \ {6*}, and an
agent ¢ € S(0*,0). Suppose 7; o(6,) > 0,76, € O. Then, the
update rule (3) ensures that (i) 7; ;(0) — 0 a.s., (ii) m; » (0*) =
limy oo ;¢ (0*) exists a.s. and satisfies 7; oo (0%) > m;0(60%),

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 04:57:47 UTC from |IEEE Xplore. Restrictions apply.



MITRA et al.: NEW APPROACH TO DISTRIBUTED HYPOTHESIS TESTING AND NON-BAYESIAN LEARNING

4093

and (iii) the following holds:

. Tt (9) 1o (0

}g&;l T a (0 = —K;(0%,0) a.s. (19)
|

Proof: Consider any agent i € S(6*, ), and define
(0) 210g Tt O 5 gy 2 g lilsuald) oy
pz,t( ) og Wi,t(a*), 1,t( ) og li(Si,tle*) ( )

Then, based on (3), we obtain the following recursion:
Pits1(0) = pit(0) + Aig1(0), VteN. 1)

Rolling out the aforementioned equation over time yields
t

pit(0) = pio(®) + > nin(0), VEENL — (22)

k=1

Notice that {1, ,(6)} is a sequence of i.i.d. random variables
with finite means (see equation (1)). In particular, it is easy to
verify that each random variable 1, ;(f) has mean® given by
—K;(6*,0). Thus, based on the strong law of large numbers,
we have 1 ST hiw(0) = —K;(6*,0) almost surely. Dividing
both sides of (22) by ¢, and taking the limit as ¢ goes to infinity,
we then obtain:
1
lim 7pi,t<9) = —Ki(H*,H) a.s.,

t—oo ¢

(23)

establishing part (iii) of the lemma. Now note that based on the
definition of the set S(6*, 6), K;(6*,0) > 0.Itthen follows from
(23) that p; ,(#) — —oo almost surely, and hence 7; ;(0) — 0
almost surely. This establishes part (i) of the lemma. For any 6 €
0f", observe that A;.(f) = 0,¥t € N,. It then follows from
(21) that for each § € ©%", p; ,(0) = p;o(0),Vt € N,. From
the earlier discussion, we conclude that a limiting belief vector
;.00 €XiSts almost surely, with non-zero entries corresponding
to each @ € ©". Part (ii) of the lemma then follows readily. B

While our proposed learning rule is tailored to facilitate
propagation of low beliefs on false hypotheses, it is crucial to
also ensure that the beliefs of all agents on the true state remain
bounded away from zero. In particular, consider the following
scenario. During a transient phase, certain agents see private
signals that cause them to temporarily lower their local beliefs
on the true state. This effect manifests itself in the actual beliefs
of the agents via the min-rule (4). We ask: Can such a transient
phenomenon trigger a cascade of progressively lower beliefs on
the true state? The next important result asserts that this will
almost surely never be the case.

Lemma 2: Suppose the conditions stated in Theorem 1 hold,
and Algorithm 1 is employed by each agent. Then, there exists a
setQ C Q with the following properties: (i) P?" (Q) = 1, and (ii)
for each w € Q, there exist constants 7(w) € (0,1) and t'(w) €
(0, 00) such that on the sample path w,

T00(0%) 2 n(w), pia(6%) = (), VE> (W), VieV.

(24)

“More precisely, the mean here is obtained by using the expectation operator
E? [] associated with the measure P?” .

O
Proof: Let Q C Q denote the set of sample paths for which
assertions (i)—(iii) in Lemma 1 hold for each false hypothesis
0 € ©\ {6*}. Based on Lemma 1, we note that P?"(Q) = 1.
Consequently, to prove the result, it suffices to establish the exis-
tence of n(w) € (0,1), and ¢’ (w) € (0, o) for each sample path
w € Q, such that (24) holds. To this end, fix an arbitrary sample
pathw € Q. We first argue that the local beliefs of every agent on
the true state 6* are bounded away from 0 on w. To see this, pick
any agent 7 € V. Suppose there exists some 0 € © \ {6*} for
which i € §(6*,0). Then, based on our choice of w, Lemma 1
implies that 7; «(0*) > m; 0(0*) > 0, where the last inequality
follows from the requirement of non-zero priors in line 1 of
Algorithm 1. In particular, given the structure of the update rule
(3), it follows that ; ;(6*) > 0 for all time. This is true since if
m;,+(6*) = 0 at any instant, then the corresponding belief would
remain at O for all subsequent time-steps, thereby violating the
fact that m; o (60*) > m; 0(6*) > 0. Now consider the scenario
where there exists no § € © \ {6*} for which i € S(6*,0), i.e.,
every hypothesis in © is observationally equivalent to 6* from
the point of view of agent 7. In this case, it is easy to see that
based on (3), w; ; = m; 0, Vt € Ny. In particular, this implies
mi4(0%) = m;,0(0*) > 0,Vt € Ny. This establishes our claim
that on w, ; .(6*) remains bounded away from zero Vi € V.
To proceed, define v, £ min;ey 7;,0(0%) > 0, where the in-
equality follows from line 1 in Algorithm 1. Pick a small number
0 > 0 such that § < 1, and notice that our discussion concern-
ing the evolution of the local beliefs readily implies the existence
of a time-step ¢’ (w), such that for all ¢ > t/(w), 7; 1 (6%) > 71 —
§ > 0,Vi € V. With v2(w) £ mingeyp{/1; p(.) (0%)}, we claim
that 75(w) > 0. The claim follows by noting that given the
structure of the update rule (4), and the requirement of non-zero
priors in Algorithm 1, 2 (w) can equal 0 if and only if some agent
in the network sets its local belief on 6* to 0 at some time-step
prior to t'(w). However, this possibility is ruled out in view of the
previously established fact thatonw, m; +(6*) > 0,Vt € N,Vi €
V. Letn(w) = min{y; — §,72(w)} > 0. In words, n(w) lower-
bounds the lowest belief (considering both local and actual
beliefs) on the true state 6* held by an agent at time-step ¢'(w).
It is apparent from the preceding discussion that 7; ,(6*) >
n(w),vt > t'(w),Vi € V. Thus, to complete the proof, it re-
mains to establish that p; . (6%) > n(w), ¥Vt > t/(w), Vi € V. To
this end, let us fix an agent ¢ and observe the following:

x\ (@)
Mt (w)+1(07) =

min{{ﬂj,t'(w) (9*)}3‘6/\& [ (w)|u{i}s Tt/ (w)+1 (0%)}

21 min{ {141 (w) (Op) }jen [t/ (w)ufi> To,t () +1(0p) }
=

® n(w)

2 min{{j11.00) (0p) Yieniiv @)otahs Tivw)+1(00)}
p:

n(w) (©

> (25)
Z 7rv:,t/(w)+1(9p)
p=1
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where (a) is given by (4), (b) follows from the way n(w) is
defined and by noting that m; ;(60*) > n(w), vt > t'(w),Vi € V,
and (c) follows by noting that the local belief vectors generated
via (3) are valid probability distributions over the hypothesis set
O at each time-step, and hence, ZZL:1 i v(w)+1(0p) = 1. The
previous reasoning applies to every agent in the network, and
can be repeated to establish (24) via induction. [ |
The next result establishes that the intrinsic discriminatory
capabilities of an agent are preserved under our learning rule.
Lemma 3: Suppose the conditions stated in Theorem 1 hold,
and Algorithm 1 is employed by each agent. Consider any false
hypothesis § € © \ {6*}, and an agent i € S(0*,0). Then,

lim inf — 71(% it (6)

t—00 t

> K;(6*,0) a.s. (26)

Proof: With Q defined as in Lemma 2, recall that P?" (Q) =
1, and pick any w € €. Now consider any false hypothesis 6 €
© \ {0}, and an agent i € S(6*, ). Fix any ¢ > 0, and notice
that since ¢ € S(0*,0), Eq. (19) in Lemma 1 implies that there
exists t;(w, 0, €), such that
mi0(0) < et yp > (0w, 0 €). 27
Furthermore, since w € ), Lemma 2 guarantees the existence of
a time-step t'(w) € (0, 00), and a constant 7(w) € (0, 1), such
that on w, m; ((0%) > n(w), i (0*) > n(w), vt > t'(w), Vi €
V. Let t;(w,0,¢) = max{t'(w), t;(w,0,¢)}. Let us suppress
the dependence of #;(w, 0, €) on i,w, and € for simplicity of
notation, and observe the following inequalities:

(a) T T (9)
piir1(0) < A

2 mind{4;¢(0p)jenumuts i1 (0p)}
p:

< 7Ti,£+1(‘9)

— min{{; #(0%) Yenimugiy T i1 (0%)}

() e~ (Ki(07,0)—€)(t+1)

n(w)

(28)
In the above inequalities, (a) follows from (4), whereas (b)
follows from (27) and by noting that all agents have both their
local and actual beliefs lower bounded by 7(w) beyond time-step
t. In particular, it is easy to see that the arguments used to arrive
at (28) apply to each time-step ¢ > ¢ + 1. Based on (28), we then
obtain that V¢ >t + 1,
_log pie(6) ;,t(G) > (Ki(0%,0) — ¢) + 71%;7(”). (29)

Taking the limit inferior on both sides of (29), and noting that €
can be made arbitrarily small, readily leads to (26). |

For the subsequent discussion, let us fix a particular false
hypothesis # € © \ {6}, and assume that global identifiability
holds. Let vy € argmax;cgg- )/ (0",0) represent any agent
with the best discriminatory power w.r.t. the false hypothesis 6,

given that 6* gets realized. Based on Lemma 3, we have

lim inf — 710g g, (0)

t—00 t

> K, (0%,0) as. (30)
Our goal is to now establish thateach agenti € V \ {vy} inherits
the same asymptotic rate of rejection of  as that of agent vy in
(30). Roughly speaking, we will achieve this by showing that
under the assumption of joint strong-connectivity, the belief of
any agent i € V' \ {vg} on 0 is “not too far off” from the belief
of agent vy on 6. In what follows, we make this idea precise.
First, we require some additional notation: With each agent
i € V, weassociate anon-negative scalar ¢; ; () € [0, oo]. These
parameters evolve based on the following rules.'

i) ¢y, t(0) =0,Vt € N.

i1) Ci,o(e) =o0,Vi eV \ {’Ue}.

iii) For each i € V\ {vg} and t € N, define 7;,(0) =

minjej\/i[t]u{i} Cjt (9), and

ciir1(0) = 7ie(0) + 1. (31

To explain the purpose of the above rules, we will adhere
to the following terminology. We say that there exists a path
of length m € Ny from vy to i € V \ {vg} over [t —m,t —
1], if there exist agents z(t —m+1),...,2(t) € V\ {vg},
such that (z(7 —1),z(r)) € [t — 1], where 7 € {t —m +
1,...,t},z(t — m) = vy, and x(t) = i. Note that the agents
appearing in the path need not be distinct, and that we have
assumed the presence of self-loops in each graph Gt],¢ € N.
Rules (i)—(iii) have been designed in a manner such that if ¢; ()
is finite at any time-step ¢t € N for any agent i € V' \ {vp},
then there exists a path of length ¢; ,(6) from vy to i over
[t — c;it(0),t — 1], in the sense described above. Analyzing the
time-evolution of ¢; +(#) enables us to then relate the belief
wit(0) of agent i to a delayed version of the belief i, ()
of agent vy, where the delay is precisely ¢; .(6) (the above
statements are formalized and proven in Lemma 5). Since agent
vy 1s the reference agent here, its delay w.r.t. its own belief
on @ is set to O for all time, thus explaining rule (i). Initially,
all agents in V' \ {vg} start out with an “infinite-delay” w.r.t.
the belief of agent vy; this is captured by rule (ii). Finally, the
rationale behind updating ¢; () via rule (iii) is to formalize the
intuition that under the assumption of joint strong-connectivity,
the lengths of paths linking vy to agents in V' \ {vg} (and hence,
the corresponding delays) should eventually remain uniformly
bounded; we begin by establishing this fact in the following
lemma.

Lemma 4: Consider any 6 € © \ {0*} and suppose the joint
strong-connectivity assumption (Assumption 2) holds. Then, the
following is true:

cii(0) <2(n—-1)7T, VieV, vt>(n-1)T, (32)

where T is the constant appearing in Assumption 2.
Proof: Observe that the conclusion in (32) is trivially true
for agent vy since ¢y, +(0) = 0,V¢ € N. To prove the result for

ONote that the agents do not actually maintain or update the parameters
¢;,¢(0). Instead, they have been introduced solely for the purpose of analysis.
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agents in the set V \ {vg}, we begin by claiming that sets Cr.(0%,0),1 <r <(n—1)as
Ciy(nfl)T(0> < (n — 1)T, Vi e V. (33) (r=1) (ntr-1)T-1
C.(0%,0) £ ieV\ | Cul0%,0): U Nil7]
To prove this claim, let Lo (6*,0) = {vy}, and define q=0 r=(n4r—2)T
. (r=1)
L£1(0%,0) 2 iec v\ Lo6*,0 U Nilr N U ¢cq0%,0) 3 #£0 (37)
One can then easily prove via induction that ¢; (,,_11,7(0) <
N Ly(6*,0 34 i, (n—147r)T
o(0%,0) # 0} (34) rT,Vi € C.(6*,0), where 1 <r < (n — 1). The rest then fol-

as the set of agents in V' \ {vg} that have a direct edge from
agent vy at least once over the interval [0,7"). Assumption 2
implies that £ (6*,0) is non-empty (barring the trivial case
when V = {vg}). Now pick any agent i € £1(0*,6), and notice
that since vy € N;[7]| for some 7 € [0,T), update rule (31)
implies ¢; -4+1(0) = 1.!' In particular, based on (31),

Cir1(0) < ci() + 1. (35

Based on the previous discussion, it follows that for each agent
i€ Ly(0*,0),c¢;,7(9) < T. The claim in (33) follows readily
for each agent ¢ € £1(6*,0) by appealing to (35). Let us now
recursively define the sets £,.(6*,60),1 <r < (n—1), as

(r—1) rT—1
L(0%,0)=iev\ | £,0%0):< | Nl
q=0 =(r-1)T
(r—1)
N U L,(07,0) p #0 (36)
In words, L.(0*,0) are those agents belonging to V\

Ug:ol) L,(0%,0) that each have at least one neighbor from
the set Ué:ol) L,(6%,0) over the interval [(r — 1)T,rT — 1].
We complete the proof of the claim by inducting on r. The
base case with » = 1 has already been proven above. Now sup-
pose the following is true: ¢; ,7(0) < rT, Vi € L,.(6*,6), where
re{l,...,om—1} and me {2,...,n—1}. Let r =m. If
VA U(m 1) L4(6%,0) is empty, then we are done. Else, based on
Assumption 2, it must be that £,,,(6*, 0) is non-empty. Pick any
agent i € L,,(0*,0), and notice that it has a neighbor j (say)
from the set U(m 1 L,(0%,60) at some time-step 7 € [(m —
1)T,mT). The 1nducti0n hypothesis coupled with (35) implies
that ¢; - (0) <7, and hence, ¢; ;41(0) <¢;-(0)+1<7+1
based on (31). Appealing to (35) then reveals that ¢; ,,,7(0) <
m[T', thus completing the induction step. Finally, noting that
U((;Iol) L4(6%,0) =V completes our proof of the claim (33). An
identical line of argument as above can be employed to show that
Ci2(n—1yr < (n—1)T,Vi € V. In particular, this can be done
by first taking Co(6*,6) = {vs}, and recursively defining the

Notice that based on the update rule (31), ¢; +(0) > 1,¥i € V' \ {vp}.
Thus, argmin ;e n7, [1]ugiy 5.t (0) = ve, Whenevervg € N;[t],since cy,,¢(0) =
0,vt € N.

lows from (35).

We can keep repeating the previous argument to establish that
Cismn-nyr(0) < (n—1)T,¥i € V,¥m € N . Finally, based
on the previous bound and (35), it follows that for each agent
i €V, ¢;(0) is upper bounded by 2(n — 1)T at any time-step
te (m(n—1)T,(m+1)(n—1)T), where m € N. This es-
tablishes (32), and completes the proof. |

The next lemma relates p; 4(0),i € V \ {vg} to py, +(0) in
terms of the parameter cm(ﬁ) and, in turn, provides the final
ingredient required to prove Theorem 1.

Lemma 5: Consider any 6 € © \ {6*}. Suppose the joint
strong-connectivity assumption holds (Assumption 2), and each
agent applies Algorithm 1. Suppose ¢; .(0) is finite, where
i € V\ {vg}, and t € N. Then, the following are true.

i) There exists a path of length ¢; ;(0) from vy to ¢ over
[t —cit(0),t—1].

ii) Let the path linking vy to i over [t —¢;.(0),t — 1]
in part (i) be denoted x(t—c;.(0)),x(t —c; () +
1),...,x(t), where x(t —¢; () = vg and z(t) =1.
Then

Vg ,a; 0
poa(t) < S0 (38)

B H:—:ai7t(6)+1 nw(r),‘r(e*) 7

where a;4(0) =t —¢; (6), and

75,e(0%) £ min{{p;1-1(0%) }jens e-1j0gi} mit (07) 1,
Vie V. 39)

Proof: We prove part (i) by inducting on the value of ¢; (6).
For the base case, suppose ¢; () =1 for some agent i €
V\ {vp} at some time-step ¢. Based on (31), notice that this can
happen if and only if vy € N;[t — 1]; the claim in part (i) then
follows readily for the base case. Fix an integer m > 2, and sup-
pose that the assertion of part (i) holds forany agent: € V \ {vg}
and at any time-step ¢, wheneverc¢; ¢(0) € {1,...,m — 1}. Now
suppose that at some time-step ¢, ¢; ;(6) = m for some agent i €
V\ {vg}.Referringto (31), thisis trueonlyif¢; ;1 (0) = m — 1
forsome! € N;[t — 1] U {i}. Sincem > 2, wehave ¢ ;1(6) >
1,andhencel € V \ {vp}. The induction hypothesis thus applies
to agent [, implying the existence of a path of length m — 1 from
vgtolover [(t — 1) — ¢ -1(0),t — 2], ie., over [t —m,t — 2].
Appending this path with the edge (,4) € [t — 1] immediately
leads to the desired conclusion.

For part (ii), consider the path (¢ — ¢; +(0)), x(t — ¢; +(0) +
1),...,x(t) from vy to i over [t — ¢;4(0),t — 1], where x(t —
¢;.1(0)) = vg and x(t) = 4. By definition of this path, z(7 —
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1) € Ny [r —1JU{x(7)}, for all 7 € {a;((0) +1,...,t}. prove that by(t),bz(t), and b3(t) converge to 0 for each sample
Thus, referring to (4), we obtain path w € Q. Accordingly, fix w € €, and recall n(w) € (0, 1)
0 and t'(w) € (0,00) from Lemma 2. Suppose ¢ > t'(w) + 27,
Ha(r).r where T'= (n — 1)T. We then claim the following:
1100
< tatrtyr-1(9) 7 (07) 2 ). o (07) 2 (), VL€V, ¥ > a(t),

m

> min{{p,r1(0p) Yien, oy [r-110fe(r)}> Ta(r),r () }

Ha(r—1),7—1 (9)
777;(7),7'(9*)

Using the above inequality recursively with 7 € {a;.(0) +
., t} immediately leads to (38). [ |
Proof: (Theorem 1): Fix a false hypothesis 6 € © \ {6*}.
Based on the assumption of global identifiability, note that
the set S(6*,0) is nonempty. Recall that vy is any agent for
which K;(6*,0),i € S(6*,60) is maximum, and note that we
have already established that the assertion of Theorem 1, namely
inequality (5), holds for agent vy in Lemma 3. Now consider an
agenti € V \ {vg}, and notice thatif ¢ > (n — 1)T’, then ¢; ,(6)
is uniformly bounded based on Lemma 4. Thus, the assertions
in Lemma 5 hold for all ¢ > (n — 1)T. Taking the natural log
on both sides of (38), dividing throughout by ¢, and simplifying,
we obtain the following for all ¢ > (n — T

< (40)

(67)

: IOg Ta( 'r)
Z( )

o (41
where a;(0) =t — ¢; +(0), 7:4(6%) is as defined in (39), and
(), € {a;+(0) +1,...,t}, are agents in the path linking
vg to i over [a; (6),¢ — 1]. For the remainder of the proof, to
lighten the notation, let us drop the subscript on vy, and let
a(t) = a;,(6). Based on (4), we then have:

_logpis(0)  log Mve,aq o

7 =

Tv,a(t) (9)
MNv,a(t) (0*)
A bit of straightforward algebra then yields:

/J'v,a(t) (9) < (42)

Ty, (60)
_IOg Hv,a(t) (9) > _10g Tyt (0) + To,a(t) (0)

t - t t
+ log N, a(t) (9*) .
t
Combining (41) and (43), we obtain for ¢t > (n — 1)T"

log

(43)

_logui}t(ﬁ) - _logm,t(ﬁ)
t - t
bi(t) + ba(t) + b3(2),

+b(t), (44)

where b(t) =

t Ty,t(0)
log 77.%(7'),7'(9*) log To,a(t) (0)
b1 (t) = Z t ) bQ(t) = t 3

(45)

lo 0~
bg(t) _ gnv,(z(t)( )
We now argue that each of the terms by (t),bo(t), and bs(t)
converge to 0 almost surely as ¢ — oo. To do so, recall that
the set 2 C € in Lemma 2 has measure 1. In what follows, we

(46)

47)
To see why this is true, notice that based on Lemma 4, the

following holds when ¢ > #/(w) 4 27":
a(t) =t —ci () >t — 2T > t'(w). (48)

The claim regarding (47) then follows readily from (24) in
Lemma 2. Based on the previous discussion, and referring to
(39), we immediately note that when ¢ > ¢'(w) + 27,

m-(0°) >nw), VeV, Vr>alt).

For establishing the convergence of by (t), b2 (t), and b3(t), sup-
pose t > t'(w) + 2T. Regarding by (¢), we then observe:

(49)

t
10g 1 (r) 7 (6*)
b)) =| Y ——

T=a(t)+1

(@) MOg 779:(7'),7’(9*)’

t
< > -

T=a(t)+1 (50)
®) (t — 1
< (t—a(t)) log
t n(w)
(2) E log —1
Tt TUnw)’

where (a) follows from the triangle inequality, (b) follows from
(49), and (c) follows from (48). From (50), we immediately note
that b, (t) — 0 along w. Let us now turn our attention to by (t),
and take note of the following:

t

(a) 1 Ty t(@*) lU(Sv_T|8)
[ba(t)] =+ |log —s + Y log oL

t 71-v,a(t)(e*) r=a(t)+1 lv(sv,‘rw*)
®) 1 ’ Ter(07) | 1 & ly(50.216)
< —|log —————=| + - 1 :

¢ To,a(t) (0%) é__az(t:)ﬂ v(S0,r16*)
(c) _
92 1 (t-a)L

t n(w) t
(d) 2

1
1 LT
t(ogm @) " )
(51)

where (a) follows from (22) and some simple manipulations, (b)
is a consequence of the triangle inequality, (c) follows from (1)
and (47), and (d) follows from (48). Based on (51), we then note
that by (t) — 0 along w. Finally, the fact that b3 (¢) converges to 0
along w follows immediately by appealing to (49). We have thus
established that b(t) — 0 almost surely. The desired conclusion
then follows by taking the limit inferior on both sides of (44),
and noting that

IOg Tt (0)
t

= lim Jpvt(e) K,(0%,0) as., (52)

t—00

lim —
t—00
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where p,, ¢ (6) is as defined in Lemma 1. The fact that 1, . (6) — 0
is immediate, since K, (6*,6) > 0 based on global identifia-
bility. The aforementioned analysis applies identically to each
0 € ©\ {0*}. This establishes consistency of our rule. |

APPENDIX B
PROOF OF THEOREM 2

To prove Theorem 2, we will make use of one of Littlewood’s
three principles: Every pointwise convergent sequence of mea-
surable functions is nearly uniformly convergent.

Theorem 5 (Egoroff’s Theorem): [43, Ch. 18] Let
(X, M, ) be a finite measure space and {f,} a sequence of
measurable functions on X that converge pointwise a.e. (almost
everywhere) on X to a function f that is finite a.e. on X. Then,
for each € > 0, there is a measurable subset X, of X for which
fn — f uniformly on X, and pu(X.) > 1 —e. O

Proof: (Theorem 2): Consider a § € © \ {#*}, and recall
that Kvg (9*, 9) = MaX;es(9+,0) Kl(6‘*, 9) = K’(G*, 9) We Ol’lly
prove the result for i € V \ {vg}, since the argument for agent
vg will be similar. To this end, let us fix an agenti € V \ {vg}.
We adhere to the notation used in the proof of Lemma I,
and for simplicity assume that the initial local belief vectors
Ti0,% € V are uniform distributions over the hypothesis set ©;
our subsequent arguments will continue to hold (with simple
modifications) under the more general assumption on priors
in line 1 of Algorithm 1. We immediately note that based on
the assumption of uniform priors, p;(0) = 0,Vi € V. Now
referring to inequality (44) in the proof of Theorem 1, we obtain
the following for ¢ > (n — 1)T"

po* <—1°g”i’tw> < K(6",0) — g + b(t))

@ . . _
< ]P)G <log7rt97t(9) < K(H*,g) _ 6)

@ et 53
= exXp —@ . (53)

In the above steps, (a) follows directly from (44), and (b) follows
by noting that based on the definition of p,,, +(6),

, VteN.

10g 70y,4(6) _ Pug.(6) (54)
¢

¢ =<
Step (c) follows directly from (22) with p,, o(6) = 0. Finally,
noting that 1 S Aoy ke (0) = —K,, (0*,0) as. (as argued in
the proof of Lemma 1), using the fact that |1, ,(0)| < L,Vt €
N based on (1), and applying Hoeffding’s inequality [44, Th.
2], leads to (d). Now recall from the proof of Theorem 1 that
b(t) — 0 almost surely. Appealing to Egoroff’s theorem, we
then infer that given any arbitrarily small 6 € (0, 1), there exists
aset '(6) C Q of P -measure at least (1 — §), such that b(t)
converges to O uniformly on /(§). Thus, given any € > 0,

there exists a w-independent constant (e, d) € (0,00), such
that |b(t)| < §,Vt > t(e, ), along each sample path w € €' (0).
Setting t/ (e, 5, n, T) = max{t(e, ), (n — 1)T'}, and referring to
(53), we immediately obtain that V¢t > t'(e,d,n, T,

PY ({_ log Mi,t(e)

<p” ({_W SK@.0) -5+ b(t)} n Q’(é))

< K(0%,0) — e} N Q’((S))

(55)

Taking the natural log on both sides of the resulting inequality,
dividing throughout by ¢, simplifying, and then taking the limit
inferior on both sides, leads to the desired result. [ |

APPENDIX C
PROOF OF THEOREM 4

Proof: Consider an f-local adversarial set A C V, and let
R =V \ A. We study two separate cases.

Case 1: Consider a regular agent i € R such that [N;| <
(2f + 1). Based on the hypothesis of the theorem, we claim that
i € S(0p,04), forevery pair 6,6, € ©. We prove this claim via
contradiction. To do so, suppose there exists a pair ,,,0, € O,
such that i € V \ S§(0,,,0,). As |[N;| < (2f + 1), the set {i} is
clearly not (2 + 1)-reachable (see Definition 2). Thus, G is not
strongly (2f + 1)-robust w.r.t. the source set S(6,,0,), a fact
that contradicts the hypothesis of the theorem. Thus, we have
established that if the graph-theoretic condition identified in the
theorem is met, then regular agents with fewer than (2f + 1)
neighbors can distinguish between every pair of hypotheses. For
such agents, the assertion of the theorem then follows directly
from Lemma 1, and update rules (3) and (14).

Case 2: We now focus only on regular agents ¢ satisfying
NG| > (2f +1). A key property of the LFRHE algorithm
(Algorithm 2) that will be used throughout the proof is as
follows. For any ¢ € R, and any 6 € O, the filtering operation
in line 7 of Algorithm 2 ensures that at each ¢t € N, we have

115,(0) € Conv(¥!,), VjeM?,, (56)

where

02 {u(9) 1 1€ N; MR}, (57)

and ConV(\I!fyt) is used to denote the convex hull formed by
the points in the set \Ilf’t (recall that /\/lf’t was defined in line 8
of Algorithm 2 to be the set of agents in \; whose beliefs are
retained by agent ¢ after it removes the highest f and lowest f
beliefs 11,(0), 7 € N;). In words, any neighboring belief (on a
particular hypothesis) that agent 7 uses in the update rule (13) lies
in the convex hull of the actual beliefs of its regular neighbors (on
that particular hypothesis). To see why (56) is true, partition the
neighbor set V; of a regular agent into three sets Mfy £ M?,t’ and
J?, as follows. Sets U, and J}, are each of cardinality f, and
contain neighbors of agent i that transmit the highest f and the
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lowest f actual beliefs, respectively, on the hypothesis 6, to agent
1 attime-step t. The set M'?,t contains the remaining neighbors of
agent i, and is non-empty at every time-step since |N;| > (2f +

1).1f Mft N A = (), then (56) holds trivially. Thus, consider the
case when there are adversaries in the set ./\/lf e, ./\/lgt NA#
(). Given the f-locality of the adversarial model, and the nature of
the filtering operation in the LFRHE algorithm, we infer that for
each j € Mfﬁt N A, there exist regular agents u,v € N; N'R,
such that w € U}, v € Jf,, and p1y 1(0) < 1,4 (0) < pr e ().
This establishes our claim regarding (56).

With the above property in hand, let Q C  denote the set
of sample paths for which assertions (i)—(iii) in Lemma 1 (see
Appendix A) hold when restricted to the set of regular agents
R. Since the evolution of the local beliefs are unaffected by
the presence of adversaries, Lemma 1 implies P?" () = 1.
Now as in Lemma 2, fix a sample path w € Q. Define v; £
min;eg m;,0(0%), pick a small number § > 0 satisfying § < 71,
and observe that arguments similar to those in the proof of
Lemma 2 imply the existence of a time-step ¢'(w), such that
for all t > #/(w), m;4(0%) > 71 — 6 > 0,Vi € R. Let o(w) =
minger { i, () (0%) }. As before, we claim v, (w) > 0. To estab-
lish this claim, we need to answer the following question: Can
an adversarial agent cause its out-neighbors to set their actual
beliefs on 6* to be 0 by setting its own actual belief on 6* to be
0?7 We argue that this is impossible under the LFRHE algorithm.
By way of contradiction, suppose there exists a time-step (w)
satisfying:

t(w)

In words, #(w) represents the first time-step when some regular
agent ¢ sets its actual belief on the true hypothesis to be zero.
Clearly, t(w) # 0 based on line 1 of Algorithm 2. Suppose t(w)
is some positive integer, and focus on how agent 7 updates
I () (0*) based on (13). Following similar arguments as in the
proof of Lemma 2, we know that 7; ,(6*) > 0,Vt € N, Vi € R.
At the same time, every belief featuring in the set \I/f;—(w%l (as
defined in equation (57)) is strictly positive based on the way
t(w) is defined. In light of the previous arguments, and based on
(56) and (57), we infer:

=min{t € N : 3i € R with p; .(6*) = 0}. (58)

min{ {1 @)1 (0" ey o Tii) (07)} > 0. (59)
Thus, based on (13), we must have p; 7.,y (0*) > 0, yielding
the desired contradiction. With n(w) £ min{y; — 6, y2(w)} >

0, one can easily verify the following by referring to (13):

pit (6%) = n(w),

In particular, (60) follows by (i) noting that for each ¢ € R,
Tiv(w)+1(0*) > n(w), and each belief featuring in the set
\I/f #(.0) 18 lower bounded by n(w), (ii) leveraging (56) and (57),
and (iii) using a similar string of arguments as those used to
arrive at (25). Thus, we have established an analogous result as
in Lemma 2 for the regular agents.

To proceed, let us fix a false hypothesis 6 # 6*, and define
K(0*,0) 2 min,es(g+,)nr Ko (0%, 0). Then, given any € > 0,
Lemma 1 implies the existence of a time-step #; (w, @, €), such

Vt >t (w) VieR. (60)

that:

mia(0) < e KOOty > 71 (. 0,¢), VieSO,0)NR.

(61)
Letfy = max{t'(w), #;(w, #, €)}, where we have suppressed the

dependence of 5 on w, # and e. For any agenti € S(6*,0) NR,
observe that based on (56), (57), and (60):
min{{11(0°)} jenqer> Tiar1 (0} 2 n(w), Yt > 1z (62)

Combining the aforementioned with a similar line of argument
as used to arrive at (28), we obtain

,Ll/i’t(e) < Cl (OJ)@
Vi€ S(0%,0)NR,

where Oy (w) = n(w) " IfV\ S(6*%,6
essentially done. Else, define

L1(6%,0) 2 [i € V\ S(6%,0) :

—(K(O"0)-t  yp>F, 41

(63)

) is empty, then we are

NGO S0%,0)] > (2 + 1)}

(64)
Whenever V \ S(6*, 0) is non-empty, we claim that £ (6*,0)
(as defined above) is also non-empty based on the hypothesis
of the theorem. To see this, note that if £1(6*, 9) is empty, then
C=V\S§(0*,0) is not (2f + 1)-reachable, violating the fact
that G is strongly (2f 4 1)-robust w.r.t. S(6*, §). We claim that
the following holds for each i € £4(6*,6) N'R:

min p;.(6) < Cl(w)ef(f((e*’e)*é)t,
jEML P

Vt>ta+ 1. (65)

To verify the above claim, pick any agent i € £1(6*,0) N'R,
and suppose t > £ + 1. When |[M?, N {S(6*,0) N R}| > 0,
the claim follows immediately based on (63). Consider the case
when [MY, N {S(6*,0) "R} = 0. Since i € L£1(6*,6), it has
atleast (2f + 1) neighbors in S(6*, 0), out of which at least f +
1 are regular based on the f-locality of the adversarial model.
Since the set 7, has cardinality f, it must then be that |14, N
{S(6*,6) "R} > 0.Letu € U, N {S(6*,6) N R}. Based on
the way MY i1 1s defined, it must be that 1 ,(0) < p1,,¢(0) <
Cy(w)e~EE" -0t yj ¢ M, where the last inequality fol-
lows from (63). This establishes our claim regarding (65). Now
consider the update of 1; ;11 (0) based on (13), whent > #5 + 1.
In light of the above arguments, the numerator of the fraction
on the RHS of (13) is upper-bounded by C (w)e™ K(6*.0)-e)t,
whereas the denominator is lower-bounded by 77( ). We con-
clude that for all i € £,(6*,0) N R:
Vt > 15+ 2,

i (0) <
(66)

where Cy(6, €) = eEE"0-9) With £,(6*,0) 2 S(6, )
recursively define the sets £,.(0*,60),1 <r < (n—1) as

(C1(w))*Cs (0, e)e KONt

L.(6%,6) 2 {z eVv\ O L (0%,0):\N;

q=0

{Uc (07, }>(2f+ )}

(67)
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We claim that the following is true for all i € £,.(6*,0) N'R:

1i,4(8) < (C1())" TH(Ca(B, ¢)) e KO0,

Vt > ta+ (r+1). (68)

To prove the claim, we proceed viainduction on 7. The base cases
when 7 € {0, 1} have already been established. Suppose (68)
holds for all € {0,...,m — 1}, where m € {2,...,n — 1}.
The claim easily extends to the case when » = m by noting
that (i) £,,(0*,0) is non-empty if V' \ {U(m Ve L,(0%,0)} is
non-empty (based on the hypothesis of the theorem), (ii) any
agent ¢ € L,,(0*,0) N'R has at least (2f + 1) neighbors in
the set U(m Ve L4(6%,0), of which at least f + 1 are regular
(based on the f-locality of the adversarial model), and (iii)
using the induction hypothesis and arguments similar to those
used to arrive at (66). We have thus verified the correctness of
(68). Now taking the natural log on both sides of (68), dividing
throughout by ¢, simplifying, and then taking the limit inferior
on both sides of the resulting inequality immediately leads to
(15). Finally, to complete the proof, it suffices to note that

1
UeY £4(6%,6) = R. ]
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