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ABSTRACT   

Filtered backprojection (FBP) reconstruction is a simple and rapid technique for reconstructing tomographic data. Optical 
projection tomography (OPT) for instance, makes use of this technique to facilitate three dimensional visualization of 
optically clear biological tissues. However, for the case of nontransparent specimens where scattering dominates, more 
representative algorithms are required to model the behavior of light through the sample such that the object of interest 
can be recreated. In this work, model-based iterative techniques are investigated for use with an angle-restricted 
fluorescence OPT system for the specific application of imaging lymph nodes. Through physical and simulated phantoms, 
the effects of model inaccuracies in Monte Carlo-generated system matrices was evaluated. Findings demonstrated the 
importance of accurately capturing detector response, and that sample optical properties were more influential than sample 
geometry in affecting the reconstructed results. 
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1. INTRODUCTION  
Optical projection tomography (OPT) is a favorable modality for imaging biological specimens because three- dimensional 
visualization is possible using simple filtered backprojection (FBP) reconstruction[1]. This however, requires clear 
samples such that scattering is essentially eliminated and straight line projections can be assumed. In previous work, we 
capitalized on the low scattering nature of lymph nodes and the enhanced early photon detection capabilities of angular-
domain imaging to facilitate parallel ray projection tomography in whole, nontransparent lymph node assessment[2, 3]. 
While FBP proved sufficient to detect and localize clinically relevant inclusions, for continued development and 
improvement of this angular domain early photon tomography (ADEPT) system, more rigorous characterization and image 
performance assessment was sought. Specifically, we performed a preliminary investigation into the degree of 
improvement that more complex reconstruction algorithms, namely mesoscopic fluorescence tomography (MFT) 
approaches[4], could offer. It was determined that model-based iterative reconstruction provided enhancements in image 
quality[5], so the objective here was to evaluate the sensitivity of the reconstruction results to the assumptions made in 
generation of the system matrix. 

2. THEORY 
2.1 Tomography as a linear problem 

The inverse problem of tomographic image reconstruction can be modeled as a system of linear equations given by g = 
Hf, where g is an M-dimensional column vector representing the 2D measured image data; f is an N-dimensional column 
vector of the voxelized object with N of size n × n; and H is an M ×N system matrix that transforms the object data to 
image data. The measured data, g, is made up of m detectors for k different angles, such that M has size m × k. Elements 
of the system matrix, hij, each represent the contribution of the voxel j to detector element i. Thus, each row in H is the 
contribution of all voxels to a given detector element, and each column is the vectorized 2D image corresponding to a 
single voxel. This is represented below: 
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2.2 The forward model  

The detected fluorescence light field is given by Zhu et al.[6] as a pair of coupled equations: 

f ex (r) = Gex (rs ,r)s(rs )drs ,W³   (1) 

f em(rd ) = Gem(r,rd )x(r)f ex (r)dr,W³   (2) 

ZKHUH�ȍ�LV�WKH�REMHFW�YROXPH��DQG�r, rs and rd are 3D vectors. The first equation of the excitation light field, f ex (r) , is 
GHILQHG�E\�*UHHQ¶V�IXQFWLRQ�Gex(rs,r), as the propagation of light from a source, s, located at rs, to a location r. The second 
equation,  f em(rd ) , is the emission light field that describes the propagation of fluorescence light emitted from location r 
and detected by a detector at position rd��7KLV�LV�JLYHQ�E\�*UHHQ¶V�IXQFWLRQ��Gem(r,rd), and the fluorescence yield, x(r).  

 

3. METHODS 
A full description of all methods are detailed in previous work [5], however they will mentioned here in brief.  

3.1 Monte Carlo simulations and system matrix generation 

To model the propagation of light through tissue for generation of a sensitivity matrix, Monte Carlo (MC) simulations 
were conducted using the open-source MCmatlab program[7]. Simulations were structured to match the design of the 
ADEPT system. A 780 nm Gaussian LED emitter with a 2.5 cm diameter spot size was used as the source, single detectors 
were modeled as pencil beams focused at half the volume depth, and average lymph node optical properties (µa = 0.3 cm-
1, µs = 43 cm-1, g = 0.92, n = 1.4) were used throughout a slab volume simulation [Fig. 1(d)]. Pencil beams were 
representative of the narrow detector aperture used in angle-restricted imaging with the ADEPT system. Analysis using 
WKLV�FRQILJXUDWLRQ�ZLOO�EH�UHIHUUHG�WR�DV�³FORVHG´�DSHUWXUH. Three-dimensional photon propagation through the sample was 
modeled and volumetric reconstruction is possible, but 2D analysis was carried out for simplicity. 

For 2D reconstruction, a single slice in the middle of the object in the x-y plane, parallel to the optical axis and 
perpendicular to the axis of rotation was used. Representative source and detector sensitivity profiles are shown in Fig. 
1(a) and (b), respectively, where light traveling through the system moves from left to right: from the source, through the 
medium, and then collection at the detector. The simulated detector profile was translated in one dimension to model a 
single array of 125 detector elements, and the field of view was reduced to 125 x 125 voxels. Source and detector sensitivity 
profiles were then multiplied on an element-wise basis to construct individual source-detector pair probabilities [Fig. 1(c)]. 
Next, each source-GHWHFWRU�SDLU�ZDV�URWDWHG�RYHU����Û�LQ��Û�LQWervals. Elements of each sensitivity profile were vectorized 
and ordered to generate the total system sensitivity matrix, H. For comparison, sensitivity matrices were also generated to 
model conventional imaging; here, detectors were modeled with isotropically emitting point sources focused at the surface 
of the sample. Representative detector and resultant source-detector sensitivity profiles are shown in Fig. 1(e) and (f), 
respectively, and analysis using this VHWXS�ZLOO�EH�UHIHUUHG�WR�DV�³RSHQ´�DSHUWXUH� 
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Figure 1. Monte Carlo generated sensitivity profiles presented as normalized fluence rate. (a) Source sensitivity profile. (b) 
Representative detector sensitivity profile for a closed aperture configuration. (c) Representative angle-restricted imaging 
source-detector pair sensitivity profile. (d) Sample geometry used in Monte Carlo simulations to produce the sensitivity 
profiles. (e) Representative detector sensitivity profile for an open aperture configuration.  (f) Representative source-detector 
pair sensitivity profile for conventional imaging with open detector aperture from (e). Light travels from left to right. 

3.2 Image reconstruction and test phantoms 

Iterative image reconstruction was performed with a non-regularized maximum-likelihood expectation maximization 
(MLEM) algorithm with a first image estimate of either unity or a FBP reconstruction. These will be designated as 
MLEMones and MLEMFBP, respectively. Reconstruction performance was evaluated with measures of structural similarity 
(SSIM)[8].  

Different MC simulations were run to generate test data for evaluation of reconstruction performance with the proposed 
system matrix. In addition to the homogenous lymph node mimicking slab shown above, three other geometries with 
different optical properties were generated ± a symmetric block with heterogenous lymph node optical properties [Fig. 
2(a), a block structured to mimic the internal structure of a lymph node with heterogenous optical properties [Fig. 2(b)], 
and a homogenous average lymph node property ellipsoid [Fig. 2(c)].  Simulation volumes are illustrated in Fig. 2, with 
corresponding optical properties summarized in Table 1. 

Two test phantoms were utilized in this work: a physical resin phantom with embedded fluorescence (formation and 
imaging details found in[9]) and a simulated variable-size inclusion phantom, shown in Fig. 2(d) and (e), respectively.  

Table 1. Properties of the media in the tissue volumes used for Monte Carlo simulations at 780 nm. All media are 
components of lymph node tissue, and assume absorption coefficient µa = 0.3 cm-1, refractive index n = 1.4 and anisotropy 
factor g = 0.92[10, 11].  

Tissue µs [cm-1] 

Average lymph node 43.0 

Capsule 46.1 

Paracortex 33.34 

Medullary sinus 27.02 
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Figure 2. Different configurations of sample geometry used in Monte Carlo simulations to generate system matrices. From 
left to right, each panel shows the 3D structure, xy-plane, top: xz-plane and bottom: yz-plane. Different colors indicate various 
tissue types and optical properties. (a) Symmetric block structure with heterogenous optical properties. (b) Heterogenous 
structure and optical properties. (c) Ellipsoid structure with homogenous optical properties. (d) Illustration of fluorescence-
inclusion resin phantom with lymph node-matching optical properties. (e) Variable-size inclusion phantom to test 
reconstruction algorithms. 

4. RESULTS AND DISCUSSION 
Reconstructions of a resin phantom with homogenous lymph node-matching optical properties are displayed in Fig. 3. 
Results indicate that the system-based MLEM reconstructions can offer improved image quality over FBP reconstruction 
alone. Specifically, with FBP-initialized MLEM, superior contrast and resolution ± as indicated with line profile plots 
across the reconstructed inclusion (results not shown here) ± was achieved more rapidly than with ones-initialized MLEM. 
For the homogenous block-generated system matrix with 72 projections for instance [Fig. 3(a) first two rows), comparable 
reconstructions were achieved at 50 iterations for MLEMones and 5 iterations for MLEMFBP, with the FBP-alone 
reconstruction shown in Fig. 3(d) for comparison. The advantage of the iterative algorithms was particularly evident when 
the number of collected projections was reduced to nine. In this case, significant portions of data were missing; 
consequently, streak artifacts appeared in the FBP reconstruction [Fig. 3(d)]. However, after model-based reconstruction 
[Fig. 2(a), third and fourth row], the artifacts were increasingly suppressed with greater number of iterations.  Again, 
MLEMFBP appeared to achieve this more quickly than MLEMones, but a caveat of the initialization approach was revealed, 
as initial estimate errors were carried over and amplified. Shown in the 100th iteration of the MLEMFBP approach, it can 
be seen that part of the streak artifact near the inclusion was maintained, thereby reducing the reconstructed shape fidelity. 
In contrast, the MLEMones approach pictured above it was able to preserve the spherical shape.  
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To evaluate if these results could be improved with a more representative system matrix, the same reconstructions 
employed above were done using system matrices generated from MC simulations with sample geometry of an ellipsoid 
rather than a block. These results are shown in the last four rows of Fig. 3(a). Interestingly, the results were very similar 
to the simple block configuration. From a qualitative assessment, the reconstructions were visibly alike with no obvious 
image enhancement from either approach, and this was confirmed quantitatively from nearly overlapping line profile plots 
across the inclusion (results not shown here). This can be expected since optical properties were identical (and low-
scattering), and efforts were made experimentally to minimize boundary-interface effects with the use of an index-
matching bath. Moreover, these findings are promising because it suggests that a simple model is sufficient for use in 
iterative reconstruction and that the system matrix is robust against inaccuracies in sample geometry.  

The importance of accurately modeling the detection sensitivity however, is depicted in Fig. 3(b). Here, system matrices 
were generated to model the ADEPT system and phantom imaging protocol with the exception of the detection sensitivity 
± an open aperture configuration was modeled instead of a closed aperture (angular domain imaging). Representative 
detector sensitivity and corresponding source-detector pair profiles are shown in Fig. 1(e) and (f), respectively. Compared 
to the angular-restricted arrangement shown above it [Fig. 1(b) and (c)], the source-detector pair sensitivity of the open, 
conventional imaging setup is noticeably more diffuse and an order of magnitude lower. The effect of inaccurately using 
this model for system matrix generation was manifested as the inability to reconstruct the fluorescent inclusion when using 
ones-initialized MLEM, and reduced contrast with FBP-initialized MLEM. While MLEMFBP had the ability to capture the 
object, it should be noted that minimal changes were observed even after 100 iterations with 72 projections; and artifact 
suppression had a strong tradeoff with contrast and resolution for 9 projections.  

 
Figure 3. Fluorescence reconstructions generated from ones-initialized (MLEMones) and filtered backprojection-initialized 
(MLEMFBP) maximum-likelihood maximization-expectation algorithms of a fluorescent inclusion embedded in a lymph node 
matching phantom for different number of iterations, projections and system matrices. (a) System matrices modeled with a 
closed aperture setup (angle-restricted imaging) consistent with ADEPT imaging used to collect the measured data. (b) System 
matrices modeled with an open aperture setup (conventional imaging). (c) FBP reconstruction from 72 projection, closed 
aperture data. (d) FBP reconstruction from 9 projection, closed aperture data. All images were auto-scaled independently for 
visualization. Columns: iteration number. 
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To illustrate the impact of this point further, the open and closed system matrices were used for reconstruction of a variable-
size inclusion phantom with homogenous optical properties [Fig. 2(e)]. The results are shown in Fig. 4 where the presented 
reconstruction is the iteration number where the max normalized pixel change in successive image estimates was less than 
0.1%. From observation, the open aperture reconstructions clearly suffered from the noise contribution of scattered photons 
and no inclusions could be resolved. The closed-modeled system on the other hand was able to reconstruct the inclusions, 
with the FBP-initialized approach outperforming the ones-initialized method that blurred out more of the smallest 
inclusion.  

 
Figure 4. Iterative reconstructions of a simulated phantom [Fig. 2(d)] with homogenous lymph node optical properties for 
open and closed aperture system setups. First row: ones-initialized MLEM, second row: FBP-initialized MLEM. MLEM: 
maximum-likelihood expectation-maximization, FBP: filtered backprojection. 

The effect of accurate modeling of sample geometry and optical properties was tested for four different systems: (1) 
homogenous properties and block geometry, (2) heterogenous properties in a symmetric block geometry, (3) heterogenous 
properties in a random block geometry, and (4) homogenous properties in an ellipsoid geometry. Each was used as the 
forward model to produce simulated data and reconstructions were done using a system matrix generated from the 
homogenous block (test system 1). Results are shown qualitatively in Fig. 5(a) and quantitatively in Fig. 5(b) with measures 
of SSIM. Overall, the findings were visually comparable and consistent with the results presented above with respect to 
MLEMones and MLEMFBP performance. Again, MLEMFBP converged toward a solution more rapidly than MLEMones, and 
the smallest inclusion was better preserved with the former approach compared to the latter. Interestingly, the heterogenous 
cases appeared to provide better contrast than the homogenous. This can likely be attributed to a lower scattering 
coefficient (µs = 33.3 cm-1) in the bulk of the sample as opposed to the average value (µs = 43.0 cm-1) used in the 
homogenous case.  

Between groups of matching optical properties but different geometry, results were also similar and that was reflected 
quantitatively in the SSIM plots. That is, the slab with homogenous optical properties and ellipsoid with homogenous 
optical properties, and the symmetrically distributed heterogenous block and more structurally mimicking heterogenous 
block with random distribution of medullary sinuses, provided similar results. This suggests that accurate modeling of 
optical properties is more influential than geometry; but it also reflects the low scattering nature of lymph nodes, such that 
scattering is minimal and photons travel preferentially straight throughout. The SSIM plot (index of 1 indicates visual 
perception closer to the true image) showed that MLEMFBP outperformed MLEMones for all cases, and that modeling with 
the homogenous ellipsoid provided the best image quality (mean SSIM MLEMones: 0.69 ± 0.02, MLEMFBP: 0.72 ± 0.02). 
Although the system matrix was not generated for that sample, following the notion of low scattering in lymph nodes, this 
can be expected because for this geometry, photons simply had less volume to travel through. Reconstructions of the 
phantom within a homogenous slab had the next best SSIM index (mean SSIM MLEMones: 0.68 ± 0.02, MLEMFBP: 0.70 
± 0.02), which was also anticipated because the system matrix was optimized for that model. Next, the heterogenous 
groups followed with the nonsymmetric geometry outperforming the other (mean SSIM MLEMones: 0.66 ± 0.03, 
MLEMFBP: 0.69 ± 0.03 vs. MLEMones: 0.64 ± 0.03, MLEMFBP: 0.68 ± 0.03). Although more heterogenous, this result could 
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be explained by a more consistent overall bulk owing to the gaps between the medullary sinus regions. Nonetheless, the 
results presented here demonstrated that the rather simple system matrix used was robust against inaccuracies and 
sufficient for reconstruction of samples with heterogeneity in optical properties and geometry.    

 
Figure 5. Iterative reconstructions (MLEMones and MLEMFBP) of a phantom with different geometries and optical property 
distributions. (a) Columns from left to right: homogenous properties and geometry [Fig. 1(d)], heterogenous properties and 
symmetric geometry [Fig. 2(a)], heterogenous properties and geometry [Fig. 2(b)], homogenous properties and ellipsoid 
geometry [Fig. 2(c)]. Numbers above MLEM reconstructions are the iteration number where the max normalized pixel change 
in successive image estimates was less than 0.1%. (b) Corresponding plots of structural similarity (SSIM) versus iteration 
number for different reconstruction methods and phantoms. MLEM: maximum-likelihood expectation-maximization, FBP: 
filtered backprojection. 

5. CONCLUSION 
Model based iterative reconstruction using Monte Carlo-generated system matrices is a promising technique for angle-
restricted optical tomography. The importance of appropriate system modeling with a narrow aperture for the angular-
GRPDLQ�V\VWHP�ZDV�H[KLELWHG�WKURXJK�UHFRQVWUXFWLRQ�FRPSDULVRQ�ZLWK�DQ�³RSHQ´�DSHUWXUH�VHWXS�± inaccurate modeling 
resulted in unresolvable image reconstructions. It was demonstrated through physical phantom experiments that MLEM 
algorithms using a FBP reconstruction as the first image estimate were able to improve contrast and resolution, as well as 
suppress noise and image artifacts compared to FBP reconstruction alone. Moreover, the technique offered the potential 
for more rapid imaging as image quality improvements were sustained even as the number of collected projections was 
reduced. Simulated phantoms with heterogeneity were also investigated to test the sensitivity of the system matrix, and it 
was proven that it was robust against inaccuracies despite being optimized for homogenous properties and simple 
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geometry. Future work will be required to evaluate the utility of more representative system matrices on biological 
samples.  
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