
Fast Parallel Algorithms for Euclidean Minimum Spanning Tree
and Hierarchical Spatial Clustering∗

Yiqiu Wang

MIT CSAIL

yiqiuw@mit.edu

Shangdi Yu

MIT CSAIL

shangdiy@mit.edu

Yan Gu

UC Riverside

ygu@cs.ucr.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

Abstract

This paper presents new parallel algorithms for generating Eu-

clidean minimum spanning trees and spatial clustering hierarchies

(known as HDBSCAN
∗
). Our approach is based on generating a

well-separated pair decomposition followed by using Kruskal’s

minimum spanning tree algorithm and bichromatic closest pair

computations. We introduce a new notion of well-separation to

reduce the work and space of our algorithm for HDBSCAN
∗
. We

also give a new parallel divide-and-conquer algorithm for com-

puting the dendrogram and reachability plots, which are used in

visualizing clusters of different scale that arise for both EMST and

HDBSCAN
∗
. We show that our algorithms are theoretically efficient:

they have work (number of operations) matching their sequential

counterparts, and polylogarithmic depth (parallel time).

We implement our algorithms and propose a memory optimiza-

tion that requires only a subset of well-separated pairs to be com-

puted and materialized, leading to savings in both space (up to

10x) and time (up to 8x). Our experiments on large real-world and

synthetic data sets using a 48-core machine show that our fastest

algorithms outperform the best serial algorithms for the problems

by 11.13–55.89x, and existing parallel algorithms by at least an

order of magnitude.

ACM Reference Format:

Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast Parallel Al-

gorithms for Euclidean Minimum Spanning Tree and Hierarchical Spatial

Clustering. In Proceedings of the 2021 International Conference on Manage-
ment of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3457296

1 Introduction

This paper studies the two related geometric problems of Eu-

clidean minimum spanning tree (EMST) and hierarchical density-

based spatial clustering with added noise [14]. The problems take

as input a set of 𝑛 points in a 𝑑-dimensional space. EMST computes

a minimum spanning tree on a complete graph formed among the

𝑛 points with edges between two points having the weight equal to

their Euclidean distance. EMST has many applications, including in

∗
The full version of this paper can be found at http://arxiv.org/abs/2104.01126.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457296

single-linkage clustering [28], network placement optimization [53],

and approximating the Euclidean traveling salesman problem [52].

Hierarchical density-based spatial clustering of applications with
noise (HDBSCAN∗

) is a popular hierarchical clustering algorithm [14].

The goal of density-based spatial clustering is to cluster points that

are in dense regions and close together in proximity. One of the

most widely-used density-based spatial clustering methods is the

density-based spatial clustering of applications with noise (DBSCAN)

method by Ester et al. [20]. DBSCAN requires two parameters, 𝜖 and

minPts, which determine what is considered “close” and “dense”,

respectively. In practice, minPts is usually fixed to a small con-

stant, but many different values of 𝜖 need to be explored in order

to find high-quality clusters. Many efficient DBSCAN algorithms

have been designed both for the sequential [16, 19, 24, 30] and

the parallel context (both shared memory and distributed mem-

ory) [27, 32, 37, 44, 51, 54]. To avoid repeatedly executing DBSCAN

for different values of 𝜖 , the OPTICS [7] and HDBSCAN
∗
[14] algo-

rithms have been proposed for constructing DBSCAN clustering

hierarchies, from which clusters from different values of 𝜖 can be

generated. These algorithms are known to be robust to outliers

in the data set. The algorithms are based on generating a mini-

mum spanning tree on the input points, where a subset of the edge

weights are determined by Euclidean distance and the remaining

edge weights are determined by a DBSCAN-specific metric known

as the core distance (to be defined in Section 2). Thus, the algorithms

bear some similarity to EMST algorithms.

There has been a significant amount of theoretical work on de-

signing fast sequential EMST algorithms (e.g., [6, 8, 12, 48, 56]).

There have also been some practical implementations of EMST [9,

15, 38, 41], although most of them are sequential (part of the algo-

rithm by Chatterjee et al. [15] is parallel). The state-of-the-art EMST

implementations are either based on generating a well-separated

pair decomposition (WSPD) [13] and applying Kruskal’s mini-

mum spanning tree (MST) algorithm on edges produced by the

WSPD [15, 41], or dual-tree traversals on 𝑘-d trees integrated into

Boruvka’s MST algorithm [38]. Much less work has been proposed

for parallel HDBSCAN
∗
and OPTICS [45, 47]. In this paper, we

design new algorithms for EMST, which can also be leveraged to

design a fast parallel HDBSCAN
∗
algorithm.

This paper presents practical parallel in-memory algorithms

for EMST and HDBSCAN
∗
, and proves that the theoretical work

(number of operations) of our implementations matches their state-

of-the-art counterparts, while having polylogarithmic depth.
1
Our

algorithms are based on finding aWSPD and then running Kruskal’s

algorithm on edges between pairs in theWSPD. For our HDBSCAN
∗

algorithm, we propose a new notion of well-separation to include

1
The work is the total number of operations and depth (parallel time) is the length of

the longest sequential dependence.

https://doi.org/10.1145/3448016.3457296
http://arxiv.org/abs/2104.01126
https://doi.org/10.1145/3448016.3457296

the notion of core distances, which enables us to improve the space

usage and work of our algorithm.

Given the MST from the EMST or the HDBSCAN
∗
problem, we

provide an algorithm to generate a dendrogram, which represents

the hierarchy of clusters in our data set. For EMST, this solves the

single-linkage clustering problem [28], and for HDBSCAN
∗
, this

gives us a dendrogram as well as a reachability plot [14]. We in-

troduce a work-efficient
2
parallel divide-and-conquer algorithm

that first generates an Euler tour on the tree, splits the tree into

multiple subtrees, recursively generates the dendrogram for each

subtree, and glues the results back together. An in-order traversal

of the dendrogram gives the reachability plot. Our algorithm takes

𝑂 (𝑛 log𝑛) work and𝑂 (log2 𝑛 log log𝑛) depth. Our parallel dendro-
gram algorithm is of independent interest, as it can also be applied

to generate dendrograms for other clustering problems.

We provide optimized parallel implementations of our EMST and

HDBSCAN
∗
algorithms. We introduce a memory optimization that

avoids computing andmaterializingmany of theWSPD pairs, which

significantly improves our algorithm’s performance (up to 8x faster

and 10x less space). We also provide optimized implementations of

𝑘-d trees, which our algorithms use for spatial queries.

We perform a comprehensive set of experiments on both syn-

thetic and real-world data sets using varying parameters, and com-

pare the performance of our implementations to optimized sequen-

tial implementations as well as existing parallel implementations.

Compared to existing EMST sequential implementations [38, 39],

our fastest sequential implementation is 0.89–4.17x faster (2.44x

on average). On a 48-core machine with hyper-threading, our

EMST implementation achieves 14.61–55.89x speedup over the

fastest sequential implementations. Our HDBSCAN
∗
implemen-

tation achieves 11.13–46.69x speedup over the fastest sequential

implementations. Compared to existing sequential and parallel im-

plementations for HDBSCAN
∗
[25, 39, 45, 47], our implementation

is at least an order of magnitude faster. Our source code is publicly

available at https://github.com/wangyiqiu/hdbscan.

We summarize our contributions below:

• New parallel algorithms for EMST and HDBSCAN
∗
with strong

theoretical guarantees.

• A new definition of well-separation that computes the HDB-

SCAN* MST using asymptotically less space.

• Memory-optimized parallel implementations for EMST and

HDBSCAN
∗
that give significant space and time improvements.

• A new parallel algorithm for dendrogram construction.

• A comprehensive experimental study of the proposed methods.

2 Preliminaries

2.1 Problem Definitions

EMST. The Euclidean Minimum Spanning Tree (EMST) prob-
lem takes 𝑛 points P = {𝑝1, . . . , 𝑝𝑛} and returns a minimum span-

ning tree (MST) of the complete undirected Euclidean graph of

P.

DBSCAN
∗
. The DBSCAN∗

(density-based spatial clustering of

applications with noise) problem takes as input 𝑛 points P =

{𝑝1, . . . , 𝑝𝑛}, a distance function𝑑 , and two parameters 𝜖 andminPts [14,
2
A work-efficient parallel algorithm has a work bound that matches the best sequen-

tial algorithm for the problem.

20]. A point𝑝 is a core point if and only if |{𝑝𝑖 | 𝑝𝑖 ∈ P, 𝑑 (𝑝, 𝑝𝑖) ≤ 𝜖}| ≥
minPts. A point is called a noise point otherwise. We denote the

set of core points as Pcore . DBSCAN
∗
computes a partition of Pcore ,

where each subset is referred to as a cluster, and also returns

the remaining points as noise points. Two points 𝑝, 𝑞 ∈ Pcore
are in the same cluster if and only if there exists a list of points

𝑝 = 𝑝1, 𝑝2, . . . , 𝑝𝑘−1, 𝑝𝑘 = 𝑞 in Pcore such that 𝑑 (𝑝𝑖−1, 𝑝𝑖) ≤ 𝜖 for

all 1 < 𝑖 ≤ 𝑘 . For a given set of points and two parameters 𝜖 and

minPts, the clusters returned are unique.
3

HDBSCAN
∗
.TheHDBSCAN∗

(hierarchical DBSCAN
∗
) problem [14]

takes the same input as DBSCAN
∗
, but without the 𝜖 parameter, and

computes a hierarchy of DBSCAN
∗
clusters for all possible values

of 𝜖 . The core distance of a point 𝑝 , cd(𝑝), is the distance from
𝑝 to its minPts-nearest neighbor (including 𝑝 itself). The mutual
reachability distance between two points 𝑝 and 𝑞 is defined to

be 𝑑𝑚 (𝑝, 𝑞) =𝑚𝑎𝑥{cd(𝑝), cd(𝑞), 𝑑 (𝑝, 𝑞)}. Themutual reachabil-
ity graph 𝐺MR is a complete undirected graph, where the vertices

are the points in P, and the edges are weighted by the mutual

reachability distances.
4

The HDBSCAN
∗
hierarchy is sequentially computed in two

steps [14]. The first step computes an MST of 𝐺MR and then adds

a self-edge to each vertex weighted by its core distance. An ex-

ample MST is shown in Figure 1a. We note that the HDBSCAN
∗

MST with minPts = 1 is equivalent to the EMST, since the mutual

reachability distance at minPts = 1 is equivalent to the Euclidean

distance. A dendrogram representing clusters at different values

of 𝜖 is computed by removing edges from the MST plus self-edges

graph in decreasing order of weight. The root of the dendrogram is

a cluster containing all points. Each non-self-edge removal splits a

cluster into two, which become the two children of the cluster in

the dendrogram. The height of the split cluster in the dendrogram

is equal to the weight of the removed edge. If the removed edge is

a self-edge, we mark the component (point) as a noise point. An

example of a dendrogram is shown in Figure 1b. If we want to re-

turn the clusters for a particular value of 𝜖 , we can horizontally cut

the dendrogram at that value of 𝜖 and return the resulting subtrees

below the cut as the clusters or noise points. This is equivalent to

removing edges from the MST of 𝐺MR with weight greater than 𝜖 .

For HDBSCAN
∗
, the reachability plot (OPTICS sequence) [7]

contains all points in P in some order {𝑝𝑖 | 𝑖 = 1, . . . , 𝑛}, where each
point 𝑝𝑖 is represented as a bar with heightmin{𝑑𝑚 (𝑝𝑖 , 𝑝 𝑗) | 𝑗 < 𝑖}.
For HDBSCAN

∗
, the order of the points is the order that they are

visited in an execution of Prim’s algorithm on the MST of 𝐺MR
starting from an arbitrary point [7]. An example is shown in Fig-

ure 1c. Intuitively, the "valleys" of the reachability plot correspond

to clusters [14].

2.2 Parallel Primitives

We use the classic work-depth model for analyzing parallel

shared-memory algorithms [18, 34, 35]. The work 𝑊 of an al-

gorithm is the number of instructions in the computation, and

the depth 𝐷 is the longest sequential dependence. Using Brent’s

scheduling theorem [10], we can execute a parallel computation in

3
The original DBSCAN definition includes the notion of border points, which are

non-core points that are within a distance of 𝜖 to core points [20]. DBSCAN
∗
chooses

to omit this to be more consistent with a statistical interpretation of clusters [14].

4
The related OPTICS problem also generates a hierarchy of clusters but with a defini-

tion of reachability distance that is asymmetric, leading to a directed graph [7].

https://github.com/wangyiqiu/hdbscan

a

d

b

e

4

√10

√10

√17

a d b c e g f h
2

3

4

5

6
d-e

b-c

a-d
b-d

f-g
f-h

e-g
2

3

4

5

6

∞

4

√10

√17

6

√5
2√2

a d b c e g f h

(a)

(b) (c)

c

i

h-i

18 18

i

√346

... ...

6
2

1

√10

√2 g

f

√5

√5

2√2

i √346

h

1 2√2

18

√5

√5

Figure 1: (a) An MST of the HDBSCAN
∗
mutual reachability graph

on an example data set in 2D. The red number next to each point

is the core distance of the point for minPts = 3. The Euclidean dis-

tances between points are denoted by grey edges, whose values are

marked in black. For example, 𝑎’s core distance is 4 because 𝑏 is 𝑎’s

third nearest neighbor (including itself) and 𝑑 (𝑎,𝑏) = 4. The edge

weight of (𝑎,𝑑) is max{4,
√
10,

√
2} = 4. (b) An HDBSCAN

∗
dendro-

gram for the data set. A point becomes a noise point when its ver-

tical line becomes red. For example, if we cut the dendrogram at

𝜖 = 3.5, then we have two clusters {𝑑,𝑏 } and {𝑒, 𝑔, 𝑓 , ℎ}, while 𝑎, 𝑐

and 𝑖 are noise points. (c) A reachability plot for the data set start-

ing at point 𝑎. The two “valleys”, {𝑎,𝑏, 𝑐,𝑑 } and {𝑒, 𝑓 , 𝑔, ℎ}, are the

two most obvious clusters.

𝑊 /𝑝 + 𝐷 running time using 𝑝 processors. In practice, we can use

randomized work-stealing schedulers that are available in existing

languages such as Cilk, TBB, X10, and Java Fork-Join. We assume

that priority concurrent writes take 𝑂 (1) work and depth.

Prefix sum takes as input a sequence [𝑎1, 𝑎2, . . . , 𝑎𝑛], an asso-

ciative binary operator ⊕, and an identity element 𝑖 , and returns the

sequence [𝑖, 𝑎1, (𝑎1 ⊕ 𝑎2), . . . , (𝑎1 ⊕ 𝑎2 ⊕ . . . ⊕ 𝑎𝑛−1)] as well as the
overall sum (using ⊕) of the elements. Filter takes an array𝐴 and a

predicate function 𝑓 , and returns a new array containing 𝑎 ∈ 𝐴 for

which 𝑓 (𝑎) is true, in the same order that they appear in 𝐴. Filter

can be implemented using prefix sum. Split takes an array 𝐴 and a

predicate function 𝑓 , and moves all of the “true” elements before the

“false” elements. Split can be implemented using filter. The Euler
tour of a tree takes as input an adjacency list representation of

the tree and returns a directed circuit that traverses every edge of

the tree exactly once. List ranking takes a linked list with values

on each node and returns for each node the sum of values from

the node to the end of the list. All of the above primitives can be

implemented in𝑂 (𝑛) work and𝑂 (log𝑛) depth [34]. Semisort [29]
takes as input 𝑛 items, each with a key, and groups the items with

the same key together, without any guarantee on the ordering of

items with different keys. This algorithm takes𝑂 (𝑛) expected work
and 𝑂 (log𝑛) depth with high probability. A parallel hash table
supports 𝑛 inserts, deletes, and finds in 𝑂 (𝑛) work and 𝑂 (log𝑛)
depth with high probability [26].WriteMin is a priority concurrent

write that takes as input two arguments, where the first argument

is the location to write to and the second argument is the value to

write; on concurrent writes, the smallest value is written [50].

2.3 Relevant Techniques

𝑘-NN Query. A 𝑘-nearest neighbor (𝑘-NN) query takes a point

data set P and a distance function, and returns for each point in P

Notation Definition

𝑑 (𝑝,𝑞) Euclidean distance between points 𝑝 and 𝑞.

𝑑𝑚 (𝑝,𝑞) Mutual reachability distance between points 𝑝 and 𝑞.

𝑑 (𝐴, 𝐵) Minimum distance between the bounding spheres of

points in tree node𝐴 and points in tree node 𝐵.

𝑤 (𝑢, 𝑣) Weight of edge (𝑢, 𝑣) .
𝐴diam Diameter of the bounding sphere of points in tree node𝐴.

cdmin (𝐴) Minimum core distance of points in tree node𝐴.

cdmax (𝐴) Maximum core distance of points in tree node𝐴.

Table 1: Summary of Notation

its𝑘 nearest neighbors (including itself). Callahan and Kosaraju [11]

show that 𝑘-NN queries in Euclidean space for all points can be

solved in parallel in 𝑂 (𝑘𝑛 log𝑛) work and 𝑂 (log𝑛) depth.
𝑘d-tree. A 𝑘d-tree is a commonly used data structure for 𝑘-NN

queries [22]. It is a binary tree that is constructed recursively: each

node in the tree represents a set of points, which are partitioned

between its two children by splitting along one of the dimensions;

this process is recursively applied on each of its two children until

a leaf node is reached (a leaf node is one that contains at most 𝑐

points, for a predetermined constant 𝑐). It can be constructed in

parallel by processing each child in parallel. A 𝑘-NN query can be

answered by traversing nodes in the tree that are close to the input

point, and pruning nodes further away that cannot possibly contain

the 𝑘 nearest neighbors.

BCCP andBCCP*. Existing algorithms, as well as some of our new

algorithms, use subroutines for solving the bichromatic closest
pair (BCCP) problem, which takes as input two sets of points,

𝐴 and 𝐵, and returns the pair of points 𝑝1 and 𝑝2 with minimum

distance between them, where 𝑝1 ∈ 𝐴 and 𝑝2 ∈ 𝐵. We also define a

variant, the BCCP* problem, that finds the pair of points with the

minimum mutual reachability distance, as defined for HDBSCAN
∗
.

Well-Separated Pair Decomposition. We use the same defini-

tions and notations as in Callahan and Kosaraju [13]. Two sets of

points, 𝐴 and 𝐵, are well-separated if 𝐴 and 𝐵 can each be con-

tained in spheres of radius 𝑟 , and the minimum distance between

the two spheres is at least 𝑠𝑟 , for a separation constant 𝑠 (we use
𝑠 = 2 throughout the paper). An interaction product of point sets
𝐴 and 𝐵 is defined to be 𝐴 ⊗ 𝐵 = {{𝑝, 𝑝 ′}| 𝑝 ∈ 𝐴, 𝑝 ′ ∈ 𝐵, 𝑝 ≠ 𝑝 ′}.
The set {{𝐴1, 𝐵1}, . . . , {𝐴𝑘 , 𝐵𝑘 }} is a well-separated realization
of 𝐴 ⊗ 𝐵 if: (1) 𝐴𝑖 ⊆ 𝐴 and 𝐵𝑖 ⊆ 𝐵 for all 𝑖 = 1, ..., 𝑘 ; (2) 𝐴𝑖 ∩ 𝐵𝑖 = ∅
for all 𝑖 = 1, ..., 𝑘 ; (3) (𝐴𝑖 ⊗ 𝐵𝑖)

⋂ (𝐴 𝑗 ⊗ 𝐵 𝑗) = ∅ for all 𝑖, 𝑗 where

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ; (4) 𝐴 ⊗ 𝐵 =
⋃𝑘

𝑖=1𝐴𝑖 ⊗ 𝐵𝑖 ; (5) 𝐴𝑖 and 𝐵𝑖 are well-

separated for all 𝑖 = 1, ..., 𝑘 .

For a point setP, awell-separated pair decomposition (WSPD)
is a well-separated realization ofP⊗P. We discuss how to construct

a WSPD using a 𝑘d-tree in Section 3.

Notation. Table 1 shows notation frequently used in the paper.

3 Parallel EMST and HDBSCAN
∗

In this section, we present our new parallel algorithms for EMST

and HDBSCAN
∗
. We also introduce our new memory optimization

to improve space usage and performance in practice.

3.1 EMST

To solve EMST, Callahan and Kosaraju present an algorithm for

constructing a WSPD that creates an edge between the BCCP of

each pair in the WSPD with weight equal to their distance, and

then runs an MST algorithm on these edges. They show that their

algorithm takes 𝑂 (𝑇𝑑 (𝑛, 𝑛) log𝑛) work [12], where 𝑇𝑑 (𝑛, 𝑛) refers
to the work of computing BCCP on two sets each of size 𝑛.

Algorithm 1 Well-Separated Pair Decomposition

1: procedureWspd(𝐴)

2: if |𝐴 | > 1 then

3: do in parallel

4: Wspd(𝐴left) ⊲ parallel call on the left child of𝐴

5: Wspd(𝐴right) ⊲ parallel call on the right child of𝐴

6: FindPair(𝐴left ,𝐴right)

7: procedure FindPair(𝑃 , 𝑃 ′
)

8: if 𝑃diam < 𝑃 ′
diam then

9: Swap(𝑃 , 𝑃 ′
)

10: if WellSeparated(𝑃 , 𝑃 ′
) then Record(𝑃 , 𝑃 ′

)

11: else

12: do in parallel

13: FindPair(𝑃left , 𝑃
′
) ⊲ 𝑃left is the left child of 𝑃

14: FindPair(𝑃right , 𝑃
′
) ⊲ 𝑃right is the right child of 𝑃

Algorithm 2 Parallel GeoFilterKruskal

1: procedure ParallelGFK(WSPD: 𝑆 , Edges: 𝐸out , UnionFind: UF)
2: 𝛽 = 2

3: while |𝐸out | < (𝑛 − 1) do
4: (𝑆𝑙 , 𝑆𝑢) = Split(𝑆 , 𝑓𝛽) ⊲ For a pair (𝐴, 𝐵) , 𝑓𝛽 checks if |𝐴 | + |𝐵 | ≤ 𝛽

5: 𝜌hi = min(𝐴,𝐵)∈𝑆𝑢 𝑑 (𝐴, 𝐵)
6: (𝑆𝑙1, 𝑆𝑙2) = Split(𝑆𝑙 , 𝑓𝜌hi) ⊲ For a pair (𝐴, 𝐵) , 𝑓𝜌hi checks if

BCCP(𝐴, 𝐵) ≤ 𝜌hi
7: 𝐸𝑙1 = GetEdges(𝑆𝑙1) ⊲ Retrieves edges associated with pairs in 𝑆𝑙1
8: ParallelKruskal(𝐸𝑙1 , 𝐸out , UF)
9: 𝑆 = Filter(𝑆𝑙2 ∪ 𝑆𝑢 , 𝑓diff) ⊲ For a pair (𝐴, 𝐵) , 𝑓diff checks points in𝐴

are in different component from 𝐵 in UF
10: 𝛽 = 𝛽 × 2

For our parallel EMST algorithm, we parallelize WSPD construc-

tion algorithm, and then develop a parallel variant of Kruskal’s

MST algorithm that runs on the edges formed by the pairs in the

WSPD. We also propose a non-trivial optimization to make the

implementation fast and memory-efficient.

3.1.1 Constructing a WSPD in Parallel We introduce the basic par-

allel WSPD in Algorithm 1. Prior to calling WSPD, we construct

a spatial median 𝑘d-tree 𝑇 in parallel with each leaf containing

one point. Then, we call the procedureWspd on Line 1 and make

the root node of 𝑇 its input. In Wspd, we make parallel calls to

FindPair on the two children of all non-leaf nodes by recursively

callingWspd. The procedure FindPair on Line 7 takes as input a

pair (𝑃, 𝑃 ′) of nodes in 𝑇 , and checks whether 𝑃 and 𝑃 ′ are well-
separated. If they are well-separated, then the algorithm records

them as a well-separated pair on Line 10; otherwise, the algorithm

splits the set with the larger bounding sphere into its two children

and makes two recursive calls in parallel (Lines 13–14). This pro-

cess is applied recursively until the input pairs are well-separated.

The major difference of Algorithm 1 from the serial version is the

parallel thread-spawning on Lines 3–5 and 12–14. This procedure

generates a WSPD with 𝑂 (𝑛) pairs [12].

3.1.2 Parallel GFK Algorithm for EMST The original algorithm

by Callahan and Kosaraju [12] computes the BCCP between each

pair in the WSPD to generate a graph from which an MST can

be computed to obtain the EMST. However, it is not necessary

to compute the BCCP for all pairs, as observed by Chatterjee et

al. [15]. Our implementation only computes the BCCP between a

pair if their points are not yet connected in the spanning forest

generated so far. This optimization reduces the total number of

BCCP calls. Furthermore, we propose a memory optimization that

avoids materializing all of the pairs in the WSPD. We will first

(b,c)
2, 1

(e,h)
2,√17

(e,Q7)

3, 2

(Q4,Q5)

4,√10

 (Q2,Q6)

 7, 8

(a,d)
2, √2

Round 1, β=2, ρhi=d(h,Q7)

Q4 Q5

Q2

a
f g

d b c

e

h

Q6

Q7

Q1

(e,Q2)

3, 6

Color CodeFormat
Sl1 Sl2 Su

(f,g)
2, 1

Q3

 (Q1, i)

 9, 18

(e,h)
2,√17

(h,Q7)

3, √5

(e,Q7)

3, 2

(Q4,Q5)

4,√10

(e,Q2)

3, 6

 (Q2,Q6)

 7, 8
 (Q1, i)

 9, 18

Round 2, β=4, ρhi=d(Q2,Q6)

Round 3, β=8

Q0

 (Q1, i)

 9, 18

i

(h,Q7)

3, √5

(A, B)
|A|+|B|, BCCP

Figure 2: The is an example for both GFK (Algorithm 2) and Mem-

oGFK (Algorithm 3) for EMST corresponding to the data set shown

in Figure 1. The red lines linking tree nodes and the boxes drawn

below represent well-separated pairs. The boxes also show the car-

dinality and BCCP value of the pair. Their correspondence with the

symbols 𝑆𝑙1, 𝑆𝑙2, and 𝑆𝑢 from the pseudocode are color-coded. The

pairs that generate 𝜌hi are in bold squares, and the pairs filtered out

have a red cross. Using our MemoGFK optimization, only the pairs

in 𝑆𝑙1 needs to be materialized, in contrast to needing to materialize

all of the pairs in GFK.

describe how we obtain the EMST from the WSPD, and then give

details of our memory optimization.

The original Kruskal’s algorithm is an MST algorithm that takes

input edges sorted by non-decreasing weight, and processes the

edges in order, using a union-find data structure to join compo-

nents for edges with endpoints in different components. Our imple-

mentation is inspired by a variant of Kruskal’s algorithm, GeoFil-

terKruskal (GFK). This algorithm was used for sequential EMST

by Chatterjee et al. [15], and for MST in general graphs by Osipov

et al. [43]. It improves Kruskal’s algorithm by avoiding the BCCP
computation between pairs unless needed, and prioritizing BCCPs
between pairs with smaller cardinalities, which are cheaper, with

the goal of pruning more expensive BCCP computations.

We propose a parallel GFK algorithm as shown in Algorithm 2. It

uses Kruskal’s MST algorithm as a subroutine by passing it batches

of edges, where each batch has edges with weights no less than

those of edges in previous batches, and the union-find structure is

shared across multiple invocations of Kruskal’s algorithm. Paral-

lelGFK takes as input the WSPD pairs 𝑆 , an array 𝐸out to store the

MST edges, and a union-find structure UF . On each round, given a

constant 𝛽 , we only consider node pairs in the WSPD with cardinal-

ity (sum of sizes) at most 𝛽 because it is cheaper to compute their

BCCPs. To do so, the set of pairs 𝑆 is partitioned into 𝑆𝑙 , containing

pairs with cardinality at most 𝛽 , and 𝑆𝑢 , containing the remaining

pairs (Line 4). However, it is only correct to consider pairs in 𝑆𝑙
that produce edges lighter than any of the pairs in 𝑆𝑢 . On Line 5,

we compute an upper bound 𝜌hi for the edges in 𝑆𝑙 by setting 𝜌hi
equal to the minimum 𝑑 (𝐴, 𝐵) for all (𝐴, 𝐵) ∈ 𝑆𝑢 (this is a lower

bound on the edges weights formed by these pairs). In the example

shown in Figure 2, in the first round, with 𝛽 = 2, the set 𝑆𝑙 con-

tains (𝑎, 𝑑), (𝑏, 𝑐), (𝑓 , 𝑔), and (𝑒, ℎ), and the set 𝑆𝑢 contains (ℎ,𝑄7),
(𝑒,𝑄7), (𝑒,𝑄2), (𝑄4, 𝑄5), (𝑄2, 𝑄6), and (𝑄1, 𝑖). 𝜌hi corresponds to

(𝑒,𝑄7) on Line 5. Then, we compute the BCCP of all elements of

set 𝑆𝑙 , and split it into 𝑆𝑙1 and 𝑆𝑙2, where 𝑆𝑙1 has edges with weight

at most 𝜌hi (Line 6). On Line 6, 𝑆𝑙1 contains (𝑎, 𝑑), (𝑏, 𝑐) and (𝑓 , 𝑔),
as their BCCP distances are smaller than 𝜌hi = 𝑑 (𝑒,𝑄7), and 𝑆𝑙2
contains (𝑒, ℎ) . After that, 𝐸𝑙1, the edges corresponding to 𝑆𝑙1, are

passed to Kruskal’s algorithm (Lines 7–8). The remaining pairs

𝑆𝑙2 ∪ 𝑆𝑢 are then filtered based on the result of Kruskal’s algorithm

(Line 9)—in particular, pairs that are connected in the union-find

structure of Kruskal’s algorithm can be discarded, and for many

of these pairs we never have to compute their BCCP. In Figure 2,

the second round processes (𝑒, ℎ), (ℎ,𝑄7), (𝑒,𝑄7), (𝑒,𝑄2), (𝑄4, 𝑄5),
(𝑄2, 𝑄6), and (𝑄1, 𝑖), and works similarly to Round 1. However,

(𝑄2, 𝑄6) gets filtered out during the second round, and we never

have to compute its BCCP, leading to less work compared to a

naive algorithm. Finally, the subsequent rounds process a single

pair (𝑄1, 𝑖). At the end of each round, we double the value of 𝛽

to ensure that there are logarithmic number of rounds and hence

better depth (in contrast, the sequential algorithm of Chatterjee et

al. [15] increases 𝛽 by 1 every round). Throughout the algorithm,

we cache the BCCP results of pairs to avoid repeated computations.

Overall, the main difference between Algorithm 2 and sequential

algorithm is the use of parallel primitives on nearly every line of

the pseudocode, and the exponentially increasing value of 𝛽 on

Line 11, which is crucial for achieving a low depth bound.

The following theorem summarizes the bounds of our algorithm.

Theorem 3.1. We can compute the EMST on a set of 𝑛 points in
constant dimensions in 𝑂 (𝑛2) work and 𝑂 (log2 𝑛) depth.
Proof. Callahan [11] shows that a WSPD with 𝑂 (𝑛) well-separated
pairs can be computed in 𝑂 (𝑛 log𝑛) work and 𝑂 (log𝑛) depth,

which we use for our analysis. Our parallel GeoFilterKruskal al-

gorithm for EMST proceeds in rounds, and processes the well-

separated pairs in an increasing order of cardinality. Since 𝛽 dou-

bles on each round, there can be at most 𝑂 (log𝑛) rounds since the
largest pair can contain 𝑛 points. Within each round, the Split on

Line 4 and Filter on Line 9 both take𝑂 (𝑛) work and𝑂 (log𝑛) depth.
We can compute the BCCP for each pair on Line 6 by computing

all possible point distances between the pair, and using WriteMin

to obtain the minimum distance. Since the BCCP of each pair will

only be computed once and is cached, the total work of BCCP on

Line 6 is

∑
𝐴,𝐵∈𝑆 |𝐴| |𝐵 | = 𝑂 (𝑛2) work since the WSPD is an exact

set cover for all distinct pairs. Therefore, Line 6 takes 𝑂 (𝑛2) work
across all rounds and𝑂 (1) depth for each round. Given 𝑛 edges, the

MST computation on Line 8 can be done in 𝑂 (𝑛 log𝑛) work and

𝑂 (log𝑛) depth using existing parallel algorithms [34]. Therefore,

the overall work is 𝑂 (𝑛2). Since each round takes 𝑂 (log𝑛) depth,
and there are 𝑂 (log𝑛) rounds, the overall depth is 𝑂 (log2 𝑛). □

We implemented our own sequential and parallel versions of the

GFK algorithm as a baseline based on Algorithm 2, which we found

to be faster than the implementation of Chatterjee et al. [15] in our

experiments. In addition, because the original GFK algorithm re-

quires materializing the full WSPD, its memory consumption can be

excessive, limiting the algorithm’s practicality. This issue worsens

as the dimensionality of the points increases, as the number of pairs

in the WSPD increases exponentially with the dimension. While

Chatterjee et al. [15] show that their GFK algorithm is efficient,

they consider much smaller data sets than the ones in this paper.

Algorithm 3 Parallel MemoGFK

1: procedure ParallelMemoGFK(𝑘d-tree root: 𝑅, Edges: 𝐸out , UnionFind: UF)
2: 𝛽 = 2, 𝜌lo = 0

3: while |𝐸out | < (𝑛 − 1) do
4: 𝜌hi = GetRho(𝑅, 𝛽)

5: 𝑆𝑙1 = GetPairs(𝑅, 𝛽 , 𝜌lo , 𝜌hi , UF)
6: 𝐸𝑙1 = GetEdges(𝑆𝑙1) ⊲ Retrieves edges associated with pairs in 𝑆𝑙1
7: ParallelKruskal(𝐸𝑙1 , 𝐸out , UF)
8: 𝛽 = 𝛽 × 2, 𝜌lo = 𝜌hi

3.1.3 TheMemoGFKOptimization To tackle thememory consump-

tion issue, we propose an optimization to the GFK algorithm, which

reduces its space usage and improves its running time in practice.

We call the resulting algorithm MemoGFK (memory-optimized

GFK). The basic idea is that, rather thanmaterializing the full WSPD

at the beginning, we partially traverse the 𝑘d-tree on each round

and retrieve only the pairs that are needed. The pseudocode for

our algorithm is shown in Algorithm 3, where ParallelMemoGFK

takes in the root 𝑅 of a 𝑘d-tree, an array 𝐸out to store the MST

edges, and a union-find structure UF .
The algorithm proceeds in rounds similar to parallel GeoFil-

terKruskal, and maintains lower and upper bounds (𝜌lo and 𝜌hi) on

the weight of edges to be considered each round. On each round, it

first computes 𝜌hi based on 𝛽 by a single 𝑘d-tree traversal, which

will be elaborated below (Line 4). Then, together with 𝜌lo from

the previous round (𝜌lo = 0 on the first round), the algorithm re-

trieves pairs with BCCP distance in the range [𝜌lo, 𝜌hi) via a second
𝑘d-tree traversal on Line 5. The edges corresponding to these pairs

are then passed to Kruskal’s algorithm on Line 7. An example of the

first round of the algorithmwithMemoGFK is illustrated in Figure 2.

Without the optimization, the GFK algorithm needs to first materi-

alize all of the pairs in Round 1. With MemoGFK, 𝜌hi = 𝑑 (𝑒,𝑄7) is
computed via a tree traversal on Line 4, after which only the pairs in

the set 𝑆𝑙1 = {(𝑎, 𝑑), (𝑏, 𝑐), (𝑓 , 𝑔)} are retrieved and materialized on

Line 5 via a second tree traversal. Retrieving pairs only as needed

reduces memory usage and improves performance. The correctness

of the algorithm follows from the fact that each round considers

non-overlapping ranges of edge weights in increasing order until

all edges are considered, or when MST is completed.

Now we discuss the implementation details of the two-pass tree

traversal on Line 4–5. TheGetRho subroutine, which computes 𝜌hi ,

does so by finding the lower bound on the minimum separation of

pairs whose cardinality is greater than 𝛽 and are not yet connected

in the MST. We traverse the 𝑘d-tree starting at the root, in a similar

way as when computing the WSPD in Algorithm 1. During the

process, we update a global copy of 𝜌hi usingWriteMin whenever

we encounter a well-separated pair in FindPair, with cardinality

greater than 𝛽 . We can prune the traversal once |𝐴| + |𝐵 | ≤ 𝛽 , as

all pairs that originate from (𝐴, 𝐵) will have cardinality at most 𝛽 .

We also prune the traversal when the two children of a tree node

are already connected in the union-find structure, as these edges

will not need to be considered by Kruskal’s algorithm. In addition,

we prune the traversal when the distance between the bounding

spheres of 𝐴 and 𝐵, 𝑑 (𝐴, 𝐵), is larger than 𝜌hi , as its descendants

cannot produce a smaller distance.

The GetPairs subroutine then retrieves all pairs whose points

are not yet connected in the union-find structure and have BCCP
distances in the range [𝜌lo, 𝜌hi). It does so also via a pruned traver-

sal on the 𝑘d-tree starting from the root, similarly to Algorithm 1,

A B

Representing pair (A,B)
 below as a range

x

x

ρ
lo

ρ
hi

x

x x

x

x

x

(a) (b)

BCCP(A,B)

d
s
(A,B)

d
s,max

(A,B)

d
s
(A,B)

BCCP(A,B)
d
s,max

(A,B)

Figure 3: (a) shows a representation of a well-separated pair (𝐴, 𝐵)
as a line segment, based on the values of its 𝑑 (𝐴, 𝐵) and 𝑑max (𝐴, 𝐵) ,
which serve as the lower and upper bounds, respectively, for their

BCCP and the BCCP of their descendants. The "x"’s on the line

marks the value of the BCCP. (b) shows an example of tree node

pairs encountered during a pruned tree traversal on Line 5 of Al-

gorithm 3, where the pairs are represented the same way as in (a).

The pairs in solid green lines, if well-separated, will be retrieved

andmaterialized because theirBCCPs arewithin the [𝜌lo, 𝜌hi) range,
whereas those in solid black lines will not as their BCCPs are out

of range (although their BCCPs will still be computed, since their

lower and upper bounds do not immediately put them out of range).

The traversal will be pruned when encountering a pair represented

by dotted lines as their BCCP and the BCCP of their descendants

will be out of range.

but only retrieves the useful pairs. For a pair of nodes encoun-

tered in the FindPair subroutine, we estimate the minimum and

maximum possible BCCP between the pair using bounding sphere

calculations, an example of which is shown in Figure 3a. We prune

the traversal when 𝑑max (𝐴, 𝐵) < 𝜌lo , or when 𝑑 (𝐴, 𝐵) ≥ 𝜌hi , in

which case BCCP(𝐴, 𝐵) (as well as those of its recursive calls on de-

scendant nodes) will be outside of the range. An example is shown

in Figure 3b. In addition, we also prune the traversal if 𝐴 and 𝐵 are

already connected in the MST, as an edge between 𝐴 and 𝐵 will not

be part of the MST.

We evaluate MemoGFK in Section 5. We also use the memory

optimization for HDBSCAN
∗
, which will be described next.

3.2 HDBSCAN
∗

3.2.1 Baseline Inspired by a sequential approximate algorithm

to solve the OPTICS problem by Gan and Tao [25], we modified

and parallelized their algorithm to compute the exact HDBSCAN
∗

as our baseline. First, we perform 𝑘-NN queries using Euclidean

distance with 𝑘 = minPts to compute the core distances. Gan and

Tao’s original algorithm creates a mutual reachability graph of size

𝑂 (𝑛 ·minPts2), using an approximate notion of BCCP between each

WSPD pair, and then computes its MST using Prim’s algorithm.

Our exact algorithm parallelizes their algorithm, and instead uses

the exact BCCP* computations based on the mutual reachability

distance to form the mutual reachability graph. In addition, we

also compute the MST on the generated edges using the MemoGFK

optimization described in Section 3.1.3. Summed across all well-

separated pairs, the BCCP computations take quadratic work and

constant depth. Therefore, our baseline algorithm takes𝑂 (𝑛2) work
and 𝑂 (log2 𝑛) depth, and computes the exact HDBSCAN

∗
.

3.2.2 Improved Algorithm We present a more space-efficient algo-

rithm that is faster in practice by using a new definition of well-

separation for the WSPD for HDBSCAN
∗
. We denote the max-

imum and minimum core distances of the points in node 𝐴 as

cdmax (𝐴) and cdmin (𝐴), respectively. Consider a pair (𝐴, 𝐵) in

the WSPD. We define 𝐴 and 𝐵 to be geometrically-separated
if 𝑑 (𝐴, 𝐵) ≥ max{𝐴diam, 𝐵diam} and mutually-unreachable if

max{𝑑 (𝐴, 𝐵), cdmin (𝐴), cdmin (𝐵)} ≥ max{𝐴diam, 𝐵diam, cdmax (𝐴),
cdmax (𝐵)}. We consider 𝐴 and 𝐵 to be well-separated if they are

geometrically-separated, mutually-unreachable, or both. The origi-

nal definition of well-separation only includes the first condition.

This leads to space savings because in Algorithm 1, recursive

calls to procedure FindPair(𝐴, 𝐵) on Line 7 will not terminate until

𝐴 and 𝐵 are well-separated. Since our new definition is a disjunction

between mutual-unreachability and geometric-separation, the calls

to FindPair can terminate earlier, leading to fewer pairs generated.

When constructing the mutual reachability subgraph to pass to

MST, we add only a single edge between the BCCP* (BCCP with

respect to mutual reachability distance) of each well-separated pair.

With our new definition, the total number of edges generated is

upper bounded by the size of the WSPD, which is 𝑂 (𝑛) [13]. In
contrast, Gan and Tao’s approach generates 𝑂 (𝑛 ·minPts2) edges.

Theorem 3.2. Under the new definition of well-separation, our al-
gorithm computes an MST of the mutual reachability graph.

Proof. Under our new definition, well-separation is defined as the

disjunction between being geometrically-separated and mutually-

unreachable. We connect an edge between each well-separated pair

(𝐴, 𝐵) with the mutual-reachability distancemax{𝑑 (𝑢∗, 𝑣∗), cd(𝑢∗),
cd(𝑣∗)} as the edge weight, where 𝑢∗ ∈ 𝐴, 𝑣∗ ∈ 𝐵, and (𝑢∗, 𝑣∗)
is the BCCP* of (𝐴, 𝐵). We overload the notation BCCP*(𝐴, 𝐵) to
also denote the mutual-reachability distance of (𝑢∗, 𝑣∗).

Consider the point set 𝑃root, which is contained in the root node

of the tree associated with its WSPD. Let 𝑇 be the MST of the full

mutual reachability graph 𝐺𝑀𝑅 . Let 𝑇
′
be the MST of the mutual

reachability subgraph 𝐺 ′
𝑀𝑅

, computed by connecting the BCCP*
of each well-separated pair. To ensure that 𝑇 ′

produces the correct

HDBSCAN
∗
clustering, we prove that it has the same weight as

𝑇—in other words, 𝑇 ′
is a valid MST of 𝐺𝑀𝑅 .

We prove the optimality of 𝑇 ′
by induction on each tree node 𝑃 .

Since the WSPD is hierarchical, each node 𝑃 also has a valid WSPD

consisting of a subset of pairs of the WSPD of 𝑃root. Let (𝑢, 𝑣) be an
edge in𝑇 . There exists an edge (𝑢 ′, 𝑣 ′) ∈ 𝑇 ′

that connects the same

two components as in𝑇 if we were to remove (𝑢, 𝑣). We call (𝑢 ′, 𝑣 ′)
the replacement of (𝑢, 𝑣), which is optimal if𝑤 (𝑢 ′, 𝑣 ′) = 𝑤 (𝑢, 𝑣).
Let 𝑇𝑃 and 𝑇 ′

𝑃
be subgraphs of 𝑇 and 𝑇 ′

, respectively, containing

points in 𝑃 , but not necessarily spanning 𝑃 . We inductively hypoth-

esize that all edges of 𝑇 ′
𝑃
are optimal. In the base case, a singleton

tree node 𝑃 satisfies the hypothesis by having no edges.

Now consider any node 𝑃 and edge (𝑢, 𝑣) ∈ 𝑇𝑃 . The children of

𝑃 are optimal by our inductive hypothesis. We prove that the edges

connecting the children of 𝑃 are optimal. Points 𝑢 and 𝑣 must be

from a well-separated pair (𝐴, 𝐵), where 𝐴 and 𝐵 are children of 𝑃

in the WSPD hierarchy. Let 𝑈 and 𝑉 be a partition of 𝑃 formed by

a cut in 𝑇𝑃 that separates point pair (𝑢, 𝑣), where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 .

We want to prove that the replacement of (𝑢, 𝑣) in 𝑇 ′
𝑃
is optimal.

We now discuss the first scenario of the proof, shown in Fig-

ure 4a, where the replacement edge between𝑈 and 𝑉 is (𝑢 ′, 𝑣 ′) =
BCCP*(𝐴, 𝐵) = (𝑢∗, 𝑣∗), and we assume without loss of generality

that 𝑢 ′ ∈ 𝐴 ∩𝑈 and 𝑣 ′ ∈ 𝐵 ∩𝑉 . Since (𝑢, 𝑣) is the closest pair of
points connecting 𝑈 and 𝑉 by the cut property, then (𝑢 ′, 𝑣 ′), the
BCCP* of (𝐴, 𝐵), must be optimal; otherwise, (𝑢, 𝑣) has smaller

U V

u

v

u’(u*)

v’(v*)

A

B

u

v

u*

v*

A

B

U V

(a) (b)

u’ v’

Figure 4: In this figure, we show the two proof cases for HDBSCAN
∗
.

We use an oval to represent each node in theWSPD, and solid black

dots to represent data points.We represent the partition of the space

to𝑈 and𝑉 using a cut represented by a dotted line.

weight than BCCP*(𝐴, 𝐵), which is a contradiction. This scenario

easily generalizes to the case where 𝐴 and 𝐵 happen to be com-

pletely within 𝑈 and 𝑉 , respectively.

We now discuss the second scenario, shown in Figure 4b, where

BCCP*(𝐴, 𝐵) = (𝑢∗, 𝑣∗) is internal to either 𝑈 or 𝑉 . We assume

without loss of generality that 𝑢∗ ∈ 𝐴 ∩𝑉 and 𝑣∗ ∈ 𝐵 ∩𝑉 , and that

𝑈 and 𝑉 are connected by some intra-node edge (𝑢 ′, 𝑣 ′) of 𝐴 in

𝑇 ′
𝑃
. We want to prove that (𝑢 ′, 𝑣 ′) is an optimal replacement edge.

We consider two cases based on the relationship between 𝐴 and 𝐵

under our new definition of well-separation.

Case 1. Nodes 𝐴 and 𝐵 are mutually-unreachable, and may or may

not be geometrically-separated. Theweight of (𝑢 ′, 𝑣 ′) ismax{𝑑 (𝑢 ′, 𝑣 ′),
cd(𝑢 ′), cd(𝑣 ′)} ≤ max{𝐴diam, cdmax (𝐴)}. Consider theBCCP* pair
(𝑢∗, 𝑣∗) between 𝐴 and 𝐵. Based on the fact that 𝐴 and 𝐵 are

mutually-unreachable, we have

BCCP*(𝐴, 𝐵) = max{𝑑 (𝑢∗, 𝑣∗), cd(𝑢∗), cd(𝑣∗)}
≥ max{𝑑 (𝐴, 𝐵), cdmin (𝐴), cdmin (𝐵)}
≥ max{𝐴diam, 𝐵diam, cdmax (𝐴), cdmax (𝐵)}
≥ max{𝐴diam, cdmax (𝐴)},

where the inequality from the second to the third line above comes

from the definition of mutual-unreachability. Therefore,𝑤 (𝑢 ′, 𝑣 ′)
is not larger than BCCP*(𝐴, 𝐵) = 𝑤 (𝑢∗, 𝑣∗), and by definition of

BCCP*, 𝑤 (𝑢∗, 𝑣∗) is not larger than 𝑤 (𝑢, 𝑣). Hence, 𝑤 (𝑢 ′, 𝑣 ′) is
not larger than𝑤 (𝑢, 𝑣). On the other hand,𝑤 (𝑢 ′, 𝑣 ′) is not smaller

than𝑤 (𝑢, 𝑣), since otherwise we could form a spanning tree with

a smaller weight than 𝑇𝑃 , contradicting the fact that it is an MST.

Thus, (𝑢 ′, 𝑣 ′) is optimal.

Case 2.Nodes𝐴 and𝐵 are geometrically-separated and notmutually-

unreachable. By the definition of BCCP*, we know that𝑤 (𝑢∗, 𝑣∗) ≤
𝑤 (𝑢, 𝑣), which implies

max{cd(𝑢∗), cd(𝑣∗), 𝑑 (𝑢∗, 𝑣∗)} ≤ max{cd(𝑢), cd(𝑣), 𝑑 (𝑢, 𝑣)}
max{cd(𝑢∗), cd(𝑢), 𝑑 (𝑢,𝑢∗)} ≤ max{cd(𝑢), cd(𝑣), 𝑑 (𝑢, 𝑣)}.

To obtain the second inequality above from the first, we replace

cd(𝑣∗) on the left-hand side with cd(𝑢), since cd(𝑢) is also on the

right-hand side; we also replace 𝑑 (𝑢∗, 𝑣∗) with 𝑑 (𝑢,𝑢∗) because of
the geometric separation of 𝐴 and 𝐵. Since (𝑢 ′, 𝑣 ′) is the lightest
BCCP* edge of some well-separated pair in 𝐴, max{cd(𝑢 ′), cd(𝑣 ′),
𝑑 (𝑢 ′, 𝑣 ′)} ≤ max{cd(𝑢), cd(𝑢∗), 𝑑 (𝑢,𝑢∗)}. We then have

max{cd(𝑢 ′), cd(𝑣 ′), 𝑑 (𝑢 ′, 𝑣 ′)} ≤ max{cd(𝑢), cd(𝑣), 𝑑 (𝑢, 𝑣)}.
This implies that𝑤 (𝑢 ′, 𝑣 ′) is not larger than𝑤 (𝑢, 𝑣). Since (𝑢, 𝑣) is
an edge of MST 𝑇𝑃 , the weight of the replacement edge𝑤 (𝑢 ′, 𝑣 ′) is
also not smaller than𝑤 (𝑢, 𝑣), and hence (𝑢 ′, 𝑣 ′) is optimal.

Case 1 and 2 combined prove the optimality of replacement

edges in the second scenario. Considering both scenarios, we have

shown that each replacement edge in 𝑇 ′
𝑝 connecting the children

of 𝑃 is optimal, which proves the inductive hypothesis. Applying

the inductive hypothesis to 𝑃root completes the proof. □

Our algorithm achieves the following bounds.

Theorem 3.3. Given a set of 𝑛 points, we can compute the MST on
the mutual reachability graph in 𝑂 (𝑛2) work, 𝑂 (log2 𝑛) depth, and
𝑂 (𝑛 · minPts) space.
Proof. Compared to the cost of GFK for EMST, GFK for HDBSCAN

∗

has the additional cost of computing the core distances, which takes

𝑂 (minPts ·𝑛 log𝑛) work and𝑂 (log𝑛) depth using 𝑘-NN [11]. With

our new definition of well-separation, the WSPD computation will

only terminate earlier than in the original definition, and so the

bounds that we showed for EMST above still hold. The new WSPD

definition also gives an 𝑂 (𝑛) space bound for the well-separated

pairs. The space usage of the 𝑘-NN computation is 𝑂 (𝑛 ·minPts),
which dominates the space usage. Overall, this gives 𝑂 (𝑛2) work,
𝑂 (log2 𝑛) depth, and 𝑂 (𝑛 ·minPts) space. □

Our algorithm gives a clear improvement in space usage over the

naive approach of computing an MST from the mutual reachability

graph, which takes𝑂 (𝑛2) space, and our parallelization of the exact

version of Gan and Tao’s algorithm, which takes 𝑂 (𝑛 · minPts2)
space. We will also see that the smaller memory footprint of this

algorithm leads to better performance in practice.

3.2.3 Implementation We implement two algorithms forHDBSCAN
∗
:

a parallel exact algorithm based on Gan and Tao [25], and our space-

efficient algorithm from Section 3.2.2. Our implementations both

use Kruskal’s algorithm for MST and use the memory optimization

introduced for MemoGFK in Section 3.1.3. For our space-efficient

algorithm, we modify the WSPD and MemoGFK algorithm to use

our new definition of well-separation.

4 Dendrogram and Reachability Plot

Wepresent a new parallel algorithm for generating a dendrogram

and reachability plot, given an unrooted tree with edge weights.

Our algorithm can be used for single-linkage clustering [28] by pass-

ing the EMST as input, as well as for generating the HDBSCAN
∗

dendrogram and reachability plot (refer to Section 2 for defini-

tions). In addition, our dendrogram algorithm can be used in effi-

ciently generating hierarchical clusters using other linkage criteria

(e.g., [42, 55, 57]).

Sequentially, the dendrogram can be generated in a bottom-

up (agglomerative) fashion by sorting the edges by weight and

processing the edges in increasing order of weight [19, 28, 31, 39, 40].

Initially, all points are assigned their own clusters. Each edgemerges

the clusters of its two endpoints, if they are in different clusters,

using a union-find data structure. The order of the merges forms

a tree structure, which is the dendrogram. This takes 𝑂 (𝑛 log𝑛)
work, but has little parallelism since the edges need to be processed

one at a time. For HDBSCAN
∗
, we can generate the reachability

plot directly from the input tree by running Prim’s algorithm on

the tree edges starting from an arbitrary vertex [7]. This approach

takes𝑂 (𝑛 log𝑛) work and is also hard to parallelize efficiently, since

Prim’s algorithm is inherently sequential.

Our new parallel algorithm uses a top-down approach to gener-

ate the dendrogram and reachability plot given a weighted tree. Our

algorithm takes 𝑂 (𝑛 log𝑛) expected work and 𝑂 (log2 𝑛 log log𝑛)
depth with high probability, and hence is work-efficient.

4.1 Ordered Dendrogram

We discuss the relationship between the dendrogram and reach-

ability plot, which are both used in HDBSCAN
∗
. It is known [46]

that a reachability plot can be converted into a dendrogram using a

linear-work algorithm for Cartesian tree construction [23], which

can be parallelized [49]. However, converting in the other direction,

which is what we need, is more challenging because the children

in dendrogram nodes are unordered, and can correspond to many

possible sequences, only one of which corresponds to the traversal

order in Prim’s algorithm that defines the reachability plot.

Therefore, for a specific starting point 𝑠 , we define the ordered
dendrogram of 𝑠 , which is a dendrogram where its in-order tra-

versal corresponds to the reachability plot starting at point 𝑠 . With

this definition, there is a one-to-one correspondence between a

ordered dendrogram and a reachability plot, and there are a total of

𝑛 possible ordered dendrograms and reachability plots for an input

of size 𝑛. Then, a reachability plot is just the in-order traversal of

the leaves of an ordered dendrogram, and an ordered dendrogram

is the corresponding Cartesian tree for the reachability plot.

4.2 A Novel Top-Down Algorithm

We introduce a novel work-efficient parallel algorithm to com-

pute a dendrogram, which can be modified to compute an ordered

dendrogram and its corresponding reachability plot.

Warm-up. We first propose a simple top-down algorithm for con-

structing the dendrogram, which does not quite give us the desired

work and depth bounds. We first generate an Euler tour on the

input tree [34]. Then, we delete the heaviest edge, which can be

found in linear work and 𝑂 (1) depth by checking all edges. By def-

inition, this edge will be the root of the dendrogram, and removing

this edge partitions the tree into two subtrees corresponding to

the two children of the root. We then convert our original Euler

tour into two Euler tours, one for each subtree, which can be done

in constant work and depth by updating a few pointers. Next, we

partition our list of edges into two lists, one for each subproblem.

This can be done by applying list ranking on each Euler tour to de-

termine appropriate offsets for each edge in a new array associated

with its subproblem. This step takes linear work and has 𝑂 (log𝑛)
depth [34]. Finally, we solve the two subproblems recursively.

Although the algorithm is simple, there is no guarantee that

the subproblems are of equal size. In the worst case, one of the

subproblems could contain all but one edges (e.g., if the tree is a path

with edge weights in increasing order), and the algorithm would

require 𝑂 (𝑛) levels of recursion. The total work would then be

𝑂 (𝑛2) and depth would be 𝑂 (𝑛 log𝑛), which is clearly undesirable.

An algorithm with 𝑂 (log𝑛) levels of recursion. We now de-

scribe a top-down approach that guarantees 𝑂 (log𝑛) levels of re-
cursion. We define the heavy edges of a tree with 𝑛 edges to be

the 𝑛/2 (or any constant fraction of 𝑛) heaviest edges and the light
edges of a tree to be the remaining edges. Rather than using a single

edge to partition the tree, we use the 𝑛/2 heaviest edges to partition
the tree. The heavy edges correspond to the part of the dendrogram

closer to the root, which we refer to as the top part of the dendro-

gram, and the light edges correspond to subtrees of the top part

of the dendrogram. Therefore, we can recursively construct the

dendrogram on the heavy edges and the dendrograms on the light

edges in parallel. Then, we insert the roots of the dendrograms for

sa

d

b

c

e g

f

i

h

b-c

d-e

s b-d

a-d

b c

a

d b

i

h-i

e-gs b-d

a-d
c h

a

d b e g

f

(a) (b) (c)

e-g
f-g

e g

f

f-h

he
b-c

d-e i

h-i

f-h

f-g

Figure 5: An example of the dendrogram construction algorithm on

the tree from Figure 1. The input tree is shown in (a). The 4 heavy

edges are in bold. We have three subproblems—one for the heavy

edges and two for the light edges. The dendrograms for the sub-

problems are generated recursively, as shown in (b). The edge la-

beled on an internal node is the edge whose removal splits a cluster

into the two clusters represented by its children. As shown in (c), we

insert the roots of the dendrograms for the light edges at the corre-

sponding leaf nodes of the heavy-edge dendrogram. For the ordered

dendrogram, the in-order traversal of the leaves corresponds to the

reachability plot shown in Figure 1 when the starting point 𝑠 = 𝑎.

the light edges into the leaf nodes of the heavy-edge dendrogram.

The base case is when there is a single edge, from which we can

trivially generate a dendrogram.

An example is shown in Figure 5. We first construct the Euler

tour of the input tree (Figure 5a). Then, we find the median edge

based on edge weight, separate the heavy and light edges and

compact them into a heavy-edge subproblem and multiple light-

edge subproblems. For the subproblems, we construct their Euler

tours by adjusting pointers, andmark the position of each light-edge

subproblem in the heavy-edge subproblem where it is detached.

Then, recursively and in parallel, we compute the dendrograms

for each subproblem (Figure 5b). After that, we insert the roots of

the light-edge dendrograms to the appropriate leaf nodes in the

heavy-edge dendrogram, as marked earlier (Figure 5c).

Figure 5 shows how this algorithm applies to the input in Figure 1

with source vertex 𝑎. The four heaviest edges (𝑏, 𝑐), (𝑑, 𝑒), (𝑓 , ℎ),
and (ℎ, 𝑖) divide the tree into two light subproblems, consisting of

{(𝑎, 𝑑), (𝑑,𝑏)} and {(𝑒, 𝑔), (𝑔, 𝑓)}. The heavy edges form another

subproblem. We mark vertices 𝑏 and 𝑒 , where the light subproblems

are detached. After constructing the dendrogram for the three sub-

problems, we insert the light dendrograms at leaf nodes 𝑏 and 𝑒 , as

shown in Figure 5b. It forms the correct dendrogram in Figure 5c.

We now describe the details of the steps to separate the subprob-

lems and re-insert them into the final dendrogram.

Subproblem Finding. To find the position in the heavy-edge den-

drogram to insert a light-edge dendrogram at, every light-edge

subproblem will be associated with a unique heavy edge. The den-

drogram of the light-edge subproblem will eventually connect to

the corresponding leaf node in the heavy-edge dendrogram asso-

ciated with it. We first explain how to separate the heavy-edge

subproblem and the light-edge subproblems.

First, we compute the unweighted distance from every point to

the starting point 𝑠 in the tree, and we refer to them as the vertex
distances. For the ordered dendrogram, 𝑠 is the starting point of

the reachability plot, whereas 𝑠 can be an arbitrary vertex if the

ordering property is not needed. We compute the vertex distances

by performing list ranking on the tree’s Euler tour rooted at 𝑠 . These

distances can be computed by labeling each downward edge (away

from 𝑠) in the tree with a value of 1 and each upward edge (towards

𝑠) in the tree with a value of −1, and running list ranking on the

edges. The vertex distances are computed only once.

We then identify the light-edge subproblems in parallel by using

the vertex distances. For each light edge (𝑢, 𝑣), we find an adjacent

edge (𝑤,𝑢) such that 𝑤 has smaller vertex distance than both 𝑢

and 𝑣 . We call (𝑤,𝑢) the predecessor edge of (𝑢, 𝑣). Each edge

can only have one predecessor edge (an edge adjacent to 𝑠 will

choose itself as the predecessor). In a light-edge subproblem not

containing the starting vertex 𝑠 , the predecessor of each light edge

will either be a light edge in the same light-edge subproblem, or a

heavy edge. The edges in each light-edge subproblem will form a

subtree based on the pointers to predecessor edges. We can obtain

the Euler tour of each light-edge subproblem by adjusting pointers

of the original Euler tour. The next step is to run list ranking to

propagate a unique label (the root’s label of the subproblem subtree)

of each light-edge subproblem to all edges in the same subproblem.

To create the Euler tour for the heavy subproblem, we contract

the subtrees for the light-edge subproblems: for each light-edge

subproblem, we map its leaves to its root using a parallel hash table.

Now each heavy edge adjacent to a light-edge subproblem leaf can

connect to the heavy edge adjacent to the light-edge subproblem

root by looking it up in the hash table. The Euler tour for the heavy-

edge subproblem can now be constructed by adjusting pointers.

We assign the label of the heavy-edge subproblem root to all of

the heavy edges in parallel. Then, we semisort the labeled edges to

group edges of the same light-edge subproblems and the heavy-edge

subproblem. Finally, we recursively compute the dendrograms on

the light-edge subproblems and the heavy-edge subproblem. In the

end, we connect the light-edge dendrogram for each subproblem to

the heavy-edge dendrogram leaf node corresponding to the shared

endpoint between the light-edge subproblem and its unique heavy

predecessor edge. For the light-edge subproblem containing the

starting point 𝑠 , we simply insert its light-edge dendrogram into

the left-most leaf node of the heavy-edge dendrogram.

Consider Figure 5a. The heavy-edge subproblem contains edges

{(𝑏, 𝑐), (𝑑, 𝑒), (𝑓 , ℎ), (ℎ, 𝑖)}, and its dendrogram is shown in Fig-

ure 5b. For the light-edge subproblem {(𝑒, 𝑔), (𝑔, 𝑓)}, (𝑒, 𝑔) has

heavy predecessor edge (𝑑, 𝑒), and (𝑔, 𝑓) has light predecessor edge
(𝑒, 𝑔). The unique heavy edge associated with the light-edge sub-

problem is hence (𝑑, 𝑒), with which it shares vertex 𝑒 . Hence, we

insert the light-edge dendrogram for the subproblem into leaf node

𝑒 in the heavy-edge dendrogram, as shown in Figure 5b. The light-

edge subproblem containing {(𝑎, 𝑑), (𝑑, 𝑏)} contains the starting
point 𝑠 = 𝑎, and so we insert its dendrogram into the leftmost leaf

node 𝑏 of the heavy-edge dendrogram, as shown in Figure 5b.

We first show that our algorithm correctly computes a dendro-

gram, and analyze its cost bounds (Theorem 4.1). Then, we describe

and analyze additional steps needed to generate an ordered dendro-

gram and obtain a reachability plot from it (Theorem 4.2).

Theorem4.1. Given aweighted spanning tree with𝑛 vertices, we can
compute a dendrogram in𝑂 (𝑛 log𝑛) expected work and𝑂 (log2 𝑛 log log𝑛)
depth with high probability.

Proof. We first prove that our algorithm correctly produces a den-

drogram. In the base case, we have one edge (𝑢, 𝑣), and the algo-

rithm produces a tree with a root representing (𝑢, 𝑣), and with 𝑢

and 𝑣 as children of the root, which is trivially a dendrogram. We

now inductively hypothesize that recursive calls to our algorithm

correctly produce dendrograms. The heavy subproblem recursively

computes a top dendrogram consisting of all of the heavy edges,

and the light subproblems form dendrograms consisting of light

edges. We replace the leaf vertices in the top dendrogram associated

with light subproblems by the roots of the dendrograms on light

edges. Since the edges in the heavy subproblem are heavier than

all edges in light subproblems, and are also ancestors of the light

edges in the resulting tree, this gives a valid dendrogram.

We now analyze the cost of the algorithm. To generate the Euler

tour at the beginning, we first sort the edges and create an adja-

cency list representation, which takes𝑂 (𝑛 log𝑛) work and𝑂 (log𝑛)
depth [17]. Next, we root the tree, which can be done by list ranking

on the Euler tour of the tree. Then, we compute the vertex distances

to 𝑠 using another round of list ranking based on the rooted tree.

There are 𝑂 (log𝑛) recursive levels since the subproblem sizes

are at most half of the original problem. We now show that each

recursive level takes linear expected work and polylogarithmic

depth with high probability. Note that we cannot afford to sort the

edges on every recursive level, since that would take 𝑂 (𝑛 log𝑛)
work per level. However, we only need to know which edges are

heavy and which are light, and so we can use parallel selection [34]

to find the median and partition the edges into two sets. This takes

𝑂 (𝑛) work and 𝑂 (log𝑛 log log𝑛) depth. Identifying predecessor

edges takes a total of𝑂 (𝑛) work and𝑂 (1) depth: we find and record
for each vertex its edge where the other endpoint has a smaller

vertex distance than it (using WriteMin); then, the predecessor of

each edge is found by checking the recorded edge for its endpoint

with smaller vertex distance. We then use list ranking to assign

labels to each subproblem, which takes 𝑂 (𝑛) work and 𝑂 (log𝑛)
depth [34]. The hash table operations to contract and look up the

light-edge subproblems cost 𝑂 (𝑛) work and 𝑂 (log𝑛) depth with

high probability. The semisort to group the subproblems takes𝑂 (𝑛)
expected work and𝑂 (log𝑛) depth with high probability. Attaching

the light-edge dendrograms to the heavy-edge dendrogram takes

𝑂 (𝑛) work and 𝑂 (1) depth across all subproblems. Multiplying the

bounds by the number of levels of recursion proves the theorem. □

Theorem 4.2. Given a starting vertex 𝑠 , we can generate an or-
dered dendrogram and reachability plot in the same cost bounds as in
Theorem 4.1.
Proof. We have computed the vertex distances of all vertices from

𝑠 . When generating the ordered dendrogram and constructing each

internal node of the dendrogram corresponding to an edge (𝑢, 𝑣),
and without loss of generality let 𝑢 have a smaller vertex distance

than 𝑣 , our algorithm puts the result of the subproblem attached to𝑢

in the left subtree, and that of 𝑣 in the right subtree. This additional

comparison does not increase the work and depth of our algorithm.

Our algorithm recursively builds ordered dendrograms on the

heavy-edge subproblem and on each of the light-edge subproblems,

which we assume to be correct by induction. The base case is a

single edge (𝑢, 𝑣), and without loss of generality let𝑢 have a smaller

vertex distance than 𝑣 . Then, the dendrogram will contain a root

node representing edge (𝑢, 𝑣), with𝑢 as its left child and 𝑣 as its right

child. Prim’s algorithm would visit 𝑢 before 𝑣 , and so is the in-order

traversal of the dendrogram, so it is an ordered dendrogram.

We now argue that the way that light-edge dendrograms are

attached to the leaves of the heavy-edge dendrogram correctly pro-

duces an ordered dendrogram. First, consider a light-edge subprob-

lem that contains the source vertex 𝑠 . In this case, its dendrogram

is attached as the leftmost leaf of the heavy-edge dendrogram, and

will be the first to be traversed in the in-order traversal. The ver-

tices in the light-edge subproblem form a connected component 𝐴.

They will be traversed before any other vertices in Prim’s algorithm

because all incident edges that leave 𝐴 are heavy edges, and thus

are heavier than any edge in 𝐴. Therefore, vertices outside of 𝐴

can only be visited after all vertices in 𝐴 have been visited, which

correctly corresponds to the in-order traversal.

Next, we consider the case where the light-edge subproblem does

not contain 𝑠 . Let (𝑢, 𝑣) be the predecessor edge of the light-edge
subproblem, and let𝐴 be the component containing the edges in the

light-edge subproblem (𝑣 is a vertex in𝐴). Now, consider a different

light-edge subproblem that does not contain 𝑠 , whose predecessor

edge is (𝑥,𝑦), and let 𝐵 be the component containing the edges in

this subproblem (𝑦 is a vertex in 𝐵). By construction, we know that

𝐴 is in the right subtree of the dendrogram node corresponding to

edge (𝑢, 𝑣) and 𝐵 is in the right subtree of node corresponding to

(𝑥,𝑦). The ordering between 𝐴 and 𝐵 is correct as long as they are

on different sides of either node (𝑢, 𝑣) or node (𝑥,𝑦). For example, if

𝐵 is in the left subtree of node (𝑢, 𝑣), then its vertices appear before

𝐴 in the in-order traversal of the dendrogram. By the inductive

hypothesis on the heavy-edge subproblem, in Prim’s order, 𝐵 will

be traversed before (𝑢, 𝑣), and (𝑢, 𝑣) is traversed before 𝐴. We can

apply a similar argument to all other cases where 𝐴 and 𝐵 are on

different sides of either node (𝑢, 𝑣) or node (𝑥,𝑦).
We are concerned with the case where 𝐴 and 𝐵 are both in the

right subtrees of the nodes representing their predecessor edges.

We prove by contradiction that this cannot happen. Without loss of

generality, suppose node (𝑥,𝑦) is in the right subtree of node (𝑢, 𝑣),
and let both 𝐴 and 𝐵 be in the right subtree of (𝑥,𝑦). There exists
a lowest common ancestor (LCA) node (𝑥 ′, 𝑦′) of 𝐴 and 𝐵. (𝑥 ′, 𝑦′)
must be a heavy edge in the right subtree of (𝑥,𝑦). By properties of

the LCA,𝐴 and 𝐵 are in different subtrees of node (𝑥 ′, 𝑦′). Without

loss of generality, let 𝐴 be in the left subtree. Now consider edge

(𝑥 ′, 𝑦′) in the tree. By the inductive hypothesis on the heavy-edge

dendrogram, in Prim’s traversal order, we must first visit the leaf

that𝐴 attaches to (and hence𝐴) before visiting (𝑥 ′, 𝑦′), which must

be visited before the leaf that 𝐵 attaches to (and hence 𝐵). On the

other hand, edge (𝑥,𝑦) is also along the same path since it is the

predecessor of 𝐵. Thus, we must either have (𝑥 ′, 𝑦′) in (𝑥,𝑦)’s left
subtree or (𝑥,𝑦) in (𝑥 ′, 𝑦′)’s right subtree, which is a contradiction

to (𝑥 ′, 𝑦′) being in the right subtree of (𝑥,𝑦).
We have shown that given any two light-edge subproblems, their

relative ordering after being attached to the heavy-edge dendro-

gram is correct. Since the heavy-edge dendrogram is an ordered

dendrogram by induction, the order in which the light-edge sub-

problems are traversed is correct. Furthermore, each light-edge

subproblem generates an ordered dendrogram by induction. There-

fore, the overall dendrogram is an ordered dendrogram.

Once the ordered dendrogram is computed, we use list ranking to

perform an in-order traversal on the Euler tour of the dendrogram

to give each node a rank, and write them out in order. We then

filter out the non-leaf nodes to to obtain the reachability plot. Both

list ranking and filtering take 𝑂 (𝑛) work and 𝑂 (log𝑛) depth. □

Implementation. In our implementation, we simplify the process

of finding the subproblems by using a sequential procedure rather

than performing parallel list ranking, because in most cases paral-

lelizing over the different subproblems already provides sufficient

parallelism. We set the number of heavy edges to 𝑛/10, which we

found to give better performance in practice, and also preserves

the theoretical bounds. We switch to the sequential dendrogram

construction algorithm when the problem size falls below 𝑛/2.
5 Experiments

Environment. We perform experiments on an Amazon EC2 in-

stance with 2 × Intel Xeon Platinum 8275CL (3.00GHz) CPUs for a

total of 48 cores with two-way hyper-threading, and 192 GB of RAM.

By default, we use all cores with hyper-threading. We use g++ com-

piler (version 7.4) with -O3 flag, and use Cilk for parallelism [36].

We do not report times for tests that exceed 3 hours.

We test the following implementations for EMST (note that the

EMST problem does not include dendrogram generation):

• EMST-Naive: The method of creating a graph with the BCCP
edges from all well-separated pairs and then running MST on it.

• EMST-GFK : The parallel GeoFilterKruskal algorithm described

in Section 3.1.2 (Algorithm 2).

• EMST-MemoGFK : The parallel GeoFilterKruskal algorithmwith

thememory optimization described in Section 3.1.3 (Algorithm 3).

We test the following implementations for HDBSCAN
∗
:

• HDBSCAN∗-GanTao: The modified algorithm of Gan and Tao

for exact HDBSCAN
∗
described in Section 3.2.1.

• HDBSCAN∗-MemoGFK : The HDBSCAN
∗
algorithm using our

new definition of well-separation described in Section 3.2.2.

BothHDBSCAN∗-GanTao andHDBSCAN∗-MemoGFK use the

memory optimization described in Section 3.1.3. All HDBSCAN
∗

running times include constructing an MST of the mutual reach-

ability graph and computing the ordered dendrogram. We use a

default value of minPts = 10 (unless specified otherwise), which is

also adopted in previous work [14, 25, 39].

Our algorithms are designed for multicores, as we found that

multicores are able to process the largest data sets in the literature

for these problems (machines with several terabytes of RAM can be

rented at reasonable costs on the cloud). Our multicore implemen-

tations achieve significant speedups over existing implementations

in both the multicore and distributed memory contexts.

Data Sets.Weuse the synthetic seed spreader data sets produced by

the generator in [24]. It produces points generated by a randomwalk

in a local neighborhood (SS-varden). We also useUniformFill that
contains points distributed uniformly at random inside a bounding

hypergrid with side length

√
𝑛 where 𝑛 is the total number of points.

We generated the synthetic data sets with 10 million points (unless

specified otherwise) for dimensions 𝑑 = 2, 3, 5, 7.

We use the following real-world data sets. GeoLife [2, 58] is a
3-dimensional data set with 24, 876, 978 data points. This data set

contains user location data, and is extremely skewed.Household [3,

5] is a 7-dimensional data set with 2, 049, 280 points representing

electricity consumption measurements in households. HT [4, 33]

is a 10-dimensional data set with 928, 991 data points containing

home sensor data. CHEM [1, 21] is a 16-dimensional data set with

4, 208, 261 data points containing chemical sensor data. All of the

data sets fit in the RAM of our machine.

Speedup over Best Sequential Self-relative Speedup

Method Range Average Range Average

EMST-Naive 3.51-10.69x 6.90x 16.79-33.47x 24.15x

EMST-GFK 1.52-7.01x 3.60x 8.11-11.51x 9.08x

EMST-MemoGFK 14.61-55.89x 31.31x 14.61-55.89x 31.31x

HDBSCAN
∗
-MemoGFK 11.13-46.69x 26.29x 11.13-46.69x 26.29x

HDBSCAN
∗
-GanTao 4.29-35.14x 13.76x 8.23-40.32x 20.97x

Table 2: Speedup over the best sequential algorithm as well as the

self-relative speedup on 48 cores.

Comparison with Previous Implementations. For EMST, we

tested the sequential Dual-Tree Boruvka algorithm of March et

al. [38] (part of mlpack), and our single-threaded EMST-MemoGFK

times are 0.89–4.17 (2.44 on average) times faster. We also tested

McInnes and Healy’s sequential HDBSCAN
∗
implementation which

is based on Dual-Tree Boruvka [39]. We were unable to run their

code on our data sets with 10 million points in a reasonable amount

of time. On a smaller data set with 1 million points (2D-SS-varden-

1M), their code takes around 90 seconds to compute the MST

and dendrogram, which is 10 times slower than our HDBSCAN
∗
-

MemoGFK implementation on a single thread, due to their code us-

ing Python and having fewer optimizations. We observed a similar

trend on other data sets for McInnes and Healy’s implementation.

The GFK algorithm implementation for EMST of [15] in the

Stann library supports multicore execution using OpenMP. We

found that, in parallel, their GFK implementation always runs much

slower when using all 48 cores than running sequentially, and so

we do not include their parallel running times in our experiments.

In addition, our own sequential implementation of the same algo-

rithm is 0.79–2.43x (1.23x on average) faster than theirs, and so

we parallelize our own version as a baseline. We also tested the

multicore implementation of the parallel OPTICS algorithm in [45]

using all 48 cores on our machine. Their code exceeded our 3-hour

time limit for our data sets with 10 million points. On a smaller data

set of 1 million points (2D-SS-varden-1M), their code took 7988.52

seconds, whereas our fastest parallel implementations take only

a few seconds. We also compared with the parallel HDBSCAN
∗

code by Santos et al. [47], which mainly focuses on approximate

HDBSCAN
∗
in distributed memory. As reported in their paper, for

the HT data set with minPts = 30, their code on 60 cores takes

42.54 and 31450.89 minutes to build the approximate and exact

MST, respectively, and 124.82 minutes to build the dendrogram. In

contrast, our fastest implementation using 48 cores builds the MST

in under 3 seconds, and the dendrogram in under a second.

Overall, we found the fastest sequential methods for EMST and

HDBSCAN
∗
to be our EMST-MemoGFK andHDBSCAN*-MemoGFK

methods running on 1 thread. Therefore, we also based our parallel

implementations on these methods.

Performance of Our Implementations. Table 2 shows the self-

relative speedups and speedups over the fastest sequential time of

our parallel implementations on 48 cores. Figures 6 and 7 show the

parallel speedup as a function of thread count for our implemen-

tations of EMST and HDBSCAN
∗
with minPts = 10, respectively,

against the fastest sequential times. For most data sets, we see addi-

tional speedups from using hyper-threading compared to just using

a single thread per core. A decomposition of parallel timings for

our implementations on two data sets is presented in Figure 8.

EMST Results. In Figure 6, we see that our fastest EMST imple-

mentations (EMST-MemoGFK) achieve good speedups over the

best sequential times, ranging from 14.61–55.89x on 48 cores with

hyper-threading. On the lower end, 10D-HT-0.93M has a speedup

of 14.61x (Figure 6k), because for a small data set, the total work

done is small and the parallelization overhead becomes prominent.

EMST-MemoGFK significantly outperforms EMST-GFK and EMST-

Naive by up to 17.69x and 8.63x, respectively, due to its memory op-

timization, which reduces memory traffic. We note that EMST-GFK

does not get good speedup, and is slower than EMST-Naive in all

subplots of Figure 6. This is because the WSPD input to EMST-GFK

(𝑆 in Algorithm 2) needs to store references to the well-separated

pair as well as the BCCP points and distances, whereas EMST-Naive

only needs to store the BCCP points and distances. This leads to

increased memory traffic for EMST-GFK for operations on 𝑆 and

its subarrays, which outweighs its advantage of computing fewer

BCCPs. This is evident from Figure 8, which shows that EMST-GFK

spends more time in WSPD, but less time in Kruskal compared to

EMST-Naive. EMST-MemoGFK spends the least amount of time in

WSPD due to its pruning optimizations, while spending a similar

amount of time in Kruskal as EMST-GFK.

HDBSCAN
∗
Results. In Figure 7, we see that our HDBSCAN

∗
-

MemoGFKmethod achieves good speedups over the best sequential

times, ranging from 11.13–46.69x on 48 cores. Similar to EMST,

we observe a similar lower speedup for 10D-HT-0.93M due to its

small size, and observe higher speedups for larger data sets. The

dendrogram construction takes at least 50% of the total time for

Figures 7a, b, and e–h, and hence has a large impact on the overall

scalability. We discuss the dendrogram scalability separately.

We find that HDBSCAN
∗
-MemoGFK consistently outperforms

HDBSCAN
∗
-GanTao due to having a fewer number ofwell-separated

pairs (2.5–10.29x fewer) using the new definition of well-separation.

This is also evident in Figure 8, where we see that HDBSCAN
∗
-

MemoGFK spends much less time than HDBSCAN
∗
-GanTao in

WSPD computation.

We tried varying minPts over a range from 10 to 50 for our

HDBSCAN
∗
implementations and found just a moderate increase

in the running time for increasing minPts.
MemoGFK Memory Usage. Overall, the MemoGFK method for

both EMST and HDBSCAN
∗
reduces memory usage by up to 10x

compared to materializing all WSPD pairs.

Dendrogram Results. We separately report the performance of

our parallel dendrogram algorithm in Figure 9, which shows the

speedups and running times on all of our data sets. We see that

the parallel speedup ranges from 5.69–49.74x (with an average of

17.93x) for the HDBSCAN
∗
MST with minPts =10, and 5.35–52.58x

(with an average 20.64x) for single-linkage clustering, which is

solved by generating a dendrogram on the EMST. Dendrogram

construction for single-linkage clustering shows higher scalability

because the heavy edges are more uniformly distributed in space,

which creates a larger number of light-edge subproblems and in-

creases parallelism. In contrast, for HDBSCAN
∗
, which has a higher

value ofminPts, the sparse regions in the space tend to have clusters
of edges with large weights even if some of them have small Eu-

clidean distances, since these edges have high mutual reachability

distances. Therefore, these heavy edges are less likely to divide up

the edges into a uniform distribution of subproblems in the space,

leading to lower parallelism. On the other hand, we observe that

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(3
1
.5
4
s) (a) 2D-UniformFill-10M

1 24 48 48h
num-threads

0

10

20

30

40

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(2
3
0
.9
3
s) (c) 5D-UniformFill-10M

1 24 48 48h
num-threads

0

5

10

15

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(2
7
.4
8
s) (e) 2D-SS-varden-10M

1 24 48 48h
num-threads

0

10

20

30

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(9
6
.1
9
s) (g) 5D-SS-varden-10M

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(1
1
7
.3
1
s) (i) 3D-GeoLife-24.9M

1 24 48 48h
num-threads

0

5

10

15

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(5
.1
7
s) (k) 10D-HT-0.93M

1 24 48 48h
num-threads

0

10

20

30

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(6
7
.8
0
s) (b) 3D-UniformFill-10M

1 24 48 48h
num-threads

0

20

40

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(1
5
8
5
.6
5
s)

(d) 7D-UniformFill-10M

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(4
8
.7
2
s) (f) 3D-SS-varden-10M

1 24 48 48h
num-threads

0

10

20

30

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(2
0
5
.1
5
s) (h) 7D-SS-varden-10M

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(3
7
.6
0
s) (j) 7D-Household-2.05M

1 24 48 48h
num-threads

0

10

20

30

40

sp
ee
d
u
p
o
ve
r
1
-t
h
re
ad

E
M
S
T
-M

em
o
G
F
K

(8
2
1
.8
1
s) (l) 16D-CHEM-4.2M

EMST-Naive EMST-GFK EMST-MemoGFK

Figure 6: Speedup of EMST implementations over the best serial baselines vs. thread count. The best serial baseline and its running time for

each data set is shown on the 𝑦-axis label. “48h” on the 𝑥-axis refers to 48 cores with hyper-threading.

1 24 48 48h
num-threads

0

5

10

15

20

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(1
9

7
.5

5
s)

(a) 2D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(1
2

1
7

.8
7

s)

(c) 5D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(1
0

3
.7

3
s)

(e) 2D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(7
1

6
.8

1
s)

(g) 5D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(6
8

7
.7

5
s)

(i) 3D-GeoLife-24.9M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0.0

2.5

5.0

7.5

10.0

12.5

sp
ee

d
u

p
o

v
er

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(1
5

.7
4

s)

(k) 10D-HT-0.93M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(3
2

1
.9

7
s)

(b) 3D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(7
4

8
7

.9
5

s)

(d) 7D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(1
5

4
.3

1
s)

(f) 3D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

40

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(2
2

5
3

.3
8

s)

(h) 7D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(9
3

.2
3

s)

(j) 7D-Household-2.05M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
-t

h
re

a
d

H
D

B
*

-M
em

o
G

F
K

(1
1

6
5

.2
0

s)

(l) 16D-CHEM-4.2M
(eps:inf,minpts:10)

HDBSCAN*-MemoGFK HDBSCAN*-GanTao

Figure 7: Speedup of HDBSCAN
∗
implementations (minPts = 10) over the best serial baselines vs. thread count. The best serial baseline and

its running time for each data set is shown on the 𝑦-axis label. “48h” on the 𝑥-axis refers to 48 cores with hyper-threading.

Figure 8: Running time decomposition for EMST and HDBSCAN
∗

(with minPts = 10) on two data sets using 48 cores with hyper-

threading. "dendrogram" refers to computing the ordered dendro-

gram; “kruskal” refers to Kruskal’s MST algorithm; "wspd" refers

to computing the WSPD, or the sum of WSPD tree traversal times

across rounds; "core-dist" refers to computing core distances of all

points; and "build-tree" refers to building a 𝑘d-tree on all points.

across all data sets, the dendrogram for single-linkage clustering

takes an average of 16.44 seconds, whereas the dendrogram for

HDBSCAN
∗
takes an average of 9.27 seconds. This is because the

single-linkage clustering generates more light-edge subproblems

and hence requires more work. While it is possible to tune the

fraction of heavy edges for different values of minPts, we found
that using 𝑛/10 heavy edges works reasonably well in all cases.

0 10 20 30 40 50

Self-Relative Speedup

16D-CHEM-4.2M

10D-HT-0.93M

7D-HouseHold-2M

3D-GeoLife-24.9M

7D-SS-varden-10M

5D-SS-varden-10M

3D-SS-varden-10M

2D-SS-varden-10M

7D-UniformFill-10M

5D-UniformFill-10M

3D-UniformFill-10M

2D-UniformFill-10M

16.24x, 3.35s

5.69x, 0.53s

12.38x, 0.56s

27.73x, 9.39s

49.74x, 40.33s

32.78x, 16.41s

10.93x, 3.93s

10.25x, 3.65s

14.26x, 8.22s

12.85x, 8.60s

10.99x, 9.01s

11.35x, 7.26s

25.02x, 15.42s

7.57x, 1.23s

5.35x, 2.96s

32.83x, 40.24s

52.58x, 53.01s

40.23x, 34.24s

11.48x, 5.73s

13.38x, 13.39s

10.27x, 5.46s

7.93x, 5.96s

14.30x, 5.84s

26.76x, 13.75s

Dendrogram Speedup and Running Time (s)

Single-Linkage
Clustering

HDBSCAN*
(minPts=10)

Figure 9: Self-relative speedups and times for ordered dendro-

gram computation for single-linkage clustering and HDBSCAN
∗

(minPts = 10). The 𝑥-axis indicates the self-relative speedup on 48

cores with hyper-threading. The speedup and time is shown at the

end of each bar.

Acknowledgements.We thank Pilar Cano for helpful discussions.

This research was supported by DOE Early Career Award #DE-

SC0018947, NSF CAREER Award #CCF-1845763, Google Faculty

Research Award, DARPA SDH Award #HR0011-18-3-0007, and Ap-

plications Driving Architectures (ADA) Research Center, a JUMP

Center co-sponsored by SRC and DARPA.

References

[1] [n.d.]. CHEM Dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensor+

array+under+dynamic+gas+mixtures.

[2] [n.d.]. GeoLife Dataset. https://www.microsoft.com/en-us/research/publication/

geolife-gps-trajectory-dataset-user-guide/.

[3] [n.d.]. Household Dataset. https://archive.ics.uci.edu/ml/datasets/individual+

household+electric+power+consumption.

[4] [n.d.]. HT Dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+

home+activity+monitoring.

[5] [n.d.]. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

[6] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl.

1991. Euclidean minimum spanning trees and bichromatic closest pairs. Discrete
& Computational Geometry (1991), 407–422.

[7] Mihael Ankerst, Markus Breunig, H. Kriegel, and Jörg Sander. 1999. OPTICS: Or-

dering Points to Identify the Clustering Structure. In ACM SIGMOD International
Conference on Management of Data. 49–60.

[8] Sunil Arya and David M. Mount. 2016. A Fast and Simple Algorithm for Comput-

ing Approximate Euclidean Minimum Spanning Trees. In ACM-SIAM Symposium
on Discrete Algorithms. 1220–1233.

[9] Bentley and Friedman. 1978. Fast Algorithms for Constructing Minimal Spanning

Trees in Coordinate Spaces. IEEE Trans. Comput. C-27, 2 (Feb 1978), 97–105.
[10] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions.

J. ACM 21, 2 (April 1974), 201–206.

[11] Paul B Callahan. 1993. Optimal parallel all-nearest-neighbors using the well-

separated pair decomposition. In IEEE Symposium on Foundations of Computer
Science (FOCS). 332–340.

[12] Paul B. Callahan and S. Rao Kosaraju. 1993. Faster Algorithms for SomeGeometric

Graph Problems in Higher Dimensions. In ACM-SIAM Symposium on Discrete
Algorithms. 291–300.

[13] Paul B. Callahan and S. Rao Kosaraju. 1995. A Decomposition ofMultidimensional

Point Sets with Applications to k-Nearest-Neighbors and n-Body Potential Fields.

J. ACM 42, 1 (1995), 67–90.

[14] Ricardo Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. 2015. Hierar-

chical Density Estimates for Data Clustering, Visualization, and Outlier Detection.

ACM Transactions on Knowledge Discovery from Data (TKDD), Article 5 (2015),
5:1–5:51 pages.

[15] Samidh Chatterjee, Michael Connor, and Piyush Kumar. 2010. Geometric Min-

imum Spanning Trees with GeoFilterKruskal. In International Symposium on
Experimental Algorithms (SEA), Vol. 6049. 486–500.

[16] Danny Z. Chen, Michiel Smid, and Bin Xu. 2005. Geometric Algorithms for

Density-Based Data Clustering. International Journal of Computational Geometry
& Applications 15, 03 (2005), 239–260.

[17] Richard Cole. 1988. Parallel Merge Sort. SIAM J. Comput. 17, 4 (Aug. 1988),

770–785.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3. ed.). MIT Press.

[19] Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. 2019. Faster DB-scan and

HDB-scan in Low-Dimensional Euclidean Spaces, In International Symposium

on Algorithms and Computation (ISAAC). International Journal of Computational
Geometry & Applications 29, 01, 21–47.

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-

based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-

ering Clusters in Large Spatial Databases with Noise. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 226–231.

[21] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. 2015. Reser-

voir computing compensates slow response of chemosensor arrays exposed to

fast varying gas concentrations in continuous monitoring. Sensors and Actuators
B: Chemical 215 (2015), 618–629.

[22] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1976. An algo-

rithm for finding best matches in logarithmic expected time. ACM Trans. Math.
Software 3, 3 (7 1976), 209–226.

[23] Harold N. Gabow, Jon L. Bentley, and Robert E. Tarjan. 1984. Scaling and related

techniques for geometry problems. In ACM Symposium on Theory of Computing
(STOC). 135–143.

[24] Junhao Gan and Yufei Tao. 2017. On the Hardness and Approximation of Eu-

clidean DBSCAN. ACM Transactions on Database Systems (TODS) 42, 3 (2017),
14:1–14:45.

[25] Junhao Gan and Yufei Tao. 2018. Fast Euclidean OPTICS with Bounded Preci-

sion in Low Dimensional Space. In ACM SIGMOD International Conference on
Management of Data. 1067–1082.

[26] J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant

time parallel algorithms. In IEEE Symposium on Foundations of Computer Science
(FOCS). 698–710.

[27] Markus Götz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN: Highly

Parallel DBSCAN. In MLHPC. Article 2, 2:1–2:10 pages.
[28] John C. Gower and Gavin J. S. Ross. 1969. Minimum spanning trees and single

linkage cluster analysis. Journal of the Royal Statistical Society: Series C (Applied

Statistics) 18, 1 (1969), 54–64.
[29] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel

Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 24–34.

[30] Ade Gunawan. 2013. A faster algorithm for DBSCAN. Master’s thesis, Eindhoven

University of Technology.

[31] William Hendrix, Md Mostofa Ali Patwary, Ankit Agrawal, Wei-keng Liao, and

Alok Choudhary. 2012. Parallel hierarchical clustering on shared memory plat-

forms. In International Conference on High Performance Computing. 1–9.
[32] Xu Hu, Jun Huang, and Minghui Qiu. 2017. A Communication Efficient Par-

allel DBSCAN Algorithm Based on Parameter Server. In ACM Conference on
Information and Knowledge Management (CIKM). 2107–2110.

[33] Ramón Huerta, Thiago Schiavo Mosqueiro, Jordi Fonollosa, Nikolai F. Rulkov, and

Irene Rodríguez-Luján. 2016. Online Humidity and Temperature Decorrelation

of Chemical Sensors for Continuous Monitoring. Chemometrics and Intelligent
Laboratory Systems 157, 169–176.

[34] Joseph Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Profes-

sional.

[35] Richard M. Karp and Vijaya Ramachandran. 1990. Parallel Algorithms for Shared-

Memory Machines. In Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity (A). MIT Press, 869–941.

[36] Charles E. Leiserson. 2010. The Cilk++ concurrency platform. J. Supercomputing
51, 3 (2010). Springer.

[37] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. 2016.

NG-DBSCAN: Scalable Density-based Clustering for Arbitrary Data. Proc. VLDB
Endow. 10, 3 (Nov. 2016), 157–168.

[38] William B March, Parikshit Ram, and Alexander G Gray. 2010. Fast Euclidean

minimum spanning tree: algorithm, analysis, and applications. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 603–612.

[39] LelandMcInnes and John Healy. 2017. Accelerated hierarchical density clustering.

arXiv preprint arXiv:1705.07321 (2017).
[40] Daniel Müllner. 2011. Modern hierarchical, agglomerative clustering algorithms.

arXiv:1109.2378 [stat.ML]

[41] Giri Narasimhan and Martin Zachariasen. 2001. Geometric Minimum Spanning

Trees via Well-Separated Pair Decompositions. ACM Journal of Experimental
Algorithmics 6 (2001), 6.

[42] Clark F. Olson. 1995. Parallel algorithms for hierarchical clustering. Parallel
Comput. 21, 8 (1995), 1313 – 1325.

[43] Vitaly Osipov, Peter Sanders, and Johannes Singler. 2009. The Filter-Kruskal

Minimum Spanning Tree Algorithm. In Workshop on Algorithm Engineering and
Experiments (ALENEX). 52–61.

[44] M. Patwary, D. Palsetia, A. Agrawal,W. K. Liao, F. Manne, and A. Choudhary. 2012.

A new scalable parallel DBSCAN algorithm using the disjoint-set data structure.

In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 1–11.

[45] M. Patwary, D. Palsetia, A. Agrawal,W. K. Liao, F. Manne, and A. Choudhary. 2013.

Scalable parallel OPTICS data clustering using graph algorithmic techniques. In

International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 1–12.

[46] Jörg Sander, Xuejie Qin, Zhiyong Lu, Nan Niu, and Alex Kovarsky. 2003. Au-

tomatic extraction of clusters from hierarchical clustering representations. In

Pacific-Asia Conference on Knowledge Discovery and Data Mining. 75–87.
[47] J. Santos, T. Syed, M. Coelho Naldi, R. J. G. B. Campello, and J. Sander. 2019.

Hierarchical Density-Based Clustering using MapReduce. IEEE Transactions on
Big Data (2019), 1–1.

[48] Michael Ian Shamos and Hoey Dan. 1975. Closest-point problems. (1975), 151–

162.

[49] J. Shun and G. E. Blelloch. 2014. A Simple Parallel Cartesian Tree Algorithm and

its Application to Parallel Suffix Tree Construction. ACM Transactions on Parallel
Computing (TOPC) 1, 1, Article 8 (Oct. 2014), 8:1–8:20 pages.

[50] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. 2013. Re-

ducing Contention Through Priority Updates. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 152–163.

[51] Hwanjun Song and J. Lee. 2018. RP-DBSCAN: A Superfast Parallel DBSCANAlgo-

rithm Based on Random Partitioning. In ACM SIGMOD International Conference
on Management of Data. 1173–1187.

[52] Vijay V. Vazirani. 2010. Approximation Algorithms. Springer Publishing Company,

Incorporated.

[53] P. J. Wan, G. Călinescu, X. Y. Li, and O. Frieder. 2002. Minimum-Energy Broadcast-

ing in Static Ad Hoc Wireless Networks. Wireless Networks 8, 6 (2002), 607–617.
[54] Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-efficient and practical

parallel DBSCAN. In ACM SIGMOD International Conference on Management of
Data. 2555–2571.

[55] Ying Xu, Victor Olman, and Dong Xu. 2001. Minimum Spanning Trees for Gene

Expression Data Clustering. Genome Informatics 12 (02 2001), 24–33.
[56] Andrew Chi-Chih. Yao. 1982. On Constructing Minimum Spanning Trees in

𝑘-Dimensional Spaces and Related Problems. SIAM J. Comput. 11, 4 (1982),

721–736.

https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1109.2378

[57] Meichen Yu, Arjan Hillebrand, Prejaas Tewarie, Jil Meier, Bob van Dijk, Piet

Van Mieghem, and Cornelis Jan Stam. 2015. Hierarchical clustering in minimum

spanning trees. Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 2
(2015), 023107.

[58] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning Transporta-

tion Mode from Raw GPS Data for Geographic Applications on the Web. In

International Conference on World Wide Web. 247–256.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Parallel Primitives
	2.3 Relevant Techniques

	3 Parallel EMST and HDBSCAN*
	3.1 EMST
	3.2 HDBSCAN*

	4 Dendrogram and Reachability Plot
	4.1 Ordered Dendrogram
	4.2 A Novel Top-Down Algorithm

	5 Experiments
	References

