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ABSTRACT
Extreme heat events induced by climate change present a growing risk to transit passenger 
comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce 
headways on heavily trafficked bus routes serving vulnerable populations. This paper develops 
a schedule optimization model to minimize heat exposure and applies it to local bus services in 
Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. 
Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% 
when operating at maximum fleet capacity. Outcome improvements are notably characterized by 
diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and 
passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, 
especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adap
table resilience strategy to protect riders from extreme heat exposure.
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1. Introduction

It is widely believed that the sustainable growth of 
cities relies on increasing public transit use (Dulal et 
al., 2011; Hodges, 2010). However, increasing fre
quency, duration, and severity of heat waves and 
other extreme weather events caused by climate 
change threaten both engineered infrastructure that 
supports public transit as well as passenger comfort 
and health. Phoenix, Arizona, with average maxi
mum daytime temperatures of 111°F during summer 
months, and the fastest growing population in the 
United States, is particularly vulnerable to extreme 
heat (Chow et al., 2012; U.S. Census Bureau, 2020; 
National Oceanic and Atmospheric Administration 
2020). As climate change advances, the frequency of 
extreme heat events in Phoenix is projected to 
increase from 2.0 to 24.4 annual events by the year 
2070 (Grossman-Clarke et al., 2010). Importantly, 
lower-income communities that have less residential 
air conditioning, fewer cooling centers, and streets
capes lacking vegetation, are more susceptible to the 
impacts from extreme heat (Chow et al., 2012; 
Voelkel et al., 2018). Households residing in these 
areas are also more dependent on public transporta
tion and may be disproportionately exposed to heat 
during travel (Taylor & Fink, 2003).

Existing studies show that seasonal changes in tem
perature and weather push would-be transit users to 
different modes of travel and may result in the delay 
or cancellation of non-essential trips (Liu et al., 2017). 
The drivers of these behavior changes are numerous and 
complex. For one, the discomfort of waiting for transit is 
exacerbated under inclement weather conditions (Guo 
et al., 2007; Singhal et al., 2014). Additionally, the jour
ney to the bus, usually made by foot, can be physically 
taxing during high temperatures, especially for the 
elderly and persons with a disability or a chronic illness. 
These responses are furthermore shaped by the culture, 
climate (average weather) and built environment of an 
area (Böcker et al., 2013; Dijst et al., 2013; Liu et al., 
2017).

Transit agencies are already equipped with a range of 
tools and actions to shield passengers during periods of 
unpleasant and potentially dangerous weather. These 
include investments in shading structures and tree 
cover in the surrounding areas of a bus stop (Lanza & 
Durand, 2021). Air conditioning on vehicles and in 
nearby retail can also be critical for reducing exposure. 
Physical infrastructure investments are not the only tool 
available to agencies, however.

Adjusting transit schedules to reduce waiting times 
can lower the duration of exposure without needing 
additional engineered infrastructure and can be 
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implemented quickly. When opting to adapt transit 
schedules, agencies may avoid the expenses of large 
capital investments, help maintain ridership levels, as 
well as limit health risks. Understanding the potential 
benefits of reallocation as a means of adapting to 
extreme weather and how disruptive such schemes 
would be to current fleet assignments could help agen
cies make informed decisions for their customers. This 
study develops and implements a rerouting model for 
minimizing passenger heat exposure for the regional 
transportation agency in Phoenix, Arizona.

1.1. Heat, transit, and human health

Despite the extensive efforts to understand the effects of 
weather on travel behavior, the negative impact of heat 
on ridership has not been sufficiently integrated into 
existing transport planning processes (Liu et al., 2017). 
Moreover, these studies neglect the potential effects heat 
may have on riders who continue to use public transit 
(Dzyuban et al., 2021). There are likely many reasons 
individuals continue to travel during dangerous heat 
conditions including, but not limited to, modal captiv
ity, weather indifference, and inelastic travel demand 
with respect to weather. Mode captives refers to people 
who have no other mobility options available to them 
and weather indifference refers to the subjective experi
ence of adverse weather conditions and, in this context, 
one’s willingness to endure certain temperatures for 
a sustained period (Jacques et al., 2013). Such willing
ness is likely informed by a traveler’s opportunity cost 
from cancelling or postponing work travel, namely, 
their elasticity of demand (Liu et al., 2015).

Exposure to heat extremes accounts for more 
weather-related fatalities than nearly all other extreme 
weather events combined and is a leading cause of 
weather-related deaths in the U.S. most years (Berko 
et al., 2014; Hyland, 2016). Heat stroke and the aggrava
tion of existing medical conditions from heat exposure 
are common causes of emergency room visits, hospita
lizations, and early mortality (Kenney et al., 2014; 
Kovats & Hajat, 2008; Michelozzi et al., 2009). 
Globally, exposure to extreme heat was estimated to 
result in 480,000 excess deaths per year (Zhao et al., 
2021).

Epidemiologic studies have identified demographic, 
economic, and community characteristics that are asso
ciated with increased mortality and morbidity during 
periods of extreme heat (Reid et al., 2009). Determinants 
of increased exposure and sensitivity to heat include: 
lower income, older age, higher population density, 
lower tree density, outdated construction, and lack of 
air conditioning (Aminipouri et al., 2016). Research has 

shown that these characteristics cluster spatially in 
urban areas where transit ridership is concentrated 
and where discriminatory redlining has resulted in his
torical underinvestment in infrastructure (Harlan et al., 
2013; Hoffman et al., 2020; Reid et al., 2009).

The potential for prolonged exposure to extreme tem
peratures for transit riders is far greater than for drivers. In 
most cases, transit use requires riders to expose themselves 
to the environment in three phases: ingress, waiting, and 
egress. Ingress and egress exposure are a function of the 
mode used and distance traveled to access transit stops and 
final destinations. As more than 75% of all transit riders 
walk to transit, the location of the nearest stop relative to 
a person’s origin is a critical factor in transit-related expo
sure (Hess, 2012). By contrast, waiting-based exposure 
depends on the frequency of individual transit lines, their 
reliability, their capacity, and the physical characteristics of 
a station (Fraser & Chester, 2017).

Early research around heat exposure and transit use 
combines simulated urban meteorology with transpor
tation activity diaries to assess outdoor heat exposure 
during non-motorized travel, including access trips to 
transit stops. In such studies, researchers find that 
socially disadvantaged groups are disproportionately 
exposed to transport-heat (Karner et al., 2015). 
Additional research shows that transit stop location 
and transit schedules contributed to variable heat expo
sure across transit systems and that users from areas 
with low density, few high capacity roadways, and irre
gular street networks are more likely to experience pro
longed exposure when travelling to and waiting at 
transit stops (Fraser & Chester, 2017).

1.2. Adjusting bus transit schedules during heat 
waves

Bus transit network design and scheduling is 
a complex process that balances service quality, cov
erage, and directness. In most cases, transportation 
agencies are not profit-driven but their resources and 
operations remain constrained by available budgets 
(Desaulniers & Hickman, 2007). The primary com
peting alternatives are transit systems that serve large 
areas with limited frequency and those that serve 
small areas with high frequency.. The public transit 
planning process is typically divided into five steps, 
(1) network design (route structure and stop place
ment), (2) route frequencies, (3) timetabling, (4) 
vehicle scheduling, and (5) crew scheduling and ros
tering (Guihaire & Hao 2008). This analysis focuses 
on step two, specifically increasing transit frequencies 
to reduce waiting times for passengers.
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Vehicle arrivals per hour along a given route is the 
most important factor affecting overall wait time. 
Traditionally, average waiting times at any stop have 
been estimated as half the “headway’, or the time 
between bus arrivals; on-board surveys, however, con
tradict this assumed uniform arrival distribution 
(Fraser & Chester, 2017). Along infrequent routes, 
passenger wait times are significantly less than half 
the headway indicating rider knowledge of existing 
transit schedules. Increasing frequencies along such 
routes without providing advanced notice to riders 
may not significantly reduce average waiting due to 
the passenger arrival behavior. Conversely, average 
wait times along frequent routes are typically greater 
than the times predicted by transit schedules. Thus, 
adding vehicles to routes with intermediate frequencies 
present the best opportunity to significantly reduce 
passenger waiting times.

Transit frequencies are usually developed from 
demand estimates and agency standards for vehicle 
occupancy and minimum frequency (Ceder, 2016). 
Such estimates are typically derived from travel 
demand models that draw from an area’s economic 
activity and population to produce top-down projec
tions of trip generation and mode choice. Yet these 
models are incapable of ‘chaining’ trips together nor 
do they attribute trips to specific households, limiting 
the ability for planners to fully measure the equity- 
impacts of bus scheduling. To address these and 
other shortcomings, agencies have, in recent years, 
begun implementing advanced activity-based models 
(ABM): bottom-up estimations of travel demand that 
are generated from household attributes and an indi
vidual’s anticipated behavior in areas beyond their 
home and across different times of day (Hafezi et al., 
2018).

There are well-established models for determining 
transit frequencies to optimize economic and effi
ciency outcomes (Hadas, 2013). Increased calls to 
consider equity in transit service, coupled with an 
ABM’s provision of disaggregated sociodemographic 
data at fine spatial resolutions, however, warrant the 
addition of new optimization criteria in planning 
models, not least, ridership’s exposure to extreme 
heat. This could either be accomplished by adding 
vehicles to service, as agencies already do for special 
events, or reallocating existing in-service vehicles 
from other routes. This paper develops an optimiza
tion framework that reallocates existing vehicles and 
dispatches spare fleet capacities based on the heat 
vulnerability of riders and explores that framework 
using a case study of Valley Metro, the transit agency 
serving Phoenix, AZ.

2. Methods and data

2.1. Optimization framework

To minimize negative outcomes from extreme heat, an 
agency should maximize service to the areas that are 
most likely to rely on transit and most likely to suffer 
from prolonged exposure to high temperatures. In other 
words, an agency should minimize the combination of 
heat exposure and heat sensitivity, what the model here
inafter refers to as vulnerability. Individual exposure is 
assumed to be negatively correlated with income and 
cars per household, as wealthier households will retain 
the option of driving or foregoing travel completely (He 
& Thøgersen, 2017). Regional vegetation abundance is 
also included as it offers cooling and shading for pedes
trians (Lanza & Durand, 2021). Heat sensitivity, on the 
other hand, is modeled by passenger age, which studies 
have identified as the primary risk factor for heat stress 
during physical activity (McGinn et al., 2017). The final 
component of passenger vulnerability in this model is 
the duration of exposure. Because agencies indepen
dently determine the frequency of bus arrivals, the opti
mization model described herein solves for the bus 
frequencies that will minimize wait times. Simply stated, 
the model aims to reduce wait times by as much as 
possible, for as many people as possible while account
ing for each passenger’s sensitivity to heat and their 
dependency on travel. It uses a non-linear constrained 
optimization solver for the entire bus service area of 
Phoenix’s transit agency. The model is specified as: 

Equation 1: Objective Function 

Min
X

i

X

j2Ci

Wi fið ÞDjVj 

S:T: 1Þ
X

i
fi <B 2ÞM � fi � N; 2 Z"i 

Where : i ¼ Transit route & j ¼ Microan alysis zone 

Wi fið Þ ¼ Average waiting time for route i
runtime
vehicles

� �

Ci ¼ Microanalysis zones served by transit route i 

Dj ¼ Transit demand in microanalysis zone
j # of TransitRidersð Þ

Vj ¼ Heat vulnerability of microanalysis zone j 

SUSTAINABLE AND RESILIENT INFRASTRUCTURE 3



fi ¼ Frequency of route i
vehicles
runtime

� �

B ¼ The total number of buses currently operating 

M ¼ NIOSH Minimum allowable frequency
vehicles
runtime

� �

N ¼ Maximum allowable frequency
vehicles
runtime

� �

The model assumes exposure to primarily be 
a function of wait time Wi fið Þ, demand Dj, and vulner
ability Vj, subject to two main constraints. The first 
constraint, B, represents the total agency fleet size, 
which provides an upper bound on the total number 
of buses that can be assigned across all routes. While 
total fleet size is typically a constant, Valley Metro, like 
many agencies, has the capacity to dispatch spare vehi
cles to increase capacity. To observe the sensitivity of 
outcomes to the fleet size, B, the model is run for five 
different capacity multiples ranging from 0% to 20% 
increases in normal fleet capacity; the latter is the official 
spare fleet capacity reported in Valley Metro’s 2020– 
2024 Short Range Transit Program and is also the max
imum spare fleet size allowed by the Federal Transit 
Administration (Valley Metro – Regional Public 
Transportation Authority (RPTA), 2019).

The second constraint, N ensures that the number of 
vehicles servicing a route produces wait times that are 
below the National Institute of Occupational Safety and 
Health’s (NIOSH) heat exposure duration standards 
and above an impractical lower limit of five minutes. 
NIOSH’s standards were developed in 2016, with the 
Centers for Disease Control and Prevention, to inform 
employers about heat safety standards (Jacklitsch et al., 
2016). These are based on the Wet Bulb Globe 
Temperature, a holistic measure of ‘experienced’ heat, 
the metabolic rate of an activity, and the availability of 
engineering controls to reduce heat stress (e.g. air con
ditioning, shade). In the absence of alleviating heat 
stress, the institute recommends ‘administrative con
trols’, or more simply stated, rest periods to allow for 
the body to cool. These guidelines are drafted separately 
for ‘heavy’, ‘medium’, and ‘light’ forms of work. The 
administrative control guidelines for ‘light’ work are 
used to parametrize maximum wait times in the above 
model for five different extreme temperature scenarios – 
106°F, 107°F, 108°F, 109°F and 110°F. Finally, vehicle 
bunching, a reliability issue caused by excess vehicles, is 
known to occur on high frequency routes in high 

demand areas during peak periods (Camps & Romeu 
2016). Adding vehicles to routes already experiencing 
bunching may exacerbate this problem. Accordingly, 
the minimum allowable headway in the model, or max
imum allowable frequency, N, is set to correspond to 
five minutes.

To assess the optimization’s sensitivity to the two 
imposed constraints, the model was run for each possi
ble combination of fleet size and maximum frequency 
equaling 25 scenarios total. The optimization problem 
was solved in MATLAB using the ‘fmincon’ function 
which implements an interior point algorithm to find 
a globally optimal fleet allocation. The model produces 
a non-integer value for bus vehicle allocation and there
fore can be interpreted as either a theoretical represen
tation of service capacity or buses servicing only 
a segment of the route.

2.2. Transit schedule data

The geography, service frequencies, and current fleet 
allocations of individual routes are derived from the 
2020 General Transit Feed Specification (GTFS) data 
for Phoenix’s regional transit agency, Valley Metro 
(Valley Metro, 2020). The number of vehicles needed 
to produce a certain headway on a given route, fi, is 
estimated by dividing the time it takes to complete 
a route, its runtime, by the route’s average headway. 
Conversely, the wait time for a given route can be 
determined by dividing the runtime by the route’s fleet 
allocation. For example, a route that on average takes 
half-an-hour to complete with buses arriving every 
10 minutes, would require three buses. Given that head
ways and runtimes are not equal across all times of day 
nor all days of the week but rather fluctuate in response 
to demand across different stops at different times, 
estimates are based on the modal head of weekday 
service.

2.3. Transit demand

Transit demand, Dj, is determined using the output of 
the Maricopa Association of Governments (MAG) 
ABM in 2018 (Maricopa Association of Governments, 
2018a). Activity-based travel demand models capture 
household-level and person-level travel choices includ
ing intra-household interactions between household 
members across a wide range of activity and travel 
dimensions (Parsons Brinckerhoff, Inc, Arizona State 
University, 2010). The ABM used in this simulation is 
informed, in large part, by a 2017 household travel 
survey conducted by MAG that includes GPS activity- 
travel data from 6,073 surveyed households, as well as 
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data from the American Community Survey (Maricopa 
Association of Governments, 2018b). Importantly, tran
sit trips in the ABM do not indicate the specific mode of 
travel (e.g. light-rail, bus); rather they are categorized 
between premium and conventional transit accessed by 
walking, kiss-and-ride, and park-and-ride. Premium 
transit traditionally includes express buses, bus rapid 
transit, light rail transit, and commuter rail whereas 
conventional transit typically refers to regularly sched
uled local services. This model simulates heat exposure 
for all premium and conventional transit trips that can 
be routed using the local bus network.

The ABM output details the daily travel movements 
of a simulated population of 3.8 million agents and 
18.4 million daily trips. Only a small fraction 
(~150,000) of the modeled daily trips in MAG's region 
occur by transit. In addition to the location of transit 
demand the model output also allows one to isolate the 
transit demand by time of day. The general movement 
of agents reflects a pattern of leaving residential areas 
during the morning peak period (6–9am) for employ
ment locations and the opposite pattern during the 
afternoon/evening peak (3–7pm).

At its most resolved spatial scale, the ABM identi
fies the origin and destination microanalysis zones 
(MAZ) – the smallest transportation spatial unit 
used by the planning agency – for each transit trip. 
The open-source routing software Open Trip Planner 
(OTP) is used to translate origin-destination pair
ings – imputed to be the centroid of each respective 
MAZ – into a specific transit bus line. OTP is a graph- 
based multimodal routing system that operates on 
a unified graph including links representing road, 
pedestrian, and transit facilities and services 
(Hillsman & Barbeau 2011). Focusing on all MAZ 
with sizes below the 98th percentile, the trip- 
weighted median MAZ area is 0.09 km2 

(µ = 0.38 km2), such that the ‘true’ origin point of 
a trip within any single MAZ does not differ much 
from the centroid. Variance in size across the 8662 
unique MAZs that were routed by OTP, though lar
ger, remains small in absolute terms with a weighted 
standard deviation of 0.9 km2. As MAZs are popula
tion weighted, the MAZs with the largest area and 
greatest potential error, account for only a small share 
of passenger trips.

OTP routing assumes a maximum walking distance 
of one mile to reach a transit stop and accounts for all 
possible transfers. All routing requests were made at the 
nearest hour of departure based on weekday service for 
the agency in February of 2020. OTP routing produced 
transit routes for 99.5% of trips across 72 bus lines. 
Importantly, for the optimization model, non-local 

and non-bus transit lines are excluded as they tend to 
be low-frequency, pre-scheduled commuter services, 
with predictable wait times.

2.4. Passenger vulnerability

Area population heat vulnerability indices VM were 
developed for each MAZ based on the ABM-reported 
characteristics of each transit rider who begins a trip 
from that MAZ as well as the area’s vegetation abun
dance. The formulation of vulnerability was adapted 
from relevant literature to develop an individual-scale, 
transit-specific metric. Specifically, standardized scores 
for income, cars per household, and age were combined 
with equal weight, given their correlations with transit 
dependency and health risk (Taylor & Fink, 2003). The 
inclusion of transit dependency assumes that under 
extreme heat conditions there will be a decline in transit 
usage, specifically among passengers with alternative 
private travel options. Accordingly, this model priori
tizes servicing areas with the greatest number of resi
dents who lack such options. Finally, to estimate heat 
vulnerability from the physical environment, the nor
malized difference vegetation index (NDVI) was esti
mated for each MAZ by computing the median NDVI 
30-meter pixel value from 2020 July and August 
LANDSAT 8 imagery in the one mile area surrounding 
the MAZ centroid. This area matches the maximum 
walking shed allowed by the routing algorithm for any 
single traveler. All social and physical variables men
tioned were min-max normalized and added with equal 
weight to produce a vulnerability index. The product of 
the vulnerability index and the ridership demand for 
a given bus route can be interpreted as the weights that 
drive the prioritization of fleet allocation in the model. 

Equation 2: Area population vulnerability index 

Vj ¼
X

i2Ai

N Z Iið Þ þ Z Cið Þ þ Z Gið Þ½ � þ N NDVIj
� �

Where : i ¼ agentand
Ai ¼ set of agents with trips originating in MAZj 

Z xð Þ ¼
x � μ xð Þ

σ xð Þ

where μ ¼ meanand
σ ¼ standarddeviation 

N xð Þ ¼
x � min xð Þ

max xð Þ � min xð Þ
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Ii ¼ Individual0s Household Income
Ci ¼ Cars per household of individual
Gi ¼ Age of individual 

NDVIj ¼ Normalize Difference Vegetation Index
surrounding centroid of MAZj 

Our approach marks a noteworthy advancement in 
precision compared to current vulnerability estimations 
by using ABM household and person characteristics. 
That is, while traditional ridership characteristics are 
imputed from aggregated census data for residents in 
a spatial unit, our vulnerability estimates are based on 
traveler characteristics and, in turn, capture a more accu
rate sample that includes non-home-originating trips.

3. Results

The ABM model counts 115,129 transit trips on an 
average weekday between the hours of 7 am and 6 
pm, representing 0.79% of all trips completed during 
daytime hours, when the combination of sunlight 
and high air temperatures can be hazardous. 
According to the ABM, transit riders in Maricopa 

County are overall 11 years younger than the typical 
traveler, with a median age of 25, and hail from 
households with median incomes of $56,500, which 
is approximately 15% less than their non-transit 
counterparts. Cars per household for transit passen
gers is 1.77 compared with 2.14 for non-transit 
travelers.

Across all fleet capacity multiples, the mildest heat 
exposure of 106 F, benefitted the most from rerouting, 
realizing reductions in the demand-headway weighted 
vulnerability of over 20% for the standard bus fleet 
capacity and up to 40% when the maximum available 
fleet is used. Improvements stemming from capacity 
increases tend to be linear (Figure 1), suggesting that 
routes served by additional bus capacity contribute 
equally to the objective outcome. By contrast, when 
keeping capacity fixed, there is a nonlinear decline in 
improvement as the temperature increases, i.e. maxi
mum allowable wait time decreases. Notably, at the 
extreme temperature of 110°F, there are not enough 
buses in the agency fleet to meet the wait-time con
straint of 15 minutes for all bus lines. Rather, the mini
mum headway that can be realized for the entire local 
bus network using its standard fleet is 25 minutes. It is at 

Figure 1. Optimization objective function improvements and fleet change magnitude. The Y-axis is the percent reduction of the 
optimized objective outcomes relative to the baseline schedule’s unoptimized objective outcome. As the vertical spacing between 
points for a given capacity multiple illustrate, there is a nonlinear reduction in exposure as the maximum allowable wait time is 
reduced. As capacity increases, there is a linear reduction in risk – except for scenarios with most extreme heat, which exhibit non- 
linear improvements in the objective outcome. The minimum achievable wait time (maximum exposure duration) for all routes was 
25 minutes, for which there is no official corresponding NIOSH temperature.
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this temperature scenario that capacity increases pro
duce the greatest benefit by reducing headways for the 
most vulnerable routes; specifically, a 5% increase in 
fleet size corresponds to a 15% improvement in the 
objective outcome.

The observed results stem from both the uneven 
demand across the system and the inherent nonli
nearity in headways which are inversely related to 
fleet size. Indeed, each incremental bus added to 
a route has a diminishing return on wait time equal 
to the inverse fleet size, squared. It follows then that 
a bus line with pre-existing small headways will see 
little gain from fleet additions. By contrast a line 
with large headways and moderate exposure, will 
see a large improvement from an increase in service. 
Simply stated, few lines carry most of the exposure 
and the model prioritizes those few lines with more 
buses to realize large reductions in riders’ heat expo
sure. Any subsequent service improvements will have 
more moderate effects on outcomes. Spare fleet capa
city makes the greatest difference under extreme 
temperature scenarios when the requirements of 
NIOSH compliance overwhelm the network.

NIOSH standards interact with the skewedness of 
passenger demand as well. This can be seen in 
Figure 2, which shows select few outliers in the objective 
function coefficients, i.e. the vulnerability index multi
plied by the demand. When temperatures increase, the 
model’s requirement for meeting maximum allowable 
exposure time on all lines results in the diversion of 
buses from lines with high vulnerability and high rider
ship to lines with lower vulnerability and ridership. 
Furthermore, given that allowable heat exposure has 
nonlinear stringency for each incremental degree, 
there is a corresponding nonlinear reduction in objec
tive outcomes for increasingly severe temperatures 
when capacity is fixed.

Of practical importance is the number of buses that 
would need to be reallocated to achieve the optimal 
schedule. On average, across all scenarios, rerouting 
would require the reassignment of approximately 
13.5% of the bus fleet (SD = 2.2%). Notably, 27 of the 
72 lines see on average a 0.9 decrease in fleet size, based 
on the median outcome for each bus line across all 
scenarios. The remaining lines all show median 
increases in bus allocations compared to the existing 
agency schedule, with a maximum increase of 8.6 
buses per hour for Line 19 which runs through 
Downtown Phoenix. Compared to our GTFS estimates 
of the agency’s fleet sizes and assuming a bus capacity of 
36 seats, the optimized model decreases the average load 
factor by 27% from 1.07 to 0.78. This is unsurprising 

given the model’s emphasis on serving routes with large 
demand. Arterial lines, that traverse the downtown area 
as well as more densely populated neighborhoods to the 
east and west of the city center, are most served in the 
model’s output (Figure 3). This reflects the higher popu
lation density west of Downtown Phoenix and coinci
dent lower median family incomes. These lines also 
serve areas with younger residents who are less likely 
to own vehicles, including affiliates of Arizona State 
University.

4. Discussion

The model results highlight the context dependency of 
schedule optimization and rerouting to promote cli
mate resilience in hot climates. Whereas under less 
extreme conditions, capacity increases confer propor
tional benefits to the objective, under more severe 
temperatures – when all routes must be equally ser
viced and baseline capacity is constrained – surplus 
vehicles offer significant benefits to reducing vulner
able exposure. Importantly, adding bus capacity to 
a line is limited by both a practical ‘minimum’ headway 
and the diminishing returns of additional buses. And 
finally, no amount of fleet reallocation would be able to 
satisfy NIOSH guidance on maximum allowable expo
sure for temperatures exceeding 110°F, without 

Figure 2. Distribution of MAZ demand-weighted vulnerabilities. 
The optimization model aims to minimize the wait time for the 
routes with the highest demand and vulnerability. The demand- 
vulnerabilities for all routes are represented as weights to the 
variable of interest – fleet allocation – when running the opti
mization model. The frequency distribution of these weights 
represents the distribution of vulnerable demand, or the total 
person-minutes scaled by the vulnerability indices for all origin 
MAZs boarding a given bus route. The positively skewed distri
bution demonstrates that a small number of routes carry 
a disproportionate number of vulnerable passengers.
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a dramatic increase in fleet size. That is because the 
minimum number of buses per route needed to fulfill 
the maximum allowable wait time are so large, that the 
total number of required buses exceeds the total fleet 
size. Therefore, under the most extreme heat condi
tions, agencies would need to pursue alternative inter
ventions that directly reduce heat exposure for 
a passenger and/or avoid the need to commute to and 
wait for a bus. These include, but are not limited to, 
cooled shade structures, improved tree canopy, first- 
last-mile micromobility connections, and on-demand 
transit services.

It is important to note that as a demonstration, the 
model presented in this paper makes simplifying assump
tions that would need to be addressed prior to any real 
implementation. For one, rerouting and the dispatching of 
additional vehicles could increase agencies’ operating 
expenses beyond allocated budgets. Further, many agencies 

have designated vehicles serving routes that are determined 
based on travel distance, terrain, and powertrain; by con
trast, our model assumes that all vehicles can serve all 
routes. It may also be simplistic to assume that drivers 
would be amenable to sudden adjustments in route assign
ments and schedules. From the passenger standpoint, it is 
also worth noting that any changes to schedules would 
need to be communicated effectively, especially for the 
select routes that would experience a reduction in service.

The simulated scenarios also bear simplifying 
assumptions. For one, they assume uniform tempera
ture throughout the study area, when the local built 
environment is known to cause variability in microcli
mates that impact human thermal comfort and health 
(Park et al., 2017). Yet, even with complete temperature 
information an agency would unlikely be able to adapt 
service to account for such high spatial variability in 
temperatures. . Additionally, NIOSH’s ‘light work’ 

Figure 3. Map of Phoenix fleet reallocation. Background polygons correspond to transportation analysis zones (TAZ) – an MAZ’s parent 
spatial unit. Each zone’s vulnerability quintile is shaded in blue so that darker shades correspond to higher vulnerability. TAZ 
vulnerability is measured as the weighted average of all MAZ vulnerabilities subsumed by a TAZ and is used for visualization purposes 
only. Polylines correspond to the 72 local bus routes that were studied and are shaded according to the change in buses per runtime 
under the optimized scenario relative to baseline. Red colored lines experienced a reduction in service, with a maximum reduction of 
1.7 buses per runtime. Orange shaded routes saw an increase in service with a maximum increase of 8.6 buses. For the few segments 
where routes overlap, the route with the highest frequency is shown.
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exposure thresholds while informative, are not directly 
based on travel activity. For this reason, the exposure 
thresholds introduced in the model should be inter
preted as rudimentary benchmarks.

Finally, there are several improvements that could be 
made to the model, pending data availability. The first 
would be to obtain empirical wait times for different 
routes and stops to accurately quantify exposure. 
Having additional information on the bus stop infra
structure and egress exposure would also enhance such 
measurements. Additionally, the estimates of fleet 
assignments in the model are based on expected wait 
times and runtimes derived from GTFS and as a result 
overlook day-to-day and hour-by-hour fluctuations in 
schedules. Lastly, cost simulations associated with each 
fleet reallocation could further demonstrate the feasibil
ity of any adaptive scheduling in applied settings.

These challenges notwithstanding, the model presents 
an advancement in its use of an ABM model that offers 
unmatched precision in traveler behavior and character
istics. These data inform changes to service operation that 
might offer significant cost savings over traditional hard 
infrastructure. They can be implemented relatively quickly 
and they can be easily adapted to unanticipated changes in 
infrastructure, demand, and weather. Future areas of 
research that could advance these models include enabling 
the partitioning of routes, whereby certain segments 
would be served at a higher or lower frequency, as well 
as logistic considerations that include bus depot location 
and bus driver availability. It would also be worth replicat
ing this analysis for an agency like Los Angeles Metro, 
which has a larger bus fleet and covers an area with more 
temperature variability across space and time.

4.1. Implications

Cities throughout the United States have tasked public 
transit systems with securing myriad social benefits that 
include alleviating automobile congestions, reducing car
bon emissions, and providing mobility to lower-income 
residents. To realize these goals, cities have invested heavily 
in the expansion of transit services and improving relia
bility. By comparison, the first-last-mile comfort of pas
sengers prior to boarding and after alighting, especially as 
it relates to weather, has been overlooked. With climate 
change expected to increase temperatures in Phoenix and 
the nation, extreme heat has the potential to reverse hard 
earned improvements in service and safety.

This paper presents one method for protecting passen
ger comfort and health, leveraging the flexibility of bus 
systems to better serve routes with more vulnerable riders. 
It highlights the complex interaction between allowable 

heat exposure and the effect of bus capacity on wait- 
times – both of which follow nonlinear trends. The find
ings show that during milder summer heat (<110°F), 
agencies can achieve significant improvements with mod
est route adjustments and that during more severe heat 
events, the deployment of spare vehicles can secure large 
gains in passenger welfare. This is particularly true for 
agencies with skewed ridership, where a few lines carry 
most passengers. Given these findings, agencies might 
consider investments in building an adaptable workforce – 
training drivers for multiple routes and negotiating more 
flexible working arrangements – as well as ensuring the 
availability of spare vehicles before any extreme heat event. 
In doing so, agencies will help protect the health and 
comfort of their customers as well as equitably enhance 
the resilience of their systems.
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