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Abstract

SCAN (Structural Clustering Algorithm for Networks) is a well-
studied, widely used graph clustering algorithm. For large graphs,
however, sequential SCAN variants are prohibitively slow, and
parallel SCAN variants do not effectively share work among queries
with different SCAN parameter settings. Since users of SCAN often
explore many parameter settings to find good clusterings, it is
worthwhile to precompute an index that speeds up queries.

This paper presents a practical and provably efficient parallel
index-based SCAN algorithm based on GS*-Index, a recent sequen-
tial algorithm. Our parallel algorithm improves upon the asymptotic
work of the sequential algorithm by using integer sorting. It is also
highly parallel, achieving logarithmic span (parallel time) for both
index construction and clustering queries. Furthermore, we apply
locality-sensitive hashing (LSH) to design a novel approximate
SCAN algorithm and prove guarantees for its clustering behavior.

We present an experimental evaluation of our algorithms on
large real-world graphs. On a 48-core machine with two-way hyper-
threading, our parallel index construction achieves 50-151X speedup
over the construction of GS*-Index. In fact, even on a single thread,
our index construction algorithm is faster than GS*-Index. Our
parallel index query implementation achieves 5-32X speedup over
GS*-Index queries across a range of SCAN parameter values, and
our implementation is always faster than ppSCAN, a state-of-the-
art parallel SCAN algorithm. Moreover, our experiments show that
applying LSH results in faster index construction while maintaining
good clustering quality.
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1 Introduction

In data mining and unsupervised learning, clustering is a fundamen-
tal technique that organizes data into meaningful groups. Because
much real-world data can be represented as graphs, there is signifi-
cant practical and theoretical interest in graph clustering, in which
the goal is to partition the vertices of a graph into clusters such that
“similar” vertices fall into the same cluster [3-5, 23, 50, 56, 62, 72].
In particular, a good clustering usually has many edges that fall
within clusters and few edges that connect different clusters. Graph
clustering is a popular problem with a wide range of applications,
including social and biological network analysis [33], load balanc-
ing in distributed systems [2], image segmentation [66], natural
language processing [7], and recommendation systems [6].

One well-known approach to graph clustering is structural clus-
tering, which Xu et al. first introduced via the Structural Clustering
Algorithm for Networks (SCAN) [71]. Structural clustering exploits
the idea that vertices whose neighbor sets resemble each other are
“similar,” a type of homophily that is often satisfied in practice. The
approach is unique in that it also finds hub vertices that connect dif-
ferent clusters, as well as outlier vertices that lack strong ties to any
cluster. Researchers have used SCAN to find meaningful clusters in
biological data [28, 44, 46, 47] and web data [43, 51-53, 57, 58].

SCAN as Xu et al. originally described it suffers from two issues:
(1) the costliness of sequentially computing similarities among all
adjacent vertices, and (2) the costliness of tuning the parameters of
the algorithm to achieve good clustering quality. Many researchers
have developed variants of SCAN to address these issues. To al-
leviate issue (1), some variants exploit parallelism [18, 19, 45, 64,
65, 76, 77] or introduce algorithmic optimizations like pruning un-
necessary similarity computations [16, 18, 59]. To alleviate issue
(2), some variants precompute an index from which computing the
clusterings for different parameter values is fast [13, 37, 68]. To be
efficient on large graphs, SCAN-based algorithms should address
both issues, which existing algorithms fail to do.

This paper addresses the aforementioned issues by presenting
a new parallel index-based SCAN algorithm based on the sequen-
tial GS*-Index SCAN algorithm [68]. Our algorithm achieves the
same work bounds as GS*-Index and is highly parallel, achieving
logarithmic span (parallel time) with high probability (w.h.p.).! The
key ingredients to achieve our strong time bounds are the care-
ful use of doubling search, as well as parallel algorithms for graph
connectivity and hash tables. We also show how using matrix multi-
plication on dense graphs and using integer sort improve the index
construction work bound compared to GS*-Index’s bound.

IThe work of an algorithm is the number of operations it performs. The span (parallel
time) of an algorithm is the length of its longest sequential dependence. We use with
high probability (w.h.p.) to describe events that occur with probability at least 1 —1/n¢
where n is the input size and ¢ is some positive real number.
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Description Work Span

Exact index, weighted graph O((ar + log n)m) w.h.p. O(log n) wh.p.
. . O((a +loglog n)m) wh.p.  O(log n) w.h.p.

Exact index, unweighted graph O(am) whp. omP) whp.

Approximate index ggikm-; loglog n)m) w.h.p. gglg)g)n) w.h.p.

Table 1: Summary of asymptotic running time bounds for index construc-
tion. The arboricity of the input graph is o, the number of samples used for
approximation is k, and 0 < f < 1. For the exact indices on dense graphs,
the am work term may be replaced by n®?, where n®? < n?-373 is the
asymptotic work to multiply two n-by-n matrices in logarithmic span.

To further improve performance, we show how to use locality-
sensitive hashing (LSH) to speed up similarity computation. We
provide a non-trivial theoretical analysis of the accuracy of LSH for
SCAN. Our experiments show that LSH speeds up index construc-
tion while preserving good clustering quality. Table 1 summarizes
the asymptotic running time bounds for index construction.

We present optimized implementations of our algorithms. The
most important optimizations are a merge-based parallel triangle
counting algorithm described by Shun and Tangwongsan [63] to
compute similarities; concurrent union-find to compute connectiv-
ity for queries; and, for our LSH-based approximate algorithms, a
heuristic to avoid using LSH on low-degree vertices that would not
benefit from approximation. In our experiments, our index construc-
tion algorithm achieves 50-151x speedup over the construction of
GS*-Index for several large real-world graphs on a machine with 48
cores and two-way hyper-threading. In fact, our index construction
algorithm is faster than GS*-Index even when we run our algorithm
on a single thread. Furthermore, our parallel index query implemen-
tation, which extracts a clustering for a specific set of parameters
from the index, achieves 5-32x speedup over GS*-Index queries
across a range of SCAN parameter values. Our implementation also
achieves faster query times on all tested parameter values compared
to ppSCAN [18], a state-of-the-art parallel SCAN algorithm.

The contributions of this paper are as follows:

(1) We present a new parallel index-based SCAN algorithm that
matches the work bounds of the sequential GS*-Index algorithm
and has logarithmic span w.h.p. We also show how matrix
multiplication and integer sorting improve the work bounds.

(2) We introduce the use of locality-sensitive hashing as an approx-
imation technique for SCAN that is provably efficient and has
behavior guarantees relative to exact SCAN.

(3) We evaluate our algorithm on large real-world graphs. Our ex-
periments demonstrate that our implementation outperforms
other existing SCAN algorithms and confirm that locality-
sensitive hashing provides running time improvements.

(4) We release the implementation of our algorithm.?

2 Preliminaries

This section provides background definitions and concepts that
subsequent sections use.

2.1 Set similarity

2.1.1  Similarity measures Two common measures for the similarity
of two sets A and B with elements from a finite universe U are the

2Code: https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased

Jaccard similarity and the cosine similarity:

ANB ANB
I | CosineSim(A, B) = | |

JaccardSim(A, B) = ————, _—
|A U Bl AIVIB]

If the sets are weighted and have weight functions wq, wg : U = R,
then there is a weighted form of cosine similarity:

YixeanB WA(X)wp(x)
VExeawa(®)?VXep wp(x)?
(There is also a weighted version of Jaccard similarity, which we
do not consider in this work.)

The cosine similarity is really a similarity measure between non-

zero vectors; given vectors u and v with an angle of 6 between the
two vectors, the cosine similarity is defined as

WeightedCosineSim(A, B) =

u-v
CosineSim(u, v) = cos(f) = ————.
llulll[o]]

Defining cosine similarity for sets with elements from U follows
by representing sets as vectors in RU (namely, as a bit vector for

unweighted sets and as a vector of weights for weighted sets).

2.1.2  Locality-sensitive hashing Suppose that there is a collection
of large sets with elements from a finite universe U. Locality-
sensitive hashing (LSH) is a technique to quickly approximate the
similarity between pairs of these sets. The idea is to devise a hash
function family that maps similar sets to similar, smaller sketches.
We estimate similarities by precomputing all sketches and operating
on the sketches rather than on the large original sets.

A well-known LSH scheme for estimating Jaccard similarity,
for instance, is MinHash [15]. MinHash works by drawing a uni-
formly random permutation 7 on U and considering the sketch
of a non-empty set S to be miny g 7(x). For any two non-empty
sets A and B, the probability that the sketches of A and B are equal
is JaccardSim(A, B). To increase the precision at the cost of extra
work, we fix a number of samples k € N and perform this process
k times independently to get k-length sketches. The proportion of
matching coordinates between two sketches is an estimate of the
Jaccard similarity between the two corresponding sets. There are
variants of MinHash that are more computationally efficient such
as k-partition MinHash [41]. There are also variants for weighted
Jaccard similarity [70]. Since the weighted variants are more compli-
cated and less practical, we do not use weighted Jaccard similarity
in this work.

SimHash [17] is a well-known LSH scheme for estimating the
angle between two vectors. The idea behind SimHash is to consider
drawing a vector v in RV with uniformly random direction by
drawing each coordinate independently from the standard normal
distribution. We take the sketch of a vector u to be sign(u - v).
For a pair of non-zero vectors a and b with angle 0 € [0, x] in
radians between them, the probability that the sketches of a and b
differ is exactly 6/; because v has uniformly random direction, the
orthogonal hyperplane to v separates a and b with probability 6/,
which exactly corresponds to the event that sign(a - v) # sign(b - v).
Like with MinHash, to tune the precision, we repeat this process
k € N times to get k-length sketches. The number of differing
entries between the sketches of a and b multiplied by z/k is an
estimate 8 ~ Binomial(k, 0/x) - 7 /k, which in turn provides an
estimate cos(é) for cos(f) = CosineSim(a, b).
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2.2 Graphs and graph notation

We denote an unweighted, undirected graph G by G = (V, E), where
V is the set of verticesand E € {{u, v} : u,v € V} is the set of edges.
We denote a weighted graph G by G = (V, E, w), where the weight
function w : E — R maps edges to weights. Following common
convention, we use n to denote the number of vertices |V| and m
to denote the number of edges |E|. The neighborhood N(v) of a
vertex v is the set of vertices connected to v by an edge. The closed
neighborhood of v is N(v) = N(v) U {v}. The degree of a vertex is
the size of its neighborhood, N(v).

For directed graphs, each edge in E becomes an ordered pair
rather than an unordered pair. The out-neighborhood of a vertex v
is the set of all vertices u such that (v, u) € E.

The arboricity a of an undirected graph G is the minimum num-
ber of spanning forests that covers all edges of the graph. The
arboricity is bounded below by [m/(n — 1)] since each spanning
forest covers at most n—1 edges and is bounded above by O(vm + n).
A triangle is a triplet of edges {u, v}, {v, x}, {x, u} between distinct
vertices u, v, x in V. There are triangle counting algorithms that
find all triangles in a graph in O(am) time [20].

We represent graphs as adjacency lists, in which each vertex has
a list of its neighbors. We only consider simple graphs, i.e., graphs
with at most one edge between any pair of vertices and no self-loop
edges. We index vertices with the integers in the range [1, n].

2.3 Parallelism
2.3.1 Parallel programming model We design our algorithms for

multicore shared-memory machines. Readily available shared-memory

machines are able to operate on the largest publicly available real-
world graphs, which have hundreds of billions of edges [24]. Shared-
memory systems are fast due to low communication costs and are
easier to program for than distributed systems are.

We use a fork-join programming model with arbitrary forking;
a process can “fork” into an arbitrary number of parallel processes
in unit time and can “join” to synchronize among forked processes.
Most notably, a fork and a join suffice to implement a parallel
for-loop. We further assume that processes can concurrently read,
write, atomically add, and compare-and-swap at memory locations.
Compare-and-swap (CAS) takes three arguments: a memory loca-
tion x, an old value old V, and a new value new_V. If the value
stored at x is equal to old_V, the CAS atomically updates the value
at x to be new_V and returns true. Otherwise, the CAS returns false.
Almost all modern processors support CAS.

We analyze the complexity of algorithms with the work-span
model, a standard model for analyzing shared-memory parallel
algorithms [22, 39]. The work of a program execution is the total
number of instructions executed, and the span is the length of the
longest sequential critical path of instructions. For a program with
W work and S span, a work-stealing scheduler, such as the one in
Cilk [10], can execute the program in W/P + O(S) expected time
with P processors. A parallel algorithm whose work asymptotically
matches the work of the most efficient known sequential algorithm
is work-efficient, which is an important characteristic since W /P
is often much higher than S in well-designed parallel algorithms
when run on large data sets.

2.3.2  Parallel primitives This paper makes use of many existing
parallel algorithms, which we describe below.

Hash tables: Gil et al. present a hash table which supports insert-
ing k elements in O(k) work and O(log* k) span w.h.p. Looking up
an element takes O(1) work [32].

Primitives on arrays: The reduce operation computes the sum of
all elements in an array. (The sum operation is often the numeri-
cal addition operation but more generally may be any associative
binary operation. For instance, reduce can compute the maximum
element in an array.) The filter operation returns a subsequence of
the original sequence consisting of all elements matching a user-
specified predicate. For an array of n elements, both operations
run in O(n) work and O(log n) span [9, 39]. The remove duplicates
operation returns an array that has the same set of elements as
the original input array has, but without any duplicate elements.
Removing duplicates using a parallel hash table takes O(n) work
and O(log™ n) span w.h.p.

Comparison sort: Cole presents a parallel merge sort that sorts n
elements in O(nlog n) work and O(log n) span [21].

Integer sort: Suppose that we have n non-negative integers in the
range [0, poly(n)].2 For any positive integer g, we can sort these
integers in O(gn) work and O(qnl/ 9) span [67]. Raman provides
another integer sorting algorithm that runs in O(nloglog n) work
and O(log n/loglog n) span w.h.p. [54].

Also, we can sort n non-negative rational numbers whose numer-
ators and denominators are bounded by r € poly(n) with the same
asymptotic running times. Consider two distinct rational numbers
a/b and c/d that meet this criterion. Their absolute difference is
lad — be|/|bd| = 1/|bd| = 1/r?. Therefore, if we multiply each ra-
tional number by r2 and round them down to the nearest integer,
we get n integers bounded by r® € poly(n), whose sorted order
matches the sorted order of the original rational numbers.

Graph connectivity: Gazit gives an algorithm for graph connec-
tivity with O(m + n) expected work and O(log n) span w.h.p. [31].

Matrix multiplication: Two n-by-n matrices can be multiplied in
O(n®?) work and O(log n) span with parallel matrix multiplication
constant wp < 2.373 [26].

3 Review of SCAN algorithms

In this section, we provide an overview of the SCAN [71] and GS*-
Index [68] clustering algorithms.

3.1 SCAN definitions

The typical problem formulation for graph clustering is to output
a partition (or clustering) of the vertices of the input graph such
that each cluster in the partition has many edges within the cluster
and there are few edges between clusters. How exactly to quan-
tify the quality of a clustering depends on the application domain.
Section 7.2 lists two clustering quality measures.

SCAN [71] is a graph clustering algorithm on undirected graphs.
The output of SCAN diverges slightly from this description of clus-
tering in that SCAN may leave some vertices unclustered. Unclus-
tered vertices are further separated into hubs and outliers. Hubs are
unclustered vertices that neighbor multiple clusters, and outliers
are unclustered vertices that neighbor at most one cluster.

3poly(n) means O(n®) for some constant c.



Flgure 1: Example SCAN clustering with p = 3 and ¢ = 6 The labels on
the edges are cosine similarities. Core vertices are blue, whereas non-core
vertices are white. Edges with similarity greater than ¢ are green, whereas
other edges are red. There are two clusters (vertices {1, 2, 3, 4} and vertices
{6, 7, 8, 11}) as well as three unclustered vertices (hub vertex 5 and outlier
vertices 9 and 10).

For each pair of adjacent vertices {u, v} € E, SCAN computes a
similarity score o(u, v). The original paper [71] assumes that edges
are unweighted and defines the similarity score to be the cosine
similarity of the closed neighborhoods of the two vertices:

Nw 0 N©)|_

o(u, v) = CosineSim(N(u), N(v)) =

IN@IIN@)|

For instance, in the graph in Figure 1, the cosine similarity between
vertices 5 and 6 is
[{4,5,6} N {5,6,7,8}] _ 2

J45.60\15.6.7.8}] Viz

This is just one possible choice for the similarity score, however.
Other papers consider using Jaccard similarity, Dice similarity, or
weighted cosine similarity for the similarity function [16, 36, 37, 45].

SCAN takes two parameters as input, an integer y > 2 and a
similarity threshold ¢ € [0, 1]. Call vertices u and v e-similar if their
similarity o(u, v) is at least ¢. The e-neighborhood N, (v) of a vertex
v is the set of its e-similar neighbors, {u € N@) | o(u,v) > €}
The core vertices are the vertices whose e-neighborhood contains
at least y neighbors, i.e., vertices v such that [N (v)| > p. A vertex
u is structurally reachable from core vertex v if there is a path of
vertices v, vy, . . ., vy for some k > 2 where v; = v, where vy = u,
and where v; is a core and is ¢-similar to v;41 for each integer i
from 1to k — 1.

The two following properties define each cluster in the clustering
that SCAN finds:

e The cluster is “connected”: for any two vertices u and x in
the cluster C, there is a vertex v such that both u and x are
structurally reachable from v.

o The cluster is “maximal”: for every core vertex v in the cluster,
all vertices structurally reachable from v are also in the cluster.

Figure 1 shows the clusters that result from running SCAN on a
small graph.

The border vertices, which are the clustered non-core vertices
(e.g., vertex 11 in Figure 1), may belong to several distinct clusters
according to the definition of SCAN clusters. The original SCAN
algorithm assigns each of these ambiguous border vertices to any
of its possible clusters arbitrarily.

Computing similarity scores takes O(am) time with an appro-
priate triangle counting algorithm; to calculate a similarity score
o(u,v), it suffices to count the number of shared neighbors in
N(u) N N(v), which is precisely the number of triangles in which
edge {u, v} appears. After computing similarities, SCAN finds clus-
ters by performing a modified breadth-first search (BFS), which
takes O(n + m) time.

Figure 2: Neighbor order for the graph from Figure 1. In this figure, for
each v € V, we display NO[v] as a column. The numbers beside each
vertex are similarity scores. For example, in NO[3], the .87 label beside
vertex 2 represents the cosine similarity of .87 between vertices 3 and 2.
Like in Figure 1, we consider the specific case where ¢ = 0.6 and color all
e-similar neighbors green and all other neighbors red.
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Figure 3: Core order for the graph from Figure 1. Each entry of CO is
displayed horizontally. We omit C O[1] since we assume g > 2. The number
beside each vertex in a row CO[y] is the core threshold for that vertex
for that . For example, in CO[2], the number .75 beside vertex 6 means
that when p = 2 and ¢ < .75, vertex 6 is a core vertex. Like in Figure 1,
we consider the specific case where (y, €) = (3, .6); we highlight CO[y] in
gray and color the core vertices (i.e., vertices with core threshold at least ¢)
blue.

3.2 Index-based SCAN: GS*-Index

GS*-Index [68] improves on SCAN by precomputing an index from
which finding cores and e-similar neighbors is fast for any setting
of p and ¢. It takes O((« + log n)m) time to compute the index, and
the index takes O(m) space. After computing the index, the time it
takes to compute the clustering for arbitrary query parameters (g, €)
depends on the size of the resulting clusters rather than on the size
of the full graph. Specifically, for a subset of vertices U C V, define
Ey, ¢ to be the set of e-similar edges in the subgraph induced by U.
Then the time to compute the clustering C for parameters y and ¢
is O(|UU€C EU,£|). Determining whether unclustered vertices are
hubs or outliers is not considered in this time bound.

The index consists of two data structures, the neighbor order NO
and the core order CO. To compute the index, we first compute
the similarity scores between every pair of adjacent vertices. The
neighbor order is the adjacency list of the graph with each neighbor
list sorted by non-increasing similarity. Figure 2 shows the neighbor
order for the graph in Figure 1. The core order is an array where the
p-th entry, CO[ ], for any p is a list of vertices with |N(-)| at least 1,
i.e, all possible core vertices for this p value. The vertices in CO[u]
are sorted by non-increasing similarity with vertex NO[-][z]. This
similarity of a vertex v with vertex NO[v][u] is v’s core threshold
value. For any ¢ no greater than the threshold, the vertex is a core
vertex under parameters y and ¢. Figure 3 shows the core order for
the graph in Figure 1. For example, to compute CO[3] in Figure 3, we

consider the nine vertices {1, 2,3, ..., 9} with |N(-)| > 3, determine



their core thresholds by looking at the similarities in the third row
of Figure 2, and sort the vertices by non-increasing core threshold.

To find the clustering resulting from SCAN parameters y and ¢,
we perform a BFS on the core vertices, considering only e-similar
edges in the graph and not searching further from any non-core
vertices. The core vertices and ¢-similar edges are easy to find from
the index since the core vertices are a prefix of CO[y] and the ¢-
similar edges are prefixes of each list in NO due to the sorting. The
BFS reveals all the SCAN clusters in the graph.

4 Parallel algorithm

This section presents our new work-efficient, logarithmic-span
parallel algorithms for constructing the same SCAN index that
GS*-Index constructs, and for retrieving clusters from the index.

For the algorithm descriptions in this section, we assume the ex-
istence of basic utility functions and of functions implementing the
primitives listed in Section 2.3.2. The ALLOCATEARRAY(s) function
allocates an array that holds s elements. The MAKEHASHMAP(+)
function makes a hash table with the input argument specifying
the key-value elements in the table. The MAKEHASHSET(+) function
makes a hash table containing only keys rather than key-value
pairs. The Sum(-) function returns the sum of the elements in an
array via the reduce operation. The REMOVEDUPLICATES(-) function
returns an array that has the same set of elements that the input
array has, but without any duplicate values.

4.1 Index construction

4.1.1  Computing similarities To shorten exposition, this section
will only focus on one similarity function o (-, -): cosine similarity for
weighted graphs. Given a weighted undirected graph G = (V,E, w),
the similarity score between two adjacent vertices {u, v} in E is

o(u,v) = WeightedCosineSim(N (1), N(v))

erﬁ(u)nﬁ(v) w(u, x)w(v, x)

) \/Zx eN(u) W(u’ x)z\/zxeﬁ(v) W(U, x)Z

where we set w(x,x) = 1 for each vertex x. This weighted cosine
similarity measure is the natural generalization to the cosine simi-
larity measure for unweighted graphs that the original SCAN and
GS*-Index algorithms consider. Modifying the algorithm described
in this section to instead compute the unweighted cosine similarity
or Jaccard similarity is straightforward.

Algorithm 1 gives pseudocode for computing similarities. It fol-
lows a known parallel algorithm for triangle counting [63]. The
algorithm creates a hash set for each vertex neighborhood (Lines 5
to 6). Then, for each pair of adjacent vertices u and v, looking up
the neighbors of u in the hash set for v’s neighborhood (Lines 10
to 12) gives the shared neighbors between u and v, allowing the
algorithm to compute WeightedCosineSim(N(x), N(v)) (Line 13).

If the algorithm always searches for neighbors of the lower-
degree vertex in the hash set of the higher-degree vertex’s neighbor-

hood, the work is O (Z {u,v}yeg min{ IN()|, |ﬁ(v)|}) in expectation,
which is bounded by O(am) [20]. The span is O(log n) w.h.p.

For dense graphs, we can use matrix multiplication to obtain a
work bound of O(n“?). Let W be an n-by-n matrix with W, ,, =
w(u, v) for arbitrary vertices u and v. Then (W?),, , is the numer-
ator of WeightedCosineSim(N(u), N(v)), so we can skip Lines 4

Algorithm 1 Algorithm for computing the cosine similarity of
each edge in a weighted graph.

Output: An array of length m containing the similarity score of each edge.
1: procedure ComPUTESIMILARITIES(G = (V, E, w))

2: norms «— { ,Zuéﬁ(v) w(u,v):v € V}

> Compute each entry of the array norms with Sum(-).

3: similarities «<— ALLOCATEARRAY(m)

> For clarity, we index into similarities with edges from E.
4 neighbor_tables «<— ALLOCATEARRAY(n)
5: for v € V do in parallel
6: neighbor_tables[v] «— MaxkeHAsHSET(N(v))
7 for {u, v} € E do in parallel
8 (Without loss of generality, let [N (u)| < [N(v)].)
9 shared_neighbor_weights < ALLOCATEARRAY( IN@)])

10: forie {1,2,3, ..., |N(u)|} do in parallel
11: X « i-th element in N (u)
12: shared_neighbor_weights[i] «
w(u, x) - w(v, x) if x € neighbor_tables[v] else 0
13: similarities[{u, v}] «

Sum(shared_neighbor_weights)/(norms[u] - norms[v])
14: return similarities

to 12 and substitute (W2 )u, v for Sum(shared_neighbor_weights) on
Line 13.

Algorithm 2 Algorithms for computing the neighbor order and
core order.

1: procedure MAKENEIGHBORORDER(G = (V, E, w), similarities)
2: NO « ALLOCATEARRAY(n)

3 for v € V do in parallel

4 NO[v] « N(v)

5: Sort u in NO[v] by non-increasing similarities[{u, v }] value.

6 return NO

7: procedure MAKECOREORDER(G = (V, E, w), NO)

8 sorted_V « V sorted by non-increasing degree.

9: max_degree «— maxyey |ﬁ(v)|
10: CO « ArrocaTeARRAY(max_degree)
11: for u = {2,3,4, ..., max_degree} do in parallel
12: CO[u] « {v eV | |N@)| = u}

> Find {v € V | [N(v)| = p} by doubling search on sorted_V.

13: Sort v in C O[] by non-increasing similarities[ {v, NO[v][p]}] value.

14: return CO[y]

4.1.2  Neighbor order and core order After computing all similar-
ity values, we construct the neighbor order and core order (Al-
gorithm 2). We form the neighbor order by sorting each vertex’s
neighbor list by non-increasing similarity (Lines 4 to 5). Then, we
form the core order by, for each y value, finding all possible core
vertices under parameter p (Line 12) and sorting them by non-
increasing core threshold (Line 13). On Line 12, to find all possible
core vertices (i.e., all vertices v such that |[N(v)| > p), we per-
form a doubling search on sorted_V, the set of vertices sorted by
non-increasing degree (Line 8). This doubling search consists of
sequentially searching for the minimum i, such that the 2!-th entry
of sorted_V fails to satisfy the predicate |[N(-)| > p, and then per-
forming binary search on the last interval of the doubling search.
Doubling search is needed for optimal work bounds. Using only
binary search would add O(n log n) in total to the work since each
binary search costs O(log n) work. Doubling search, on the other
hand, costs only O(log j) work to find an item located at index j.
The O(log j) cost is also better than the O(j) work and span that
linear search would incur.



With a work-efficient comparison sort algorithm, the work analy-
sis is the same as the original analysis for GS*-Index, giving bounds
of O(mlogn) work and O(log n) span for constructing the orders.

If the graph is unweighted, each Jaccard similarity is a ratio-
nal number, and each unweighted cosine similarity squared is a
rational number. Recall from Section 2.3.2 that we can sort ratio-
nal numbers with an integer sorting algorithm. Therefore, if the
graph is unweighted, we can achieve better work bounds by using
integer sorting rather than comparison sorting. In order to apply
the integer sort running time bounds directly when computing the
neighbor order, instead of sorting NO[v] separately for eachv € V
like Algorithm 2 describes, we instead prepend v to every entry in
NO|v] for each v € V and sort all elements in NO with a single
integer sort. We perform the same transformation to compute the
core order with one integer sort. By doing this, the complexity for
computing the neighbor order and core order match the complexity
for integer sort on m integers, as described in Section 2.3.2.

Summing similarity computation bounds with the neighbor and
core order construction bounds gives the following theorems.

Theorem 4.1. Fix an undirected, weighted graph and let a be its
arboricity. Running the parallel SCAN index construction algorithm
on the graph using cosine similarity as the similarity measure runs in
O((a + log n)m) work (matching the work bound of GS™-Index) and
O(log n) span w.h.p.

Theorem 4.2. Fix an undirected, unweighted graph and let o be the
graph’s arboricity. The parallel SCAN index construction algorithm
with cosine similarity or Jaccard similarity as the similarity measure
can achieve the following running time bounds depending on what
integer sorting algorithm is used:

e O((a + loglog n)m) work and O(log n) span w.h.p.,

e O(am) work and O(n#) span w.h.p. for any0 < f < 1.

In both theorems, we can replace the am work term with n“» if
we use matrix multiplication to compute similarities.

4.2 Querying for clusters

Next, we describe an efficient parallel algorithm for discovering
clusters given the parameters p and €. The algorithm uses the index
structure from Section 4.1.

Algorithm 3 Helper function for finding core vertices under a
particular setting of SCAN parameters.

Output: An array of core vertices under SCAN parameters (4, €).
1: procedure GETCORES(i, &, NO, CO, similarities)
2: max_degree — |CO|
3: if g > max_degree then return {} > No vertices are cores.
4: else return {v € CO[y] | similarities|{v, NO[v][u]}] > ¢}
> Find cores using a doubling search on CO[p].

Algorithm 5 provides pseudocode for extracting a clustering with
arbitrary parameters from the index. Algorithms 3 and 4 are subrou-
tines for Algorithm 5. To retrieve the clustering with parameters p
and ¢, the algorithm performs a doubling search on CO[y] to find
all core vertices (Line 4 of Algorithm 3) and then performs doubling
searches on NO[v] for each core vertex v to find all e-similar edges
incident on core vertices (Line 4 of Algorithm 5). For instance, for
the graph in Figure 1 with parameters (g, ¢€) = (3, .6), the search
on CO[y] finds the blue vertices in Figure 3, and the searches on

Algorithm 4 Helper function for assigning border non-core ver-
tices to clusters after clustering all of the core vertices.

1: procedure AssiGNNoNCOREs(similar_edges, cores_set, clusters)
2 subgraph_vertices «— REmoveDuPLICATES({v | {u, v} € similar_edges})
3 subgraph_non_cores « {v € subgraph_vertices | v ¢ cores_set} » Filter
4 non_cores_count « |subgraph_non_cores|
5: assignments <— ALLOCATEARRAY(non_cores_count)
6 non_core_indices <— MAKEHASHMAP({subgraph_non_cores[i] + i})
7 fori e {1,2,3, ..., non_cores_count} do in parallel
8 assignments[i] = null
9: for {u, v} € similar_edgesA(u ¢ cores_setVv ¢ cores_set) do in parallel
10: (Without loss of generality, let v ¢ cores_set; then, u € cores_set.)
11: address «— &(assignments[non_core_indices[v]])
12: CoMPAREANDSWAP(address, null, clusters[u])
> Assign border vertex v to an arbitrary neighboring e-similar cluster.
If the CAS fails, then that means v is already assigned.
13: For v in subgraph_non_cores in parallel, insert
[v +— assignments[non_core_indices[v]]] into clusters.
14: return clusters

Algorithm 5 Algorithm for finding the SCAN clustering with pa-
rameters p and ¢ from the index.

procedure CLUSTER(y, €, NO, CO, similarities)
cores < GETCOREs(u, £, NO, CO, similarities)
cores_set «— MAKEHASHSET(cores)
similar_edges « {{u, v} | u € cores_set A similarities[{u, v}] > €}
> Get similar_edges by doubling search on NO[u] for each u € cores.
5: similar_core_edges «—
{{u, v} € similar_edges | u € cores_set A v € cores_set} » Filter
6: core_clusters «— Connected components of subgraph induced by
similar_core_edges, represented as a hash table mapping
[v + component ID] for each v € cores.
7: return AssIGNNONCOREs(similar_edges, cores_set, core_clusters)

W D e

NO|] find the green vertices in Figure 2. This corresponds exactly
to the blue core vertices and green edges in Figure 1.

For each of these prefixes of NO[v], the algorithm also creates a
copy with all border non-core neighbors (e.g., vertex 11 in Figure 1)
filtered away (Line 5 of Algorithm 5). These filtered prefixes con-
stitute an adjacency list for the subgraph induced by the e-similar
edges on the core vertices. Running a parallel connectivity algo-
rithm on this subgraph assigns all core vertices to a cluster (Line 6 of
Algorithm 5). Finally, the algorithm takes all of the border non-core
neighbors (Lines 2 to 3 of Algorithm 4) and uses compare-and-swap
to assign each of them to the same cluster as an arbitrary neigh-
boring e-similar core (Line 12 of Algorithm 4). The final output is a
hash table mapping vertices to cluster IDs. The algorithm achieves
the bounds stated in the following theorem.

Theorem 4.3. Suppose the clustering algorithm, Algorithm 5, runs
and returns a collection of clusters C. For a set of verticesU € C, define
Ey, ¢ to be the set of e-similar edges in the subgraph induced by U.
Define Z = |UU€C EU,£| € O(m). Then the clustering algorithm runs
in O(Z) expected work (which matches the work bound for GS*-Index)
and O(log n) span w.h.p.

This theorem holds because the doubling searches in Lines 2
to 4 of Algorithm 5 fetch all of the edges Uy ec Eu, ¢ in the out-
put clustering C in a work-efficient manner, and the remainder of
the clustering algorithm operates only on the subgraph given by
Uvec Eu, ¢ in a work-efficient manner.

4.3 Determining hubs and outliers

After finding a clustering, we can determine whether unclustered
vertices are hubs or outliers. For each unclustered vertex v, we
map each neighbor in N(v) to its cluster ID and reduce over the



neighbors to determine whether the vertex has neighbors belonging
to distinct clusters. It takes O(|N(v)|) work and O(log|N(v)|) span
to determine whether v is a hub or outlier. In total, this takes
O(m + n) work and O(log n) span.

5 Approximating similarities

After constructing the index, querying for a clustering is fast. In-
dex construction itself, though, may be expensive since it takes
Q(min{am, n}) work. One unexplored technique for speeding up
SCAN is to use LSH to approximate similarities.

For example, to use SimHash to approximate cosine similarities,
we fix a sample size k € N. Then, we draw kn random numbers from
the standard normal distribution, which is possible via the Box-
Muller transform [14] given a source of uniform random numbers.
With these normally distributed random numbers, we construct a k-
sample sketch of N(v) for each vertex v. The sketching takes O(km)
work and O(logn) span using the reduce operation to compute
inner products. Now we can compute the similarity between any
adjacent vertices u and v by comparing their sketches in O(k) work
and O(log k) span. Computing the sketches and the similarities
over all edges takes O(km) work and O(log n + log k) span. The
work bound is better than the work bound for computing exact
similarities if k is asymptotically less than the arboricity «. Similarly,
we can use MinHash to approximate Jaccard similarities.

We can then compute a neighbor order and core order based on
these similarities. Again, we can achieve better work bounds using
an integer sort algorithm, and in fact we can use integer sort on both
unweighted and weighted graphs. This is because the approximate
similarities are non-negative integers scaled by a factor of 7 /k for
SimHash or 1/k for MinHash, and we can postpone scaling the
integers until after sorting. Therefore, we can construct a SCAN
index with the following running time bounds.

Theorem 5.1. Fix an undirected graph and let k < poly(n). The
parallel SCAN index construction algorithm using k-sample MinHash
(for unweighted graphs) or SimHash (for unweighted or weighted
graphs) to compute approximate similarities can achieve the following
running time bounds depending on the integer sorting algorithm used:
e O((k + loglog n)m) work and O(log n) span w.h.p.,
e O(km) work and O(nf) span for0 < f < 1.

We can also theoretically analyze the clusterings that result from
these approximate similarities. In particular, suppose we fix some
e €[0,1] and § € (0,1). The SCAN clustering with parameters ¢
and arbitrary yu is only concerned about whether similarities fall
above or below ¢, rather than exact similarity values. If the number
of samples is sufficiently high, then w.h.p., all edges outside the
similarity range ¢ + § will be “correctly classified” as above or below
the threshold ¢ by the approximate similarities. We present such a
result for approximating cosine similarity using SimHash.

Theorem 5.2. Let G = (V,E, w) be an undirected graph with non-
negative edge weights, let ¢ € [0,1], and let § € (0,1). Suppose
k > 7% In(nm)/(262%) and suppose we use SimHash with k samples
to compute approximate cosine similarity scores for every edge in
G. Then w.h.p., all edges with exact cosine similarities outside the
interval (e—8, e+ V1 — £28) are correctly classified by the approximate
similarities as above or below the threshold ¢.
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Figure 4: Plot of the SimHash approximation lower and upper bound func-
tions on cosine for £ = 0.9. The bold point is (¢, €).

Proor. Consider an arbitrary edge {u,v} € E with an exact
cosine similarity s € [0, 1] outside the interval (¢ — §, & + V1 — £26).
It suffices to prove that the edge is correctly classified by the ap-
proximate cosine similarity with probability at least 1 — 1/(nm).
Then, applying a union bound over all m edges gives that all edges
outside the similarity interval are classified correctly w.h.p.

Let 6 = cos(s) be the angle between the vectors correspond-
ing to N(u) and N(v). The angle is in the range [0, /2] since
all edge weights are non-negative. Recall from Section 2.1.2 that
the SimHash estimate for the angle between the two vectors is
6 ~ Binomial(k, /) x /k. Hoeffding’s inequality [35] implies that
given arbitrary € € N, p € [0, 1], and t > 0, for a binomial random
variable X ~ Binomial(¢, p), the probabilities Pr[X /¢ > p + t] and
Pr[X/¢ < p — t] are each bounded above by exp(—2£t?). Using
this inequality on 6 with ¢ = k, p=0/m and t = §/n gives that
both Pr[é > 0+ 5] and Pr[é < 0 — §] are each bounded above by
exp(—2k52/7r2) < 1/(nm).

Let ¢ = arccos(e) € [0, /2] be the similarity threshold ¢ trans-
formed into an angle threshold. First, consider the case where
s € [0,e — §], which also implies that ¢ > §. The straight line
from the point (¢, ¢) to the point (17/2, 0) has the equation

fe(x) = ¢ - (x—9),

€
2=g
which Figure 4 shows in red for ¢ = .9. By concavity of the cosine
function in [0, 7/2], we have that cos(x) > fz(x) when x € [¢, 7/2].
We have that ¢ + § = arccos(e) + § < arccos(d) + § < x/2; the
first inequality comes from the arccosine function being decreasing
combined with the constraint that ¢ > §, and the second inequal-
ity comes from taking derivatives to maximize arccos(d) + d for
§ € (0,1). Therefore, we can substitute ¢ + § for x in the inequal-
ity cos(x) > fr(x) to get that cos(¢ + ) > ¢
Plotting the multiplicative factor

~ e fzarccos@)
m with varying
shows that the factor falls in the range [2/x, 1], giving a looser
but clearer bound that cos(¢ + §) > ¢ — § > s. Taking the arc-
cosine of the leftmost and rightmost sides of the inequality gives
¢ + & = arccos(cos(¢ + J)) < arccos(s) = 6, where the first equal-
ity uses the fact that ¢ + § € [0, 7/2]. Now the upper bound on
Pr[f < 0 — 5] gives that the probability that § > 6 —§ > ¢ is
at least 1 — 1/(nm). Taking the cosine of both sides gives that the
cosine similarity estimate cos(6) falls below ¢ with probability at
least 1 — 1/(nm) as desired.

Next, consider the case where s € [e+ V1 — £28,1]. If ¢ = 1, then
s = 1 and SimHash will always return the correct estimate cos(é) =
cos(0) = 1 as desired. For ¢ < 1, define h(§) = (1 - 82)/(1 + &?)



and note that

1—-¢
e+V1-£26<1 & §< —
V1 — &2

e 2 +e8°<1-¢ = &<h()
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Next, linearize the cosine function at the input point ¢ to get the
line

ge(x) = € — sin(¢p)(x — ¢) = ¢ — sin(arccos(¢))(x — ¢)
= e-Vi-e2x - ¢),

which Figure 4 shows in blue for ¢ = .9. By concavity of the cosine
function, we have that cos(x) < g.(x) when x € [0, 7/2]. Note
that we have that ¢ — § = arccos(e) — § > arccos(h(d)) — § =
0; the first inequality comes from the arccosine function being
decreasing combined with the constraint that ¢ < h(3), and the
second inequality comes from plotting arccos(h(d)) —§ to see that it
is non-negative for § € (0, 1) . Hence, we can substitute ¢—3 for x in
the inequality cos(x) < g.(x) to get that cos(¢—5) < e+ V1 — €25 <
s. Taking the arccosine of the leftmost and rightmost sides of the
inequality gives ¢ — § = arccos(cos(¢ — §)) > arccos(s) = 0, where
the first equality uses the fact that ¢ — § € [0, 7/2]. Now, the upper
bound on Pr[f > 6+6] gives that the probability that 6<0+5< ¢
is at least 1 — 1/(nm). Taking the cosine of both sides gives that the
cosine similarity estimate cos(é) is above ¢ with probability at least
1 —1/(nm) as desired. O

We also present a similar result for approximating the Jaccard
similarity using MinHash.

Theorem 5.3. Let G = (V, E) be an undirected graph, let € € [0, 1],
and let § € (0,1). Suppose k > ln(nm)/(252) and suppose we use
standard MinHash with k samples to compute approximate similarity
scores for every edge in G . Then w.h.p., all edges with exact Jaccard
similarities outside the interval (¢ — 8, ¢ + &) are correctly classified
by the approximate similarities as above or below the threshold .

Proor. The result follows from applying Hoeffding’s inequality
as in the proof of Theorem 5.2. We omit full details for brevity. O

Though the bounds in these theorems require a large number of
samples k to achieve high accuracy, experiments in Section 7 show
that lower values of k still achieve good clusterings. This approxi-
mation strategy helps for denser graphs with large arboricity.

6 Implementation

We implement the algorithms described in Sections 4 and 5 to
determine how they perform in practice. We write our code in C++
within the Graph Based Benchmark Suite (GBBS) framework [24,
27]. GBBS provides libraries useful for implementing parallel graph
algorithms. Our implementations use the concurrent hash table
implementation [61], parallel sorting algorithms, and various graph
processing helper functions that GBBS provides.

Though the algorithms as described in Sections 4 and 5 achieve
good theoretical bounds, our actual implementations make several
changes for better performance. This section explains the more
significant changes.

6.1 Computing similarities

We implement similarity computation for both cosine similarity
and Jaccard similarity. Experiments by Shun and Tangwongsan [63]
suggest that the hash-based approach to triangle counting or com-
puting similarities in Algorithm 1 incurs many cache misses and
that a merge-based approach is faster in comparison, even though
it increases the asymptotic work bound from O(ma) to O(m3/ )
Our implementation uses the merge-based approach of Shun and
Tangwongsan. This approach assumes that each neighbor list in the
adjacency list of the input graph is sorted by vertex number, which
is true for graphs converted to GBBS’s graph file format. In order to
count each triangle only once and hence reduce work, we construct
a directed version of the input graph by filtering each neighbor list
so as to direct each edge towards its higher-degree vertex. Then,
for each pair of adjacent vertices (u, v), we find triangles of the
form {(u, v), (v, x), (u, x)} for x in N(u) N N(v) by merging the out-
neighborhoods of u and v in the directed graph. To get similarity
scores for each pair of adjacent vertices, the implementation main-
tains an atomic counter for each edge and increments the counters
for all three edges of any triangle found.

The merge logic between two neighbor lists follows the logic of
the parallel merge implementation in GBBS: if both neighbor lists
are small, we iterate through the sorted neighbor lists sequentially
to find shared neighbors; if one neighbor list is small and the other
is large, then we search for each element of the small neighbor list
in the larger list via binary search; and finally, if both neighbor lists
are large, then we split them into smaller sub-lists and recursively
merge the sub-lists in parallel.

To compute similarities using matrix multiplication instead of
merge, we use the Intel Math Kernel Library’s cblas_sgemm func-
tion for matrix multiplication. Though its documentation does not
provide asymptotic running time bounds, it runs well in practice.

6.2 Querying for clusters

When querying the index for clusters (Algorithm 5), we find the
connected components on the core vertices (Line 6) by using the con-
current union-find implementation from the GBBS codebase [25].
Using union-find allows us to avoid materializing the subgraph to
pass to a work-efficient connectivity algorithm. We “union” the
edges in similar_core_edges (Line 5) and apply “find” to each ver-
tex to populate an n-length array of vertices’ cluster IDs rather
than a hash table as described in Line 6. Having this array also
simplifies the logic for AssiGNNoNCoREs (Algorithm 4) by chang-
ing AssiGNNoNCOREs to skip the preprocessing in lines 2-8 and
instead compare-and-swap directly into the cluster ID array.

6.3 Approximate similarities

We implement similarity approximation logic using both SimHash
and MinHash. For MinHash, we use a variant called k-partition
MinHash, or one permutation hashing [41]. It is more computation-
ally efficient than the original version of MinHash; computing a
sketch of a vertex v takes only O(k + |N(v)|) work using k-partition
MinHash, rather than O(k|N(v)|) work using standard MinHash,
since k-partition MinHash generates a k-length sketch using only

*https://software.intel.com/content/www;/us/en/develop/tools/oneapi/components/
onemklhtml
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one permutation rather than k permutations. The k-partition vari-
ant still provides reasonable clustering results, but the accuracy
bound in Theorem 5.3 no longer applies for this variant.

When the number of samples k for the LSH approximation
scheme is high, it becomes more expensive to compute and pro-
cess sketches to get approximate similarities. For low-degree ver-
tices, the merge-based algorithm described in Section 6.1 is cheap
and cache-friendly enough that it is better to compute similari-
ties exactly rather than approximately. As a simple example, if
two adjacent vertices have degree significantly less than k, it is
faster and more accurate to process the original neighbor lists of
the vertices instead of their k-length sketches. To avoid sketching
low-degree vertices, we add a heuristic to choose which vertices to
sketch and which similarities to approximate. The heuristic is to
only approximate similarities between pairs of vertices that both
have sufficiently high degree and to compute similarities exactly
with triangle counting for all other pairs of vertices. We determine
whether a vertex is high degree by checking whether its degree
exceeds a threshold value of k for approximate cosine similarity and
3k/2 for approximate Jaccard similarity. No sketches are needed
for vertices that either do not have high degree or do not have any
neighbors with high degree.

7 Experiments

Our timing experiments show that our implementation achieves
good speedup over sequential baselines and performs competitively
against ppSCAN [18], a state-of-the-art parallel shared-memory
SCAN implementation. Our results for our approximate SCAN
implementation suggest that LSH can speed up index construction
while maintaining good clustering quality.

Non-shared-memory parallel algorithms fail to outperform our
implementation as well. Zhao et al’s reported timings for their
distributed SCAN algorithm [76] are much slower than our times;
they report taking 36 minutes with fifteen eight-core machines to
cluster their largest graph, which has four million vertices and sixty
million edges, whereas our algorithm takes under three seconds to
process the larger, denser Orkut graph using fewer cores. Chen et
al. [19] and Zhou and Wang [77] only test their distributed SCAN
algorithms on graphs with fewer than two million edges and do
not report times. Stovall et al. [64] only test their GPU-based SCAN
algorithm on graphs with fewer than six million edges, whereas
we focus on much larger graphs in our experiments.

7.1 Benchmarking environment

We run experiments on an Amazon EC2 c5.24xlarge instance,
which has 192 GiB of RAM and 48 CPU cores with two-way hyper-
threading for a maximum of 96 hyper-threads. We enable hyper-
threading in our parallel experiments by default. We implement our
parallel algorithm using the merge-based approach for computing
similarities described in Section 6.1 (GBBSIndexSCAN in the experi-
mental plots) as well as using matrix multiplication (GBBSIndexSCAN-
MM in the plots). We compare our parallel algorithm using all 48
cores with hyper-threading to our algorithm using only 1 thread, to
the original sequential GS*-Index implementation,® and to ppSCAN

SWe obtained the GS*-Index code via personal correspondence with its authors.

Name Number of vertices ~ Number of edges  Type

Orkut 3,072,441 117,185,083 unweighted
brain 784,262 267,844,669 unweighted
‘WebBase 118,142,155 854,809,761 unweighted
Friendster 65,608,366 1,806,067,135 unweighted
blood vessel 25,825 70,240,269 weighted
cochlea 25,825 282,977,319 weighted

Table 2: Summary of the graphs for the experiments.

with AVX2 instructions® using all 48 cores with hyper-threading.
ppSCAN’s authors show that ppSCAN outperforms other existing
parallel SCAN algorithms (pSCAN [16], anySCAN [45], and SCAN-
XP [65]). For fixed parameters p and e, all of these algorithms
return the same output, except that ambiguous border vertices
may have different assignments. All code written is C++ code, and
compiled with GCC 7.5.0 using the -03 optimization flag. The GBB-
SIndexSCAN code uses GBBS’s scheduler library [8] written using
standard C++ threads. We run the parallel codes with numactl
--interleave=all, which interleaves memory allocations across
CPUs and gives better performance for this particular problem on
the EC2 instance. Each time measurement is the median of five
trials, unless specified otherwise.

Table 2 summarizes the graphs that we use in the experiments.
“Orkut” and “Friendster” are the com-Orkut and com-Friendster
graphs from the Stanford Large Network Dataset Collection [40].7
Both are social network graphs in which the vertices are users
and the edges represent friend relationships. “Brain” is the bn-
human-Jung2015-M87113878 dataset from NeuroData® provided
by Network Repository [55]. The graph represents a mapping of
human brain connections. “WebBase” is the webbase-2001 graph
from the Laboratory for Web Algorithmics [11, 12].1% The graph
represents the links discovered by a web crawler. Although the orig-
inal WebBase graph is a directed graph, we change the edges to be
undirected and remove self-loop edges so that SCAN can operate on
the graph. “Blood vessel” and “cochlea” are weighted graphs from
HumanBase [34].!1! Vertices represent genes, edges represent pairs
of genes with evidence of a functional relationship in blood vessel
tissues or cochlea tissues, and edge weights represent the proba-
bility of there being a relationship. For convenience, on the brain,
Friendster, blood vessel, and cochlea graphs, we compact vertex
IDs so that all IDs are contiguous with no zero-degree vertices.

Neither GS*-Index and ppSCAN run on weighted graphs, so we
do not run them on the blood vessel and cochlea graphs. We also
only test cosine similarity on the weighted graphs since we did not
implement weighted Jaccard similarity for GBBSIndexSCAN.

7.2 Clustering quality measures

We evaluate our clustering results using the modularity and ad-
justed Rand index measures. These quality measures are popular
and consistent with existing graph clustering literature. The mod-
ularity of a clustering is the proportion of edges that fall within
clusters in the clustering minus the expected number of edges that

®The ppSCAN code is available at https:/github.com/RapidsAtHKUST/ppSCAN/tree/
master/pSCAN-refactor.

"https://snap.stanford.edu/data/

8https://meurodata.io/
“http://networkrepository.com/bn-human-Jung2015-M87113878.php
10http://law.di.unimi.it/webdata/webbase-2001/
Uhttps://hb.flatironinstitute.org/download under the “top edges” column
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would fall within clusters in a random graph with the same de-
gree distribution [49]. Specifically, fix some clustering, let A, ., for
arbitrary vertices u and v be 1 if u and v are neighbors and be 0
otherwise, and let §,, ,, be 1 if u and v are assigned the same cluster
and be 0 otherwise. The modularity is computed as

1y (Au,v—'N‘”’“N(“)' s

2 2
m u,vev m

The definition of modularity also easily extends to weighted graphs [48].

Higher modularity scores suggest better clusterings.

Another way to measure the quality of a proposed clustering is
to check how similar it is against a known ground-truth clustering.
The adjusted Rand index (ARI) [38] is one well-known metric for
evaluating this similarity. ARI counts the number of pairs of vertices,
such that the two vertices are assigned to the same clusters or to
different clusters in both the proposed clustering and the ground-
truth clustering. This count is then adjusted for chance. Let C be
the proposed clustering on the set of n vertices V and let G be the
ground-truth clustering. For integers i in {1,2,3,...,|C|} and j in
{1,2,3,...,|GI}, let n; j be the number of vertices in both cluster i
of C and cluster j of G. Let n; « = Z]Igll n; jandlet n, ; = Zlgll n;
for each i and j. Then, the ARI between C and G is

Z\Clxlgl(nu) Z\C\ (nu)ZIQI(n*])/(Z)
(i) + 28 ) 2= 218 ) 28 ) G)

Higher ARI scores suggest a better match with the ground-truth
clustering. Neither the modularity nor the ARI can exceed 1, and
they may be negative if the clustering is “worse than random”

7.3 Results

7.3.1 Index construction time comparison The first experiment mea-
sures the running time to construct the SCAN index with exact
cosine similarity. The time to compute the index using Jaccard
similarity is about the same (at most 9% difference for GBBSIn-
dexSCAN on 48 cores), so we do not report it separately. Figure 5
shows the time measurements. GBBSIndexSCAN achieves a par-
allel self-relative speedup of 23-70x on index construction. More-
over, GBBSIndexSCAN running sequentially is 1.4-2.2x faster than
the original GS*-Index implementation, likely due to the directed
triangle counting optimization that Section 6.1 describes, so the
speedup of GBBSIndexSCAN on 48 cores with hyper-threading
is 50-151x over GS*-Index. On the two dense graphs with fewer
vertices, GBBSIndexSCAN-MM outperforms GBBSIndexSCAN, but
it takes too much memory to run on the other graphs.

7.3.2  Clustering time comparison The second experiment is to mea-
sure the running time for querying for the clustering over various
settings of parameters (y, €). The plots only consider exact cosine
similarity since times are about the same using Jaccard similarity
(at most either 10™* absolute difference or 4% difference for GBB-
SIndexSCAN on 48 cores). Clustering behavior is the same between
GBBSIndexSCAN and GBBSIndexSCAN-MM, so we omit times for
GBBSIndexSCAN-MM. Figure 6 measures the running times with
p=5ande € {.1,.2,.3,...,.9}, and Figure 7 measures the running
times with ¢ = 0.6 and y € {Zi [1<i<14,2" < max_degree}.
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Figure 5: Index construction times with exact cosine similarity as the
similarity measure. We only run GBBSIndexSCAN-MM on the blood vessel
and cochlea graphs, whose adjacency matrices fit in memory.

GBBSIndexSCAN is faster than ppSCAN and GS*-Index on all
tested parameter settings, though this ignores the time that GBB-
SIndexSCAN takes to precompute its index. This precomputation
cost that GBBSIndexSCAN incurs is preferable over ppSCAN only
when the user makes many queries. Notably, though, it might not
take many queries for GBBSIndexSCAN to become preferable over
ppSCAN. For example, on the Orkut and Friendster graphs, the
sum of the time measurements for ppSCAN on the nine parameter
settings in Figure 6 exceeds the sum of the corresponding measure-
ments for GBBSIndexSCAN plus the index construction time for
GBBSIndexSCAN.

Sequentially, GBBSIndexSCAN can be slower at querying for
clusters than GS*-Index due to adjustments made in GBBSIndexS-
CAN to make it more friendly to parallelism, namely using union-
find instead of sequential breadth-first search, as well as iterating
over all edges an additional time to assign non-core vertices (Al-
gorithm 4). It is up to 4.5x slower than GS*-Index on the tested
parameter settings and graphs. GBBSIndexSCAN running on 48
cores, however, is faster than the other implementations on all
tested parameter settings; it is faster than GS*-Index by 5-32x and
faster than ppSCAN by 1.26-12,070.

7.3.3 Approximate index construction time The third experiment
measures the running time of constructing GBBSIndexSCAN with
48 cores using the approximate cosine and approximate Jaccard sim-
ilarity measures with varying numbers of samples. For the weighted
graphs, we only test the approximate cosine similarity measure
since the k-partition MinHash variant that we implement for Jac-
card similarity does not handle weighted graphs. Each trial uses
a different pseudorandom seed for the randomness in the approx-
imation schemes. Figure 8 displays the results. The approximate
Jaccard similarity implementation is consistently faster than the
approximate cosine similarity implementation because of the better
efficiency of constructing sketches for k-partition MinHash com-
pared to SimHash. The times plateau or even decrease at large
sample sizes for some graphs due to the heuristic discussed in
Section 6.3 for avoiding sketching for low-degree vertices.

7.3.4  Quality of approximate clusterings The fourth experiment
measures the quality of the clusterings achieved with the approx-
imate similarity measures compared to the clusterings achieved
with the exact similarity measures. Although the Ass;iGNNoNCORES
(Algorithm 4) portion of the clustering algorithm assigns each bor-
der non-core vertex to the same cluster as an arbitrary e-similar
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Figure 8: Index construction times for GBBSIndexSCAN (48 cores with hyper-threading) using approximate similarity measures with varying sample sizes.

core vertex, to get consistent measurements for this experiment, we
remove this source of non-determinism by assigning each border
vertex to the same cluster as the most similar neighboring core
vertex, breaking ties in favor of lower vertex IDs.

We use the modularity as a heuristic measurement for clustering
quality, treating unclustered vertices as each being in its own cluster.
We select the parameters (y, ¢€) maximizing modularity from the
following set X:

3 =1{2,4,816,...,2"%} x {.01,.02,.03,...,.99}. (1)

Figure 9 plots the best modularity scores found when using the
approximate similarity measures with varying numbers of samples.
To better illustrate the trade-off between computation time and
clustering quality, we use the index construction times from Figure 8
on the horizontal axis instead of the number of samples. Each
plotted modularity score for a fixed number of samples is the mean
of five trials with different pseudorandom seeds on each trial.
Similarly, Figure 10 plots the ARI of the clustering found by the
approximate similarity measures with varying numbers of samples
versus the “ground-truth” clustering under the corresponding exact
similarity measures. Again, each plotted ARI is the mean of five
trials with different pseudorandom seeds. The SCAN parameters
used in this plot are the best parameters in ¥ relative to the exact
similarity measures. Hence, this plot shows how well the clusterings
using approximate similarity measures match the clusterings using
exact similarity measures at a particular parameter setting.
Points to the top and the left represent sample sizes that give
good quality as well as low index construction times. The figures
also include the times to construct indices with exact similarity

measures from Figure 5, with the assumption that the times for
exact Jaccard similarity are the same as those measured for cosine
similarity.

The improved approximation accuracy in these plots as the sam-
ple size increases is not only attributable to better LSH accuracy
with more samples, but also to the heuristic described in Section 6.3
that reverts to computing exact similarity for vertices that have low
degree relative to the number of samples.

The approximate Jaccard clusterings approach the quality of the
corresponding exact similarity clusterings at lower sample sizes
than approximate cosine clusterings do, which is perhaps expected
due to the better sampling efficiency that MinHash variants tend
to have over SimHash, as suggested by Shrivastava and Li [60] and
by our bounds in Theorems 5.2 and 5.3.

The modularity and ARI scores indicate that approximating sim-
ilarities can significantly speed up index construction while still
achieving good quality clusterings. The modularity plots in Figure 9
look more favorable than the ARI plots in Figure 10, suggesting that
though at low sample sizes the approximate clusters at a particular
parameter setting may noticeably differ from the corresponding
exact clusters, we are still able to find a good quality clustering by
searching over a range of parameter values.

8 Related Work

Xu et al. introduced the original SCAN algorithm [71] and borrowed
ideas from the popular spatial clustering algorithm DBSCAN [29].
One major inconvenience of SCAN is the difficulty of choosing its
two user-selected parameters, y and e. GS*-Index alleviates this
issue by creating an index upon which future SCAN queries with
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arbitrary parameters are efficient [68]. SCOT [13] and gSkeleton-
Clu [37] also essentially compute indices for SCAN, but only for
a fixed p value. SCOT outputs an ordering of vertices, similar to
what the OPTICS algorithm [1] outputs for DBSCAN, such that ver-
tices that tend to be in the same cluster are nearby in the ordering.
gSkeletonClu computes a spanning tree on potential core vertices.

SHRINK [36], DHSCAN [73], and AHSCAN [74] are all based on
SCAN, but avoid the parameter selection issue by being parameter-
free algorithms that use a quality function like the modularity to
guide the clustering process. DPSCAN [69] is another parameter-
free SCAN-based algorithm that uses a density metric to select
clusters. These algorithms are easier to use due to their lack of
parameters, although having tunable parameters can be helpful in
allowing the user to explore alternative clusterings.

Other work building on SCAN focuses on making SCAN scale to
large graphs. LinkSCAN™ [42] reduces computation time at the cost
of accuracy by operating on a sampled subgraph of the original
graph. It may be worthwhile in the future to compare the efficiency
and clustering quality of the LinkSCAN* sampling approach versus
the LSH approach of our paper. Zhao et al. [75] and Mai et al. [45]
describe anytime algorithms for SCAN, with Mai et al’s algorithm
being parallel. Users may pause queries and examine intermediate
clustering results, making it useful for large graphs on which fin-
ishing a query may take a long time. Our work, on the other hand,
strives to make finishing a query as fast as possible so that this
anytime functionality is unnecessary.

SCAN++ [59], pSCAN [16], and ppSCAN [18], for a fixed setting
of SCAN parameters, speed up SCAN by pruning many unnecessary
similarity score computations between pairs of vertices. Che et al’s
ppSCAN is parallel and uses vectorized instructions as well for
additional performance. SCAN-XP [65] is another parallel SCAN
algorithm but does not perform pruning.

For distributed systems, Chen et al. [19] and Zhao et al. [76]
present MapReduce parallelizations of SCAN, and SparkSCAN [77]
is a Spark parallelization of SCAN. GPUSCAN [64] uses GPUs to
speed up SCAN.

There are many other graph clustering algorithms besides SCAN
and its variants. Interested readers may refer to surveys written by
other researchers, such as Schaeffer [56] and Fortunato [30].

9 Conclusion

This paper presents index-based SCAN algorithms that achieve
significant parallel speedup over the state of the art. They allow
users to query efficiently for SCAN clusterings for arbitrary pa-
rameter settings. The algorithms achieve improved work bounds
over GS*-Index and have logarithmic span w.h.p. We also present
an optimized multicore implementation of the algorithm that runs
well in practice. Moreover, we demonstrate that LSH is a viable
approximation scheme to speed up the computationally expensive
component of index construction.

For future work, first, we are interested in extending our work
to dynamic graphs by devising parallel algorithms for processing
batches of edge updates. Second, we are interested in quickly ex-
tracting hierarchical clusterings from the SCAN index. Third, we
would like to investigate the speed and clustering quality of SCAN
when using other similarity measures. Last, we wish to compare
SCAN to other parallel clustering algorithms in quality and speed.
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