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Abstract— This paper considers the multi-agent reinforce-
ment learning (MARL) problem for a networked (peer-to-peer)
system in the presence of Byzantine agents. We build on an
existing distributed Q-learning algorithm, and allow certain
agents in the network to behave in an arbitrary and adversarial
manner (as captured by the Byzantine attack model). Under
the proposed algorithm, if the network topology is (2F + 1)-
robust and up to F Byzantine agents exist in the neighborhood
of each regular agent, we establish the almost sure convergence
of all regular agents’ value functions to the neighborhood of
the optimal value function of all regular agents. For each state,
if the optimal Q-values of all regular agents corresponding to
different actions are sufficiently separated, our approach allows
each regular agent to learn the optimal policy for all regular
agents.

I. INTRODUCTION

In multi-agent reinforcement learning (MARL), multi-
ple agents observe the outcome of interactions with an
environment, and use those observations to learn optimal
control policies to achieve long-term goals. By working
cooperatively, agents are able to optimize a common long-
term reward which is an aggregate of all agents’ private
rewards [1]–[4]. The authors of [1] approach the MARL
problem by a distributed Q-learning algorithm, in which
each agent maintains a Q-value estimate for every state-
action pair. The convergence of the Q-value estimates to the
optimal Q values is guaranteed. Subsequently, [2] proposes
actor-critic algorithms with convergence guarantees using
linear functions to parameterize Q-value estimates. Each
agent shares its parameter instead of Q-value estimates to its
neighbors. By exploiting the network structure, [3] proposes
a scalable actor-critic algorithm where each agent maintains
Q-value estimates only for state-action pairs within its multi-
hop neighbors. This result has been further extended in [4]
to the case of time-varying networks.

Algorithms for multi-agent systems are typically robust
against benign failures of individual agents as long as the
underlying network is connected. However, the dependence
of these algorithms on local coordination among neighbors
also raises a major security concern that the presence of
one or more malicious agents under cyberattacks could
compromise the entire algorithm [5]. It is thus imperative
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to develop algorithms that are resilient, which refers to
algorithms’ ability to withstand the compromise of a subset
of the agents and still ensure some notion of correctness
[6]. Resilient algorithms against various types of attackers
for networked systems have been proposed for different
problems such as consensus [6]–[8], distributed optimization
[5], [9], [10] and distributed learning [11]–[15]. Within the
class of resilient distributed learning algorithms, some papers
assume a client-server architecture where a central agent
collects information from all other agents and broadcasts new
information back to other agents [11]–[13]. Other algorithms
such as ByRDiE in [14] and BRIDGE in [15] are designed
based on the peer-to-peer (P2P) architecture, where there is
no central agent to coordinate all other agents, and all agents
exchange information with neighbors. Very recently, resilient
algorithms for MARL in the presence of Byzantine agents
are proposed in [16] and [17]. Specifically, [16] considers
the fully cooperative MARL problem for a networked system
in the client-server architecture with a reliable central agent.
The paper [17] considers the policy evaluation problem in the
P2P architecture. By assuming a bounded reward variation
between the local reward of each agent and the global
averaged reward of all agents, they obtain a learning error,
which is related to the bound of the reward variation, network
structure and discounting factor.

In this paper, we propose a resilient QD-learning algo-
rithm for a networked system in the presence of Byzan-
tine agents. The main motivation is that the QD-learning
algorithm generally fails even in the presence of a sin-
gle adversarial agent. We first extend the distributed Q-
learning algorithm for undirected networks [1] to time-
varying directed networks. We then build on that to create a
resilient QD-learning that is capable of tolerating Byzantine
attacks. For each regular agent, we establish the almost
sure convergence of the value function to the neighborhood
of the optimal value function of all regular agents under
certain conditions on the graph topology. For each state, we
show that if the optimal Q-values corresponding to different
actions are sufficiently separated, each regular agent can
learn the optimal policy for all regular agents.

Organization: The fully cooperative MARL problem for a
networked system is formulated in Section II. The extension
of the QD-learning algorithm to a time-varying directed
network is presented in Section III. In section IV, we first
characterize limitations on the performance of the QD-
learning algorithm in the presence of adversaries. Then we
introduce a new resilient QD-learning algorithm and provide
the main result. We conclude the paper in Section V.

Notation: Let N denote the set of all natural numbers and
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R the set of all real values. Let Rk denote the k-dimensional
Euclidean space. Throughout, the probability space (Ω,F)
supports all random objects. For a collection J of random
objects, σ(J ) is the smallest σ-algebra with respect to which
all the random objects in J are measurable. Probability
and expectation on (Ω,F) are denoted by P(·) and E(·),
respectively. All inequalities involving random objects are
interpreted almost surely (a.s.).

II. PROBLEM FORMULATION

Consider a networked system consisting of N agents, in
which each agent can only communicate with certain other
agents called neighbors. The inter-agent communication net-
work is represented by a time-invariant graph G = (V , E).
Here V = {v1, v2, · · · , vN} denotes the node set with each
node representing an agent; E ⊂ V × V denotes a set of
edges corresponding to the neighbor relations. A graph is
said to be undirected if (vn, vl) ∈ E ⇔ (vl, vn) ∈ E , and
directed otherwise. The neighbor set of vn is denoted by
Nn = {vl ∈ V|(vl, vn) ∈ E}.

Let {xt} be a controlled Markov chain taking values in
a finite state space X = {1, 2, · · · ,M}, and U be the finite
set of control actions. The state transition is governed by

P(xt+1 = j|xt = i,ut = u) = puij , ∀i, j ∈ X , u ∈ U ,

where
∑
j∈X p

u
ij = 1 for all i ∈ X . The private information

cn(i, u) is the random one-stage cost of agent vn when
control u is applied at state i. A stationary control policy π is
a mapping from X to U , where {ut} satisfies ut = π(xt).
For a stationary policy π, the state process {xπt } evolves
as a homogeneous Markov chain with P(xπt+1 = j|xπt =

i) = p
π(i)
ij . For a stationary policy π and initial state i of the

process {xπt }, the infinite horizon discounted cost of agent
vn is

V ni,π = lim sup
T→∞

E
[ T∑
t=0

γtcn(xπt , π(xπt ))|xπ0 = i

]
,

where γ ∈ (0, 1) is the discounting factor.
In the situation where all agents are reliable (i.e., non-

adversarial), the QD-learning algorithm in [1] ensures that
each agent eventually learns the optimal value function of all
agents V∗ = [V ∗1 V ∗2 · · · V ∗M ]> and the associated optimal
policy π∗ with

V ∗i = inf
π

1

N

∑
vn∈V

V ni,π, ∀i ∈ X .

In this paper, we consider the problem in the presence of
adversarial agents. The node set V is partitioned into a set of
regular nodes R and a set of adversarial nodes A = V \ R
which is unknown a priori to the regular nodes. It is generally
impossible to learn V∗ in the presence of adversaries (as
we will show later), since their local costs can never be
accurately inferred. Instead, we will design a resilient QD-
learning algorithm to approximately learn the optimal value

function of all regular agents VR∗ = [V R∗1 V R∗2 · · · V R∗M ]>

and the associated optimal policy πR∗ with

V R∗i = inf
π

1

|R|
∑
vn∈R

V ni,π, ∀i ∈ X .

Remark 1: A significant challenge in MARL settings
where the agents themselves apply inputs is that the inputs
applied by each agent will affect the state, but may not
be visible to other agents. To deal with this, the majority
of existing work assumes either that the inputs applied by
all agents are globally visible [1], [2], [16], that there is a
global controller [1], or that there are no inputs at all [17],
with limited exceptions [2], [16]. In settings where agents
may be adversarial (as in our work), the issue of agents
applying inputs themselves incurs additional complexity,
as the adversarial agents’ inputs can no longer be easily
predicted. In this paper, we thus make the assumption of a
global controller (whose actions are visible to all agents) in
order to focus on the issue of resiliently learning the optimal
policy; as we will see, there are significant challenges even
in the setting with a global controller.

III. QD-LEARNING FOR TIME-VARYING DIRECTED
NETWORKS

In order to develop our resilient QD-learning algorithm,
we will first need to extend the QD-learning algorithm for
undirected networks in [1] to time-varying directed networks
(in the absence of adversaries); we will thus do this in this
section. Consider an underlying graph G(t) = (V, E(t)) that
is time-varying, where E(t) ⊂ V × V is the set of edges
at time t. At time t, each agent vn can obtain information
from each neighbor vl ∈ Nn(t), where Nn(t) = {vl ∈
V|(vl, vn) ∈ E(t)} is the neighbor set of vn at time t.

Each agent vn ∈ V maintains a R|X×U|-valued sequence
{Qn

t } with components Qni,u(t) and a R|X |-valued sequence
{Vn

t } with components V ni (t) successively refined as

V ni (t) = min
u∈U

Qni,u(t), i = 1, 2, · · · ,M. (1)

Extending the QD-learning algorithm from [1], the sequence
{Qni,u(t)} for each state-action pair (i, u) evolves as follows:

Qni,u(t+ 1) =

Qni,u(t)− βi,u(t)
∑

vl∈Nn(t)

(
Qni,u(t)−Qli,u(t)

)
+ αi,u(t)

(
cn(xt,ut)+γmin

v∈U
Qnxt+1,v(t)−Q

n
i,u(t)

)
, (2)

where

αi,u(t) =

{
ak, if t = Ti,u(k) for some k ≥ 0,
0, otherwise, (3)

βi,u(t) =

{
b, if t = Ti,u(k) for some k ≥ 0,
0, otherwise, (4)

with Ti,u(k) being the k + 1-th sampling instant of state-
action pair (i, u), ak ∈ (0, η] and b ∈

[
η, 1−η

N−1

)
satisfying
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lim
k→∞

ak = 0,
∑
k≥0 ak = ∞ and lim

k→∞
ak−1

ak
= 1, for some

constant η ∈ (0, 1
N ].

Remark 2: The update of Q-value estimate (2) consists
of an innovation term and a consensus term. The inno-
vation term cn(xt,ut) + γminv∈U Q

n
xt+1,v(t) − Qni,u(t)

is the local Q-learning portion. The consensus term∑
vl∈Nn(t)

(Qni,u(t)−Qli,u(t)) is designed to force all agents
to reach consensus on their Q-value estimates.

Assumption 1: The probability space (Ω,F ,P) is a com-
plete probability space with filtration {Ft} given by
Ft = σ({xs,us}s≤t, {cn(xt,ut)}vn∈V,s<t). The condi-
tional probability for the controlled transition of {xt} is
P(xt+1 = j|Ft) = put

xtj
. For each vn, E[cn(xt,ut)|Ft] =

E[cn(xt,ut)|xt,ut], which equals E[cn(i, u)] on the event
{xt = i,ut = u}. Further, cn(xt,ut) is adapted to Ft+1 for
each t and E[cn(i, u)] <∞.

Assumption 2: For each (i, u) ∈ X × U and each k ∈
N, the stopping time Ti,u(k) is finite a.s., i.e., P(Ti,u(k) <
∞) = 1.

Definition 1 (Rooted Graphs): A graph G(t) = (V , E(t))
is said to be rooted at node vn ∈ V at time t if for all
nodes vl ∈ V\{vn}, there is a path from vn to vl at time
t. A path from node vn ∈ V to vl ∈ V is a sequence of
nodes vk1 , vk2 , · · · , vki such that vk1 = vn, vki = vl and
(vkr , vkr+1

) ∈ E(t) for 1 ≤ r ≤ i − 1. A graph G(t) =
(V , E(t)) is said to be rooted at time t if it is rooted at some
node vn ∈ V at time t.

Assumption 3: The graph G(t) = (V, E(t)) is directed and
rooted for all t ∈ N.

For each vn, define the local QD-learning operator Gn :
R|X×U| 7→ R|X×U| whose components Gni,u : R|X×U| 7→ R
are

Gni,u(Q) = E[cn(i, u)] + γ
∑
j∈X

puij min
v∈U

Qj,v.

Let Qn∗ = [Qn∗i,u] ∈ R|X×U| be the fixed point of Gn, i.e.,
Qn∗i,u, ∀(i, u) ∈ X × U , satisfy

Qn∗i,u = E[cn(i, u)] + γ
∑
j∈X

puij min
v∈U

Qn∗j,v.

Let Vn∗ = [V n∗i ] ∈ R|X | be the optimal value function of
agent vn, where V n∗i = min

u∈U
Qn∗i,u.

Define the centralized Q-learning operator of all agents Ḡ :
R|X×U| 7→ R|X×U|, whose components Ḡi,u : R|X×U| 7→ R
are

Ḡi,u(Q) =
1

N

∑
vn∈V

Gni,u(Q)

=
1

N

∑
vn∈V

E[cn(i, u)] + γ
∑
j∈X

puij min
v∈U

Qj,v.

Let Q∗ = [Q∗i,u] ∈ R|X×U| be the fixed point of Ḡ, i.e.,
Q∗i,u, ∀(i, u) ∈ X × U , satisfy

Q∗i,u =
1

N

∑
vn∈V

E[cn(i, u)] + γ
∑
j∈X

puij min
v∈U

Q∗j,v.

Proposition 5.1 in [1] indicates that V ∗i = min
u∈U

Q∗i,u.

A. Equivalent Expressions of the Q-value Update (2)

Under Assumption 1, equation (2) is equivalent to

Qni,u(t+ 1)

= Qni,u(t)− βi,u(t)
∑

vl∈Nn(t)

(
Qni,u(t)−Qli,u(t)

)
+ αi,u(t)

(
Gni,u(Qn

t )−Qni,u(t) + νnxt,ut
(Qn

t )
)
, (5)

where νnxt,ut
(Qn

t ) = cn(xt,ut) + γminv∈U Q
n
xt+1,v(t) −

Gni,u(Qn
t ), satisfying E[νnxt,ut

(Qn
t )|Ft] = 0 for all t. Equa-

tion (5) with weights (3)-(4) is written as

Qni,u(t+ 1) = ωnni,u(t)Qni,u(t) +
∑

vl∈Nn(t)

ωnli,u(t)Qli,u(t)

−αi,u(t)dnxt,ut
(Qn

t ), (6)

where ωnni,u(t) = 1− βi,u(t)|Nn(t)|, ωnli,u(t) = βi,u(t), vl ∈
Nn(t) and dnxt,ut

(Qn
t ) = Qni,u(t)−Gni,u(Qn

t )−νnxt,ut
(Qn

t ).
Let

Q̄ni,u(t) = E[Qni,u(t)|Ft], ∀vn ∈ V , (i, u) ∈ X × U .

By (6), {Q̄ni,u(t)} evolves as

Q̄ni,u(t+ 1) = ωnni,u(t)Q̄ni,u(t) +
∑

vl∈Nn(t)

ωnli,u(t)Q̄li,u(t)

−αi,u(t)(Q̄ni,u(t)− Gni,u(Q̄n
t )), (7)

where Q̄n
t = E[Qn

t |Ft].
For k ∈ N, let

zni,u(k) = Q̄ni,u(Ti,u(k)), ∀vn ∈ V , (i, u) ∈ X × U .

Since {Q̄ni,u(t)} only changes at the stopping times Ti,u(k),
by (7), {zni,u(k)} evolves as

zni,u(k + 1) = ω̂nni,u(k)zni,u(k) +
∑
vl∈Nk

n

ω̂nli,u(k)zli,u(k)

−akdni,u(znk ), (8)

where dni,u(znk ) = zni,u(k)− Gni,u(znk ), with znk = [zni,u(k)] ∈
R|X×U|, ω̂nli,u(k) = b, vl ∈ N k

n , and ω̂nni,u(k) = 1 − b|N k
n |,

with N k
n = Nn(Ti,u(k)).

Denote zi,u(k) = [z1i,u(k) z2i,u(k) · · · zNi,u(k)]>, ∀(i, u) ∈
X × U . By (8), {zi,u(k)} evolves as

zi,u(k + 1) = Aki,uzi,u(k)− akd̄i,u(zk). (9)

Here, Aki,u = IN−bLki,u whose (n, l)-th entry is ω̂nli,u(k) and
d̄i,u(zk) = zi,u(k) − Gi,u(zk), where Lki,u = L(Ti,u(k)),
Gi,u(zk) = [G1i,u(z1k) G2i,u(z2k) · · · GNi,u(zNk )]>, and zk =[
z1k z2k · · · zNk

]
.

B. Convergence of QD-Learning

The proofs of the propositions given in this subsection can
be found in [18].

The following proposition guarantees the boundedeness of
Q-value estimates.

Proposition 1 (Boundedness): Let {Qn
t } be the succes-

sive iterates obtained at agent vn by (2). Then, under
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Assumptions 1 and 2, for each agent vn ∈ V , {Qn
t } is

pathwise bounded, i.e., P(supt≥0 ‖Qn
t ‖∞ <∞) = 1.

Under Assumption 3, Aki,u is rooted for all k ∈ N. Since
b ∈ [η, 1−η

N−1 ), ω̂nli,u(k) is lower bounded by η for all k ∈
N. Let Φi,u(k, s) = Aki,uA

k−1
i,u · · ·Asi,u for k ≥ s ≥ 0. By

Lemma 3.4 in [5], for each s, there exists a stochastic vector
qi,u(s) = [q1i,u(s) q2i,u(s) · · · qNi,u(s)]> ∈ RN such that
limk→∞ Φi,u(k, s) = 1q>i,u(s). Note that q>i,u(s) = q>i,u(s+
1)Asi,u. Denote by {Qi,u(t)} the {Ft} adapted process with
Qi,u(t) = [Q1

i,u(t) Q2
i,u(t) · · · QNi,u(t)]>. The following

proposition establishes the consensus in the agent Q-value
updates.

Proposition 2 (Consensus): Let {Qn
t } be the successive

iterates obtained at agent vn by (2). Then, under Assumptions
1-3, agents reach consensus asymptotically,

P
(

lim sup
t→∞

‖Qi,u(t)− 1p>i,u(t)Qi,u(t)‖ = 0
)

= 1,

where pi,u(t) = qi,u(k), t ∈ [Ti,u(k), Ti,u(k + 1)).
Proposition 3: Consider the network G(t) = (V , E(t)).

Let {Qn
t } and {Vn

t } be the successive iterates obtained at
agent vn by the QD-learning algorithm (1)-(2) with weights
(3)-(4). Then, under Assumptions 1-3, for each agent vn ∈ V ,

P
(

lim sup
t→∞

‖Qn
t −Q∗‖∞ ≤ R

)
= 1,

P
(

lim sup
t→∞

‖Vn
t −V∗‖∞ ≤ R

)
= 1,

where R = max
vn,vl∈V

‖Qn∗ − Ql∗‖∞. For each i ∈ X , if

|Q∗i,u − Q∗i,v| ≥ 2R, u, v ∈ U , each agent can learn the
optimal policy π∗. Furthermore, for each agent vn ∈ V and
state-action pair (i, u) ∈ X × U ,

P
(

lim sup
t→∞

Qni,u(t) ≤M
)

= 1,P
(

lim inf
t→∞

Qni,u(t) ≥ m
)

= 1,

where M = max
vn∈V

max
i,u

Qn∗i,u, and m = min
vn∈V

min
i,u

Qn∗i,u.

Remark 3: Note that if the matrices Aki,u do not have a
common left-eigenvector, convergence to a constant value
is not guaranteed. Thus, the convergence of Qn

t to Q∗

cannot be guaranteed for a time-varying directed graph.
Instead, Proposition 3 provides estimates of the region of
the final consensus value and the distance to the optimal
value function V∗.

IV. RESILIENT QD-LEARNING

With the results on QD-learning in time-varying directed
graphs in hand, we now turn our attention to analyzing
networks with Byzantine adversaries. In this section, we will
first show the vulnerability of the QD-learning algorithm (1)-
(2) in the presence of a single adversarial agent. After that,
we will provide a resilient QD-learning algorithm that can
handle a potentially large number of adversaries. We start
with the following definitions.

Definition 2 ( [6] Byzantine agent): A Byzantine agent is
capable of behaving arbitrarily (i.e., it may not follow the
prescribed algorithms), and is allowed to send conflicting or
incorrect values to different neighbors at each time-step. It is

also allowed to know the network topology and the private
information of all other agents.

Definition 3 ( [6] r-reachable set): Consider a graph
G = (V, E). For any given r ∈ N, a subset of nodes S ⊆ V
is said to be r-reachable if there exists a node vn ∈ S such
that |Nn \ S| ≥ r.

Definition 4 ( [6] r-robust graphs): For r ∈ N, graph G
is said to be r-robust if for all pairs of disjoint nonempty
subsets S1, S2 ⊂ V , at least one of S1 or S2 is r-reachable.

Definition 5 ( [6] F-local set): For F ∈ N, the set of
adversaries A is an F -local set if |Nn ∩ A| ≤ F , for all
vn ∈ R.

Assumption 4: The adversarial nodes are Byzantine
agents and restricted to form a F -local set. The agent
network G = {V, E} is time-invariant and (2F + 1)-robust.

The following proposition illustrates that by running the
QD-learning algorithm, regular agents cannot learn the op-
timal value function and the optimal policy even in the
presence of a single adversarial agent.

Proposition 4: Consider the time-invariant network G =
(V , E), and let there be a single adversarial node A = {vN}.
Suppose the network is connected, and all agents run the
QD-learning algorithm (1)-(2). If vN keeps its Q-value
estimate QNi,u(t) fixed at some arbitrary value QN∗i,u , for each
regular agent vn ∈ R, Qni,u(t) → QN∗i,u and V ni (t) → V N∗i

as t→∞ a.s..
Proof: Since the adversarial node keeps its value fixed

for all time, {QNi,u(t)} is updated as QNi,u(t+ 1) = QNi,u(t),
for all t ∈ N, with QNi,u(0) = QN∗i,u . Thus, the dynamics of
zi,u(k) take the form of (9), with

Aki,u =

[
AR,Ri,u (k) AR,Ai,u (k)

0 1

]
,

where AR,Ri,u (k) = [ω̂nli,u(k)] ∈ RN−1×N−1 contains the
weights placed by regular agents on other regular agents,
and AR,Ai,u (k) = [ω̂1N

i,u (k) ω̂2N
i,u (k) · · · ω̂NNi,u (k)]> ∈ RN .

For all k ∈ N, Aki,u have a common left-eigenvector q> =
[01×N−1 1]. Then, by Proposition 2, zni,u(k) will converge
to q>zi,u(k) = zNi,u(k) = QN∗i,u , which indicates Qni,u(t),
∀vn ∈ R, will converge to QN∗i,u a.s..

The following proposition illustrates that any algorithm
that always finds the optimal value function and the optimal
policy in the absence of adversaries can also be arbitrarily
co-opted by an adversary.

Proposition 5: Suppose Γ is an algorithm that guarantees
that all agents learn the optimal value function V∗ and the
optimal policy π∗ when there are no adversarial agents. Then
a single adversary can cause all agents to converge to any
arbitrary value when running algorithm Γ, and furthermore,
will remain undetected.

Proof: Assume vN is an adversarial agent. Suppose
agent vN wishes all agents to calculate VN∗ as an outcome
of running the algorithm Γ. Agent vN chooses a cost function
c̄N (i, u) = −

∑
vn∈V\{vN} cn(i, u) + cN (i, u). Now agent

vN participates in algorithm Γ by pretending its local cost
function is c̄N (i, u) instead of cN (i, u). Since c̄N (i, u) is
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a legitimate cost that could have been assigned to vN , this
scenario is indistinguishable from the cases that where vN
is a regular agent. Thus, algorithm Γ must cause all agents
to learn VN∗.

The above results show that the price for resilience is a
loss of optimality (in general). This motivates us to create
a resilient algorithm that provides approximately optimal
solutions. To do this, consider a modification of the QD-
learning algorithm, where each regular agent vn updates
Qni,u(t) for state-action pair (i, u) as

Qni,u(t+ 1)

= Qni,u(t)− βi,u(t)
∑

vl∈Jn
i,u(t)

(Qni,u(t)−Qli,u(t))

+ αi,u(t)
(
cn(xt,ut) + γmin

v∈U
Qnxt+1,v(t)−Q

n
i,u(t)

)
, (10)

where αi,u(t) and βi,u(t) are in (3) and (4), and J ni,u(t) ∈
Nn is computed by the following procedure. Agent vn
receives {Qli,u(t), l ∈ Nn} and removes the F highest and
F smallest values that are larger and smaller than Qni,u(t),
respectively. If there are fewer than F values higher than
Qni,u(t), agent vn removes all values that are strictly larger
than Qni,u(t). Likewise, if there are less than F values
strictly smaller than Qni,u(t), then agent vn removes all values
that are strictly smaller than Qni,u(t). Otherwise, it removes
precisely the smallest F values. Let J ni,u(t) ∈ Nn denote the
set of agents whose values were retained by regular agent vn
at time t for state-action pair (i, u).

The above resilient QD-Learning algorithm for each reg-
ular agent vn ∈ R is summarized in Algorithm 1.

Algorithm 1 Resilient QD Learning Algorithm
1: Initialize Qn

0 , Vn
0

2: for t = 0, 1, 2, · · · do
3: Receive state xt, action ut and cost cn(xt,ut)
4: Receive state xt+1 and Ql

t, l ∈ Nn
5: for (i, u) ∈ X × U do
6: Compute J ni,u(t) ∈ Nn
7: Compute Qni,u(t+ 1) as (10)
8: end for
9: for i ∈ X do

10: Compute V ni (t+ 1) = min
u∈U

Qni,u(t+ 1)

11: end for
12: end for

Define the centralized Q-learning operator of all regular
agents ḠR : R|X×U| 7→ R|X×U|, whose components ḠRi,u :

R|X×U| 7→ R are

ḠRi,u(Q) =
1

|R|
∑
vn∈R

Gni,u(Q)

=
1

|R|
∑
vn∈R

E[cn(i, u)] + γ
∑
j∈X

puij min
v∈U

Qj,v.

Let QR∗ = [QR∗i,u ] ∈ R|X×U| be the fixed point of ḠR, i.e.,

QR∗i,u , ∀(i, u) ∈ X × U , satisfy

QR∗i,u =
1

|R|
∑
vn∈R

E[cn(i, u)] + γ
∑
j∈X

puij min
v∈U

QR∗j,v .

Let VR∗ = [V R∗i ] ∈ R|X | be the optimal value function of
all regular agents, where V R∗i = min

u∈U
QR∗i,u .

We will use the following result in our analysis of Algo-
rithm 1.

Lemma 1 ( [5], [19]): Consider a network G = (V , E),
with a set of regular nodes R and a set of adversarial nodes
A. Suppose that A is an F -local set, and that each regular
node has at least 2F + 1 neighbors. Consider an iteration of
the form

xn(k + 1) = ann(k)xn(k) +
∑

vl∈Jn(k)

anl(k)xl(k)

−akdn(k), (11)

where anl(k) ≥ η,
∑
l anl(k) = 1, vl ∈ {vn}∪J n(k), with

Jn(k) being generated in the same way as Jni,u(t) and dn(k)
is a given sequence. Equation (11) is equivalent to

xn(k+1) = ānn(k)xn(k)+
∑

vl∈Nn∩R
ānl(k)xl(k)−akdn(k),

where the weights ānl(k) are nonnegative and satisfy the
following properties:
• ānn(k) +

∑
vl∈Nn∩R

ānl(k) = 1,

• ānn(k) ≥ η and at least |Nn|−2F of other weights are
lower bounded by η

2 .
We now come to the main result in our paper.
Theorem 1: Consider the network G = (V, E) with regular

nodes R and adversarial nodes A. Under Assumptions 1, 2
and 4, Algorithm 1 guarantees that, for each regular agent
vn ∈ R,

P
(

lim sup
t→∞

∥∥Qn
t −QR∗

∥∥
∞ ≤ R

)
= 1,

P
(

lim sup
t→∞

‖Vn
t −VR∗‖∞ ≤ R

)
= 1,

where
R = max

vn,vl∈R
‖Qn∗ −Ql∗‖∞. (12)

For each i ∈ X , if |QR∗i,u − QR∗i,v | ≥ 2R, u, v ∈ U , each
regular agent can learn the optimal policy πR∗. Furthermore,
for each regular agent vn ∈ R and state-action pair (i, u) ∈
X × U ,

P
(

lim sup
t→∞

Qni,u(t) ≤MR
)

= 1, (13)

P
(

lim inf
t→∞

Qni,u(t) ≥ mR
)

= 1, (14)

where MR = max
vn∈R

max
i,u

Qn∗i,u, and mR = min
vn∈R

min
i,u

Qn∗i,u.

Proof: By (10), {zni,u(k)} evolves as

zni,u(k + 1) = ω̂nni,u(k)zni,u(k) +
∑

vl∈Jn
i,u(Ti,u(k))

ω̂nli,u(k)zli,u(k)

−akdni,u(znk ), (15)

1254

Authorized licensed use limited to: Purdue University. Downloaded on March 02,2022 at 05:18:07 UTC from IEEE Xplore.  Restrictions apply. 



where ω̂nni,u(k) = 1− b|J ni,u(Ti,u(k))|, ω̂nli,u(k) = b, vl ∈ Nn
and dni,u(znk ) = zni,u(k)−Gni,u(znk ) with znk ∈ R|X×U| whose
components are zni,u(k).

By Lemma 1, the update rule (15) for each vn ∈ R is
equivalent to

zni,u(k + 1) = ω̄nni,u(k)zni,u(k) +
∑

vl∈Nn∩R
ω̄nli,u(k)zli,u(k)

−akdni,u(znk ), (16)

where the weights ω̄nli,u(k) are nonnegative and satisfy the
following properties:
• ω̄nni,u(k) +

∑
vl∈Nn∩R

ω̄nl(k) = 1,

• ω̄nni,u(k) ≥ η and at least |Nn| − 2F of other weights
are lower bounded by η

2 .
Without loss of generality, we assume that the regular nodes
are arranged first in the ordering of the nodes. Let zRi,u(k) =

[z1i,u(k) · · · z|R|i,u (k)]>. Then, we have

zRi,u(k + 1) = Āi,u(k)zRi,u(k)− akdRi,u(zRk ), (17)

where Āi,u(k) ∈ R|R|×|R| is a matrix whose (n, l)-th entry
is ω̄nli,u(k) and dRi,u(zRk ) = [d1i,u(z1k) · · · d|R|i,u (z

|R|
k )]>.

Consider the graph G, and remove all edges whose weights
are smaller than η

2 in Āi,u(k). By Lemma 2.3 in [5], the
subgraph consisting of regular nodes will be rooted after
removing 2F or fewer edges from each regular nodes if the
graph is (2F + 1)-robust. Thus, Āi,u(k) is rooted for each
k ∈ N, with a tree whose edge-weights are all lower-bounded
by η

2 . Thus, equation (17) is in the same form of equation
(9). Theorem 1 then follows by applying Proposition 3.

Remark 4: Regardless of the behavior of any set of
Byzantine agents, the error between the value function Vn

t

of each regular agent vn and the optimal value function V∗

can be further bounded by

R ≤ max
vn,vl∈R

1

1− γ
‖E[cn]− E[cl]‖∞,

where cn = [cn(i, u)] ∈ R|X×U|. Roughly speaking, R
becomes smaller as the local optimal value functions/costs
of regular agents get closer. In particular, if all regular agents
own the same local optimal value functions/costs, R = 0.

Remark 5: Equations (13) and (14) further imply

P
(

lim sup
t→∞

‖Qn
t ‖∞ ≤ max

vn∈R
‖Qn∗‖∞

)
= 1, ∀vn ∈ R.

More specifically, unlike standard (optimal) distributed learn-
ing algorithms that can be arbitrarily co-opted by an adver-
sary (Proposition 5), in the long run, the Q values of each
regular agent will be bounded by the largest maximum norm
of local optimal Q values among all regular agents under our
algorithm, regardless of the behaviors of any F-local set of
Byzantine agents,

Remark 6: The adversary model we consider is the F -
local model, which is more general than the F -total model
considered in [17]. In particular, the F -total model indicates
that there are no more than F Byzantine nodes in the entire
network, whereas we allow up to F Byzantine nodes in the
neighborhood of every regular node.

V. CONCLUSION

We developed a resilient distributed Q-learning algorithm
for a networked system in the presence of Byzantine agents.
Under certain conditions on the network topology, we estab-
lished the almost sure convergence of the value function of
each regular agent to the neighborhood of the optimal value
function of all regular agents. For each state, if the optimal
Q-values corresponding to different actions are sufficiently
separated, our algorithm allows each regular agent to learn
the optimal policy of all regular agents.
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