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ABSTRACT

Extreme heat events induced by climate change present a growing risk to transit passenger
comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce
headways on heavily trafficked bus routes serving vulnerable populations. This paper develops
a schedule optimization model to minimize heat exposure and applies it to local bus services in
Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics.
Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35%
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when operating at maximum fleet capacity. Outcome improvements are notably characterized by
diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and
passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure,
especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adap-
table resilience strategy to protect riders from extreme heat exposure.

1. Introduction

It is widely believed that the sustainable growth of
cities relies on increasing public transit use (Dulal et
al., 2011; Hodges, 2010). However, increasing fre-
quency, duration, and severity of heat waves and
other extreme weather events caused by climate
change threaten both engineered infrastructure that
supports public transit as well as passenger comfort
and health. Phoenix, Arizona, with average maxi-
mum daytime temperatures of 111°F during summer
months, and the fastest growing population in the
United States, is particularly vulnerable to extreme
heat (Chow et al., 2012; U.S. Census Bureau, 2020;
National Oceanic and Atmospheric Administration
2020). As climate change advances, the frequency of
extreme heat events in Phoenix is projected to
increase from 2.0 to 24.4 annual events by the year
2070 (Grossman-Clarke et al., 2010). Importantly,
lower-income communities that have less residential
air conditioning, fewer cooling centers, and streets-
capes lacking vegetation, are more susceptible to the
impacts from extreme heat (Chow et al., 2012;
Voelkel et al., 2018). Households residing in these
areas are also more dependent on public transporta-
tion and may be disproportionately exposed to heat
during travel (Taylor & Fink, 2003).

Existing studies show that seasonal changes in tem-
perature and weather push would-be transit users to
different modes of travel and may result in the delay
or cancellation of non-essential trips (Liu et al., 2017).
The drivers of these behavior changes are numerous and
complex. For one, the discomfort of waiting for transit is
exacerbated under inclement weather conditions (Guo
et al., 2007; Singhal et al., 2014). Additionally, the jour-
ney to the bus, usually made by foot, can be physically
taxing during high temperatures, especially for the
elderly and persons with a disability or a chronic illness.
These responses are furthermore shaped by the culture,
climate (average weather) and built environment of an
area (Bocker et al., 2013; Dijst et al., 2013; Liu et al,,
2017).

Transit agencies are already equipped with a range of
tools and actions to shield passengers during periods of
unpleasant and potentially dangerous weather. These
include investments in shading structures and tree
cover in the surrounding areas of a bus stop (Lanza &
Durand, 2021). Air conditioning on vehicles and in
nearby retail can also be critical for reducing exposure.
Physical infrastructure investments are not the only tool

available to agencies, however.
Adjusting transit schedules to reduce waiting times

can lower the duration of exposure without needing
additional engineered infrastructure and can be
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implemented quickly. When opting to adapt transit
schedules, agencies may avoid the expenses of large
capital investments, help maintain ridership levels, as
well as limit health risks. Understanding the potential
benefits of reallocation as a means of adapting to
extreme weather and how disruptive such schemes
would be to current fleet assignments could help agen-
cies make informed decisions for their customers. This
study develops and implements a rerouting model for
minimizing passenger heat exposure for the regional
transportation agency in Phoenix, Arizona.

1.1. Heat, transit, and human health

Despite the extensive efforts to understand the effects of
weather on travel behavior, the negative impact of heat
on ridership has not been sufficiently integrated into
existing transport planning processes (Liu et al., 2017).
Moreover, these studies neglect the potential effects heat
may have on riders who continue to use public transit
(Dzyuban et al., 2021). There are likely many reasons
individuals continue to travel during dangerous heat
conditions including, but not limited to, modal captiv-
ity, weather indifference, and inelastic travel demand
with respect to weather. Mode captives refers to people
who have no other mobility options available to them
and weather indifference refers to the subjective experi-
ence of adverse weather conditions and, in this context,
one’s willingness to endure certain temperatures for
a sustained period (Jacques et al., 2013). Such willing-
ness is likely informed by a traveler’s opportunity cost
from cancelling or postponing work travel, namely,
their elasticity of demand (Liu et al., 2015).

Exposure to heat extremes accounts for more
weather-related fatalities than nearly all other extreme
weather events combined and is a leading cause of
weather-related deaths in the U.S. most years (Berko
etal., 2014; Hyland, 2016). Heat stroke and the aggrava-
tion of existing medical conditions from heat exposure
are common causes of emergency room visits, hospita-
lizations, and early mortality (Kenney et al., 2014;
Kovats & Hajat, 2008; Michelozzi et al., 2009).
Globally, exposure to extreme heat was estimated to
result in 480,000 excess deaths per year (Zhao et al,
2021).

Epidemiologic studies have identified demographic,
economic, and community characteristics that are asso-
ciated with increased mortality and morbidity during
periods of extreme heat (Reid et al., 2009). Determinants
of increased exposure and sensitivity to heat include:
lower income, older age, higher population density,
lower tree density, outdated construction, and lack of
air conditioning (Aminipouri et al., 2016). Research has

shown that these characteristics cluster spatially in
urban areas where transit ridership is concentrated
and where discriminatory redlining has resulted in his-
torical underinvestment in infrastructure (Harlan et al.,
2013; Hoffman et al., 2020; Reid et al., 2009).

The potential for prolonged exposure to extreme tem-
peratures for transit riders is far greater than for drivers. In
most cases, transit use requires riders to expose themselves
to the environment in three phases: ingress, waiting, and
egress. Ingress and egress exposure are a function of the
mode used and distance traveled to access transit stops and
final destinations. As more than 75% of all transit riders
walk to transit, the location of the nearest stop relative to
a person’s origin is a critical factor in transit-related expo-
sure (Hess, 2012). By contrast, waiting-based exposure
depends on the frequency of individual transit lines, their
reliability, their capacity, and the physical characteristics of
a station (Fraser & Chester, 2017).

Early research around heat exposure and transit use
combines simulated urban meteorology with transpor-
tation activity diaries to assess outdoor heat exposure
during non-motorized travel, including access trips to
transit stops. In such studies, researchers find that
socially disadvantaged groups are disproportionately
exposed to transport-heat (Karner et al., 2015).
Additional research shows that transit stop location
and transit schedules contributed to variable heat expo-
sure across transit systems and that users from areas
with low density, few high capacity roadways, and irre-
gular street networks are more likely to experience pro-
longed exposure when travelling to and waiting at
transit stops (Fraser & Chester, 2017).

1.2. Adjusting bus transit schedules during heat
waves

Bus transit network design and scheduling is
a complex process that balances service quality, cov-
erage, and directness. In most cases, transportation
agencies are not profit-driven but their resources and
operations remain constrained by available budgets
(Desaulniers & Hickman, 2007). The primary com-
peting alternatives are transit systems that serve large
areas with limited frequency and those that serve
small areas with high frequency.. The public transit
planning process is typically divided into five steps,
(1) network design (route structure and stop place-
ment), (2) route frequencies, (3) timetabling, (4)
vehicle scheduling, and (5) crew scheduling and ros-
tering (Guihaire & Hao 2008). This analysis focuses
on step two, specifically increasing transit frequencies
to reduce waiting times for passengers.



Vehicle arrivals per hour along a given route is the
most important factor affecting overall wait time.
Traditionally, average waiting times at any stop have
been estimated as half the “headway’, or the time
between bus arrivals; on-board surveys, however, con-
tradict this assumed uniform arrival distribution
(Fraser & Chester, 2017). Along infrequent routes,
passenger wait times are significantly less than half
the headway indicating rider knowledge of existing
transit schedules. Increasing frequencies along such
routes without providing advanced notice to riders
may not significantly reduce average waiting due to
the passenger arrival behavior. Conversely, average
wait times along frequent routes are typically greater
than the times predicted by transit schedules. Thus,
adding vehicles to routes with intermediate frequencies
present the best opportunity to significantly reduce
passenger waiting times.

Transit frequencies are usually developed from
demand estimates and agency standards for vehicle
occupancy and minimum frequency (Ceder, 2016).
Such estimates are typically derived from travel
demand models that draw from an area’s economic
activity and population to produce top-down projec-
tions of trip generation and mode choice. Yet these
models are incapable of ‘chaining’ trips together nor
do they attribute trips to specific households, limiting
the ability for planners to fully measure the equity-
impacts of bus scheduling. To address these and
other shortcomings, agencies have, in recent years,
begun implementing advanced activity-based models
(ABM): bottom-up estimations of travel demand that
are generated from household attributes and an indi-
vidual’s anticipated behavior in areas beyond their
home and across different times of day (Hafezi et al.,
2018).

There are well-established models for determining
transit frequencies to optimize economic and effi-
ciency outcomes (Hadas, 2013). Increased calls to
consider equity in transit service, coupled with an
ABM’s provision of disaggregated sociodemographic
data at fine spatial resolutions, however, warrant the
addition of new optimization criteria in planning
models, not least, ridership’s exposure to extreme
heat. This could either be accomplished by adding
vehicles to service, as agencies already do for special
events, or reallocating existing in-service vehicles
from other routes. This paper develops an optimiza-
tion framework that reallocates existing vehicles and
dispatches spare fleet capacities based on the heat
vulnerability of riders and explores that framework
using a case study of Valley Metro, the transit agency
serving Phoenix, AZ.
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2. Methods and data
2.1. Optimization framework

To minimize negative outcomes from extreme heat, an
agency should maximize service to the areas that are
most likely to rely on transit and most likely to suffer
from prolonged exposure to high temperatures. In other
words, an agency should minimize the combination of
heat exposure and heat sensitivity, what the model here-
inafter refers to as vulnerability. Individual exposure is
assumed to be negatively correlated with income and
cars per household, as wealthier households will retain
the option of driving or foregoing travel completely (He
& Thegersen, 2017). Regional vegetation abundance is
also included as it offers cooling and shading for pedes-
trians (Lanza & Durand, 2021). Heat sensitivity, on the
other hand, is modeled by passenger age, which studies
have identified as the primary risk factor for heat stress
during physical activity (McGinn et al., 2017). The final
component of passenger vulnerability in this model is
the duration of exposure. Because agencies indepen-
dently determine the frequency of bus arrivals, the opti-
mization model described herein solves for the bus
frequencies that will minimize wait times. Simply stated,
the model aims to reduce wait times by as much as
possible, for as many people as possible while account-
ing for each passenger’s sensitivity to heat and their
dependency on travel. It uses a non-linear constrained
optimization solver for the entire bus service area of
Phoenix’s transit agency. The model is specified as:

Equation 1: Objective Function

Miny " " Wi(£)D;V;

i jECi

S.T.1)Y fi<B2)M < f <N, € ZVi

1

Where: i = Transit route & j = Microan alysis zone

.. . [ runtime
Wi( f;) = Average waiting time for route i | ————

vehicles
C; = Microanalysis zones served by transit route i

D; = Transit demand in microanalysis zone
j(# of TransitRiders)

Vj = Heat vulnerability of microanalysis zonej
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vehicles)

; = Frequency of routei
f 1 vof (runtime

B = Thetotal number of buses currently operating

hicl
M = NIOSH Minimum allowablefrequency(ve - es)

runtime

vehicles)

N = Maxi llowabl
aximum allowable frequency (runtime

The model assumes exposure to primarily be
a function of wait time W;(f;), demand D}, and vulner-
ability Vj, subject to two main constraints. The first
constraint, B, represents the total agency fleet size,
which provides an upper bound on the total number
of buses that can be assigned across all routes. While
total fleet size is typically a constant, Valley Metro, like
many agencies, has the capacity to dispatch spare vehi-
cles to increase capacity. To observe the sensitivity of
outcomes to the fleet size, B, the model is run for five
different capacity multiples ranging from 0% to 20%
increases in normal fleet capacity; the latter is the official
spare fleet capacity reported in Valley Metro’s 2020-
2024 Short Range Transit Program and is also the max-
imum spare fleet size allowed by the Federal Transit
Administration (Valley Metro - Regional Public
Transportation Authority (RPTA), 2019).

The second constraint, N ensures that the number of
vehicles servicing a route produces wait times that are
below the National Institute of Occupational Safety and
Health’s (NIOSH) heat exposure duration standards
and above an impractical lower limit of five minutes.
NIOSH’s standards were developed in 2016, with the
Centers for Disease Control and Prevention, to inform
employers about heat safety standards (Jacklitsch et al.,
2016). These are based on the Wet Bulb Globe
Temperature, a holistic measure of ‘experienced’ heat,
the metabolic rate of an activity, and the availability of
engineering controls to reduce heat stress (e.g. air con-
ditioning, shade). In the absence of alleviating heat
stress, the institute recommends ‘administrative con-
trols’, or more simply stated, rest periods to allow for
the body to cool. These guidelines are drafted separately
for ‘heavy’, ‘medium’, and ‘light’ forms of work. The
administrative control guidelines for ‘light’ work are
used to parametrize maximum wait times in the above
model for five different extreme temperature scenarios —
106°F, 107°F, 108°F, 109°F and 110°F. Finally, vehicle
bunching, a reliability issue caused by excess vehicles, is
known to occur on high frequency routes in high

demand areas during peak periods (Camps & Romeu
2016). Adding vehicles to routes already experiencing
bunching may exacerbate this problem. Accordingly,
the minimum allowable headway in the model, or max-
imum allowable frequency, N, is set to correspond to
five minutes.

To assess the optimization’s sensitivity to the two
imposed constraints, the model was run for each possi-
ble combination of fleet size and maximum frequency
equaling 25 scenarios total. The optimization problem
was solved in MATLAB using the ‘fmincon’ function
which implements an interior point algorithm to find
a globally optimal fleet allocation. The model produces
a non-integer value for bus vehicle allocation and there-
fore can be interpreted as either a theoretical represen-
tation of service capacity or buses servicing only
a segment of the route.

2.2. Transit schedule data

The geography, service frequencies, and current fleet
allocations of individual routes are derived from the
2020 General Transit Feed Specification (GTFS) data
for Phoenix’s regional transit agency, Valley Metro
(Valley Metro, 2020). The number of vehicles needed
to produce a certain headway on a given route, f, is
estimated by dividing the time it takes to complete
a route, its runtime, by the route’s average headway.
Conversely, the wait time for a given route can be
determined by dividing the runtime by the route’s fleet
allocation. For example, a route that on average takes
half-an-hour to complete with buses arriving every
10 minutes, would require three buses. Given that head-
ways and runtimes are not equal across all times of day
nor all days of the week but rather fluctuate in response
to demand across different stops at different times,
estimates are based on the modal head of weekday
service.

2.3. Transit demand

Transit demand, Dj, is determined using the output of
the Maricopa Association of Governments (MAG)
ABM in 2018 (Maricopa Association of Governments,
2018a). Activity-based travel demand models capture
household-level and person-level travel choices includ-
ing intra-household interactions between household
members across a wide range of activity and travel
dimensions (Parsons Brinckerhoff, Inc, Arizona State
University, 2010). The ABM used in this simulation is
informed, in large part, by a 2017 household travel
survey conducted by MAG that includes GPS activity-
travel data from 6,073 surveyed households, as well as



data from the American Community Survey (Maricopa
Association of Governments, 2018b). Importantly, tran-
sit trips in the ABM do not indicate the specific mode of
travel (e.g. light-rail, bus); rather they are categorized
between premium and conventional transit accessed by
walking, kiss-and-ride, and park-and-ride. Premium
transit traditionally includes express buses, bus rapid
transit, light rail transit, and commuter rail whereas
conventional transit typically refers to regularly sched-
uled local services. This model simulates heat exposure
for all premium and conventional transit trips that can
be routed using the local bus network.

The ABM output details the daily travel movements
of a simulated population of 3.8 million agents and
18.4 million daily trips. Only a small fraction
(~150,000) of the modeled daily trips in MAG's region
occur by transit. In addition to the location of transit
demand the model output also allows one to isolate the
transit demand by time of day. The general movement
of agents reflects a pattern of leaving residential areas
during the morning peak period (6-9am) for employ-
ment locations and the opposite pattern during the
afternoon/evening peak (3-7pm).

At its most resolved spatial scale, the ABM identi-
fies the origin and destination microanalysis zones
(MAZ) - the smallest transportation spatial unit
used by the planning agency - for each transit trip.
The open-source routing software Open Trip Planner
(OTP) is used to translate origin-destination pair-
ings - imputed to be the centroid of each respective
MAZ - into a specific transit bus line. OTP is a graph-
based multimodal routing system that operates on
a unified graph including links representing road,
pedestrian, and transit facilities and services
(Hillsman & Barbeau 2011). Focusing on all MAZ
with sizes below the 98th percentile, the trip-
weighted median MAZ area is 0.09 km?
(1 = 0.38 km®), such that the ‘true’ origin point of
a trip within any single MAZ does not differ much
from the centroid. Variance in size across the 8662
unique MAZs that were routed by OTP, though lar-
ger, remains small in absolute terms with a weighted
standard deviation of 0.9 km®. As MAZs are popula-
tion weighted, the MAZs with the largest area and
greatest potential error, account for only a small share
of passenger trips.

OTP routing assumes a maximum walking distance
of one mile to reach a transit stop and accounts for all
possible transfers. All routing requests were made at the
nearest hour of departure based on weekday service for
the agency in February of 2020. OTP routing produced
transit routes for 99.5% of trips across 72 bus lines.
Importantly, for the optimization model, non-local
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and non-bus transit lines are excluded as they tend to
be low-frequency, pre-scheduled commuter services,
with predictable wait times.

2.4. Passenger vulnerability

Area population heat vulnerability indices Vj; were
developed for each MAZ based on the ABM-reported
characteristics of each transit rider who begins a trip
from that MAZ as well as the area’s vegetation abun-
dance. The formulation of vulnerability was adapted
from relevant literature to develop an individual-scale,
transit-specific metric. Specifically, standardized scores
for income, cars per household, and age were combined
with equal weight, given their correlations with transit
dependency and health risk (Taylor & Fink, 2003). The
inclusion of transit dependency assumes that under
extreme heat conditions there will be a decline in transit
usage, specifically among passengers with alternative
private travel options. Accordingly, this model priori-
tizes servicing areas with the greatest number of resi-
dents who lack such options. Finally, to estimate heat
vulnerability from the physical environment, the nor-
malized difference vegetation index (NDVI) was esti-
mated for each MAZ by computing the median NDVI
30-meter pixel value from 2020 July and August
LANDSAT 8 imagery in the one mile area surrounding
the MAZ centroid. This area matches the maximum
walking shed allowed by the routing algorithm for any
single traveler. All social and physical variables men-
tioned were min-max normalized and added with equal
weight to produce a vulnerability index. The product of
the vulnerability index and the ridership demand for
a given bus route can be interpreted as the weights that
drive the prioritization of fleet allocation in the model.

Equation 2: Area population vulnerability index

V=Y NIZ(L) + Z(C) + Z(G))] + N(NDVIL)

i€A;

Where: i = agentand
A; = set of agents with trips originating in MAZj

where ¢y = meanand

o = standarddeviation

_ x— min(x)
Nix) = max(x) — min(x)
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I; = Individual/s Household Income
Ci = Cars per household of individual
Gi = Age of individual

NDVI; = Normalize Difference Vegetation Index
surrounding centroid of MAZ;j

Our approach marks a noteworthy advancement in
precision compared to current vulnerability estimations
by using ABM household and person characteristics.
That is, while traditional ridership characteristics are
imputed from aggregated census data for residents in
a spatial unit, our vulnerability estimates are based on
traveler characteristics and, in turn, capture a more accu-
rate sample that includes non-home-originating trips.

3. Results

The ABM model counts 115,129 transit trips on an
average weekday between the hours of 7 am and 6
pm, representing 0.79% of all trips completed during
daytime hours, when the combination of sunlight
and high air temperatures can be hazardous.
According to the ABM, transit riders in Maricopa

County are overall 11 years younger than the typical
traveler, with a median age of 25, and hail from
households with median incomes of $56,500, which
is approximately 15% less than their non-transit
counterparts. Cars per household for transit passen-
gers is 1.77 compared with 2.14 for non-transit
travelers.

Across all fleet capacity multiples, the mildest heat
exposure of 106 F, benefitted the most from rerouting,
realizing reductions in the demand-headway weighted
vulnerability of over 20% for the standard bus fleet
capacity and up to 40% when the maximum available
fleet is used. Improvements stemming from capacity
increases tend to be linear (Figure 1), suggesting that
routes served by additional bus capacity contribute
equally to the objective outcome. By contrast, when
keeping capacity fixed, there is a nonlinear decline in
improvement as the temperature increases, i.e. maxi-
mum allowable wait time decreases. Notably, at the
extreme temperature of 110°F, there are not enough
buses in the agency fleet to meet the wait-time con-
straint of 15 minutes for all bus lines. Rather, the mini-
mum headway that can be realized for the entire local
bus network using its standard fleet is 25 minutes. It is at
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Figure 1. Optimization objective function improvements and fleet change magnitude. The Y-axis is the percent reduction of the
optimized objective outcomes relative to the baseline schedule’s unoptimized objective outcome. As the vertical spacing between
points for a given capacity multiple illustrate, there is a nonlinear reduction in exposure as the maximum allowable wait time is
reduced. As capacity increases, there is a linear reduction in risk — except for scenarios with most extreme heat, which exhibit non-
linear improvements in the objective outcome. The minimum achievable wait time (maximum exposure duration) for all routes was
25 minutes, for which there is no official corresponding NIOSH temperature.



this temperature scenario that capacity increases pro-
duce the greatest benefit by reducing headways for the
most vulnerable routes; specifically, a 5% increase in
fleet size corresponds to a 15% improvement in the
objective outcome.

The observed results stem from both the uneven
demand across the system and the inherent nonli-
nearity in headways which are inversely related to
fleet size. Indeed, each incremental bus added to
a route has a diminishing return on wait time equal
to the inverse fleet size, squared. It follows then that
a bus line with pre-existing small headways will see
little gain from fleet additions. By contrast a line
with large headways and moderate exposure, will
see a large improvement from an increase in service.
Simply stated, few lines carry most of the exposure
and the model prioritizes those few lines with more
buses to realize large reductions in riders” heat expo-
sure. Any subsequent service improvements will have
more moderate effects on outcomes. Spare fleet capa-
city makes the greatest difference under extreme
temperature scenarios when the requirements of
NIOSH compliance overwhelm the network.

NIOSH standards interact with the skewedness of
passenger demand as well. This can be seen in
Figure 2, which shows select few outliers in the objective
function coeflicients, i.e. the vulnerability index multi-
plied by the demand. When temperatures increase, the
model’s requirement for meeting maximum allowable
exposure time on all lines results in the diversion of
buses from lines with high vulnerability and high rider-
ship to lines with lower vulnerability and ridership.
Furthermore, given that allowable heat exposure has
nonlinear stringency for each incremental degree,
there is a corresponding nonlinear reduction in objec-
tive outcomes for increasingly severe temperatures
when capacity is fixed.

Of practical importance is the number of buses that
would need to be reallocated to achieve the optimal
schedule. On average, across all scenarios, rerouting
would require the reassignment of approximately
13.5% of the bus fleet (SD = 2.2%). Notably, 27 of the
72 lines see on average a 0.9 decrease in fleet size, based
on the median outcome for each bus line across all
scenarios. The remaining lines all show median
increases in bus allocations compared to the existing
agency schedule, with a maximum increase of 8.6
buses per hour for Line 19 which runs through
Downtown Phoenix. Compared to our GTFS estimates
of the agency’s fleet sizes and assuming a bus capacity of
36 seats, the optimized model decreases the average load
factor by 27% from 1.07 to 0.78. This is unsurprising
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Figure 2. Distribution of MAZ demand-weighted vulnerabilities.
The optimization model aims to minimize the wait time for the
routes with the highest demand and vulnerability. The demand-
vulnerabilities for all routes are represented as weights to the
variable of interest — fleet allocation — when running the opti-
mization model. The frequency distribution of these weights
represents the distribution of vulnerable demand, or the total
person-minutes scaled by the vulnerability indices for all origin
MAZs boarding a given bus route. The positively skewed distri-
bution demonstrates that a small number of routes carry
a disproportionate number of vulnerable passengers.

given the model’s emphasis on serving routes with large
demand. Arterial lines, that traverse the downtown area
as well as more densely populated neighborhoods to the
east and west of the city center, are most served in the
model’s output (Figure 3). This reflects the higher popu-
lation density west of Downtown Phoenix and coinci-
dent lower median family incomes. These lines also
serve areas with younger residents who are less likely
to own vehicles, including affiliates of Arizona State
University.

4. Discussion

The model results highlight the context dependency of
schedule optimization and rerouting to promote cli-
mate resilience in hot climates. Whereas under less
extreme conditions, capacity increases confer propor-
tional benefits to the objective, under more severe
temperatures — when all routes must be equally ser-
viced and baseline capacity is constrained - surplus
vehicles offer significant benefits to reducing vulner-
able exposure. Importantly, adding bus capacity to
aline is limited by both a practical ‘minimum’ headway
and the diminishing returns of additional buses. And
finally, no amount of fleet reallocation would be able to
satisfy NIOSH guidance on maximum allowable expo-
sure for temperatures exceeding 110°F, without
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Figure 3. Map of Phoenix fleet reallocation. Background polygons correspond to transportation analysis zones (TAZ) — an MAZ's parent
spatial unit. Each zone’s vulnerability quintile is shaded in blue so that darker shades correspond to higher vulnerability. TAZ
vulnerability is measured as the weighted average of all MAZ vulnerabilities subsumed by a TAZ and is used for visualization purposes
only. Polylines correspond to the 72 local bus routes that were studied and are shaded according to the change in buses per runtime
under the optimized scenario relative to baseline. Red colored lines experienced a reduction in service, with a maximum reduction of
1.7 buses per runtime. Orange shaded routes saw an increase in service with a maximum increase of 8.6 buses. For the few segments
where routes overlap, the route with the highest frequency is shown.

a dramatic increase in fleet size. That is because the
minimum number of buses per route needed to fulfill
the maximum allowable wait time are so large, that the
total number of required buses exceeds the total fleet
size. Therefore, under the most extreme heat condi-
tions, agencies would need to pursue alternative inter-
ventions that directly reduce heat exposure for
a passenger and/or avoid the need to commute to and
wait for a bus. These include, but are not limited to,
cooled shade structures, improved tree canopy, first-
last-mile micromobility connections, and on-demand
transit services.

It is important to note that as a demonstration, the
model presented in this paper makes simplifying assump-
tions that would need to be addressed prior to any real
implementation. For one, rerouting and the dispatching of
additional vehicles could increase agencies’ operating
expenses beyond allocated budgets. Further, many agencies

have designated vehicles serving routes that are determined
based on travel distance, terrain, and powertrain; by con-
trast, our model assumes that all vehicles can serve all
routes. It may also be simplistic to assume that drivers
would be amenable to sudden adjustments in route assign-
ments and schedules. From the passenger standpoint, it is
also worth noting that any changes to schedules would
need to be communicated effectively, especially for the
select routes that would experience a reduction in service.

The simulated scenarios also bear simplifying
assumptions. For one, they assume uniform tempera-
ture throughout the study area, when the local built
environment is known to cause variability in microcli-
mates that impact human thermal comfort and health
(Park et al., 2017). Yet, even with complete temperature
information an agency would unlikely be able to adapt
service to account for such high spatial variability in
temperatures. . Additionally, NIOSH’s ‘light work’



exposure thresholds while informative, are not directly
based on travel activity. For this reason, the exposure
thresholds introduced in the model should be inter-
preted as rudimentary benchmarks.

Finally, there are several improvements that could be
made to the model, pending data availability. The first
would be to obtain empirical wait times for different
routes and stops to accurately quantify exposure.
Having additional information on the bus stop infra-
structure and egress exposure would also enhance such
measurements. Additionally, the estimates of fleet
assignments in the model are based on expected wait
times and runtimes derived from GTFS and as a result
overlook day-to-day and hour-by-hour fluctuations in
schedules. Lastly, cost simulations associated with each
fleet reallocation could further demonstrate the feasibil-
ity of any adaptive scheduling in applied settings.

These challenges notwithstanding, the model presents
an advancement in its use of an ABM model that offers
unmatched precision in traveler behavior and character-
istics. These data inform changes to service operation that
might offer significant cost savings over traditional hard
infrastructure. They can be implemented relatively quickly
and they can be easily adapted to unanticipated changes in
infrastructure, demand, and weather. Future areas of
research that could advance these models include enabling
the partitioning of routes, whereby certain segments
would be served at a higher or lower frequency, as well
as logistic considerations that include bus depot location
and bus driver availability. It would also be worth replicat-
ing this analysis for an agency like Los Angeles Metro,
which has a larger bus fleet and covers an area with more
temperature variability across space and time.

4.1. Implications

Cities throughout the United States have tasked public
transit systems with securing myriad social benefits that
include alleviating automobile congestions, reducing car-
bon emissions, and providing mobility to lower-income
residents. To realize these goals, cities have invested heavily
in the expansion of transit services and improving relia-
bility. By comparison, the first-last-mile comfort of pas-
sengers prior to boarding and after alighting, especially as
it relates to weather, has been overlooked. With climate
change expected to increase temperatures in Phoenix and
the nation, extreme heat has the potential to reverse hard
earned improvements in service and safety.

This paper presents one method for protecting passen-
ger comfort and health, leveraging the flexibility of bus
systems to better serve routes with more vulnerable riders.
It highlights the complex interaction between allowable
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heat exposure and the effect of bus capacity on wait-
times — both of which follow nonlinear trends. The find-
ings show that during milder summer heat (<110°F),
agencies can achieve significant improvements with mod-
est route adjustments and that during more severe heat
events, the deployment of spare vehicles can secure large
gains in passenger welfare. This is particularly true for
agencies with skewed ridership, where a few lines carry
most passengers. Given these findings, agencies might
consider investments in building an adaptable workforce -
training drivers for multiple routes and negotiating more
flexible working arrangements — as well as ensuring the
availability of spare vehicles before any extreme heat event.
In doing so, agencies will help protect the health and
comfort of their customers as well as equitably enhance
the resilience of their systems.
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