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Abstract

This paper presents new parallel algorithms for generating Eu-
clidean minimum spanning trees and spatial clustering hierarchies
(known as HDBSCAN®). Our approach is based on generating a
well-separated pair decomposition followed by using Kruskal’s
minimum spanning tree algorithm and bichromatic closest pair
computations. We introduce a new notion of well-separation to
reduce the work and space of our algorithm for HDBSCAN™. We
also give a new parallel divide-and-conquer algorithm for com-
puting the dendrogram and reachability plots, which are used in
visualizing clusters of different scale that arise for both EMST and
HDBSCAN*. We show that our algorithms are theoretically efficient:
they have work (number of operations) matching their sequential
counterparts, and polylogarithmic depth (parallel time).

We implement our algorithms and propose a memory optimiza-
tion that requires only a subset of well-separated pairs to be com-
puted and materialized, leading to savings in both space (up to
10x) and time (up to 8x). Our experiments on large real-world and
synthetic data sets using a 48-core machine show that our fastest
algorithms outperform the best serial algorithms for the problems
by 11.13-55.89%, and existing parallel algorithms by at least an
order of magnitude.
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1 Introduction

This paper studies the two related geometric problems of Eu-
clidean minimum spanning tree (EMST) and hierarchical density-
based spatial clustering with added noise [14]. The problems take
as input a set of n points in a d-dimensional space. EMST computes
a minimum spanning tree on a complete graph formed among the
n points with edges between two points having the weight equal to
their Euclidean distance. EMST has many applications, including in
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single-linkage clustering [28], network placement optimization [53],
and approximating the Euclidean traveling salesman problem [52].

Hierarchical density-based spatial clustering of applications with
noise (HDBSCAN¥) is a popular hierarchical clustering algorithm [14].
The goal of density-based spatial clustering is to cluster points that
are in dense regions and close together in proximity. One of the
most widely-used density-based spatial clustering methods is the
density-based spatial clustering of applications with noise (DBSCAN)
method by Ester et al. [20]. DBSCAN requires two parameters, € and
minPts, which determine what is considered “close” and “dense”,
respectively. In practice, minPts is usually fixed to a small con-
stant, but many different values of € need to be explored in order
to find high-quality clusters. Many efficient DBSCAN algorithms
have been designed both for the sequential [16, 19, 24, 30] and
the parallel context (both shared memory and distributed mem-
ory) [27, 32, 37, 44, 51, 54]. To avoid repeatedly executing DBSCAN
for different values of €, the OPTICS [7] and HDBSCAN* [14] algo-
rithms have been proposed for constructing DBSCAN clustering
hierarchies, from which clusters from different values of € can be
generated. These algorithms are known to be robust to outliers
in the data set. The algorithms are based on generating a mini-
mum spanning tree on the input points, where a subset of the edge
weights are determined by Euclidean distance and the remaining
edge weights are determined by a DBSCAN-specific metric known
as the core distance (to be defined in Section 2). Thus, the algorithms
bear some similarity to EMST algorithms.

There has been a significant amount of theoretical work on de-
signing fast sequential EMST algorithms (e.g., [6, 8, 12, 48, 56]).
There have also been some practical implementations of EMST [9,
15, 38, 41], although most of them are sequential (part of the algo-
rithm by Chatterjee et al. [15] is parallel). The state-of-the-art EMST
implementations are either based on generating a well-separated
pair decomposition (WSPD) [13] and applying Kruskal’s mini-
mum spanning tree (MST) algorithm on edges produced by the
WSPD [15, 41], or dual-tree traversals on k-d trees integrated into
Boruvka’s MST algorithm [38]. Much less work has been proposed
for parallel HDBSCAN* and OPTICS [45, 47]. In this paper, we
design new algorithms for EMST, which can also be leveraged to
design a fast parallel HDBSCAN* algorithm.

This paper presents practical parallel in-memory algorithms
for EMST and HDBSCAN*, and proves that the theoretical work
(number of operations) of our implementations matches their state-
of-the-art counterparts, while having polylogarithmic depth.! Our
algorithms are based on finding a WSPD and then running Kruskal’s
algorithm on edges between pairs in the WSPD. For our HDBSCAN*
algorithm, we propose a new notion of well-separation to include

I The work is the total number of operations and depth (parallel time) is the length of
the longest sequential dependence.
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the notion of core distances, which enables us to improve the space
usage and work of our algorithm.

Given the MST from the EMST or the HDBSCAN™ problem, we
provide an algorithm to generate a dendrogram, which represents
the hierarchy of clusters in our data set. For EMST, this solves the
single-linkage clustering problem [28], and for HDBSCAN®, this
gives us a dendrogram as well as a reachability plot [14]. We in-
troduce a work-efficient? parallel divide-and-conquer algorithm
that first generates an Euler tour on the tree, splits the tree into
multiple subtrees, recursively generates the dendrogram for each
subtree, and glues the results back together. An in-order traversal
of the dendrogram gives the reachability plot. Our algorithm takes
O(nlog n) work and O(log? nloglog n) depth. Our parallel dendro-
gram algorithm is of independent interest, as it can also be applied
to generate dendrograms for other clustering problems.

We provide optimized parallel implementations of our EMST and
HDBSCAN* algorithms. We introduce a memory optimization that
avoids computing and materializing many of the WSPD pairs, which
significantly improves our algorithm’s performance (up to 8x faster
and 10x less space). We also provide optimized implementations of
k-d trees, which our algorithms use for spatial queries.

We perform a comprehensive set of experiments on both syn-
thetic and real-world data sets using varying parameters, and com-
pare the performance of our implementations to optimized sequen-
tial implementations as well as existing parallel implementations.
Compared to existing EMST sequential implementations [38, 39],
our fastest sequential implementation is 0.89-4.17x faster (2.44x
on average). On a 48-core machine with hyper-threading, our
EMST implementation achieves 14.61-55.89x speedup over the
fastest sequential implementations. Our HDBSCAN* implemen-
tation achieves 11.13-46.69x speedup over the fastest sequential
implementations. Compared to existing sequential and parallel im-
plementations for HDBSCAN™ [25, 39, 45, 47], our implementation
is at least an order of magnitude faster. Our source code is publicly
available at https://github.com/wangyiqiu/hdbscan.

We summarize our contributions below:

e New parallel algorithms for EMST and HDBSCAN* with strong
theoretical guarantees.

e A new definition of well-separation that computes the HDB-
SCAN* MST using asymptotically less space.

e Memory-optimized parallel implementations for EMST and
HDBSCAN* that give significant space and time improvements.

e A new parallel algorithm for dendrogram construction.

e A comprehensive experimental study of the proposed methods.

2 Preliminaries

2.1 Problem Definitions

EMST. The Euclidean Minimum Spanning Tree (EMST) prob-
lem takes n points = {p1, ..., pn} and returns a minimum span-
ning tree (MST) of the complete undirected Euclidean graph of
P.

DBSCAN™. The DBSCAN" (density-based spatial clustering of
applications with noise) problem takes as input n points £ =

{p1,...,pn} adistance function d, and two parameters € and minPts [14,

2A work-efficient parallel algorithm has a work bound that matches the best sequen-
tial algorithm for the problem.

20]. A point p is a core point ifand only if |{p; | pi € P,d(p, pi) < €}| >
minPts. A point is called a noise point otherwise. We denote the
set of core points as Pcore. DBSCAN™* computes a partition of Peore,
where each subset is referred to as a cluster, and also returns
the remaining points as noise points. Two points p,q € Pcore
are in the same cluster if and only if there exists a list of points
P = P1.p2, - Pk—1, Pk = q in Peore such that d(pi-1,pi) < € for
all 1 < i < k. For a given set of points and two parameters € and
minPts, the clusters returned are unique.3

HDBSCAN*. The HDBSCAN* (hierarchical DBSCAN™) problem [14]
takes the same input as DBSCAN*, but without the € parameter, and
computes a hierarchy of DBSCAN™ clusters for all possible values
of €. The core distance of a point p, cd(p), is the distance from
p to its minPts-nearest neighbor (including p itself). The mutual
reachability distance between two points p and q is defined to
be dim (p, q) = max{cd(p), cd(q),d(p,q)}. The mutual reachabil-
ity graph Gy is a complete undirected graph, where the vertices
are the points in #, and the edges are weighted by the mutual
reachability distances.*

The HDBSCAN™ hierarchy is sequentially computed in two
steps [14]. The first step computes an MST of Gyr and then adds
a self-edge to each vertex weighted by its core distance. An ex-
ample MST is shown in Figure 1a. We note that the HDBSCAN*
MST with minPts = 1 is equivalent to the EMST, since the mutual
reachability distance at minPts = 1 is equivalent to the Euclidean
distance. A dendrogram representing clusters at different values
of € is computed by removing edges from the MST plus self-edges
graph in decreasing order of weight. The root of the dendrogram is
a cluster containing all points. Each non-self-edge removal splits a
cluster into two, which become the two children of the cluster in
the dendrogram. The height of the split cluster in the dendrogram
is equal to the weight of the removed edge. If the removed edge is
a self-edge, we mark the component (point) as a noise point. An
example of a dendrogram is shown in Figure 1b. If we want to re-
turn the clusters for a particular value of €, we can horizontally cut
the dendrogram at that value of € and return the resulting subtrees
below the cut as the clusters or noise points. This is equivalent to
removing edges from the MST of Gyr with weight greater than e.

For HDBSCAN, the reachability plot (OPTICS sequence) [7]
contains all points in # in some order {p;| i = 1,..., n}, where each
point p; is represented as a bar with height min{d, (p;, p;) | j < i}.
For HDBSCAN*, the order of the points is the order that they are
visited in an execution of Prim’s algorithm on the MST of Gy
starting from an arbitrary point [7]. An example is shown in Fig-
ure 1c. Intuitively, the "valleys" of the reachability plot correspond
to clusters [14].

2.2 Parallel Primitives

We use the classic work-depth model for analyzing parallel
shared-memory algorithms [18, 34, 35]. The work W of an al-
gorithm is the number of instructions in the computation, and
the depth D is the longest sequential dependence. Using Brent’s
scheduling theorem [10], we can execute a parallel computation in
3The original DBSCAN definition includes the notion of border points, which are
non-core points that are within a distance of € to core points [20]. DBSCAN™ chooses
to omit this to be more consistent with a statistical interpretation of clusters [14].

“The related OPTICS problem also generates a hierarchy of clusters but with a defini-
tion of reachability distance that is asymmetric, leading to a directed graph [7].
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Figure 1: (a) An MST of the HDBSCAN* mutual reachability graph

on an example data set in 2D. The red number next to each point
is the core distance of the point for minPts = 3. The Euclidean dis-
tances between points are denoted by grey edges, whose values are
marked in black. For example, a’s core distance is 4 because b is a’s
third nearest neighbor (including itself) and d(a,b) = 4. The edge
weight of (a,d) is max{4, V10, V2} = 4. (b) An HDBSCAN* dendro-
gram for the data set. A point becomes a noise point when its ver-
tical line becomes red. For example, if we cut the dendrogram at
€ = 3.5, then we have two clusters {d,b} and {e, g, f, h}, while q, ¢
and i are noise points. (c) A reachability plot for the data set start-
ing at point a. The two “valleys”, {a,b,c,d} and {e, f, g, h}, are the
two most obvious clusters.

W/p + D running time using p processors. In practice, we can use
randomized work-stealing schedulers that are available in existing
languages such as Cilk, TBB, X10, and Java Fork-Join. We assume
that priority concurrent writes take O(1) work and depth.

Prefix sum takes as input a sequence [aj, ay, ..., an], an asso-
ciative binary operator @, and an identity element i, and returns the
sequence [i, a1, (a1 ® az),..., (a1 ®ay®...d ap—1)] as well as the
overall sum (using @) of the elements. Filter takes an array A and a
predicate function f, and returns a new array containing a € A for
which f(a) is true, in the same order that they appear in A. Filter
can be implemented using prefix sum. Split takes an array A and a
predicate function f, and moves all of the “true” elements before the
“false” elements. Split can be implemented using filter. The Euler
tour of a tree takes as input an adjacency list representation of
the tree and returns a directed circuit that traverses every edge of
the tree exactly once. List ranking takes a linked list with values
on each node and returns for each node the sum of values from
the node to the end of the list. All of the above primitives can be
implemented in O(n) work and O(log n) depth [34]. Semisort [29]
takes as input n items, each with a key, and groups the items with
the same key together, without any guarantee on the ordering of
items with different keys. This algorithm takes O(n) expected work
and O(logn) depth with high probability. A parallel hash table
supports n inserts, deletes, and finds in O(n) work and O(log n)
depth with high probability [26]. WRITEMIN is a priority concurrent
write that takes as input two arguments, where the first argument
is the location to write to and the second argument is the value to
write; on concurrent writes, the smallest value is written [50].

2.3 Relevant Techniques

k-NN Query. A k-nearest neighbor (k-NN) query takes a point
data set  and a distance function, and returns for each point in P

Notation Definition

d(p,q) Euclidean distance between points p and gq.
d;, (p,q) | Mutual reachability distance between points p and q.
d(A B) Minimum distance between the bounding spheres of

i points in tree node A and points in tree node B.

w(u, v) Weight of edge (u, v).

Adiam Diameter of the bounding sphere of points in tree node A.
cdmin (A) | Minimum core distance of points in tree node A.
cdmax (A) | Maximum core distance of points in tree node A.

Table 1: Summary of Notation

its k nearest neighbors (including itself). Callahan and Kosaraju [11]
show that k-NN queries in Euclidean space for all points can be
solved in parallel in O(knlogn) work and O(log n) depth.
kd-tree. A kd-tree is a commonly used data structure for k-NN
queries [22]. It is a binary tree that is constructed recursively: each
node in the tree represents a set of points, which are partitioned
between its two children by splitting along one of the dimensions;
this process is recursively applied on each of its two children until
a leaf node is reached (a leaf node is one that contains at most ¢
points, for a predetermined constant c). It can be constructed in
parallel by processing each child in parallel. A k-NN query can be
answered by traversing nodes in the tree that are close to the input
point, and pruning nodes further away that cannot possibly contain
the k nearest neighbors.

BCCP and BCCP*. Existing algorithms, as well as some of our new
algorithms, use subroutines for solving the bichromatic closest
pair (BCCP) problem, which takes as input two sets of points,
A and B, and returns the pair of points p; and p; with minimum
distance between them, where p; € A and p, € B. We also define a
variant, the BCCP* problem, that finds the pair of points with the
minimum mutual reachability distance, as defined for HDBSCAN™.
Well-Separated Pair Decomposition. We use the same defini-
tions and notations as in Callahan and Kosaraju [13]. Two sets of
points, A and B, are well-separated if A and B can each be con-
tained in spheres of radius r, and the minimum distance between
the two spheres is at least sr, for a separation constant s (we use
s = 2 throughout the paper). An interaction product of point sets
Aand Bisdefinedtobe AQ B={{p,p’}|pe A p'€B, p+p'}
The set {{A1,B1},...,{Ax, Br}} is a well-separated realization
of AQBif: (1) A C Aand B; C Bforalli=1,...k; (2) A;NB; =0
foralli=1,...k; (3) (A; ® B;) N (Aj ® Bj) = 0 for all i, j where
1<i<j<k;(4A®B= U;;Ai ® Bj; (5) A; and B; are well-
separated for alli = 1,..., k.

For a point set P, a well-separated pair decomposition (WSPD)
is a well-separated realization of P ® . We discuss how to construct
a WSPD using a kd-tree in Section 3.

Notation. Table 1 shows notation frequently used in the paper.

3 Parallel EMST and HDBSCAN*

In this section, we present our new parallel algorithms for EMST
and HDBSCAN*. We also introduce our new memory optimization
to improve space usage and performance in practice.

3.1 EMST

To solve EMST, Callahan and Kosaraju present an algorithm for
constructing a WSPD that creates an edge between the BCCP of
each pair in the WSPD with weight equal to their distance, and
then runs an MST algorithm on these edges. They show that their
algorithm takes O(Ty(n, n) log n) work [12], where Ty;(n, n) refers
to the work of computing BCCP on two sets each of size n.



Algorithm 1 Well-Separated Pair Decomposition

1: procedure Wspp(A)
2 if |[A| > 1 then
3 do in parallel
4: WSsPD(Aeft) > parallel call on the left child of A
5: WSPD(A ight) > parallel call on the right child of A
6 FINDPAIR(A eft, Aright)
7: procedure FINDPAIR(P, P’)
8 if Pgiam < P’diam then
9: Swap(P, P’)
10: if WELLSEPARATED(P, P’) then REcOrRD(P, P’)
11: else
12: do in parallel
13: FINDPAIR(Ppefy, P’) > Py is the left child of P
14: FINDPAIR(Pyighs, P") > Pyighs is the right child of P

Algorithm 2 Parallel GeoFilterKruskal

1: procedure PARALLELGFK(WSPD: S, Edges: Ey;, UnionFind: UF)

2 p=2

3 while |E,y; | < (n—1) do

4: (S1,Su) = SpLrn(S, fp) » For apair (A, B), fg checksif |A| + |B| < S
5: Phi = min(a p)es, d(A, B)

6 (S11, Sp2) = SeLrr(Sy, f/’hz) > For a pair (A, B), f/’hi checks if

BCCP(A, B) < pp;

7: Ejy = GETEDGES(Sy1) > Retrieves edges associated with pairs in Sy
8: PARALLELKRUSKAL(E}1, Eout, UF)
9: S =FILTER(S)2 U Sy, faigr) > For a pair (A, B), faif checks points in A
are in different component from B in UF
10: B=px2

For our parallel EMST algorithm, we parallelize WSPD construc-
tion algorithm, and then develop a parallel variant of Kruskal’s
MST algorithm that runs on the edges formed by the pairs in the
WSPD. We also propose a non-trivial optimization to make the
implementation fast and memory-efficient.

3.1.1  Constructing a WSPD in Parallel We introduce the basic par-
allel WSPD in Algorithm 1. Prior to calling WSPD, we construct
a spatial median kd-tree T in parallel with each leaf containing
one point. Then, we call the procedure WspD on Line 1 and make
the root node of T its input. In WspD, we make parallel calls to
FINDPAIR on the two children of all non-leaf nodes by recursively
calling Wspp. The procedure FINDPAIR on Line 7 takes as input a
pair (P, P’) of nodes in T, and checks whether P and P’ are well-
separated. If they are well-separated, then the algorithm records
them as a well-separated pair on Line 10; otherwise, the algorithm
splits the set with the larger bounding sphere into its two children
and makes two recursive calls in parallel (Lines 13-14). This pro-
cess is applied recursively until the input pairs are well-separated.
The major difference of Algorithm 1 from the serial version is the
parallel thread-spawning on Lines 3-5 and 12-14. This procedure
generates a WSPD with O(n) pairs [12].

3.1.2  Parallel GFK Algorithm for EMST The original algorithm
by Callahan and Kosaraju [12] computes the BCCP between each
pair in the WSPD to generate a graph from which an MST can
be computed to obtain the EMST. However, it is not necessary
to compute the BCCP for all pairs, as observed by Chatterjee et
al. [15]. Our implementation only computes the BCCP between a
pair if their points are not yet connected in the spanning forest
generated so far. This optimization reduces the total number of
BCCP calls. Furthermore, we propose a memory optimization that
avoids materializing all of the pairs in the WSPD. We will first

Round 1, B=2, p,;=d(h,Q,)

(a,d) | (b,o) | (fg) |(eh) [(h,Q)|(eQ)]eQ,)(Q,Q.)(Q,Q,)|(Q, i)
2,2 2,1[2,1(2417|3,¥5| 3,2 | 3,6 |4410| 7.8 | 9.18
Round 2, B=4, p,=d(Q,,Q,)
(e,h) |(h,Q))|(e,Q,) |(e,Q,) (Q..Q)NQxQL)] (Q,, i)
2417 (3,5 3,2 | 3,6 |4./10

Format Color Code
Round 3, =8
(A B) Sy Sp S,

|A|+|B|, BCCP DEE (1, i)

Figure 2: The is an example for both GFK (Algorithm 2) and MEm-
oGFK (Algorithm 3) for EMST corresponding to the data set shown
in Figure 1. The red lines linking tree nodes and the boxes drawn
below represent well-separated pairs. The boxes also show the car-
dinality and BCCP value of the pair. Their correspondence with the
symbols Sj;, Si2, and S, from the pseudocode are color-coded. The
pairs that generate py; are in bold squares, and the pairs filtered out
have a red cross. Using our MemoGFK optimization, only the pairs
in S;; needs to be materialized, in contrast to needing to materialize
all of the pairs in GFK.

describe how we obtain the EMST from the WSPD, and then give
details of our memory optimization.

The original Kruskal’s algorithm is an MST algorithm that takes
input edges sorted by non-decreasing weight, and processes the
edges in order, using a union-find data structure to join compo-
nents for edges with endpoints in different components. Our imple-
mentation is inspired by a variant of Kruskal’s algorithm, GeoFil-
terKruskal (GFK). This algorithm was used for sequential EMST
by Chatterjee et al. [15], and for MST in general graphs by Osipov
et al. [43]. It improves Kruskal’s algorithm by avoiding the BCCP
computation between pairs unless needed, and prioritizing BCCPs
between pairs with smaller cardinalities, which are cheaper, with
the goal of pruning more expensive BCCP computations.

We propose a parallel GFK algorithm as shown in Algorithm 2. It
uses Kruskal’s MST algorithm as a subroutine by passing it batches
of edges, where each batch has edges with weights no less than
those of edges in previous batches, and the union-find structure is
shared across multiple invocations of Kruskal’s algorithm. PARAL-
LELGFK takes as input the WSPD pairs S, an array E,y; to store the
MST edges, and a union-find structure UF. On each round, given a
constant f3, we only consider node pairs in the WSPD with cardinal-
ity (sum of sizes) at most f§ because it is cheaper to compute their
BCCPs. To do so, the set of pairs S is partitioned into Sj, containing
pairs with cardinality at most f, and S;;, containing the remaining
pairs (Line 4). However, it is only correct to consider pairs in S;
that produce edges lighter than any of the pairs in S;,. On Line 5,
we compute an upper bound py; for the edges in S; by setting pj;
equal to the minimum d(A, B) for all (A, B) € S, (this is a lower
bound on the edges weights formed by these pairs). In the example
shown in Figure 2, in the first round, with § = 2, the set S; con-
tains (a,d), (b, c), (f,g), and (e, h), and the set S, contains (h, Q7),
(e,Q7), (e,0Q2), (Q4,0Q5), (Q2,Q6), and (Q1, i). pp; corresponds to



(e,Q7) on Line 5. Then, we compute the BCCP of all elements of
set S, and split it into Sj; and Sj», where S;; has edges with weight
at most pp; (Line 6). On Line 6, Sj; contains (a, d), (b, c) and (f, g),
as their BCCP distances are smaller than py; = d(e, Q7), and S,
contains (e, h) . After that, Ej;, the edges corresponding to S;;, are
passed to Kruskal’s algorithm (Lines 7-8). The remaining pairs
Si2 U Sy are then filtered based on the result of Kruskal’s algorithm
(Line 9)—in particular, pairs that are connected in the union-find
structure of Kruskal’s algorithm can be discarded, and for many
of these pairs we never have to compute their BCCP. In Figure 2,
the second round processes (e, h), (h, Q7), (e, Q7), (e, Q2), (Q4, O5),
(Q2,06), and (Q1,1), and works similarly to Round 1. However,
(Q2, Qs) gets filtered out during the second round, and we never
have to compute its BCCP, leading to less work compared to a
naive algorithm. Finally, the subsequent rounds process a single
pair (Q1,i). At the end of each round, we double the value of f
to ensure that there are logarithmic number of rounds and hence
better depth (in contrast, the sequential algorithm of Chatterjee et
al. [15] increases 8 by 1 every round). Throughout the algorithm,
we cache the BCCP results of pairs to avoid repeated computations.
Overall, the main difference between Algorithm 2 and sequential
algorithm is the use of parallel primitives on nearly every line of
the pseudocode, and the exponentially increasing value of § on
Line 11, which is crucial for achieving a low depth bound.

The following theorem summarizes the bounds of our algorithm.

Theorem 3.1. We can compute the EMST on a set of n points in
constant dimensions in O(n?) work and O(log® n) depth.

Proof. Callahan [11] shows that a WSPD with O(n) well-separated
pairs can be computed in O(nlogn) work and O(logn) depth,
which we use for our analysis. Our parallel GeoFilterKruskal al-
gorithm for EMST proceeds in rounds, and processes the well-
separated pairs in an increasing order of cardinality. Since f dou-
bles on each round, there can be at most O(log n) rounds since the
largest pair can contain n points. Within each round, the SpLIT on
Line 4 and FILTER on Line 9 both take O(n) work and O(log n) depth.
We can compute the BCCP for each pair on Line 6 by computing
all possible point distances between the pair, and using WRITEMIN
to obtain the minimum distance. Since the BCCP of each pair will
only be computed once and is cached, the total work of BCCP on
Line 6 is Y 4 pes |Al|B| = O(n?) work since the WSPD is an exact
set cover for all distinct pairs. Therefore, Line 6 takes O(n?) work
across all rounds and O(1) depth for each round. Given n edges, the
MST computation on Line 8 can be done in O(nlogn) work and
O(log n) depth using existing parallel algorithms [34]. Therefore,
the overall work is O(n?). Since each round takes O(log n) depth,
and there are O(log n) rounds, the overall depth is O(log? n). O

We implemented our own sequential and parallel versions of the
GFK algorithm as a baseline based on Algorithm 2, which we found
to be faster than the implementation of Chatterjee et al. [15] in our
experiments. In addition, because the original GFK algorithm re-
quires materializing the full WSPD, its memory consumption can be
excessive, limiting the algorithm’s practicality. This issue worsens
as the dimensionality of the points increases, as the number of pairs
in the WSPD increases exponentially with the dimension. While
Chatterjee et al. [15] show that their GFK algorithm is efficient,
they consider much smaller data sets than the ones in this paper.

Algorithm 3 Parallel MemoGFK

1: procedure PARALLELMEMOGFK(kd-tree root: R, Edges: E,y¢, UnionFind: UF)
2 B=2,p,=0

3 while |Eyyt| < (n—1) do

4: phi = GETRHO(R, ff)

5: S11 = GETPAIRS(R, B, pio. phi» UF)
6: Ejy = GETEDGES(Sy1) > Retrieves edges associated with pairs in Sy
7 PARALLELKRUSKAL(E}1, Eoyt, UF)
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3.1.3 The MemoGFK Optimization To tackle the memory consump-
tion issue, we propose an optimization to the GFK algorithm, which
reduces its space usage and improves its running time in practice.
We call the resulting algorithm MemoGFK (memory-optimized
GFK). The basic idea is that, rather than materializing the full WSPD
at the beginning, we partially traverse the kd-tree on each round
and retrieve only the pairs that are needed. The pseudocode for
our algorithm is shown in Algorithm 3, where PARALLELMEMOGFK
takes in the root R of a kd-tree, an array Ey,; to store the MST
edges, and a union-find structure UF.

The algorithm proceeds in rounds similar to parallel GeoFil-
terKruskal, and maintains lower and upper bounds (p;, and pj;) on
the weight of edges to be considered each round. On each round, it
first computes py; based on f by a single kd-tree traversal, which
will be elaborated below (Line 4). Then, together with p;, from
the previous round (pj, = 0 on the first round), the algorithm re-
trieves pairs with BCCP distance in the range [pj,, pp;) via a second
kd-tree traversal on Line 5. The edges corresponding to these pairs
are then passed to Kruskal’s algorithm on Line 7. An example of the
first round of the algorithm with MemoGFK is illustrated in Figure 2.
Without the optimization, the GFK algorithm needs to first materi-
alize all of the pairs in Round 1. With MemoGFK, pj; = d(e, Q7) is
computed via a tree traversal on Line 4, after which only the pairs in
the set S;; = {(a,d), (b,¢c), (f,g)} are retrieved and materialized on
Line 5 via a second tree traversal. Retrieving pairs only as needed
reduces memory usage and improves performance. The correctness
of the algorithm follows from the fact that each round considers
non-overlapping ranges of edge weights in increasing order until
all edges are considered, or when MST is completed.

Now we discuss the implementation details of the two-pass tree
traversal on Line 4-5. The GETRHO subroutine, which computes pp;,
does so by finding the lower bound on the minimum separation of
pairs whose cardinality is greater than f and are not yet connected
in the MST. We traverse the kd-tree starting at the root, in a similar
way as when computing the WSPD in Algorithm 1. During the
process, we update a global copy of pp; using WRITEMIN whenever
we encounter a well-separated pair in FINDPAIR, with cardinality
greater than . We can prune the traversal once |A| + |B| < f, as
all pairs that originate from (A, B) will have cardinality at most f.
We also prune the traversal when the two children of a tree node
are already connected in the union-find structure, as these edges
will not need to be considered by Kruskal’s algorithm. In addition,
we prune the traversal when the distance between the bounding
spheres of A and B, d(A, B), is larger than py;, as its descendants
cannot produce a smaller distance.

The GETPAIRs subroutine then retrieves all pairs whose points
are not yet connected in the union-find structure and have BCCP
distances in the range [pj,, pp;). It does so also via a pruned traver-
sal on the kd-tree starting from the root, similarly to Algorithm 1,
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Figure 3: (a) shows a representation of a well-separated pair (A, B)
as a line segment, based on the values of its d(A, B) and dpax (A, B),
which serve as the lower and upper bounds, respectively, for their
BCCP and the BCCP of their descendants. The "x"’s on the line
marks the value of the BCCP. (b) shows an example of tree node
pairs encountered during a pruned tree traversal on Line 5 of Al-
gorithm 3, where the pairs are represented the same way as in (a).
The pairs in solid green lines, if well-separated, will be retrieved
and materialized because their BCCPs are within the [pj,, py;) range,
whereas those in solid black lines will not as their BCCPs are out
of range (although their BCCPs will still be computed, since their
lower and upper bounds do not immediately put them out of range).
The traversal will be pruned when encountering a pair represented
by dotted lines as their BCCP and the BCCP of their descendants
will be out of range.

but only retrieves the useful pairs. For a pair of nodes encoun-
tered in the FINDPAIR subroutine, we estimate the minimum and
maximum possible BCCP between the pair using bounding sphere
calculations, an example of which is shown in Figure 3a. We prune
the traversal when dmax(A, B) < pj,, or when d(A, B) > pp;, in
which case BCCP(A, B) (as well as those of its recursive calls on de-
scendant nodes) will be outside of the range. An example is shown
in Figure 3b. In addition, we also prune the traversal if A and B are
already connected in the MST, as an edge between A and B will not
be part of the MST.

We evaluate MemoGFK in Section 5. We also use the memory
optimization for HDBSCAN*, which will be described next.

3.2 HDBSCAN*

3.2.1 Baseline Inspired by a sequential approximate algorithm
to solve the OPTICS problem by Gan and Tao [25], we modified
and parallelized their algorithm to compute the exact HDBSCAN*
as our baseline. First, we perform k-NN queries using Euclidean
distance with k = minPts to compute the core distances. Gan and
Tao’s original algorithm creates a mutual reachability graph of size
O(n-minPts?), using an approximate notion of BCCP between each
WSPD pair, and then computes its MST using Prim’s algorithm.
Our exact algorithm parallelizes their algorithm, and instead uses
the exact BCCP” computations based on the mutual reachability
distance to form the mutual reachability graph. In addition, we
also compute the MST on the generated edges using the MemoGFK
optimization described in Section 3.1.3. Summed across all well-
separated pairs, the BCCP computations take quadratic work and
constant depth. Therefore, our baseline algorithm takes O(n?) work
and O(log? n) depth, and computes the exact HDBSCAN*.

3.22 Improved Algorithm We present a more space-efficient algo-
rithm that is faster in practice by using a new definition of well-
separation for the WSPD for HDBSCAN™. We denote the max-
imum and minimum core distances of the points in node A as
cdmax(A) and cdyin (A), respectively. Consider a pair (A, B) in

the WSPD. We define A and B to be geometrically-separated
if d(A,B) > max{Adjam, Bdiam} and mutually-unreachable if
max{d(A, B), cdmin(A), cdmin(B)} = max{Adiam; Bdiam> cdmax(A),
cdmax(B)}. We consider A and B to be well-separated if they are
geometrically-separated, mutually-unreachable, or both. The origi-
nal definition of well-separation only includes the first condition.
This leads to space savings because in Algorithm 1, recursive
calls to procedure FINDPAIR(A, B) on Line 7 will not terminate until
A and B are well-separated. Since our new definition is a disjunction
between mutual-unreachability and geometric-separation, the calls
to FINDPAIR can terminate earlier, leading to fewer pairs generated.
When constructing the mutual reachability subgraph to pass to
MST, we add only a single edge between the BCCP* (BCCP with
respect to mutual reachability distance) of each well-separated pair.
With our new definition, the total number of edges generated is
upper bounded by the size of the WSPD, which is O(n) [13]. In
contrast, Gan and Tao’s approach generates O(n - minPts?) edges.

Theorem 3.2. Under the new definition of well-separation, our al-
gorithm computes an MST of the mutual reachability graph.

Proof. Under our new definition, well-separation is defined as the
disjunction between being geometrically-separated and mutually-
unreachable. We connect an edge between each well-separated pair
(A, B) with the mutual-reachability distance max{d(u*, v*), cd(u*),
cd(0*)} as the edge weight, where u* € A, v* € B, and (u*,0%)
is the BCCP* of (A, B). We overload the notation BCCP*(A, B) to
also denote the mutual-reachability distance of (u*,v*).

Consider the point set Proot, which is contained in the root node
of the tree associated with its WSPD. Let T be the MST of the full
mutual reachability graph Gpgr. Let T’ be the MST of the mutual
reachability subgraph Gy, ,, computed by connecting the BCCP*
of each well-separated pair. To ensure that T” produces the correct
HDBSCAN* clustering, we prove that it has the same weight as
T—in other words, T’ is a valid MST of Gyg.

We prove the optimality of T’ by induction on each tree node P.
Since the WSPD is hierarchical, each node P also has a valid WSPD
consisting of a subset of pairs of the WSPD of Proot. Let (1, 0) be an
edge in T. There exists an edge (u’,v”) € T’ that connects the same
two components as in T if we were to remove (u, v). We call (u’,v")
the replacement of (u,v), which is optimal if w(u’,v”) = w(u, v).
Let Tp and T} be subgraphs of T and T, respectively, containing
points in P, but not necessarily spanning P. We inductively hypoth-
esize that all edges of T} are optimal. In the base case, a singleton
tree node P satisfies the hypothesis by having no edges.

Now consider any node P and edge (u,v) € Tp. The children of
P are optimal by our inductive hypothesis. We prove that the edges
connecting the children of P are optimal. Points u and v must be
from a well-separated pair (A, B), where A and B are children of P
in the WSPD hierarchy. Let U and V be a partition of P formed by
a cut in Tp that separates point pair (u,v), where u € U andv € V.
We want to prove that the replacement of (u,v) in Tp is optimal.

We now discuss the first scenario of the proof, shown in Fig-
ure 4a, where the replacement edge between U and V is (u’,0") =
BCCP*(A, B) = (u*,v*), and we assume without loss of generality
that u’ € AN U and v’ € BN V. Since (u,0) is the closest pair of
points connecting U and V by the cut property, then (u’,v”), the
BCCP* of (A, B), must be optimal; otherwise, (u,v) has smaller
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Figure 4: In this figure, we show the two proof cases for HDBSCAN®*.
We use an oval to represent each node in the WSPD, and solid black
dots to represent data points. We represent the partition of the space
to U and V using a cut represented by a dotted line.

weight than BCCP™ (A, B), which is a contradiction. This scenario
easily generalizes to the case where A and B happen to be com-
pletely within U and V, respectively.

We now discuss the second scenario, shown in Figure 4b, where

BCCP*(A,B) = (u*,0") is internal to either U or V. We assume
without loss of generality that u* € ANV and v* € BNV, and that
U and V are connected by some intra-node edge (u’,0’) of A in
T} We want to prove that (u”,0”) is an optimal replacement edge.
We consider two cases based on the relationship between A and B
under our new definition of well-separation.
Case 1. Nodes A and B are mutually-unreachable, and may or may
not be geometrically-separated. The weight of (u’, ") is max{d(uv’, v
cd(u’),cd(v”)} < max{Agjam, cdmax(A)}. Consider the BCCP* pair
(u*,v™) between A and B. Based on the fact that A and B are
mutually-unreachable, we have

BCCP*(A, B) = max{d(u*,0*), cd(u*), cd(v*)}
> max{d(A, B), cdpin (A), cdmin(B)}
> max{Agiam, Bdiam> Cdmax (A), cdmax(B)}
> max{Agiam, cdmax(A)},
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where the inequality from the second to the third line above comes
from the definition of mutual-unreachability. Therefore, w(u’,v")
is not larger than BCCP*(A, B) = w(u*,0*), and by definition of
BCCP*, w(u*,0*) is not larger than w(u,v). Hence, w(u’,0’) is
not larger than w(w, v). On the other hand, w(u’,v”) is not smaller
than w(u, v), since otherwise we could form a spanning tree with
a smaller weight than Tp, contradicting the fact that it is an MST.
Thus, (u’,v’) is optimal.

Case 2. Nodes A and B are geometrically-separated and not mutually-
unreachable. By the definition of BCCP*, we know that w(u*, v*) <
w(u, v), which implies

max{cd(u*), cd(v*),d(u*,0*)} < max{cd(u),cd(v),d(u,v)}
max{cd(v"), cd(u),d(u,u™)} < max{cd(u), cd(v),d(u,v)}.

To obtain the second inequality above from the first, we replace
cd(v*) on the left-hand side with cd(u), since cd(u) is also on the
right-hand side; we also replace d(u*,v*) with d(u, u*) because of
the geometric separation of A and B. Since (u’,0’) is the lightest
BCCP* edge of some well-separated pair in A, max{cd(u’), cd(v’),
d(u’,v")} < max{cd(u),cd(u*),d(u,u*)}. We then have

max{cd(v’),cd(v’),d(u’,v")} < max{cd(u),cd(v),d(u,0)}.

This implies that w(u’,0’) is not larger than w(u, v). Since (u, ) is
an edge of MST Tp, the weight of the replacement edge w(u’,v”) is
also not smaller than w(u, v), and hence (u’,v’) is optimal.

Case 1 and 2 combined prove the optimality of replacement
edges in the second scenario. Considering both scenarios, we have
shown that each replacement edge in TI; connecting the children

of P is optimal, which proves the inductive hypothesis. Applying
the inductive hypothesis to Proot completes the proof. O

Our algorithm achieves the following bounds.

Theorem 3.3. Given a set of n points, we can compute the MST on
the mutual reachability graph in O(n?) work, O(log? n) depth, and
O(n - minPts) space.

Proof. Compared to the cost of GFK for EMST, GFK for HDBSCAN*
has the additional cost of computing the core distances, which takes
O(minPts-nlogn) work and O(log n) depth using k-NN [11]. With
our new definition of well-separation, the WSPD computation will
only terminate earlier than in the original definition, and so the
bounds that we showed for EMST above still hold. The new WSPD
definition also gives an O(n) space bound for the well-separated
pairs. The space usage of the k-NN computation is O(n - minPts),
which dominates the space usage. Overall, this gives O(n?) work,
O(log? n) depth, and O(n - minPts) space. O

Our algorithm gives a clear improvement in space usage over the
naive approach of computing an MST from the mutual reachability
graph, which takes O(n?) space, and our parallelization of the exact
version of Gan and Tao’s algorithm, which takes O(n - minPts?)
space. We will also see that the smaller memory footprint of this
algorithm leads to better performance in practice.

3.2.3 Implementation We implement two algorithms for HDBSCAN*:
a parallel exact algorithm based on Gan and Tao [25], and our space-
efficient algorithm from Section 3.2.2. Our implementations both
use Kruskal’s algorithm for MST and use the memory optimization
introduced for MemoGFK in Section 3.1.3. For our space-efficient
algorithm, we modify the WSPD and MemoGFK algorithm to use
our new definition of well-separation.

4 Dendrogram and Reachability Plot

We present a new parallel algorithm for generating a dendrogram
and reachability plot, given an unrooted tree with edge weights.
Our algorithm can be used for single-linkage clustering [28] by pass-
ing the EMST as input, as well as for generating the HDBSCAN*
dendrogram and reachability plot (refer to Section 2 for defini-
tions). In addition, our dendrogram algorithm can be used in effi-
ciently generating hierarchical clusters using other linkage criteria
(e.g., [42, 55, 57]).

Sequentially, the dendrogram can be generated in a bottom-
up (agglomerative) fashion by sorting the edges by weight and
processing the edges in increasing order of weight [19, 28, 31, 39, 40].
Initially, all points are assigned their own clusters. Each edge merges
the clusters of its two endpoints, if they are in different clusters,
using a union-find data structure. The order of the merges forms
a tree structure, which is the dendrogram. This takes O(nlogn)
work, but has little parallelism since the edges need to be processed
one at a time. For HDBSCAN®, we can generate the reachability
plot directly from the input tree by running Prim’s algorithm on
the tree edges starting from an arbitrary vertex [7]. This approach
takes O(nlog n) work and is also hard to parallelize efficiently, since
Prim’s algorithm is inherently sequential.

Our new parallel algorithm uses a top-down approach to gener-
ate the dendrogram and reachability plot given a weighted tree. Our
algorithm takes O(nlog n) expected work and O(log? nloglog n)
depth with high probability, and hence is work-efficient.



4.1 Ordered Dendrogram

We discuss the relationship between the dendrogram and reach-
ability plot, which are both used in HDBSCAN™. It is known [46]
that a reachability plot can be converted into a dendrogram using a
linear-work algorithm for Cartesian tree construction [23], which
can be parallelized [49]. However, converting in the other direction,
which is what we need, is more challenging because the children
in dendrogram nodes are unordered, and can correspond to many
possible sequences, only one of which corresponds to the traversal
order in Prim’s algorithm that defines the reachability plot.

Therefore, for a specific starting point s, we define the ordered
dendrogram of s, which is a dendrogram where its in-order tra-
versal corresponds to the reachability plot starting at point s. With
this definition, there is a one-to-one correspondence between a
ordered dendrogram and a reachability plot, and there are a total of
n possible ordered dendrograms and reachability plots for an input
of size n. Then, a reachability plot is just the in-order traversal of
the leaves of an ordered dendrogram, and an ordered dendrogram
is the corresponding Cartesian tree for the reachability plot.

4.2 A Novel Top-Down Algorithm

We introduce a novel work-efficient parallel algorithm to com-

pute a dendrogram, which can be modified to compute an ordered
dendrogram and its corresponding reachability plot.
‘Warm-up. We first propose a simple top-down algorithm for con-
structing the dendrogram, which does not quite give us the desired
work and depth bounds. We first generate an Euler tour on the
input tree [34]. Then, we delete the heaviest edge, which can be
found in linear work and O(1) depth by checking all edges. By def-
inition, this edge will be the root of the dendrogram, and removing
this edge partitions the tree into two subtrees corresponding to
the two children of the root. We then convert our original Euler
tour into two Euler tours, one for each subtree, which can be done
in constant work and depth by updating a few pointers. Next, we
partition our list of edges into two lists, one for each subproblem.
This can be done by applying list ranking on each Euler tour to de-
termine appropriate offsets for each edge in a new array associated
with its subproblem. This step takes linear work and has O(log n)
depth [34]. Finally, we solve the two subproblems recursively.

Although the algorithm is simple, there is no guarantee that
the subproblems are of equal size. In the worst case, one of the
subproblems could contain all but one edges (e.g., if the tree is a path
with edge weights in increasing order), and the algorithm would
require O(n) levels of recursion. The total work would then be
O(n?) and depth would be O(n log n), which is clearly undesirable.
An algorithm with O(logn) levels of recursion. We now de-
scribe a top-down approach that guarantees O(log n) levels of re-
cursion. We define the heavy edges of a tree with n edges to be
the n/2 (or any constant fraction of n) heaviest edges and the light
edges of a tree to be the remaining edges. Rather than using a single
edge to partition the tree, we use the n/2 heaviest edges to partition
the tree. The heavy edges correspond to the part of the dendrogram
closer to the root, which we refer to as the top part of the dendro-
gram, and the light edges correspond to subtrees of the top part
of the dendrogram. Therefore, we can recursively construct the
dendrogram on the heavy edges and the dendrograms on the light
edges in parallel. Then, we insert the roots of the dendrograms for

Figure 5: An example of the dendrogram construction algorithm on
the tree from Figure 1. The input tree is shown in (a). The 4 heavy
edges are in bold. We have three subproblems—one for the heavy
edges and two for the light edges. The dendrograms for the sub-
problems are generated recursively, as shown in (b). The edge la-
beled on an internal node is the edge whose removal splits a cluster
into the two clusters represented by its children. As shown in (c), we
insert the roots of the dendrograms for the light edges at the corre-
sponding leaf nodes of the heavy-edge dendrogram. For the ordered
dendrogram, the in-order traversal of the leaves corresponds to the
reachability plot shown in Figure 1 when the starting point s = a.
the light edges into the leaf nodes of the heavy-edge dendrogram.
The base case is when there is a single edge, from which we can
trivially generate a dendrogram.

An example is shown in Figure 5. We first construct the Euler
tour of the input tree (Figure 5a). Then, we find the median edge
based on edge weight, separate the heavy and light edges and
compact them into a heavy-edge subproblem and multiple light-
edge subproblems. For the subproblems, we construct their Euler
tours by adjusting pointers, and mark the position of each light-edge
subproblem in the heavy-edge subproblem where it is detached.
Then, recursively and in parallel, we compute the dendrograms
for each subproblem (Figure 5b). After that, we insert the roots of
the light-edge dendrograms to the appropriate leaf nodes in the
heavy-edge dendrogram, as marked earlier (Figure 5c).

Figure 5 shows how this algorithm applies to the input in Figure 1
with source vertex a. The four heaviest edges (b, ¢), (d,e), (f,h),
and (h, i) divide the tree into two light subproblems, consisting of
{(a,d), (d,b)} and {(e,g), (¢, f)}. The heavy edges form another
subproblem. We mark vertices b and e, where the light subproblems
are detached. After constructing the dendrogram for the three sub-
problems, we insert the light dendrograms at leaf nodes b and e, as
shown in Figure 5b. It forms the correct dendrogram in Figure 5c.

We now describe the details of the steps to separate the subprob-

lems and re-insert them into the final dendrogram.
Subproblem Finding. To find the position in the heavy-edge den-
drogram to insert a light-edge dendrogram at, every light-edge
subproblem will be associated with a unique heavy edge. The den-
drogram of the light-edge subproblem will eventually connect to
the corresponding leaf node in the heavy-edge dendrogram asso-
ciated with it. We first explain how to separate the heavy-edge
subproblem and the light-edge subproblems.

First, we compute the unweighted distance from every point to
the starting point s in the tree, and we refer to them as the vertex
distances. For the ordered dendrogram, s is the starting point of
the reachability plot, whereas s can be an arbitrary vertex if the
ordering property is not needed. We compute the vertex distances
by performing list ranking on the tree’s Euler tour rooted at s. These
distances can be computed by labeling each downward edge (away
from s) in the tree with a value of 1 and each upward edge (towards
s) in the tree with a value of —1, and running list ranking on the
edges. The vertex distances are computed only once.



We then identify the light-edge subproblems in parallel by using
the vertex distances. For each light edge (u,v), we find an adjacent
edge (w,u) such that w has smaller vertex distance than both u
and v. We call (w,u) the predecessor edge of (u,v). Each edge
can only have one predecessor edge (an edge adjacent to s will
choose itself as the predecessor). In a light-edge subproblem not
containing the starting vertex s, the predecessor of each light edge
will either be a light edge in the same light-edge subproblem, or a
heavy edge. The edges in each light-edge subproblem will form a
subtree based on the pointers to predecessor edges. We can obtain
the Euler tour of each light-edge subproblem by adjusting pointers
of the original Euler tour. The next step is to run list ranking to
propagate a unique label (the root’s label of the subproblem subtree)
of each light-edge subproblem to all edges in the same subproblem.
To create the Euler tour for the heavy subproblem, we contract
the subtrees for the light-edge subproblems: for each light-edge
subproblem, we map its leaves to its root using a parallel hash table.
Now each heavy edge adjacent to a light-edge subproblem leaf can
connect to the heavy edge adjacent to the light-edge subproblem
root by looking it up in the hash table. The Euler tour for the heavy-
edge subproblem can now be constructed by adjusting pointers.
We assign the label of the heavy-edge subproblem root to all of
the heavy edges in parallel. Then, we semisort the labeled edges to
group edges of the same light-edge subproblems and the heavy-edge
subproblem. Finally, we recursively compute the dendrograms on
the light-edge subproblems and the heavy-edge subproblem. In the
end, we connect the light-edge dendrogram for each subproblem to
the heavy-edge dendrogram leaf node corresponding to the shared
endpoint between the light-edge subproblem and its unique heavy
predecessor edge. For the light-edge subproblem containing the
starting point s, we simply insert its light-edge dendrogram into
the left-most leaf node of the heavy-edge dendrogram.

Consider Figure 5a. The heavy-edge subproblem contains edges
{(b,c),(d,e),(f,h),(h i)}, and its dendrogram is shown in Fig-
ure 5b. For the light-edge subproblem {(e,g), (g, f)}, (e,g) has
heavy predecessor edge (d, e), and (g, f) has light predecessor edge
(e,g). The unique heavy edge associated with the light-edge sub-
problem is hence (d, e), with which it shares vertex e. Hence, we
insert the light-edge dendrogram for the subproblem into leaf node
e in the heavy-edge dendrogram, as shown in Figure 5b. The light-
edge subproblem containing {(a,d), (d,b)} contains the starting
point s = g, and so we insert its dendrogram into the leftmost leaf
node b of the heavy-edge dendrogram, as shown in Figure 5b.

We first show that our algorithm correctly computes a dendro-
gram, and analyze its cost bounds (Theorem 4.1). Then, we describe
and analyze additional steps needed to generate an ordered dendro-
gram and obtain a reachability plot from it (Theorem 4.2).

Theorem 4.1. Given a weighted spanning tree with n vertices, we can

compute a dendrogram in O(nlog n) expected work and O(log? nlog log n)

depth with high probability.

Proof. We first prove that our algorithm correctly produces a den-
drogram. In the base case, we have one edge (u,v), and the algo-
rithm produces a tree with a root representing (u,v), and with u
and v as children of the root, which is trivially a dendrogram. We
now inductively hypothesize that recursive calls to our algorithm
correctly produce dendrograms. The heavy subproblem recursively

computes a top dendrogram consisting of all of the heavy edges,
and the light subproblems form dendrograms consisting of light
edges. We replace the leaf vertices in the top dendrogram associated
with light subproblems by the roots of the dendrograms on light
edges. Since the edges in the heavy subproblem are heavier than
all edges in light subproblems, and are also ancestors of the light
edges in the resulting tree, this gives a valid dendrogram.

We now analyze the cost of the algorithm. To generate the Euler
tour at the beginning, we first sort the edges and create an adja-
cency list representation, which takes O(n log n) work and O(log n)
depth [17]. Next, we root the tree, which can be done by list ranking
on the Euler tour of the tree. Then, we compute the vertex distances
to s using another round of list ranking based on the rooted tree.

There are O(log n) recursive levels since the subproblem sizes
are at most half of the original problem. We now show that each
recursive level takes linear expected work and polylogarithmic
depth with high probability. Note that we cannot afford to sort the
edges on every recursive level, since that would take O(nlogn)
work per level. However, we only need to know which edges are
heavy and which are light, and so we can use parallel selection [34]
to find the median and partition the edges into two sets. This takes
O(n) work and O(lognloglogn) depth. Identifying predecessor
edges takes a total of O(n) work and O(1) depth: we find and record
for each vertex its edge where the other endpoint has a smaller
vertex distance than it (using WRITEMIN); then, the predecessor of
each edge is found by checking the recorded edge for its endpoint
with smaller vertex distance. We then use list ranking to assign
labels to each subproblem, which takes O(n) work and O(logn)
depth [34]. The hash table operations to contract and look up the
light-edge subproblems cost O(n) work and O(log n) depth with
high probability. The semisort to group the subproblems takes O(n)
expected work and O(log n) depth with high probability. Attaching
the light-edge dendrograms to the heavy-edge dendrogram takes
O(n) work and O(1) depth across all subproblems. Multiplying the
bounds by the number of levels of recursion proves the theorem. 0O
Theorem 4.2. Given a starting vertex s, we can generate an or-
dered dendrogram and reachability plot in the same cost bounds as in

Theorem 4.1.
Proof. We have computed the vertex distances of all vertices from

s. When generating the ordered dendrogram and constructing each
internal node of the dendrogram corresponding to an edge (u,v),
and without loss of generality let u have a smaller vertex distance
than v, our algorithm puts the result of the subproblem attached to u
in the left subtree, and that of v in the right subtree. This additional
comparison does not increase the work and depth of our algorithm.

Our algorithm recursively builds ordered dendrograms on the
heavy-edge subproblem and on each of the light-edge subproblems,
which we assume to be correct by induction. The base case is a
single edge (u, v), and without loss of generality let u have a smaller
vertex distance than v. Then, the dendrogram will contain a root
node representing edge (u, v), with u as its left child and v as its right
child. Prim’s algorithm would visit u before v, and so is the in-order
traversal of the dendrogram, so it is an ordered dendrogram.

We now argue that the way that light-edge dendrograms are
attached to the leaves of the heavy-edge dendrogram correctly pro-
duces an ordered dendrogram. First, consider a light-edge subprob-
lem that contains the source vertex s. In this case, its dendrogram



is attached as the leftmost leaf of the heavy-edge dendrogram, and
will be the first to be traversed in the in-order traversal. The ver-
tices in the light-edge subproblem form a connected component A.
They will be traversed before any other vertices in Prim’s algorithm
because all incident edges that leave A are heavy edges, and thus
are heavier than any edge in A. Therefore, vertices outside of A
can only be visited after all vertices in A have been visited, which
correctly corresponds to the in-order traversal.

Next, we consider the case where the light-edge subproblem does
not contain s. Let (u,v) be the predecessor edge of the light-edge
subproblem, and let A be the component containing the edges in the
light-edge subproblem (v is a vertex in A). Now, consider a different
light-edge subproblem that does not contain s, whose predecessor
edge is (x,y), and let B be the component containing the edges in
this subproblem (y is a vertex in B). By construction, we know that
A is in the right subtree of the dendrogram node corresponding to
edge (u,v) and B is in the right subtree of node corresponding to
(x,y). The ordering between A and B is correct as long as they are
on different sides of either node (u,v) or node (x, y). For example, if
B is in the left subtree of node (u, v), then its vertices appear before
A in the in-order traversal of the dendrogram. By the inductive
hypothesis on the heavy-edge subproblem, in Prim’s order, B will
be traversed before (u,v), and (u, v) is traversed before A. We can
apply a similar argument to all other cases where A and B are on
different sides of either node (u,v) or node (x,y).

We are concerned with the case where A and B are both in the
right subtrees of the nodes representing their predecessor edges.
We prove by contradiction that this cannot happen. Without loss of
generality, suppose node (x, y) is in the right subtree of node (u, v),
and let both A and B be in the right subtree of (x,y). There exists
a lowest common ancestor (LCA) node (x’,y’) of A and B. (x',y’)
must be a heavy edge in the right subtree of (x, y). By properties of
the LCA, A and B are in different subtrees of node (x’, y”). Without
loss of generality, let A be in the left subtree. Now consider edge
(x’,y’) in the tree. By the inductive hypothesis on the heavy-edge
dendrogram, in Prim’s traversal order, we must first visit the leaf
that A attaches to (and hence A) before visiting (x’, y”), which must
be visited before the leaf that B attaches to (and hence B). On the
other hand, edge (x,y) is also along the same path since it is the
predecessor of B. Thus, we must either have (x’,y’) in (x, y)’s left
subtree or (x,y) in (x’,y”)’s right subtree, which is a contradiction
to (x’,y’) being in the right subtree of (x, y).

We have shown that given any two light-edge subproblems, their
relative ordering after being attached to the heavy-edge dendro-
gram is correct. Since the heavy-edge dendrogram is an ordered
dendrogram by induction, the order in which the light-edge sub-
problems are traversed is correct. Furthermore, each light-edge
subproblem generates an ordered dendrogram by induction. There-
fore, the overall dendrogram is an ordered dendrogram.

Once the ordered dendrogram is computed, we use list ranking to
perform an in-order traversal on the Euler tour of the dendrogram
to give each node a rank, and write them out in order. We then
filter out the non-leaf nodes to to obtain the reachability plot. Both
list ranking and filtering take O(n) work and O(logn) depth. O

Implementation. In our implementation, we simplify the process
of finding the subproblems by using a sequential procedure rather

than performing parallel list ranking, because in most cases paral-
lelizing over the different subproblems already provides sufficient
parallelism. We set the number of heavy edges to n/10, which we
found to give better performance in practice, and also preserves
the theoretical bounds. We switch to the sequential dendrogram
construction algorithm when the problem size falls below n/2.

5 Experiments

Environment. We perform experiments on an Amazon EC2 in-
stance with 2 X Intel Xeon Platinum 8275CL (3.00GHz) CPUs for a
total of 48 cores with two-way hyper-threading, and 192 GB of RAM.
By default, we use all cores with hyper-threading. We use g++ com-
piler (version 7.4) with -03 flag, and use Cilk for parallelism [36].
We do not report times for tests that exceed 3 hours.

We test the following implementations for EMST (note that the
EMST problem does not include dendrogram generation):

e EMST-Naive: The method of creating a graph with the BCCP
edges from all well-separated pairs and then running MST on it.

o EMST-GFK: The parallel GeoFilterKruskal algorithm described
in Section 3.1.2 (Algorithm 2).

o EMST-MemoGFK: The parallel GeoFilterKruskal algorithm with
the memory optimization described in Section 3.1.3 (Algorithm 3).
We test the following implementations for HDBSCAN*:

e HDBSCAN*-GanTao: The modified algorithm of Gan and Tao
for exact HDBSCAN* described in Section 3.2.1.

o HDBSCAN*-MemoGFK: The HDBSCAN™ algorithm using our
new definition of well-separation described in Section 3.2.2.
Both HDBSCAN* -GanTao and HDBSCAN* -MemoGFK use the

memory optimization described in Section 3.1.3. All HDBSCAN*
running times include constructing an MST of the mutual reach-
ability graph and computing the ordered dendrogram. We use a
default value of minPts = 10 (unless specified otherwise), which is
also adopted in previous work [14, 25, 39].

Our algorithms are designed for multicores, as we found that

multicores are able to process the largest data sets in the literature
for these problems (machines with several terabytes of RAM can be
rented at reasonable costs on the cloud). Our multicore implemen-
tations achieve significant speedups over existing implementations
in both the multicore and distributed memory contexts.
Data Sets. We use the synthetic seed spreader data sets produced by
the generator in [24]. It produces points generated by a random walk
in alocal neighborhood (SS-varden). We also use UniformFill that
contains points distributed uniformly at random inside a bounding
hypergrid with side length +/n where n is the total number of points.
We generated the synthetic data sets with 10 million points (unless
specified otherwise) for dimensions d = 2, 3,5, 7.

We use the following real-world data sets. GeoLife [2, 58] is a
3-dimensional data set with 24, 876,978 data points. This data set
contains user location data, and is extremely skewed. Household [3,
5] is a 7-dimensional data set with 2, 049, 280 points representing
electricity consumption measurements in households. HT [4, 33]
is a 10-dimensional data set with 928,991 data points containing
home sensor data. CHEM [1, 21] is a 16-dimensional data set with
4,208, 261 data points containing chemical sensor data. All of the
data sets fit in the RAM of our machine.



Speedup over Best Sequential | Self-relative Speedup

Method Range Average Range Average
EMST-Naive 3.51-10.69x 6.90x 16.79-33.47x | 24.15x
EMST-GFK 1.52-7.01x 3.60x 8.11-11.51x 9.08x
EMST-MemoGFK 14.61-55.89x 31.31x 14.61-55.89x | 31.31x

HDBSCAN*-MemoGFK | 11.13-46.69x 26.29x
HDBSCAN*-GanTao 4.29-35.14x 13.76x

11.13-46.69x | 26.29x
8.23-40.32x | 20.97x

Table 2: Speedup over the best sequential algorithm as well as the
self-relative speedup on 48 cores.

Comparison with Previous Implementations. For EMST, we
tested the sequential Dual-Tree Boruvka algorithm of March et
al. [38] (part of mlpack), and our single-threaded EMST-MEMOGFK
times are 0.89-4.17 (2.44 on average) times faster. We also tested
McInnes and Healy’s sequential HDBSCAN* implementation which
is based on Dual-Tree Boruvka [39]. We were unable to run their
code on our data sets with 10 million points in a reasonable amount
of time. On a smaller data set with 1 million points (2D-SS-varden-
1M), their code takes around 90 seconds to compute the MST
and dendrogram, which is 10 times slower than our HDBSCAN*-
MemoGFK implementation on a single thread, due to their code us-
ing Python and having fewer optimizations. We observed a similar
trend on other data sets for McInnes and Healy’s implementation.
The GFK algorithm implementation for EMST of [15] in the
Stann library supports multicore execution using OpenMP. We
found that, in parallel, their GFK implementation always runs much
slower when using all 48 cores than running sequentially, and so
we do not include their parallel running times in our experiments.
In addition, our own sequential implementation of the same algo-
rithm is 0.79-2.43x (1.23x on average) faster than theirs, and so
we parallelize our own version as a baseline. We also tested the
multicore implementation of the parallel OPTICS algorithm in [45]
using all 48 cores on our machine. Their code exceeded our 3-hour
time limit for our data sets with 10 million points. On a smaller data
set of 1 million points (2D-SS-varden-1M), their code took 7988.52
seconds, whereas our fastest parallel implementations take only
a few seconds. We also compared with the parallel HDBSCAN*
code by Santos et al. [47], which mainly focuses on approximate
HDBSCAN* in distributed memory. As reported in their paper, for
the HT data set with minPts = 30, their code on 60 cores takes
42.54 and 31450.89 minutes to build the approximate and exact
MST, respectively, and 124.82 minutes to build the dendrogram. In
contrast, our fastest implementation using 48 cores builds the MST
in under 3 seconds, and the dendrogram in under a second.
Overall, we found the fastest sequential methods for EMST and
HDBSCAN* to be our EMST-MemoGFK and HDBSCAN*-MemoGFK
methods running on 1 thread. Therefore, we also based our parallel
implementations on these methods.
Performance of Our Implementations. Table 2 shows the self-
relative speedups and speedups over the fastest sequential time of
our parallel implementations on 48 cores. Figures 6 and 7 show the
parallel speedup as a function of thread count for our implemen-
tations of EMST and HDBSCAN* with minPts = 10, respectively,
against the fastest sequential times. For most data sets, we see addi-
tional speedups from using hyper-threading compared to just using
a single thread per core. A decomposition of parallel timings for
our implementations on two data sets is presented in Figure 8.
EMST Results. In Figure 6, we see that our fastest EMST imple-
mentations (EMST-MemoGFK) achieve good speedups over the

best sequential times, ranging from 14.61-55.89x on 48 cores with
hyper-threading. On the lower end, 10D-HT-0.93M has a speedup
of 14.61x (Figure 6k), because for a small data set, the total work
done is small and the parallelization overhead becomes prominent.

EMST-MemoGFK significantly outperforms EMST-GFK and EMST-

Naive by up to 17.69x and 8.63x, respectively, due to its memory op-
timization, which reduces memory traffic. We note that EMST-GFK
does not get good speedup, and is slower than EMST-Naive in all
subplots of Figure 6. This is because the WSPD input to EMST-GFK
(S in Algorithm 2) needs to store references to the well-separated
pair as well as the BCCP points and distances, whereas EMST-Naive
only needs to store the BCCP points and distances. This leads to
increased memory traffic for EMST-GFK for operations on S and
its subarrays, which outweighs its advantage of computing fewer
BCCPs. This is evident from Figure 8, which shows that EMST-GFK
spends more time in WSPD, but less time in Kruskal compared to
EMST-Naive. EMST-MemoGFK spends the least amount of time in
WSPD due to its pruning optimizations, while spending a similar
amount of time in Kruskal as EMST-GFK.
HDBSCAN* Results. In Figure 7, we see that our HDBSCAN*-
MemoGFK method achieves good speedups over the best sequential
times, ranging from 11.13-46.69x on 48 cores. Similar to EMST,
we observe a similar lower speedup for 10D-HT-0.93M due to its
small size, and observe higher speedups for larger data sets. The
dendrogram construction takes at least 50% of the total time for
Figures 7a, b, and e-h, and hence has a large impact on the overall
scalability. We discuss the dendrogram scalability separately.

We find that HDBSCAN*-MemoGFK consistently outperforms
HDBSCAN™-GanTao due to having a fewer number of well-separated
pairs (2.5-10.29x fewer) using the new definition of well-separation.
This is also evident in Figure 8, where we see that HDBSCAN*-
MemoGFK spends much less time than HDBSCAN*-GanTao in
WSPD computation.

We tried varying minPts over a range from 10 to 50 for our
HDBSCAN* implementations and found just a moderate increase
in the running time for increasing minPts.

MemoGFK Memory Usage. Overall, the MemoGFK method for
both EMST and HDBSCAN* reduces memory usage by up to 10x
compared to materializing all WSPD pairs.

Dendrogram Results. We separately report the performance of
our parallel dendrogram algorithm in Figure 9, which shows the
speedups and running times on all of our data sets. We see that
the parallel speedup ranges from 5.69-49.74x (with an average of
17.93x) for the HDBSCAN* MST with minPts =10, and 5.35-52.58x
(with an average 20.64x) for single-linkage clustering, which is
solved by generating a dendrogram on the EMST. Dendrogram
construction for single-linkage clustering shows higher scalability
because the heavy edges are more uniformly distributed in space,
which creates a larger number of light-edge subproblems and in-
creases parallelism. In contrast, for HDBSCAN*, which has a higher
value of minPts, the sparse regions in the space tend to have clusters
of edges with large weights even if some of them have small Eu-
clidean distances, since these edges have high mutual reachability
distances. Therefore, these heavy edges are less likely to divide up
the edges into a uniform distribution of subproblems in the space,
leading to lower parallelism. On the other hand, we observe that
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Figure 6: Speedup of EMST implementations over the best serial baselines vs. thread count. The best serial baseline and its running time for
each data set is shown on the y-axis label. “48h” on the x-axis refers to 48 cores with hyper-threading.
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Figure 8: Running time decomposition for EMST and HDBSCAN*

(with minPts 10) on two data sets using 48 cores with hyper-

threading. "dendrogram" refers to computing the ordered dendro-

gram; “kruskal” refers to Kruskal’s MST algorithm; "wspd" refers

to computing the WSPD, or the sum of WSPD tree traversal times

across rounds; "core-dist" refers to computing core distances of all
points; and "build-tree" refers to building a kd-tree on all points.

across all data sets, the dendrogram for single-linkage clustering
takes an average of 16.44 seconds, whereas the dendrogram for
HDBSCAN™ takes an average of 9.27 seconds. This is because the
single-linkage clustering generates more light-edge subproblems
and hence requires more work. While it is possible to tune the
fraction of heavy edges for different values of minPts, we found
that using n/10 heavy edges works reasonably well in all cases.
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Figure 9: Self-relative speedups and times for ordered dendro-
gram computation for single-linkage clustering and HDBSCAN*
(minPts = 10). The x-axis indicates the self-relative speedup on 48
cores with hyper-threading. The speedup and time is shown at the
end of each bar.

40 50

Acknowledgements. We thank Pilar Cano for helpful discussions.
This research was supported by DOE Early Career Award #DE-
SC0018947, NSF CAREER Award #CCF-1845763, Google Faculty
Research Award, DARPA SDH Award #HR0011-18-3-0007, and Ap-
plications Driving Architectures (ADA) Research Center, a JUMP
Center co-sponsored by SRC and DARPA.



References

(1]

=

[10]

[11

[12]

(13

[14

[15]

[16

=
=

(18

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27

[28]

[n.d.]. CHEM Dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensor+
array+under+dynamic+gas+mixtures.

[n.d.]. GeoLife Dataset. https://www.microsoft.com/en-us/research/publication/
geolife-gps-trajectory-dataset-user-guide/.

[n.d.]. Household Dataset. https://archive.ics.uci.edu/ml/datasets/individual+
household+electric+power+consumption.

[n.d.]. HT Dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+
home-+activity+monitoring.

[n.d.]. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl.
1991. Euclidean minimum spanning trees and bichromatic closest pairs. Discrete
& Computational Geometry (1991), 407-422.

Mihael Ankerst, Markus Breunig, H. Kriegel, and Jorg Sander. 1999. OPTICS: Or-
dering Points to Identify the Clustering Structure. In ACM SIGMOD International
Conference on Management of Data. 49-60.

Sunil Arya and David M. Mount. 2016. A Fast and Simple Algorithm for Comput-
ing Approximate Euclidean Minimum Spanning Trees. In ACM-SIAM Symposium
on Discrete Algorithms. 1220-1233.

Bentley and Friedman. 1978. Fast Algorithms for Constructing Minimal Spanning
Trees in Coordinate Spaces. IEEE Trans. Comput. C-27, 2 (Feb 1978), 97-105.
Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions.
9. ACM 21, 2 (April 1974), 201-206.

Paul B Callahan. 1993. Optimal parallel all-nearest-neighbors using the well-
separated pair decomposition. In IEEE Symposium on Foundations of Computer
Science (FOCS). 332-340.

Paul B. Callahan and S. Rao Kosaraju. 1993. Faster Algorithms for Some Geometric
Graph Problems in Higher Dimensions. In ACM-SIAM Symposium on Discrete
Algorithms. 291-300.

Paul B. Callahan and S. Rao Kosaraju. 1995. A Decomposition of Multidimensional
Point Sets with Applications to k-Nearest-Neighbors and n-Body Potential Fields.
7. ACM 42, 1 (1995), 67-90.

Ricardo Campello, Davoud Moulavi, Arthur Zimek, and Jérg Sander. 2015. Hierar-
chical Density Estimates for Data Clustering, Visualization, and Outlier Detection.
ACM Transactions on Knowledge Discovery from Data (TKDD), Article 5 (2015),
5:1-5:51 pages.

Samidh Chatterjee, Michael Connor, and Piyush Kumar. 2010. Geometric Min-
imum Spanning Trees with GeoFilterKruskal. In International Symposium on
Experimental Algorithms (SEA), Vol. 6049. 486-500.

Danny Z. Chen, Michiel Smid, and Bin Xu. 2005. Geometric Algorithms for
Density-Based Data Clustering. International Journal of Computational Geometry
& Applications 15, 03 (2005), 239-260.

Richard Cole. 1988. Parallel Merge Sort. SIAM J. Comput. 17, 4 (Aug. 1988),
770-785.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3. ed.). MIT Press.

Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. 2019. Faster DB-scan and
HDB-scan in Low-Dimensional Euclidean Spaces, In International Symposium
on Algorithms and Computation (ISAAC). International Journal of Computational
Geometry & Applications 29, 01, 21-47.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A Density-
based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 226-231.

Jordi Fonollosa, Sadique Sheik, Ramoén Huerta, and Santiago Marco. 2015. Reser-
voir computing compensates slow response of chemosensor arrays exposed to
fast varying gas concentrations in continuous monitoring. Sensors and Actuators
B: Chemical 215 (2015), 618-629.

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1976. An algo-
rithm for finding best matches in logarithmic expected time. ACM Trans. Math.
Software 3, 3 (7 1976), 209-226.

Harold N. Gabow, Jon L. Bentley, and Robert E. Tarjan. 1984. Scaling and related
techniques for geometry problems. In ACM Symposium on Theory of Computing
(STOC). 135-143.

Junhao Gan and Yufei Tao. 2017. On the Hardness and Approximation of Eu-
clidean DBSCAN. ACM Transactions on Database Systems (TODS) 42, 3 (2017),
14:1-14:45.

Junhao Gan and Yufei Tao. 2018. Fast Euclidean OPTICS with Bounded Preci-
sion in Low Dimensional Space. In ACM SIGMOD International Conference on
Management of Data. 1067-1082.

J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant
time parallel algorithms. In IEEE Symposium on Foundations of Computer Science
(FOCS). 698-710.

Markus Gétz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN: Highly
Parallel DBSCAN. In MLHPC. Article 2, 2:1-2:10 pages.

John C. Gower and Gavin J. S. Ross. 1969. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society: Series C (Applied

[29

(30]

[31

(32]

[34

[35

[36

[37

@
&,

[39

[40

[41

[42

[43

[45]

[46

(47]

[48

(49]

[50

[51

[52

[53

o
=

[55

[56]

Statistics) 18, 1 (1969), 54—-64.

Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel
Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 24-34.

Ade Gunawan. 2013. A faster algorithm for DBSCAN. Master’s thesis, Eindhoven
University of Technology.

William Hendrix, Md Mostofa Ali Patwary, Ankit Agrawal, Wei-keng Liao, and
Alok Choudhary. 2012. Parallel hierarchical clustering on shared memory plat-
forms. In International Conference on High Performance Computing. 1-9.

Xu Hu, Jun Huang, and Minghui Qiu. 2017. A Communication Efficient Par-
allel DBSCAN Algorithm Based on Parameter Server. In ACM Conference on
Information and Knowledge Management (CIKM). 2107-2110.

Ramoén Huerta, Thiago Schiavo Mosqueiro, Jordi Fonollosa, Nikolai F. Rulkov, and
Irene Rodriguez-Lujan. 2016. Online Humidity and Temperature Decorrelation
of Chemical Sensors for Continuous Monitoring. Chemometrics and Intelligent
Laboratory Systems 157, 169-176.

Joseph Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Profes-
sional.

Richard M. Karp and Vijaya Ramachandran. 1990. Parallel Algorithms for Shared-
Memory Machines. In Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity (A). MIT Press, 869-941.

Charles E. Leiserson. 2010. The Cilk++ concurrency platform. 7. Supercomputing
51,3 (2010). Springer.

Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. 2016.
NG-DBSCAN: Scalable Density-based Clustering for Arbitrary Data. Proc. VLDB
Endow. 10, 3 (Nov. 2016), 157-168.

William B March, Parikshit Ram, and Alexander G Gray. 2010. Fast Euclidean
minimum spanning tree: algorithm, analysis, and applications. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 603-612.
Leland McInnes and John Healy. 2017. Accelerated hierarchical density clustering.
arXiv preprint arXiv:1705.07321 (2017).

Daniel Miillner. 2011. Modern hierarchical, agglomerative clustering algorithms.
arXiv:1109.2378 [stat.ML]

Giri Narasimhan and Martin Zachariasen. 2001. Geometric Minimum Spanning
Trees via Well-Separated Pair Decompositions. ACM Journal of Experimental
Algorithmics 6 (2001), 6.

Clark F. Olson. 1995. Parallel algorithms for hierarchical clustering. Parallel
Comput. 21, 8 (1995), 1313 - 1325.

Vitaly Osipov, Peter Sanders, and Johannes Singler. 2009. The Filter-Kruskal
Minimum Spanning Tree Algorithm. In Workshop on Algorithm Engineering and
Experiments (ALENEX). 52-61.

M. Patwary, D. Palsetia, A. Agrawal, W. K. Liao, F. Manne, and A. Choudhary. 2012.
A new scalable parallel DBSCAN algorithm using the disjoint-set data structure.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 1-11.

M. Patwary, D. Palsetia, A. Agrawal, W. K. Liao, F. Manne, and A. Choudhary. 2013.
Scalable parallel OPTICS data clustering using graph algorithmic techniques. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 1-12.

Jorg Sander, Xuejie Qin, Zhiyong Lu, Nan Niu, and Alex Kovarsky. 2003. Au-
tomatic extraction of clusters from hierarchical clustering representations. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining. 75-87.

J. Santos, T. Syed, M. Coelho Naldi, R. J. G. B. Campello, and J. Sander. 2019.
Hierarchical Density-Based Clustering using MapReduce. IEEE Transactions on
Big Data (2019), 1-1.

Michael Ian Shamos and Hoey Dan. 1975. Closest-point problems. (1975), 151—
162.

J. Shun and G. E. Blelloch. 2014. A Simple Parallel Cartesian Tree Algorithm and
its Application to Parallel Suffix Tree Construction. ACM Transactions on Parallel
Computing (TOPC) 1, 1, Article 8 (Oct. 2014), 8:1-8:20 pages.

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. 2013. Re-
ducing Contention Through Priority Updates. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 152-163.

Hwanjun Song and J. Lee. 2018. RP-DBSCAN: A Superfast Parallel DBSCAN Algo-
rithm Based on Random Partitioning. In ACM SIGMOD International Conference
on Management of Data. 1173-1187.

Vijay V. Vazirani. 2010. Approximation Algorithms. Springer Publishing Company,
Incorporated.

P.]J. Wan, G. Cilinescu, X. Y. Li, and O. Frieder. 2002. Minimum-Energy Broadcast-
ing in Static Ad Hoc Wireless Networks. Wireless Networks 8, 6 (2002), 607-617.
Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-efficient and practical
parallel DBSCAN. In ACM SIGMOD International Conference on Management of
Data. 2555-2571.

Ying Xu, Victor Olman, and Dong Xu. 2001. Minimum Spanning Trees for Gene
Expression Data Clustering. Genome Informatics 12 (02 2001), 24-33.

Andrew Chi-Chih. Yao. 1982. On Constructing Minimum Spanning Trees in
k-Dimensional Spaces and Related Problems. SIAM J. Comput. 11, 4 (1982),
721-736.


https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1109.2378

[57] Meichen Yu, Arjan Hillebrand, Prejaas Tewarie, Jil Meier, Bob van Dijk, Piet [58] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning Transporta-
Van Mieghem, and Cornelis Jan Stam. 2015. Hierarchical clustering in minimum tion Mode from Raw GPS Data for Geographic Applications on the Web. In
spanning trees. Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 2 International Conference on World Wide Web. 247-256.

(2015), 023107.



	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Parallel Primitives
	2.3 Relevant Techniques

	3 Parallel EMST and HDBSCAN*
	3.1 EMST
	3.2 HDBSCAN*

	4 Dendrogram and Reachability Plot
	4.1 Ordered Dendrogram
	4.2 A Novel Top-Down Algorithm

	5 Experiments
	References

