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Figure 2: Images over time concept in the fMoW dataset. The metadata associated with each image is shown underneath.

We can see changes in contrast, brightness, cloud cover etc. in the images. These changes render spatially aligned images

over time useful for constructing additional positives.
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Figure 3: Some examples from GeoImageNet dataset. Below each image, we list their latitudes, longitudes, city, country

name. In our study, we use the latitude and longitude information for unsupervised learning. We recommend readers to

zoom-in to visualize the details of the pictures.
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Figure 4: Left The histogram of number of views. Right the

histogram of standard deviation in years per area in fMoW.

at a shared location, with latitude and longitude equal

to lati, loni respectively, over time ti = 1, ..., Ti. When

Ti > 1, we refer to the dataset to have temporal information

or structure. Although temporal information is often not

available in natural image datasets (e.g. ImageNet), it is

common in remote sensing. While the temporal structure is

similar to that of conventional videos, there are some key

differences that we exploit in this work. First, we consider

relatively short temporal sequences, where the time differ-

ence between two consecutive “frames” could range from

months to years. Additionally unlike conventional videos

we consider datasets where there is no viewpoint change

across the image sequence.

Given our setup, we want to obtain visual representa-

tions zti
i

of images xti

i
such that the learned representation

can be transferred to various downstream tasks. We do not

assume access to any labels or human supervision beyond

the lati, loni geo-tags. The quality of the representations

is measured by their performance on various downstream

tasks. Our primary goal is to improve the performance

of self-supervised learning by utilizing the geo-coordinates

of geo-tagged datasets with remote sensing and traditional

computer vision images.

3.1. Functional Map of the World

Functional Map of the World (fMoW) is a large-scale

publicly available remote sensing dataset [4] consisting of

approximately 363,571 training images and 53,041 test im-

ages across 62 highly granular class categories. It provides

images (temporal views) from the same location over time

(x1
i
, · · · , xTi

i
) as well as geo-location metadata (lati, loni)

for each image. Fig. 4 shows the histogram of the number

of temporal views in fMoW dataset. We can see that most of

the areas have multiple temporal views where Ti can range

from 1 to 21, and on average there is about 2.5-3 years of

difference between the images from an area. Also, we show

examples of spatially aligned images in Fig. 2. As seen in

Fig. 5, fMoW is a global dataset consisting of images from

seven continents which can be ideal for learning global re-

mote sensing representations. Such representations can be

used for transfer learning on different remote sensing tasks

for different regions.
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Backbone
F1-Score ↑

(Frozen/Finetune)

Accuracy ↑
(Frozen/Finetune)

Sup. Learning (IN wts. init.)* ResNet50 -/64.72 -/69.07

Sup. Learning (Scratch)* ResNet50 -/64.71 -/69.05

Geoloc. Learning* ResNet50 48.96/52.23 52.40/56.59

MoCo-V2 (pre. on IN) ResNet50 31.55/57.36 37.05/62.90

MoCo-V2 ResNet50 55.47/60.61 60.69/64.34

MoCo-V2+Geo ResNet50 61.60/66.60 64.07/69.04

MoCo-V2+TP ResNet50 64.53/67.34 68.32/71.55

MoCo-V2+Geo+TP ResNet50 63.13/66.56 66.33/70.60

Table 1: Experiments on fMoW on classifying single im-

ages. * indicates a model trained up to epoch with the high-

est accuracy on the validation set. We use the same set up

for Sup. Learning and Geoloc. Learning in the remaining

experiments. Frozen corresponds to linear classification on

frozen features. Finetune corresponds to end-to-end fine-

tuning results for the fmow classification.

genet pre-trained weights and random weights respectively.

This result aligns with MoCo-v2’s performance on the Ima-

geNet dataset [2]. Next, by incorporating geo-location clas-

sification task into MoCo-v2, we improve by 3.38% in top-

1 classification accuracy. We further improve the results

to 68.32% using temporal positives, bridging the gap be-

tween the MoCo-v2 baseline and supervised learning to less

than 1%. However, when we perform end-to-end finetun-

ing for the classification task, we observe that our method

surpasses the supervised learning methods by more than

2%. For completeness, we also include results for MoCo-

v2 pre-trained on Imagenet dataset (4th row in Table 1) and

find that the distribution shift between Imagenet and down-

stream dataset leads to suboptimal performance.

Classifying Temporal Data In the next step, we change

how we perform testing across multiple images over an

area at different times. In this case, we predict labels

from images over an area i.e. make a prediction for each

t ∈ {1, . . . , Ti}, and average the predictions from that area.

We then use the most confident class prediction to get area-

specific class predictions. In this case, we evaluate the per-

formance on 11,231 unique areas that are represented by

multiple images at different times. Our results in Table 2

show that doing area-specific inference improves the classi-

fication accuracies by 4-8% over image-specific inference.

Even incorporating temporal positives, we can improve the

accuracy by 6.1% by switching from image classification to

temporal data classification. Overall, our methods outper-

form the baseline Moco-v2 by 4-6% and supervised learn-

ing by 1-2%. Here we only report temporal classification

on top of frozen features.

5.2. Transfer Learning Experiments

Previously, we performed pre-training experiments on

fMoW dataset and quantified the quality of the representa-

tions by supervised training a linear layer for image recogni-

Backbone F1-Score ↑ Accuracy ↑

Sup. Learning (IN wts. init.)* ResNet50 68.72 (+4.01) 73.22 (+4.15)

Sup. Learning (Scratch)* ResNet50 68.73 (+4.02) 73.24 (+4.19)

Geoloc. Learning* ResNet50 52.01 (+3.05) 56.12 (+3.72)

MoCo-V2 (pre. on IN) ResNet50 35.93 (+4.38) 42.56 (+5.51)

MoCo-V2 ResNet50 63.96 (+8.49) 68.64 (+7.95)

MoCo-V2+Geo ResNet50 66.93 (+5.33) 70.48 (+6.41)

MoCo-V2+TP ResNet50 70.11 (+5.58) 74.42 (+6.10)

MoCo-V2+Geo+TP ResNet50 69.56 (+6.43) 72.76 (+6.43)

Table 2: Experiments on fMoW on classifying temporal

data. In the table, we compare the results to the ones on

single image classification. Here we present results corre-

sponding to linear classification on frozen features only.

pre-train AP50 ↑

Random Init. 10.75

Sup. Learning (IN wts. init.) 14.44

Sup. Learning (Scratch) 14.42

MoCo-V2 15.45 (+4.70)

MoCo-V2-Geo 15.63 (+4.88)

MoCo-V2-TP 17.65 (+6.90)

MoCo-V2-Geo+TP 17.74 (+6.99)

Table 3: Object detection results on the xView dataset.

tion on fMoW. In this section, we perform transfer learning

experiments on different low level tasks.

5.2.1 Object Detection

For object detection, we use the xView dataset [15] consist-

ing of high resolution satellite images captured with similar

sensors to the ones in the fMoW dataset. The xView dataset

consists of 846 very large (∼2000×2000 pixels) satellite

images with bounding box annotations for 60 different class

categories including airplane, passenger vehicle, maritime

vessel, helicopter etc.

Implementation Details We first divide the set of large

images into 700 training and 146 test images. Then, we

process the large images to create 416×416 pixels images

by randomly sampling the bounding box coordinates of the

small image and we repeat this process 100 times for each

large image. In this process, we ensure that there is less than

25% overlap between any two bounding boxes from the

same image. We then use RetinaNet [17] with pre-trained

ResNet-50 backbone and fine-tune the full network on the

xView training set. To train RetinaNet, we use learning rate

of 1e-5 and a batch size of 4 and Adam optimizer.

Qualitative Analyis Table 3 shows the object detection re-

sults on the xView. We achieve the best results with the

addition of temporal positive pair, and geo-location classi-

fication pre-text task into MoCo-v2. With our final model,

we can outperform the randomly initialized weights by 7%
AP and the supervised learning on the fMoW by 3.3% AP.
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5.2.2 Image Segmentation

In this section, we perform downstream experiments on the

task of Semantic Segmentation on SpaceNet dataset [34].

The SpaceNet datasets consists of 5000 high resolution

satellite images with segmentation masks for buildings.

Implementation Details We divide our SpaceNet dataset

into training and test sets of 4000 and 1000 images respec-

tively. We use PSAnet [43] network with ResNet-50 back-

bone to perform semantic segmentation. We train PSAnet

network with a batch size of 16 and a learning rate of 0.01

for 100 epochs and use SGD optimizer.

Qualitative Analysis Table 4 shows the segmentation per-

formance of differently initialized backbone weights on the

SpaceNet test set. Similar to object detection, we achieve

the best IoU scores with the addition of temporal positives

and geo-location classification task. Our final model out-

performs the randomly initialized weights and supervised

learning by 3.58% and 2.94% IoU scores. We observe that

the gap between the best and worst models shrinks going

from the image recognition to object detection, and seman-

tic segmentation task. This aligns with the performance of

the MoCo-v2 pre-trained on ImageNet and fine-tuned on

the Pascal-VOC object detection and semantic segmenta-

tion experiments [12, 2].

pre-train mIOU ↑

Random Init. 74.93

Imagenet Init. 75.23

Sup. Learning (IN wts. init.) 75.61

Sup. Learning (Scratch) 75.57

MoCo-V2 78.05 (+3.12)

MoCo-V2-Geo 78.42 (+3.49)

MoCo-V2-TP 78.48 (+3.55)

MoCo-V2-Geo+TP 78.51 (+3.58)

Table 4: Semantic segmentation results on Space-Net.

pre-train Top-1 Accuracy ↑

Random Init. 51.89

Imagenet Init. 53.46

Sup. Learning (IN wts. init.) 54.67

Sup. Learning (Scratch) 54.46

MoCo-V2 55.18 (+3.29)

MoCo-V2-Geo 58.23 (+6.34)

MoCo-V2-TP 57.10 (+5.21)

MoCo-V2-Geo+TP 57.63 (+5.74)

Table 5: Land Cover Classification on NAIP dataset.

5.2.3 Land Cover Classification

Finally, we perform transfer learning experiments on land

cover classification across 66 land cover classes using high

resolution remote sensing images obtained by the USDA’s

National Agricultural Imagery Program (NAIP). We use the

images from the California’s Central Valley for the year of

2016. Our final dataset consists of 100,000 training and

50,000 test images. Table 5 shows that our method outper-

forms the randomly initialized weights by 6.34% and super-

vised learning by 3.77%.

5.3. Experiments on GeoImageNet

After fMoW, we adopt our methods for unsupervised

learning on fMoW for improving representation learning on

the GeoImageNet. Unfortunately, since ImageNet does not

contain images from the same area over time we are not able

to integrate the temporal positive pairs into the MoCo-v2

objective. However, in our GeoImageNet experiments we

show that we can improve MoCo-v2 by introducing geo-

location classification pre-text task.

Qualitative Analysis Table 6 shows the top-1 and top-5

classification accuracy scores on the test set of GeoIma-

geNet. Surprisingly, with only geo-location classification

task we can achieve 22.26% top-1 accuracy. With MoCo-v2

baseline, we get 38.51 accuracy, about 3.47% more than su-

pervised learning method. With the addition of geo-location

classification, we can further improve the top-1 accuracy by

1.45%. These results are interesting in a way that MoCo-v2

(200 epochs) on ImageNet-1k performs 8% worse than su-

pervised learning whereas it outperforms supervised learn-

ing on our highly imbalanced GeoImageNet with 5150 class

categories which is about 5× more than ImageNet-1k.

Backbone
Top-1

(Accuracy) ↑
Top-5

(Accuracy) ↑

Sup. Learning (Scratch) ResNet50 35.04 54.11

Geoloc. Learning ResNet50 22.26 39.33

MoCo-V2 ResNet50 38.51 57.67

MoCo-V2+Geo ResNet50 39.96 58.71

Table 6: Experiments on GeoImageNet. We divide the

dataset into 443,435 training and 100,000 test images across

5150 classes. We train MoCo-V2 and MoCo-V2+Geo for

200 epochs whereas Sup. and Geoloc. Learning are

trained until they converge.

6. Conclusion

In this work, we provide a self-supervised learning

framework for remote sensing data, where unlabeled data is

often plentiful but labeled data is scarce. By leveraging spa-

tially aligned images over time to construct temporal posi-

tive pairs in contrastive learning and geo-location in the de-

sign of pre-text tasks, we are able to close the gap between

self-supervised and supervised learning on image classifica-

tion, object detection and semantic segmentation on remote

sensing and other geo-tagged image datasets.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,

Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-

laghi Azar, et al. Bootstrap your own latent-a new approach

to self-supervised learning. Advances in Neural Information

Processing Systems, 33, 2020. 1

[10] James Hays and Alexei A Efros. Im2gps: estimating geo-

graphic information from a single image. In 2008 ieee con-

ference on computer vision and pattern recognition, pages

1–8. IEEE, 2008. 1, 2

[11] James Hays and Alexei A Efros. Large-scale image geolo-

calization. In Multimodal location estimation of videos and

images, pages 41–62. Springer, 2015. 1, 2

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020. 1, 2, 4, 5, 6, 8

[13] Hayate Iso, Shoko Wakamiya, and Eiji Aramaki. Density

estimation for geolocation via convolutional mixture density

network. arXiv preprint arXiv:1705.02750, 2017. 2

[14] Neal Jean, Sherrie Wang, Anshul Samar, George Azzari,

David Lobell, and Stefano Ermon. Tile2vec: Unsupervised

representation learning for spatially distributed data. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 3967–3974, 2019. 2

[15] Darius Lam, Richard Kuzma, Kevin McGee, Samuel Doo-

ley, Michael Laielli, Matthew Klaric, Yaroslav Bulatov, and

Brendan McCord. xview: Objects in context in overhead

imagery. arXiv preprint arXiv:1802.07856, 2018. 1, 7

[16] Yansheng Li, Chao Tao, Yihua Tan, Ke Shang, and Jinwen

Tian. Unsupervised multilayer feature learning for satellite

image scene classification. IEEE Geoscience and Remote

Sensing Letters, 13(2):157–161, 2016. 2

[17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2980–2988, 2017. 7

[18] Xiaoqiang Lu, Xiangtao Zheng, and Yuan Yuan. Remote

sensing scene classification by unsupervised representation

learning. IEEE Transactions on Geoscience and Remote

Sensing, 55(9):5148–5157, 2017. 2

[19] Oisin Mac Aodha, Elijah Cole, and Pietro Perona. Presence-

only geographical priors for fine-grained image classifica-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 9596–9606, 2019. 2

[20] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens van der Maaten. Exploring the limits of weakly

supervised pretraining. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 181–196, 2018.

1

[21] Ishan Misra and Laurens van der Maaten. Self-supervised

learning of pretext-invariant representations. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 6707–6717, 2020. 2

[22] Lichao Mou, Pedram Ghamisi, and Xiao Xiang Zhu. Un-

supervised spectral–spatial feature learning via deep resid-

ual conv–deconv network for hyperspectral image classifica-

tion. IEEE Transactions on Geoscience and Remote Sensing,

56(1):391–406, 2017. 2

[23] Eric Muller-Budack, Kader Pustu-Iren, and Ralph Ewerth.

Geolocation estimation of photos using a hierarchical model

and scene classification. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 563–579,

2018. 2

[24] T Nathan Mundhenk, Goran Konjevod, Wesam A Sakla,

and Kofi Boakye. A large contextual dataset for classifica-

tion, detection and counting of cars with deep learning. In

European Conference on Computer Vision, pages 785–800.

Springer, 2016. 2

[25] Mehdi Noroozi and Paolo Favaro. Unsupervised learning

of visual representations by solving jigsaw puzzles. In

European Conference on Computer Vision, pages 69–84.

Springer, 2016. 2

[26] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018. 4

[27] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Dar-

rell, and Bharath Hariharan. Learning features by watch-

ing objects move. In Proceedings of the IEEE Conference

10189



on Computer Vision and Pattern Recognition, pages 2701–

2710, 2017. 2

[28] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2536–2544, 2016. 2

[29] Adriana Romero, Carlo Gatta, and Gustau Camps-Valls. Un-

supervised deep feature extraction for remote sensing image

classification. IEEE Transactions on Geoscience and Remote

Sensing, 54(3):1349–1362, 2015. 2

[30] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao

Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han

Zhang, and Colin Raffel. Fixmatch: Simplifying semi-

supervised learning with consistency and confidence. arXiv

preprint arXiv:2001.07685, 2020. 2

[31] Kevin Tang, Manohar Paluri, Li Fei-Fei, Rob Fergus, and

Lubomir Bourdev. Improving image classification with lo-

cation context. In Proceedings of the IEEE international

conference on computer vision, pages 1008–1016, 2015. 2

[32] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. arXiv preprint arXiv:1906.05849,

2019. 4

[33] Burak Uzkent, Evan Sheehan, Chenlin Meng, Zhongyi Tang,

Marshall Burke, David B Lobell, and Stefano Ermon. Learn-

ing to interpret satellite images using wikipedia. In IJCAI,

pages 3620–3626, 2019. 1, 2

[34] Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow.

Spacenet: A remote sensing dataset and challenge series.

arXiv preprint arXiv:1807.01232, 2018. 8

[35] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing robust

features with denoising autoencoders. In Proceedings of the

25th international conference on Machine learning, pages

1096–1103, 2008. 2

[36] Nam Vo, Nathan Jacobs, and James Hays. Revisiting im2gps

in the deep learning era. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2621–2630,

2017. 2

[37] Xiaolong Wang and Abhinav Gupta. Unsupervised learn-

ing of visual representations using videos. In Proceedings of

the IEEE international conference on computer vision, pages

2794–2802, 2015. 2

[38] Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-

photo geolocation with convolutional neural networks. In

European Conference on Computer Vision, pages 37–55.

Springer, 2016. 2

[39] Yi Yang and Shawn Newsam. Bag-of-visual-words and spa-

tial extensions for land-use classification. In Proceedings of

the 18th SIGSPATIAL international conference on advances

in geographic information systems, pages 270–279, 2010. 2

[40] Lefei Zhang, Liangpei Zhang, Bo Du, Jane You, and

Dacheng Tao. Hyperspectral image unsupervised classifi-

cation by robust manifold matrix factorization. Information

Sciences, 485:154–169, 2019. 2

[41] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In European conference on computer

vision, pages 649–666. Springer, 2016. 2

[42] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain

autoencoders: Unsupervised learning by cross-channel pre-

diction. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1058–1067, 2017. 2

[43] Hengshuang Zhao, Yi Zhang, Shu Liu, Jianping Shi, Chen

Change Loy, Dahua Lin, and Jiaya Jia. Psanet: Point-wise

spatial attention network for scene parsing. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 267–283, 2018. 8

10190


