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The nonlinear resonant interaction of intense whistler-mode waves and energetic electrons in the Earth’s
radiation belts is traditionally described by theoretical models based on the consideration of slow-fast res-
onant systems. Such models reduce the electron dynamics around the resonance to the single pendulum
equation, that provides solutions for the electron nonlinear scattering (phase bunching) and phase trapping.
Applicability of this approach is limited to not-too-small electron pitch-angles (i.e., sufficiently large electron
magnetic moments), whereas model predictions contradict to the test particle results for small pitch-angle
electrons. This study is focused on such field-aligned (small pitch-angle) electron resonances. We show that
the nonlinear scattering can be described by the slow-fast Hamiltonian system with the separatrix crossing.
For the first cyclotron resonance, this scattering results in the electron pitch-angle increase, contrast to the
pitch-angle decrease predicted by the pendulum equation. We derive the threshold value of the magnetic
moment of the transition to a new regime of the nonlinear resonant scattering. For field-aligned electrons
the proposed model provides the magnitude of magnetic moment changes due to the nonlinear scattering.
Together with existing models for not-too-small pitch-angles, this model completes the theory of the nonlinear
resonant electron interaction with intense whistler-mode waves.

I. INTRODUCTION

The wave-particle resonant interaction is the key pro-
cess for energy exchange between different particle pop-
ulations in collisionless plasma24. Particle scattering by
waves is responsible for losses in magnetic traps76, e.g.
in Earth’s radiation belts8,39 where whistler-mode cho-
rus and hiss waves together with electromagnetic ion cy-
clotron waves control electron precipitations into Earth’s
atmosphere46,48,73. The basic concept describing such
scattering is the quasi-linear theory20,77 that assumes
electron resonant interaction with a broad-band spec-
trum of low coherent, low amplitude waves64. In an in-
homogeneous ambient magnetic field the requirement for
a low coherence is significantly relaxed33,45, and electron
scattering by the monochromatic low amplitude waves
can be described by the quasi-linear diffusion4,5. How-
ever, effects of electron resonances with intense waves,
e.g. phase trapping and nonlinear scattering (phase
bunching)34,35,58,59, are well beyond the quasi-linear the-
ory and require a separate consideration7,12,63,66.

Although oblique whistler-mode waves represent a sig-
nificant fraction of whistlers in the Earth’s radiation
belts10, the most intense are field-aligned whistlers74,78,81

(e.g., lower band chorus waves with the wave frequency
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ω below a half of the electron gyrofrequency, Ωce), which
often resonate with electrons nonlinearly79. There is
only the first cyclotron resonance available for field-
aligned whistler-mode waves interacting with electrons:

γω−kc
√
γ2 − 1 cosα = Ωce (k is the wavevector, α is an

electron pitch-angle, and γ is an electron Lorentz factor).
The phase trapping for this resonance results in electron
acceleration with the electron pitch-angle increase for en-
ergetic particles (with the γ < Ωce/ω) and with the elec-
tron pitch-angle decrease for ultra-relativistic particles
(with γ > Ωce/ω), see Refs. 23, 62, and 69. The non-
linear scattering (phase bunching) results in decrease of
electron energy and pitch-angle3,14. Although effects of
realistic wave frequency drift18,19,32,38,42 and wave am-
plitude modulation25,31,71,72 alter the electron nonlinear
resonant interaction, the basic concept remains the same:
trapping results in electron transport away from the loss-
cone and nonlinear scattering results in electron trans-
port toward the loss-cone. A competition of these two
nonlinear processes determines electron acceleration and
losses.

The theory of nonlinear electron resonances with
whistler-mode waves is based on individual orbit anal-
ysis, that reduces the electron motion equation to the
pendulum equation with torque2,15,56,58,65. Such analy-
sis describes well both phase trapping and nonlinear scat-
tering effects and provides typical amplitudes of energy
and pitch-angle changes, ∆γ and ∆α. The basic idea
behind this analysis is the separation of time-scales of
fast variations of resonant phase (the inverse time scale

is ∼ φ̇ ∼ ω) and slow variations of the ambient mag-
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netic fields along electron trajectories (the inverse time-

scale is ∼ c
√

1− γ−2/R � ω, R is a typical inhomo-
geneity scale). This separation provides a single small
parameter c/Rω ∼ 1/kR � 1. For the nonlinear wave-
particle interaction this parameter is about the ratio of
a wave amplitude Bw and ambient magnetic field mag-
nitude B0, i.e. a wave force ∼ Bw/k can compete with a
mirror force ∼ B0/R and temporally trap electrons into
the resonance2,35,67. However, this theoretical concept is
invalid for systems with the second small parameter, e.g.
for very small pitch-angle (almost field-aligned) electrons.
This effect has been found in Ref. 47: the resonant inter-
action cannot result in decrease of electron pitch-angles
below zero, and for sufficiently small pitch-angles such
interaction would increase pitch-angles. Therefore, the
nonlinear scattering model, predicting ∆α < 0, meets
difficulties in describing small pitch-angle electron reso-
nances (see discussion in Refs. 25 and 40). Test parti-
cle simulations show that ∆α due to nonlinear scatter-
ing becomes positive for sufficiently small initial α (such
electron repulsion from the loss-cone results in effective
electron trapping around loss-cone40). The similar ef-
fect of the reversing of pitch-angle scattering around the
loss-cone is observed for the electron resonant interac-
tion with electromagnetic ion cyclotron waves (see Refs.
27, 28, and 41). So, the actual question is: can the the-
oretical model of the nonlinear wave-particle interaction
be modified to account for such electron repulsion from
the loss-cone? We address this question below.

II. BASIC EQUATIONS

We start with the Hamiltonian of a relativistic electron
(me is the rest mass, −e is the charge, energy is compa-
rable to mec

2 where c is the speed of light) describing
two pairs of conjugate variables: the field-aligned coordi-
nate and momentum (s, p‖), gyrophase ψ and momentum
Ix = cµ/e where µ is the classical magnetic moment.
In presence of a field-aligned whistler-mode wave, this
Hamiltonian can be written as (see, e.g., Refs. 7 and
75):

H = mec
2γ + Uw (s, Ix) sin (φ+ ψ)

γ =

√
1 +

p2‖

m2
ec

2
+

2IxΩce
mec2

(1)

where Ωce = eB0/mec is the electron gyrofrequency
(B0(s) is the background magnetic field given by, e.g.,
reduced dipole model15), Uw =

√
2IxΩcemeeBw/γmeck

with Bw the wave amplitude. The wave number k(ω, s)
is given by the cold plasma dispersion68 for a constant
wave frequency ω (i.e., ∂φ/∂s = k, ∂φ/∂t = −ω). Hamil-

tonian equations for (1) are

ṡ =
p‖

meγ
+
∂Uw
∂p‖

sin (φ+ ψ)

ṗ‖ = −Ix
γ

∂Ωce
∂s
− kUw cos (φ+ ψ)− ∂Uw

∂s
sin (φ+ ψ)

ψ̇ =
Ωce
γ

+
∂Uw
∂Ix

sin (φ+ ψ) (2)

İx = −Uw cos (φ+ ψ)

where φ̇ = kṡ − ω. Equations (2) show that in ab-
sence of wave (Uw = 0) and for Ix of the order of
p2‖/meΩce (for not too small pitch-angles), phases φ and

ψ change with the rate ∼ Ωce (we consider whistler-mode
waves with ω of the order of Ωce), whereas (s, p‖) change
with the rate (p‖/γ)∂Ωce/∂s ∼ c/R where R is a spa-
tial scale of B0 gradient (for the Earth radiation belts
R ≈ REL, RE ≈ 6380 km and L is the distance from
the Earth in RE). Comparing these rates, we obtain
c/RΩce � 1, i.e., φ and ψ change much faster than
(s, p‖) do. For intense whistler waves in the radiation
belts Bw/B0 ≥ c/RΩce despite that Bw/B0 � 1 (see Ref.
81). Therefore, ∼ Uw term in Eqs. (2) does not modify
the rates of φ, ψ and (s, p‖) change: phases are fast vari-
ables and field-aligned coordinate, momentum are slow
variables. Hamiltonian (1) with such time-scale separa-
tion is studied both numerically and analytically2,14,65,72.
Figure 1(a) shows several fragments of electron trajecto-

ries around the resonance φ̇+ψ̇ = 0 for this Hamiltonian.
Resonant electrons can be either trapped (and acceler-
ated) by the wave or scattered (with energy decrease).
Trapping increases Ix (and increases electron equatorial
pitch-angle αeq; Ix = mec

2
(
γ2 − 1

)
sin2 αeq/2Ωce(0)),

whereas nonlinear scattering decreases Ix and αeq. Am-
plitudes of energy and Ix (or pitch-angle) changes for
such trapping and scattering are well described by ana-
lytical equations3,13,75.

For electron nonlinear scattering, the amplitude of Ix
changes is about ∼

√
Bw/B0 (see details in, e.g., Refs.

7, 12, and 55 and references therein). However, if Ix is
sufficiently small (i.e., for field-aligned electrons), these
changes can be larger than the initial Ix. This would
break the theory, because Ix is positively defined vari-
able that cannot become negative. Figure 1(b) shows
several fragments of field-aligned electron trajectories:
there are positive Ix changes due to nonlinear scattering
(compare with Fig. 1(a)). Thus, a new model should be
developed to describe this nonlinear scattering for small
Ix ≤

√
Bw/B0.

Let us introduce new phase ϕ and conjugate mo-
mentum I through the generating function W =(∫
k(s̃)ds̃− ωt+ ψ

)
I + sP :

HI = −ωI +mec
2γ + Uw sinϕ

γ =

√
1 +

(P + kI)
2

m2
ec

2
+

2IΩce
mec2

(3)
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FIG. 1: Changes of electron energy, pitch-angle, and Ix (Ωeq = Ωce(0) is the electron equatorial gyrofrequency) due
to nonlinear scattering (black; blue shows averaged energy of scattered particles) and trapping (red). Left and right
columns show results for 45◦ and 5◦ initial equatorial pitch-angles. The time interval of one resonant interaction is
shown. For these trajectories we consider the curvature-free dipole magnetic field15 with the radial distance from the
Earth R = 6RE (i.e., L = 6). The wave frequency is 0.35Ωeq, and plasma frequency equals to 6Ωeq. To evaluate the
wave number k we use the cold plasma dispersion of whistler-mode waves68. Wave amplitude is 500 pT, i.e. this is
an intense wave17,74,78,79. The distribution of the wave amplitude along magnetic field lines, Bw(s), is modeled by

function tanh((λ/δλ1)
2) exp(−(λ/δλ2)

2) with λ being the magnetic latitude (ds = Rdλ
√
1 + sin2 λ cosλ) and

δλ1 = 2◦, δλ2 = 20◦. This function fits the observed whistler-mode wave intensity distribution1. To simplify the
simulations, we consider waves only in one hemisphere, Bw = 0 for s < 0, and thus there is only one resonance within
one bounce period. Waves are moving away from the equatorial plane, s = 0, to large s, i.e. only k > 0 are included.

Hamiltonian (3) does not depend on time, i.e. HI =
const and mec

2γ−ωI is the integral of motion. Far from
the resonance ϕ̇ = ∂HI/∂I = 0, particles move in 2D
surface formed by intersection of HI(s, P, I) = const and
I = const. The standard procedure suggests expansion
of Hamiltonian (3) around the resonance I = Ires defined
by ∂HI/∂I = 0. However, for small momentum I such
an approach is not applicable. To follow an alternative
approach, we start with the expansion for small I and
then consider the resonance.

III. EXPANSION AROUND SMALL I

Let us consider Hamiltonian (3) for small kI values:

HI ≈
(
Ωce + kP/me

γ0
− ω

)
I +

K2I2

2me
+mec

2γ0

+

√
2IΩce

me

eBw

ckγ0
sinϕ (4)

where

K2 = m2
ec

2 ∂2γ

∂I2

∣∣∣∣
I=0

=
1

γ3
0

(
k2 − 2

kPΩce

mec2
− Ω2

ce

c2

)
(5)

and γ0 =

√
1 + (P/mec)

2
. Note Eq. (4) shows that

HI ≈ mec
2γ0+O(I) is the integral of motion. We rewrite
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Hamiltonian (4) as

HI = Λ +
1

2me
K2 (I − IR)

2
+

√
2IΩce
me

eBw
ckγ0

sinϕ

Λ = mec
2γ0 −

me

2K2

(
ω − Ωce + kP/me

γ0

)2

IR =
me

K2

(
ω − Ωce + kP/me

γ0

)
(6)

where IR = Ires is the resonant momentum, because
∂HI/∂I = 0 has a solution I = IR. The Hamiltonian
equations for I and ϕ are

İ = −
√

2IΩceme
BwΩce
B0kγ0

cosϕ (7)

ϕ̇ =
1

me
K2 (I − IR) +

√
Ωceme

2I

BwΩce
B0kγ0

sinϕ

where coefficients depend on slowly changing (s, P ). Let
us introduce a small parameter

ε =
eBw

mec2keq

and functions

u =
keq
k

√
Ωce
Ωeq

1

wγ0
, w =

K2c2

Ω2
eq

with Ωeq = Ωce(0), keq = k(0). Then we introduce new
variable Y = IΩeq/mec

2εβ , YR = IRΩeq/mec
2εβ ,

τ = Ωeqε
β

∫ t

w(t′)dt′,

(i.e., (w(t)Ωeqε
β)d/dτ = d/dt and integration is along

electron trajectories) and rewrite Eqs. (7) as

dY

dτ
= −ε1−3β/2

√
2Y u cosϕ (8)

dϕ

dτ
= (Y − YR) +

ε1−3β/2√
2Y

u sinϕ

Equations (8) are Hamiltonian equations for

HY =
1

2
(Y − YR)

2
+ ε1−3β/2

√
2Y u sinϕ (9)

If ε1−3β/2 � 1 (i.e., β > 2/3), then the Hamiltonian
system resembles the general system with small pertur-
bations ∼ sinϕ and the standard approach is applicable
for description of such system12,55. Thus, we are inter-
ested in system with β = 2/3 and Hamiltonian

HY =
1

2
(Y − YR)

2
+
√

2Y u sinϕ (10)

Hamiltonian (10) does not contain small parameters, but
coefficients u, YR depend on slow variables. To describe

dynamics of Hamiltonian system (10), we introduce new

variables p =
√

2Y cosϕ, q =
√

2Y sinϕ with

∂q

∂ϕ

∂p

∂Y
− ∂q

∂Y

∂p

∂ϕ
= 1

Thus, (q, p) are new canonical coordinate and momen-
tum, and new Hamiltonian takes the form

F =
1

2

(
1

2
p2 +

1

2
q2 − YR

)2

+ uq (11)

The principal dynamics of Hamiltonian system (11)
has been described in Ref. 50 (see also Ref. 30).

Let us consider a profile of Hamiltonian (11) on the
axis p = 0: U = Fp=0 = (1/2)(q2/2 − YR)2 + uq. Equa-
tion determining extrema of U(q) function is dU/dq =
(1/2)q3 − YRq + u = 0, that can be rewritten as
(1/2)q̃3 − (2/3)q̃(YR/Y

∗
R) + 1 = 0 with q̃ = q/u1/3 and

Y ∗R = (3/2)u2/3. Figure 2(a) shows that for YR < Y ∗R
there is only one extremum and for YR > Y ∗R there are
two extrema of U(q). Therefore, the phase portrait of
Hamiltonian (11) have two types shown in Fig 2(b): for
YR < Y ∗R there is only one O-point in the phase plane
and phase trajectories rotate around this point, whereas
for YR > Y ∗R there are two O-points and X-point (sad-
dle point), and two separatrices `1,2 demarcate the phase
portrait onto three domains Gouter, Ginner, Ginter (see
also Ref. 30 and 50).

For constant u, YR system (11) is integrable one,
whereas for slowly changing u, YR we can introduce
an adiabatic invariant Ip = (2π)−1

∮
pdq (because all

phase trajectories in the portrait shown in Fig. 2(b) are
closed; see Ref. 43). In absence of separatrix (for YR <
Y ∗R), Ip would conserve with the exponential accuracy

∼ exp
(
−ε−1/3

)
where ε1/3 � 1 separates time-scales of

u, YR change (s, P change) and p, q change43,51. For
conserved Ip the system becomes integrable and Y well
before the resonance equals to Y well after the resonance.
Note Ip = (2π)−1

∮
pdq = 2Y (2π)−1

∮
cos2 ϕdϕ = Y far

from `1,2 or in absence of `1,2.
For phase trajectories crossing the separatrices in the

phase portrait from Fig. 2(b), there is a change of Ip (see
Refs. 16, 52, and 54). This change can be separated into
so-called dynamical jump ∼ ε1/3 ln ε1/3 and geometrical
jump ∼ O(1) (see details in reviews 9 and 53). The
geometrical jump is much larger than dynamical one.

The separatrix crossing results in particle transition
from the region with area 2πIp,init (Ip,init is the ini-
tial value of Ip) to the region with another area S.
At the moment of the separatrix crossing the invari-
ant Ip becomes equal to S/2π. Thus, there is a jump
∆Ip = ∆S/2π = S/2π − Ip,init. This jump directly re-
lates to the jump of Ix of the initial system (1)

∆Ix = ∆I =
mec

2∆Y

Ωeqε−2/3
=
mec

2∆S

2πΩeq

(
eBw

mec2keq

)2/3

(12)
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Therefore, to describe electron scattering in system (1)
with small Ix (small I), we should describe Ip change due
to separatrix crossing on the phase portrait shown in Fig.
2(b).

IV. DYNAMICS OF SYSTEM (11)

Let us study properties of Hamiltonian (11) that are
important for evaluation of the ∆Ip jump. First, we
are interested in areas of regions Ginner, Ginter, Gouter.
Coordinates of X-point C in the (q, p) plane are (qc, 0)
where qc is the maximum root of equation dU/dq =
(1/2)q3 − YRq + u = 0. We introduce polar coordinates
(ρ, η) as q = qc + ρ cos η, p = ρ sin η and rewrite Hamil-
tonian (11) as

F =
1

2

(
1

2
ρ2 +

1

2
q2c − YR

)2

+
1

2
q2cρ

2 cos2 η

+
1

2
ρ3qc cos η + uqc (13)

Then, separatrices `1,2 are defined by equation F = Fρ=0:

ρ2 + 4ρqc cos η + 4q2c cos2 η + 4

(
q2c
2
− YR

)
= 0 (14)

with the solution

ρ± = −2qc cos η ± 2

√
YR −

1

2
q2c (15)

Areas of Ginner, Ginter, and Gouter are given by equa-
tions:

Sinner =
1

2

∮
ρ2−dη =

π∫
η−

ρ2−dη = 4YRηc − 3q2c sin 2ηc

Souter =
1

2

∮
ρ2+dη =

π∫
η+

ρ2+dη = 4YR (π − ηc) + 3q2c sin 2ηc

Sinter =
1

2

∮ (
ρ2+ − ρ2−

)
dη = Souter − Sinner

= 4YR (π − 2ηc) + 6q2c sin 2ηc (16)

where

π∫
η±

ρ2±dη̃ = 4q2c

π∫
η±

cos2 ηdη̃ − 4

(
1

2
q2c − YR

)
(π − η±)

∓ 8qc

√
YR −

1

2
q2c

π∫
η±

cos η̃dη̃ = 4YR (π − η±)− q2c sin 2η±

± 8qc

√
YR −

1

2
q2c sin η± = 4YR (π − η±) + 3q2c sin 2η±

=

{
4YR (π − ηc) + 3q2c sin 2ηc η+ = ηc

4YRηc − 3q2c sin 2ηc η− = π − ηc

and qc cos ηc =
√
YR − q2c/2 (solution of ρ+ = 0, i.e. we

take ηc < π/2, see Fig. 3(a)).
Introducing q̃c = qc/u

1/3 and yR = YR/Y
∗
R (where

Y ∗R = (3/2)u2/3), we rewrite Eqs. (16) as

Sinner = S̃inner4Y
∗
R, S̃inner = yRηc − q̃2c sin ηc cos ηc

Souter = S̃outer4Y
∗
R, S̃outer = yR (π − ηc) + q̃2c sin ηc cos ηc

Sinter = S̃inter4Y
∗
R, S̃inter = yR (π − 2ηc) + q̃2c sin 2ηc

ηc = arcos

√
3

2

yR
q̃2c
− 1

2
= arcos

(
q̃−3/2c

)
(17)

and q̃3c − 3q̃cyR + 2 = 0. Figures 3(b,c) shows q̃c, cos(ηc),

and areas S̃inner, S̃outer, S̃inter as function of yR param-
eter.

V. ELECTRON SCATTERING

Figure 3(c) shows that areas Sinner, Souter, Sinter
evolve with yR = YR/Y

∗
R, but yR is the function of slow

time (slow variables) and evolves along the electron tra-
jectory:

yR =
YR
Y ∗R

=
2

3

IRΩeq

mec2 (uε)
2/3

(18)

=
2

3

κ2/3k2c2

γ
4/3
0 Ω2

ce

IRΩce

mec2 (Bw/B)
2/3

where

K2c2

Ω2
ce

=
κ

γ30

k2c2

Ω2
ce

(19)

κ = 1− Ω2
ce

k2c2
− 2

Ωce
kc

P

mec

= γ20 −
(

Ωce
kc

+
√
γ20 − 1

)2

(uε)
2/3

=
γ
4/3
0

κ2/3

(
Ω2
ce

k2c2
eBw
mec2k

)2/3
Ωeq
Ωce

The resonant interaction starts with IR = Ix (initial I
value is Ix), and for this moment we can write

yR =
2

3

κ2/3k2c2

γ
4/3
0 Ω2

ce

IxΩce

mec2 (Bw/B)
2/3

(20)

κ = γ20

(
1− (ω/kc)

2
)

(21)

The factor ∼ 2IxΩce/mec
2(Bw/B)2/3 is of the order of

one due to smallness of Ix. In the resonance yR variation
is described by Eq. (18) with IR given by Eq. (6).

Figure 4(a) shows yR variation with the magnetic lati-
tude for particles moving from high latitudes toward the
equatorial plane. Along the resonant trajectories yR in-
creases, i.e. normalized areas S̃inner, S̃outer, and S̃inter
should grow (see Fig. 3(c)). However, expression of
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FIG. 2: (a) Profiles of dU/dq = q̃3/2− (3/2)q̃(YR/Y
∗
R) + 1 for different YR; Y

∗
R = (3/2)u2/3 and q̃ = q/u1/3. (b)

Phase portraits of system (11) with u = 2 for YR > Y ∗
R (left) and YR < Y ∗

R (right). Bold red curve shows the
separatrices �1,2.

FIG. 3: (a) Schematic of Ginner, Ginter, and Gouter regions; angle ηc is shown. (b) and (c) Profiles of q̃c, cos ηc,

S̃inner = Sinner/4Y
∗
R, S̃outer = Souter/4Y

∗
R, and S̃inter = Sinter/4Y

∗
R; bottom panels show phase portraits for two

yR = YR/Y
∗
R values.

S = 4Y ∗
RS̃ includes the wave amplitude u (Y ∗

R ∼ u2/3)
that generally drops to zero at the equatorial plane.
Thus, S dynamics along the resonant trajectories is de-
termined by the competition of S̃ increase and Y ∗

R de-
crease. Figure 4(b) shows that Sinter decreases, whereas
Sinner increases. Taking into account that yR grows from
values is smaller than one (i.e. from values for which
Sinner = 0 and there is only Souter; see Fig. 3(c)), we
describe resonant particle dynamics.

Far from the resonance, Y equals to ΩeqIx/mec
2ε2/3

and equals to Ip = (2π)−1
∮
pdq for Hamiltonian system

(11). Thus, for given Ix, in the (p, q) plane electrons are

distributed along the circle with the radius
√
2Y ; the en-

tire circle is inside the region Gouter, because Ginner and
Ginter do not exist (see schematic in Fig. 4(c), moment
#1). With time (or with yR increase) regions Ginner,
Ginter form (when yR exceeds one), whereas trajectories
on the (q, p) plane deform, but save their areas. Then
two scenarios are possible.
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A. Scenario for small Y

If initial Y is sufficiently small, at the moment of
Ginner,inter formation trajectories appear inside Ginter
(Fig. 4(c), moment #2 shows such red trajectory within
Ginte). From this moment and up to the sepatrix cross-
ing the particle is in the resonance with the wave. When
decreasing Sinter/2π reaches Ip, electrons cross the sep-
aratrix `2 and appear in Ginner region (Souter increases
with Sinter, and electrons cannot come to Gouter) with
growing Sinner (see schematic in Fig. 4(c), moment #3).
This separatrix crossing results in a jump of the adia-
batic invariant ∆Ip = (Sinner − Sinter)/2π where Sinner
is evaluated at the moment when Sinter = 2πIp (escape
from the resonance). A new Ip would be conserved, and
far from the separatrix crossing (far from the resonance)
new Y is equal to new Ip. Thus, the jump of Y equals

to ∆Y = (Sinner−Sinter)/2π = 4Y ∗R(S̃inner− S̃inter)/2π
where Y ∗R is evaluated at the moment of the separatrix
crossing (that can be quite far from the resonance when
Ginter forms). Jump ∆Y can be rewritten as a jump of
Ix, see Eq. (13):

∆Ix =
∆S̃

2π

4Y ∗Rmec
2ε2/3

Ωeq
=

3∆S̃

π

mec
2

Ωeq
(uε)

2/3

=
3∆S̃

π

mec
2

Ωce

γ
4/3
0 Ω2

ce

κ2/3k2c2
(Bw/B)

2/3
(22)

where all variables changing along magnetic field line
should be evaluated at the separatrix crossing moment.

B. Scenario for large Y

If initial Y is sufficiently large, then at the moment
of Ginner,inter formation the electron trajectories in the
(q, p) plane appear in Gouter. For such trajectories the
separatrix crossing would results in ∆Y = (Sinner −
Souter)/2π. Because Souter > Sinner, this Y change (and
Ix change) would mean Ix decrease, i.e. this is classical
nonlinear electron scattering on the resonance7,12,66.

C. Electron drift in pitch-angle space

Let us summarize results of Ip (Y ) changes. The sep-
aratrix crossing by trajectory in the (q, p) plane occurs
when Sinter = 2πIp, and thus the moment of crossing
depends on Ip (i.e. on the initial Y or, equivalently, on
initial Ix). There are two possible situations shown in
Fig. 5.

If the initial Ix (initial Ip = Sinter/2π) is sufficiently
small, then the separatrix crossing occurs when elec-
tron orbits are in Ginter and Sinter < Sinner (this mo-
ment is is quite far from the moment of Ginter forming,
i.e.. particles spend a significant time ∼ O(ε1/3) in the
resonance before the separatrix crossing). Thus, jump
∆Ip = (Sinner − Sinter)/2π > 0 and Ix increases due

to the electron resonant interaction with the waves (see
Fig. 5(a) and black trajectories in Fig. 1, right panels).
Magnitude of Ix change is defined by Eq. (22).

If the initial Ix (initial Ip) is sufficiently large, then
the separatrix crossing occurs when electron orbits are
in Gouter. This happens right around the resonance,
i.e. particles do not spend a long time being trapped in
Gouter. Thus, jump ∆Ip = (Sinner −Souter)/2π < 0 (be-
cause Souter > Sinner) and Ix decreases due to the elec-
tron resonant interaction with the waves (see Fig. 5(b)
and black trajectories in Fig. 1, left panels).

These two situations explain classical scattering with
Ix decrease for electrons having not-too-small Ix (see
Refs. 7 and 66) and anomalous scattering with Ix in-
crease for electrons with initial very small Ix (see Refs.
25, 40, and 47).

VI. DISCUSSION

Whistler-mode waves nonlinearly scatter field-aligned
(small-Ix) electrons away from the loss-cone47, and this
effect is responsible for electron trapping around loss-
cone40. Such nonlinear scattering of field-aligned elec-
trons differs significantly from nonlinear scattering of
moderate pitch-angle electrons toward the loss-cone.

Similar effect of the change of electron scattering di-
rection has been found for electromagnetic ion cyclotron
waves. These waves nonlinearly scatter moderate pitch-
angle electrons away from the loss-cone6,27,28, but for
field-aligned (small-Ix) electrons this nonlinear scatter-
ing results in electron pitch-angle decrease (the effect is
called direct scattering, see detailed analysis in Ref. 29,
and references therein). As we show in this study, such
modification of nonlinear scattering for small Ix can be
described analytically, because even for small Ix there is
separation of time-scales of (ϕ, I) variations and (s, p‖)
variations. Let us discuss obtained results, and summa-
rize them in the Conclusion.

A. Electron dynamics around loss-cone

Figure 5 shows that for some initial Ix = I∗x , the
separatrix crossing occurs with ∆Ix = 0, i.e. Sinter ≈
Sinner. Thus, electrons with this I∗x would not be non-
linear scattered (in the leading approximation). Let us
consider a realistic system with I∗x ∼ ε2/3 sufficiently
small to keep derived equations valid. Change of Ix
can be written as ∆Ix = ∆αeq sinαeq cosαeqmec

2(γ2 −
1)/(Ωeq − sin2 αeqωγ) where αeq is the electron equato-
rial pitch-angle. We denote α∗eq value of pitch-angle for
which Ix = I∗x (for given energy γ), and write ∆αeq =
2∆IxΩeq/mec

2 sin 2αeq ≈ (αeq − α∗eq)ν
′ where ν′ =

∂ν/∂αeq|αeq=α∗
eq

and ν = 2∆Ix(αeq)Ωeq/mec
2 sin 2αeq

with ν(α∗eq) = 0.
Figure 6 shows two possible variants of field-aligned

(small Ix) electron scattering. Independently on ν′, elec-
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FIG. 4: (a) yR as a function of magnetic latitude for 50 keV energy and three pitch-angles. (b) Areas
Sinner,inter,outer as functions of magnetic latitude for 50 keV, 10◦ pitch-angle. Details of wave model are the same as
in the caption of Fig.1. (c) three schematic views of particle trajectories in the (q, p) plane. Phase portraits change

from c1 to c3 along particle trajectory.

FIG. 5: Schematic of Ip jumps due to separatrix
crossing. (a) System with positive ∆Ip; (b) System with

negative ∆Ip. For simplicity we use IR ≈ Ix here.

trons with αeq < α∗
eq are nonlinearly scattered with

pitch-angle increase, i.e. scattered away from the loss-
cone αLC . Therefore, the nonlinear scattering into loss-
cone (electron precipitations) would require that electron
with αeq > α∗

eq are scattered with sufficiently large ∆αeq:
αeq + ∆αeq < αLC . If ν′ < −1, αeq + ∆αeq < αLC can
be rewritten as αeq ≥ (|ν′|α∗

eq − αLC)/(|ν′| − 1), and
this inequality is always satisfied for αeq > α∗

eq and suf-
ficiently small loss-cone αLC < 1. Thus, for ν′ < −1
there are electron nonlinear scattering into loss-cone and
precipitations. If ν′ > −1, αeq + ∆αeq < αLC can be
rewritten as αeq ≤ (αLC −|ν′|α∗

eq)/(1−|ν′|), and this in-

FIG. 6: Schematic view of pitch-angle jumps for system
with electron losses (left panel, ν′ < −1) and system

without electron losses (right panel, ν′ > −1).

equality is satisfied for αeq > α∗
eq only for the exotic case

αLC > α∗
eq. Thus, if ν′ > −1 there are no electron scat-

tering into loss-cone and no precipitations (such regime
is called electron trapping around loss-cone, see Ref. 40).
These estimates demonstrate that the nonlinear scatter-
ing of small pitch-angle electrons with ∆Ix > 0 does not
necessary stop electron precipitations.
The pitch-angle jump ∆αeq is proportional to ∆Ix

given by Eq. (22), and thus there is a scaling ∆αeq ∼
B

2/3
w . If α∗

eq depends on Bw sufficiently weakly, then
the wave amplitude increase would result in |ν′| increase.
Therefore, for sufficiently high Bw we should expect the
regime with electron nonlinear scattering into loss-cone
(see Fig. 6, left panels). To check this scenario, we in-
tegrate numerically set of electron trajectories given by
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FIG. 7: Pitch-angle change along electron trajectories
for L = 4 (see details of the wave model in the caption
of Fig. 1). Panels (a) and (b) shows trajectories for

Bw = 250 pT; panels (c) and (d) shows trajectories for
Bw = 1500 pT (note only scattered electron trajectories

are shown, and trapped electron trajectories are
excluded). The loss-cone is shown for illustration,

αLC ≈ 5◦.

Hamiltonian equations (2) for the same initial γ and two
wave amplitudes. Figure 7 shows that for large Bw elec-
trons can be scattered into loss-cone and precipitate.

B. Two types of phase portraits

We consider resonant nonlinear scattering of electrons
with small Ix, for which the resonant Hamiltonian takes
the form given by Eq. (10) or Eq. (11). Let us compare
this Hamiltonian with one describing the classical prob-
lem of charged particle scattering for moderate Ix values
(see Refs. 7 and 66). Instead of expansion of Hamiltonian
(3) around I = 0, we can expand it around the resonant
value I = Ires(s, P ) determined from ∂H/∂I = 0 equa-
tion:

H = −ωIres + γres +
1

2me
K2

res (I − Ires)
2

+

√
2IresΩce

me

eBw

ckγres
sinϕ (23)

where Kres = ∂2H/∂I2|I=Ires and γres = γ|I=Ires . The
main difference of this Hamiltonian and one from Eq. (4)
is that the effective wave amplitude does not depend on
I in Eq. (23). The phase portrait of Hamiltonian (23)
with frozen slow variables is shown in Fig. 8(a).
Instead of introducing (q, p) coordinates it is more con-

venient to introduce Pφ = I−Ires through the generation
function W = (I − Ires)ϕ+ Ps∗ with new slow variables

s∗ = s+ (∂Ires/∂P )ϕ, P ∗ = P − (∂Ires/∂P )ϕ. Expand-
ing Ires(s, P ) and γres(s, P ) over (∂Ires/∂P ), (∂Ires/∂s),
we rewrite Hamiltonian (23) as

H ≈ −ωIres + γres (24)

+
K2

resP
2
ϕ

2me
− {γres, Ires}ϕ+

√
2IresΩce

me

eBw

ckγres
sinϕ

where {. . . } are Poisson brackets, and all function in
Eq. (24) depend on (s∗, P ∗). The phase portrait of
Hamiltonian (24) with the frozen slow variables (s∗, P ∗)
is shown in Fig. 8(b). This is the classical portrait of
the pendulum with torque9 with three main phase space
regions: before resonance Pϕ = 0 crossing particles are
in Gouter, and resonance crossing can result in trapping
(particles appear in Ginter) or scattering (particles ap-
pear in Ginner). Therefore, there is direct relation be-
tween three regions Gouter,inner,inter of Hamiltonian of
(11) and Hamiltonian (24).
For the initial system given by Eq. (3) nonlinear scat-

tering (transition from Gouter to Ginner) always appears
with Ix decrease, and this effect is well seen in the phase
portrait (c) of Fig. 8: the area Souter is always larger
than the area Sinner. But when the initial invariant Ix
(Ip or Iϕ = (2π)−1

∮
Pϕdϕ) is sufficiently small, parti-

cles become trapped within region Ginter as soon as this
region appears during particle motion along their tra-
jectories. In phase portrait (c) of Fig. 8 this trapping
means that the area surrounded by the particle trajec-
tory 2πIp ≈ 2πY is smaller than Sinter at the moment
when Ginter appears (when yR becomes larger than one,
see Fig. 3(c)). For yR = 1 we get ηc = 0, q̃c = 1,
and Sinter = 4πY ∗

R. Thus, the threshold Ix value is

2IxΩce/mec
2 = 3(Ωce/kc)

2(Bw/κB)2/3.
This is so-called autoresonance phenomena of the

100% trapping in the resonant systems (see, e.g., Refs.
21, 22, and 57 and references therein). Being trapped
into Ginter, particles can both increase or decrease their
Ip (and Ix) during the transition from Ginter to Ginner:
the Ix change depends on the ratio of Sinter/Sinner at
the moment when Sinter becomes equal to 2πIp. For suf-
ficiently small Ip (small Ix), the ratio Sinter/Sinner =
2πIp/Sinter will be below one, and particles will increase
their Ip (and Ix) due to the resonant interaction. For-
mally, this interaction cannot be called scattering, be-
cause particles are trapped into Ginter from the begin-
ning.

C. Small Ix for electrons resonating with electrostatic
waves

For resonances in inhomogeneous plasma, there
is the direct analogy between electron interaction
with whistler-mode waves and with electrostatic
waves26,36,37,44,58. Therefore, we can expect a change of
the regime of nonlinear electron scattering (phase bunch-
ing) by electrostatic waves for field-aligned electrons.
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FIG. 8: Phase portraits of Hamiltonian (23), panel (a),
of Hamiltonian (24), panel (b), and Hamiltonian (11),

panel (c).

The main difference between the cyclotron resonance
with electromagnetic waves (e.g., whistler-mode waves)
and the Landau resonance with electrostatic waves is that
for electrostatic waves the wave amplitude Uw = eΦw is
determined by the electric field potential Φw and does
not depend on Ix. Thus, Eqs. (7) would take the form:

İ = −eΦw cosϕ, ϕ̇ =
1

me
K2(I − IR) (25)

Defining a small parameter ε = eΦw/mec
2 (the analog of

eBw/mec
2keq used through the paper), we can estimate

the threshold value of Ix for which there is no time sep-
aration of I and ϕ variations in Eqs. (25). For τ ∼ tεβ

and Y ∼ Iε−β , Eqs. (25) give β = 1/2. Thus, instead of
the scaling Ix ∼ (eBw/k)

2/3 for the cyclotron resonance,

we obtain the scaling Ix ∼ (eΦw)
1/2 for the Landau res-

onance.
Electrons can resonate with whistler mode waves

through the Landau resonance, if waves are obliquely
propagating, i.e. if there is a finite angle θ between a
wavevector and a background magnetic field. For a gen-
eral case of θ �= 0, the whistler-mode wave amplitude in
Hamiltonian (3) takes the form2,13,61,70:

Uw =

√
2IxΩce

mec2
eBw

k

∑
±

cos θ ± C1

2γ
Jn±1



√

2Ixk2

meΩce
sin θ




(26)

+
eBw

k

(
p‖

γmec
+ C2

)
Jn



√

2Ixk2

meΩce
sin θ


 sin θ

where n is the resonance number, C1,2 are functions
of wave dispersion and θ, and Jn are Bessel functions.
Equation (26) shows that for the cyclotron resonance
n = −1 and small Ix we have Uw ∼

√
Ix, and thus

Ix ∼ (eBw/k)
2/3 scaling works. For the Landau reso-

nance n = 0 and small Ix we have Uw ∼ sin θ · (const +
Ix) ∼ O(Ix), and thus Ix ∼ (eBw/k)

1/2 scaling works.

VII. CONCLUSIONS

In this study we propose the theoretical model of
nonlinear resonant scattering (phase bunching) of small
pitch-angle electrons in the inhomogeneous magnetic
field. Basic parameters and wave characteristics cor-
respond to whistler-mode waves in the Earth’s radia-
tion belts. Using the adiabatic invariant Ix (magnetic
moment µ = eIx/c) and the small system parameter
ε ≈ eBw/mec

2k), we show that

• The threshold value of Ix for a new regime of elec-
tron nonlinear scattering away from the loss-cone
is scaling with ε as: IxΩce/mec

2 ∼ ε2/3. For Ix
smaller than this threshold value, the model of elec-
tron resonant interaction should include ∼

√
Ix fac-

tor for the wave amplitude.

• For Ix below the threshold value, the Ix change due
to nonlinear resonant scattering is ∆IxΩce/mec

2 ∼
(kc/Ωce)

2/3ε2/3, whereas the precise system dy-
namics is described by theory of separatrix crossing
given by Refs. 30 and 50.

We also should note that the proposed theoretical model
describes the ideal system with the monochromatic co-
herent whistler-mode wave. A wave field modulation is
known to influence significantly the nonlinear resonant
interaction11,25,29,31,49,60,72. Thus, to understand rele-
vance of the proposed model to the electron scattering
in the Earth’s radiation belts, a more systematic numer-
ical investigation of electron scattering for realistic short
wave-packets whistler-mode waves79,80 is needed.
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