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Abstract—Anomaly detection in sequential log data is a com-
mon data analysis task as it contributes to detecting critical
information, such as malfunctions of systems. However, due to
the scarcity of anomalies, the traditional supervised learning
approaches cannot be applied for anomaly detection tasks.
Meanwhile, most of the existing studies only focus on identifying
the anomalous log sequences and cannot further detect the
anomalous events in a sequence. In this work, we present Inter-
pretableSAD, an interpretable log anomaly detection framework
that can achieve both anomalous sequence and fine-grained event
detection. Given a set of normal log sequences, we propose a data
augmentation strategy to generate a set of anomalous sequences
via negative sampling so that we can train a binary classification
model based on the observed normal sequences and the generated
anomalous sequences. After training, the classification m odel is
able to detect real anomalous log sequences. We then consider
the anomalous event detection as a model interpretation problem
and apply an interpretable machine learning technique in a novel
way to detect which parts of the sequences, a.k.a, anomalous
events, lead to anomalous issues. Experimental results on three
log datasets show the effectiveness of our proposed framework.

Index Terms—anomaly detection, negative sampling, inte-
grated gradients, interpretability

I. INTRODUCTION

Anomaly detection in sequential log data, which aims to
identify sequences that deviate from the expected behavior
or patterns, has received much attention due to its broad ap-
plication [1]-[6]. For example, online services generate large
amounts of log messages that record states of systems, where
the log messages can be modeled as an event sequence [7].
Because online services are everywhere in our daily life, and
a little jitter of the services could cause severe consequences,
such as financial losses, it is crucial to detect anomalous states
in a timely manner to ensure the reliability of the online
services and mitigate the losses.

Traditional approaches for sequential anomaly detection are
strictly rule-based and dependent on domain knowledge about
the patterns of sequences [8]. Although the rule-based ap-
proaches can achieve good performance for specific anomalies,
the limitations are still obvious, i.e., it is hard to extend
to detect new types of anomalies. Currently, many machine
learning-based approaches are proposed. Considering the lack
of anomalous samples, many unsupervised learning models,
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such as Principal Component Analysis (PCA) [9], or one class
classification models, such as one-class SVM [10], are used
to detect anomalies. In order to further model the temporal
information of sequential data, the state-of-the-art anomaly
detection approaches are mainly based on deep learning mod-
els. For example, DeepLog [1] and LogAnomaly [2] utilize
long-short term memory (LSTM) network to capture normal
sequential patterns from normal samples and detect anomalies.

Because the anomalous samples are rare due to the nature
of anomalies, most of the existing approaches are trained in
an unsupervised learning manner. These approaches usually
assume the normal samples are concentrated in a hypersphere,
while the anomalous samples are outside the hypersphere
[11], [12]. However, due to the dynamics of sequential data,
such assumption can be easily violated for sequential anomaly
detection. In this paper, different from the existing work, we
propose a data augmentation strategy to generate the anoma-
lous samples by negative sampling. Based on negative sam-
pling, we can generate sufficient anomalous samples to train
a binary classification model without making an assumption
about normal data distribution. When the generated samples
are large enough to cover the common anomalous scenarios,
the classifier trained on generated anomalous samples can
detect the real anomalies as well.

Furthermore, the existing log anomaly detection approaches
can only detect anomalous log sequences and cannot identify
anomalous events in the sequence. Specifically, if a log se-
quence is detected as anomalous, there must be one or more
events in the sequence that deviate from the expected patterns.
For example, if a system is under attack, the operations con-
ducted by the attacker are anomalous events in a log sequence.
As an online service system can generate hundreds of logs
per second, the capacity of distinguishing anomalous events
from normal ones in a sequence is also critical for system
administrators to locate the anomalous operations besides
detecting the anomalous sequences. However, detecting the
anomalous events in a sequence faces several challenges. First,
because the information of a single event is very limited,
it is hard to identify useful features to represent an event.
Second, an anomalous event could be caused by the broken
of correlation among the events. It means we still need the
information of the whole sequence to identify the anomalous
events. To tackle these challenges, we creatively apply an
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interpretable machine learning technique, Integrated Gradients
(IG) [13], for anomalous event detection. The motivation is
that if a classifier predicts a sequence as anomalous, the model
interpretation technique should be able to identify which part
of the input sequence leads to the anomalous outcome. Then,
the events that are responsible for the anomalous result are
anomalous events.

In this work, we propose a framework, called Interpreta-
bleSAD, for detecting anomalous log sequences as well as
anomalous events. Specifically, we propose a negative sam-
pling algorithm to generate potential anomalous sequences
automatically so that we can train a binary classification
model through the observed normal samples and the generated
anomalous samples. We further propose to apply Integrated
Gradients for anomalous event detection. The events in a
sequence that significantly contribute to the anomalous result
are marked as anomalous events.

The main contributions of this paper are as follows. First,
we propose a novel negative sampling strategy to generate
potential anomalous samples based on the observed normal
samples, and then we can train a binary classifier for anomaly
detection. While data augmentation techniques are widely
used in computer vision and natural language processing to
improve model performance, it is under-exploited in the area of
anomaly detection. Second, most existing anomaly detection
models only achieve the anomalous sequence detection and
cannot identify the anomalous events in the sequence. We
novelly apply a model interpretation approach, Integrated
Gradients (IG), to achieve anomalous event detection. Third,
because IG relies on an appropriate baseline input for feature
attributions, we further propose a novel baseline generation
algorithm to improve the performance of anomalous event
detection. Experimental results show that InterpretableSAD
can achieve state-of-the-art performance on anomalous log
sequence detection and further identify the anomalous events
in the anomalous sequences with high accuracy.

II. BACKGROUND

Anomaly Detection in Sequential Log Data. Many sequen-
tial anomaly detection approaches have been proposed in
recent years. Several traditional anomaly detection approaches
are based on supervised learning, such as logistic regression,
decision tree [14], and Support Vector Machines (SVM) [15].
However, the major limitation of the supervised approaches
is that they require an enormous number of labeled data for
training, which is usually unavailable in anomaly detection
scenarios. Hence, the unsupervised learning approaches have
received more attention in the anomaly detection field, such as
the dimensionality reduction-based approaches and clustering-
based approaches [9], [16]. However, these approaches cannot
capture the order information of sequence data.

In recent years, deep learning based sequential anomaly
detection models are proposed to detect anomalies by checking
differences between normal and anomalous patterns [1]-[3],
[17], [18]. Specifically, when anomalous events occur, the
pattern of sequences will be changed as well, and the models
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can detect the changes and then flag anomalies. Most of the
existing approaches adopt recurrent neural networks to detect
anomalous sequences in an unsupervised manner by modeling
the patterns of normal sequences [1], [2]. These models adopt
long-short term memory (LSTM) [19] to predict the next
possible events based on previous events in a sequence. An
anomalous sequence will be detected if the actual event is
out of a candidate set of expected normal events. However,
the existing cutting edge unsupervised approaches are only
effective on sequence level anomaly detection and unable to
provide detailed information of anomalies on the sub-sequence
or event level.

Data Augmentation. Modern machine learning models usu-
ally require a large amount of labeled data for training.
Unfortunately it is sometimes hard to achieve in reality due to
cost and time factors. Data augmentation technique is to tackle
the scarcity of labeled data issue by artificially expanding the
labeled dataset. Currently, data augmentation is extensively
used in image classification and natural language processing
[20]-[22] to generate auxiliary training data. In practice,
data augmentation is conducted by a set of transformation
functions, such as rotation and flip for image data or synonym
replacement for text data, on the existing dataset. The data
generated by carefully designed transformation functions is
beneficial to improve the performance of machine learning
models.

Negative sampling as a special data augmentation technique
is used to generate negative samples instead of positive ones
when the negative samples are not available. Negative sam-
pling is a key step in various applications, such as training
word embeddings, knowledge graph embeddings, as well as
recommender systems [23]-[25]. Since the main challenge of
anomaly detection is the scarcity of anomalous samples, we
propose the negative sampling strategy in our work to generate
the potential abnormal sequences from the normal ones. Then,
we can build a binary classification model to detect anomalies.
Interpretable Machine Learning. Although modern deep
learning models have achieved great success in many appli-
cations, non-transparency is still a big issue for deploying
highly complex models in production environments. As a
consequence, interpretable machine learning, which aims at
providing human understandable explanations about the deci-
sions made by the models, has become an active research area
[26]-[32]. Interpretable machine learning techniques can gen-
erally be categorized into two groups: intrinsic interpretability
and post-hoc interpretability. Intrinsic interpretability indicates
the models are interpretable due to simple structures, such
as decision tree or linear regression, while the post-hoc
interpretability implies creating a second model to provide
explanations for an existing model [26], [27].

The interpretable anomaly detection models are very limited
in the literature [32], [33]. Research in [33] focuses on detect-
ing the outliers in attributed networks, while research in [32]
also targets the interpretable anomaly detection in sequential
data that leverages the attention mechanism to provide an
attention score of each event in a sequence. However, the
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Fig. 1: Framework of InterpretableSAD

proposed model is trained to capture the normal patterns based
on LSTM by predicting the next event given the previous
events in a sequence. The attention scores, which are used for
interpretation, are more about the correlation among events
in a sequence instead of the correlation between events and
the label (normal or anomalous). In our work, after train-
ing a classification model based on sequences generated by
negative sampling, our framework can model the correlation
between events and prediction outcome directly based on the
interpretable machine learning technique.

III. FRAMEWORK

Consider a log sequence of discrete events S =
{51, ., St, ..., ST}, where s, € £ indicates the event at the ¢-th
position, and £ is a set of unique events. In this work, we aim
at predicting whether a log sequence S is anomalous based on
a training dataset D = {S?}}¥, that consists of only normal
sequences. Meanwhile, for a sequence predicted as anomalous,
we further target to identify anomalous events in the sequence
so that the domain users can get insights about the detection
model as well as anomalous sequences. To achieve the above
two goals, in the training phase, assuming that we only have
normal samples in our training dataset, we propose a nega-
tive sampling approach to generate the potential anomalous
sequences so that we can train a classification model based
on both positive and negative samples. After training, in the
detection phase, once a sequence is predicted as anomalous
by the classifier, we novelly leverage an interpretable machine
learning technique to identify the anomalous events in the
sequence. Specifically, we adopt the Integrated Gradients
approach, which can explain the relationship between the
prediction results and input features, to identify the anomalous
events. Figure 1 shows our sequential data anomaly detection
framework.

A. Data Augmentation via Negative Sampling

In the anomaly detection field, in most cases, we have
plenty of normal samples but only observe a small number

1185

of anomalous samples. Hence, most anomaly detection ap-
proaches are based on one-class classification models. Dif-
ferent from the existing studies, in this work, we propose a
data augmentation approach via negative sampling to generate
the potential anomalous log sequences based on the observed
normal sequences. Then, we can train a binary classification
model based on two classes of samples.

In order to train an accurate binary classifier, we aim to
generate a dataset D* with sufficient anomalous samples that
can cover common anomalous scenarios. We consider two
anomalous scenarios for anomalous log sequence generation.
First, there are some rare events in the sequences. For example,
if an online system is compromised by an attacker, the
attacker could conduct some uncommon events on the system.
Second, some regular events happen in an unusual context. For
example, an attacker aims to evade detection by performing
some regular activities, but these activities happen at the wrong
time, which means that these activities are suspicious based
on their context. To simulate these two scenarios, we propose
an algorithm (shown in Algorithm 1) to generate the potential
anomalous log sequences.

Given the training set D, in order to consider both the event
and its context information, we generate a set of bigram events,
where each bigram is a sub-sequence of two adjacent events,
e.g., (8¢, 8t41), in the sequence S. We then build a bigram
event dictionary B3, where the key is the bigram, and the value
is the corresponding frequency of the bigram in D. Then, given
a normal sequence S € D, we use it as a template to generate
the potential anomalous sample by randomly replace r» number
of events in S. Specifically, for a randomly selected event s,
we will replace the event s; 1 with another event s ; so that
the bigram (s, s}, ) is rare or never observed in the training
set D. Due to the scarcity of anomalous events, the bigram
with a low frequency is suspicious. Since we replace r events
with low-frequency, we expect that there is a high possibility
that the generated sequences are anomalous.
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Algorithm 1: Negative Sampling

Input : Training set D, Negative sample size M
Output: Negative sample set D*
Generate a bigram event dictionary B based on D

for i =0 to M do
Randomly select .S from D
ind < Randomly select 7 indices of events from S
for ¢ in ind do

(s¢,57,1) < randomly select or generate a rare

or never observed bigram in B

(st;5e41) <= (st,5711)

return D*

B. Training a Classification Model

After generating a set of anomalous sequences D*, we
use both D and D* to train a binary classification model
f 8 — [0,1]. In particular, we first adopt word2vec [23]
to get representations of events in £ by training on the dataset
D. After mapping the events in a sequence to the embedding
space, we train a neural network fy to predict whether a
sequence is normal or anomalous:

g=fo(S), (D

where ¢ indicates the predicted label. Because we have two
classes of samples on hand, we further adopt the cross-entropy
loss to train the neural network. The objective function is
defined as:

L= %" —yjlogg; — (1 -y;)log(l - g)).
jeD~uUD

2

It is worth noting that any neural network, which can model
the sequential data, is able to be used in our framework for
anomalous sequence detection.

C. Anomalous Event Detection via Integrated Gradients

After the classification model is trained based on the nor-
mal and generated anomalous sequences, we can deploy the
model for detecting the anomalous samples for real. However,
in practice, only detecting the anomalous sequences is far
from sufficient. For example, because online service systems
can generate a huge amount of messages per minute, only
identifying anomalous sequences is not sufficient to help the
system administrator locate the anomalous operations from
attackers. Hence, we further aim at detecting the anomalous
events in sequences. There are two key challenges in detecting
anomalous events. First, an independent event in a sequence
does not contain enough information to support anomaly
detection. Second, whether an event is anomalous also depends
on its context. To tackle these challenges, in this work, instead
of designing a traditional detection model built on the event
information, we consider the anomalous event detection in a
sequence as a model interpretation problem. The motivation is
that when a classification model predicts a sequence as anoma-
lous, the model should detect some anomalous patterns in the
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sequence. By leveraging the model interpretation techniques,
we can further identify the anomalous patterns, i.e., anomalous
events, in the sequence.

In our framework, we adopt Integrated Gradients (IG) [13]
to derive feature attributions of each sequence. IG is a model
interpretable technique that can interpret prediction results by
attributing input features in a human-understandable way for
various classification tasks, such as image or text classification.
For example, in an image or text classification task, IG can
show which pixels or words are responsible for a certain label.
In this work, we leverage IG to identify anomalous events that
cause the sequential anomalies.

Formally, given a neural network fy : S — [0, 1], integrated
gradients are attributions of the prediction at input S relative
to a baseline input S’ as a vector Ay, (S,5") = (a1, ...,ar),
where a; is the contribution of s; to the prediction fy(.S).
A large positive a; indicates that feature strongly increases
the network output fy, while a; close to zero indicates that
the feature did not influence fy. Hence, we consider the
importance scores Ay, (S,S’) as anomalous scores to detect
the anomalous events.

Specifically, in our scenario, let S be a sequence, and S’ be
a baseline sequence. The integrated gradient for the ¢-th event
for sequence S and baseline S’ is defined as follows.

IGt(S)E(St_Sg)x/l afe(S/+CYX(S—S/))

a=0 88,5
The integrated gradients have a property called completeness
axiom, which indicates that the sum of integrated gradients
over the whole sequence is the difference between the output
of classification model fy on the input sequence and its
baseline, i.e.,

T

> Ap, (S, 8)) = fo(S) — folS).

t=1

da. (3)

“4)

The completeness axiom of IG ensures that the anomalous
score of each event is proportional to the contribution of
making S as an anomaly [13].

As shown in Equation 3, IG gets the importance score for
each event in S by integrating the gradient for each event
from a baseline S’ to the sequence S, where the baseline
is supposed to represent “absence” of features [34]. Hence,
finding a reasonable baseline is an essential step for applying
the IG method. For image classification models, the black
image is widely used as a baseline, while the zero-embedding
matrix is a common baseline for the text classification task.
However, it is not straightforward to find a single baseline for
anomaly detection on sequential data. Different from the text
classification task, say sentiment analysis, where the key words
contributed to the sentiment are usually positive or negative
words, the anomalous events in sequences are related to the
context of the sequences, and no widely accepted criteria can
be used to quantify the abnormality. Therefore, we propose
to generate a unique baseline for each sequence. Meanwhile,
based on the completeness axiom shown in Equation 4, the
sum of importance scores over events in a sequence is the
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prediction difference between the original sequence and the
baseline. In order to have a reasonable IG value, the generated
baseline is expected to be a positive sequence so that the sum
of importance scores can be in a reasonable scale.

Algorithm 2: Baseline Generation

Input : Neural network fy, Anomalous sample .5,
Training set D, Replacement Threshold 7
Output: Baseline S’
1=0
while f,(S) is not normal & i < 7 do
s¢ < Select the event in S with the lowest
frequency based on D
St ¢ Si—1, 1+=1
S+« S
return S’

Specifically, to generate the baseline sequence for an anoma-
lous sequence, we first sort the events based on their fre-
quencies in the training set D and then replace the lowest
frequent event s, with its preceding event s;_; to generate a
new sequence. We evaluate whether this new sequence is a
normal sequence or not by the neural network fy. If this new
sequence is still predicted as anomalous, we further replace the
currently lowest frequent event with its preceding event until
the generated sequence is predicted as normal based on fy.
We consider the generated sequence as a baseline S’ for the
original sequence S to derive the IG values. The motivation of
replacing the low-frequency events with their preceding events
is that a normal sequence should have some sort of integrity
at the event level. If there is a low-frequency event in the
sequence, we aim at replacing that event with a normal event
and keep the integrity of the sequence.

Meanwhile, followed by the strategy proposed in [35], we
expect the generated baseline has a short distance to the
original sequence in the embedding space. Hence, we set a
maximum replacement number 7 as a threshold. Once we
place 7 events in the original sequence, we will stop the
replacement disregard the predicted label of the current gen-
erated baseline. Algorithm 2 shows the procedure of baseline
generation for an anomalous sequence. It is worth noting that
the purpose of the above procedure is to generate baselines
instead of detecting anomalous events. We will show in our
experiments that simply labeling the low-frequency events as
anomalous events cannot achieve good performance.

After generating the baseline S/, we can derive the anoma-
lous scores of events in a sequence .S. Based on the definition
of IG, if we consider the anomalous sequence as a positive
class, the events with positive scores are anomalous, i.e.,
making positive contributions to the prediction. Hence, by
default, we can set a threshold 1 = 0 to identify the anomalous
events. Moreover, if we have a small validation set consisting
of anomalous sequences with fine-grained labeled information,
we can further leverage the validation set to fine-tune the
detection threshold 7 to identify an optimal value that can
lead to better performance on anomalous event detection.
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IV. EXPERIMENTS
A. Experimental Setup

1) Datasets: We apply our framework on detecting the
anomalous log sequences on the following three log datasets.

o Hadoop Distributed File System (HDFS) [9]. HDFS
dataset is generated by running Hadoop-based map-
reduce jobs on Amazon EC2 nodes and manually labeled
through handcrafted rules to identify anomalies. HDFS
dataset consists of 11,172,157 log messages.

o BlueGene/L Supercomputer System (BGL) [7]. BGL
dataset contains 4,747,963 log messages that are collected
from a BlueGeme/L supercomputer system at Lawrence
Livermore National Labs. The log messages can be
categorized into alert and not-alert messages. There are
348,460 alert messages that are labeled as anomalous.

o Thunderbird [7]. Thunderbird dataset is another large-
scale system log dataset that is collected from a Thunder-
bird supercomputer system at Sandia National Labs. We
select the first 5,000,000 log messages from the original
dataset for our experiment.

Both BGL and Thunderbird datasets provide the fine-

grained label for each log message, so we adopt these two
datasets to evaluate our framework for anomalous sequence
and event detection. The HDFS dataset only has labels in the
sequence level, so we only use the HDFS dataset to evaluate
the anomalous sequence detection. All datasets are available
online !.
Log Data Preprocessing. The raw log messages in the three
datasets are unstructured text data. Following the typical
preprocessing approach, we first we adopt the log parser, Drain
[36], to extract log keys (string templates) from log messages
(shown in Figure 2).

Log Messages

o 1117839710 2005.06.03 R16-M1-N2-C:J17-U01 2005-06-03-16.01.50.945374 R16-M1-N2-C:J17-
U01 RAS KERNEL INFO CE sym 0, at 0x0b8580c0, mask 0x10

o 1117840320 2005.06.03 R16-M1-N2-C:J17-U01 2005-06-03-16.12.00.444970 R16-M1-N2-C:J17-
U01 RAS KERNEL INFO ddr: activating redundant bit steering: rank=0 symbol=0

!

o CE sym <*>, at <*>, mask <*>

Log Keys

o  ddr: activating redundant bit steering:
rank=<*> symbol=<*>

Fig. 2: Log messages and corresponding log keys

Then, similar to previous studies [37], for BGL and Thun-
derbird datasets, we adopt a sliding window to generate ap-
propriate sequences. Especially for our experiment, we define
the sliding window with a window size of 100 and a step size
of 20. For HDFS, we group log keys into log sequences based
on the session ID in the log messages. We compose a training
dataset D that consists of 100,000 normal log sequences from
each log dataset. Without a particular note, we generate an
anomalous dataset D* with 2,000,000 anomalous sequences,
which is 20 times larger than the training dataset from each log

Thttps://github.com/logpai/loghub/
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dataset. When generating D*, the number of replaced log keys
r in Algorithm 1 for each sequence is randomly set with the
range from zero to the length of original sequence. The testing
dataset consists of both normal and anomalous sequences. The
statistics of test datasets are listed in Table I. The number in the
brackets under the column “# of Unique Log Keys” indicates
the number of unique log keys in the training dataset. Since in
this work, we focus on the scenario that the anomalous events
are rare, for BGL and Thunderbird datasets, we only select
the anomalous sequences with anomalous log keys less than
or equal to 10% in the testing sets.

TABLE I: Statistics of Test Datasets

. o # of Log Keys in
Dataset #ﬁ’()f Ulgéql:e # of Log Sequences Anomalous Sequences
8 ey Normal | Anomalous Normal Anomalous
HDFS 48 (19) 458,223 16,838 N/A N/A
BGL 396 (318) 19,430 4,190 326,491 7,139
Thunderbird 806 (774) 22,538 76,189 6,860,417 479,883

2) Baselines: We use two sets of baselines to evaluate
the performance of InterpretableSAD for anomalous sequence
and event detection, respectively. Note that to distinguish the
terminology “baseline” used as a benchmark for experiments
and the generated input sequence for the IG method, in this
section, we call the baseline used in IG as “feature attribution
baseline”.

Baselines for Anomalous Log Sequence Detection

o Principal Component Analysis (PCA) [9]. PCA builds
a counting matrix based on the frequency of log keys
and then map the original counting matrix into a low
dimensional space. PCA-based anomaly detection can
efficiently detect extreme values.

e One-Class SVM (OCSVM) [11]. One-Class SVM is a
one-class classification model that can detect anomalies
based on the observed normal samples.

o Isolation Forest (iForest) [38]. Isolation forest is a tree-
based anomaly detection method. It constructs trees based
on the features in normal samples and captures the
anomalies that deviate from normal samples.

o LogCluster [16]. LogCluster is a clustering-based one-
class approach, which groups normal samples into clus-
ters and detects the anomalies based on distances to the
clusters.

o DeepLog [1]. DeepLog is a deep learning-based log
anomaly detection approach. DeepLog utilizes LSTM to
model the patterns of normal log sequences by training
on a normal dataset and detects the anomalous sequences
based on the log key prediction. If DeepLog cannot
correctly predict the next log key in a sequence, the
sequence will be labeled as anomalous.

o LogAnomaly [2]. LogAnomaly is another deep learning
approach for anomaly detection. It combines sequential
and quantitative patterns to discover the anomalous log
sequences. Similarly to DeepLog, the anomalous se-
quence is detected based on whether the LSTM model,
which is trained on the normal samples, can correctly
predict the next log key.
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Baselines for Anomalous Event Detection

o Anchors [28]. Anchors is a model-agnostic algorithm
for interpretation of any black-box classification model.
Anchors discovers a decision rule (anchors) for each input
sample, and identified anchors contain essential parts
of the input that determine the prediction. To conduct
a fair comparison for anomalous event detection, we
adopt our neural network model f, trained based on
normal and generated anomalous samples as the black-
box classification model.

o Low-Freq. The baseline for deriving the integrated gra-
dients of each anomalous sequence is generated by re-
placing the low frequency events with high frequency
events in the context. We further evaluate the performance
of only considering the low frequency events in the
sequences as anomalous events.

o Integrated Gradients (IG). We also evaluate the per-
formance of IG without using our feature attribution
baseline generation algorithm (shown in Algorithm 2) for
anomalous event detection. We adopt the zero embedding
matrix as the feature attribution baseline, which is widely
used in text classification tasks.

3) Evaluation Metrics: We consider the anomalous class as
the target class and adopt Precision, Recall, and F1 score to
measure the performance of our framework.

4) Implementation Details: Regarding baselines, we lever-
age the package Loglizer [14] to evaluate PCA, OCSVM,
iForest as well as LogCluster, and adopt the open source
deep learning-based log analysis toolkit LogDeep to evaluate
DeepLog and LogAnomaly 2. We use the open source reposi-
tory of Anchor to evaluate its performance on anomalous event
detection 3.

Regarding our model, We adopt the long short-term memory
(LSTM) network as the neural network model fy for anomaly
detection. For BGL and Thunderbird datasets, the embedding
size of log keys is 8, while for the HDFS dataset, the embed-
ding size is 4 due to the small number of unique log keys (19
in the training set). Regarding the LSTM structures, we set
different hyper-parameters on the basis of the characteristics
of each dataset. For the BGL dataset, we use a single-direction
LSTM with the hidden size of 128; for the Thunderbird
dataset, we use a bidirectional LSTM with the hidden size of
256; for the HDFS dataset, we use a single-direction LSTM
with the hidden size of 64. The number of training epochs is
set as 10 for all datasets. Our code is available online *.

B. Experimental Results on Anomalous Log Sequence Detec-
tion

Table II shows the performance of our model as well as
baselines for anomalous sequence detection on three datasets.
On the BGL dataset, only PCA can achieve reasonable per-
formance, while all other baselines have poor F-1 scores.

Zhttps://github.com/donglee-afar/logdeep
3https://github.com/marcotcr/anchor
“https://github.com/hanxiao0607/InterpretableSAD
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TABLE II: Results on Anomalous Log Sequence Detection

Method _ BGL _ Thunderbird _ HDFS
Precision | Recall | F-1 score | Precision | Recall | F-1 score | Precision | Recall | F-1 score

PCA 67.91 99.79 80.82 94.83 84.43 89.33 97.77 42.12 58.88
iForest 73.13 38.19 50.17 95.06 17.92 30.15 41.59 58.80 48.72
OCSVM 24.60 100 39.49 87.13 100 93.12 6.68 90.58 12.44
LogCluster 8.03 15.97 10.69 86.56 22.94 36.26 98.37 67.45 80.03
DeepLog 42.39 52.08 46.74 82.42 81.36 81.89 56.98 48.37 52.32
LogAnomaly 42.58 53.17 47.29 81.69 82.11 81.90 55.85 48.03 51.65
[ InterpretableSAD [ 94.25 [ 88.47 [ 91.27 97.31 [ 96.42 [ 96.86 92.31 [ 87.04 [ 89.60

PCA can achieve an extremely high recall value, but cannot
find a good balance between precision and recall on the
anomalous sequence detection. On the Thunderbird dataset,
all the baselines can achieve reasonable values in terms of
precision, while the iForest and LogCluster fail to gain an
acceptable performance on recall values. It means that they
can only detect a small number of anomalous sequences. On
the HDFS dataset, most baselines cannot achieve good per-
formance. Meanwhile, surprisingly, on all three datasets, the
deep learning-based approaches, DeepLog and LogAnomaly,
cannot achieve remarkable performance even compared with
the traditional anomaly detection models, like PCA. This could
be because for BGL and Thunderbird, we focus on a more
challenging scenario that aims at detecting the anomalous log
sequences with small ratios of anomalous log keys (less than
10%). When only having a small number of anomalous events
in a log sequence, the anomalous signal is not strong enough to
make the models label it as anomalous. For the HDFS dataset,
we generate the log sequences based on session IDs, which
leads to long sequences, while DeepLog and LogAnomaly
detect anomalous sequences based on the prediction accuracy
of the last log keys, which is insufficient for long sequences.
On the other hand, InterpretableSAD achieves the best perfor-
mance in terms of F-1 scores on all three datasets. It means
that the negative samples generated based on the Algorithm
1 represent the true anomalous log sequences in real datasets.
Meanwhile, the good performance also show that once we can
generate appropriate negative samples, a classification model
that is trained on two classes of log sequences can achieve
better performance compared with one-class models.

Sensitivity analysis on the size of generated anomalous
sequences. In our work, because we adopt negative sampling
to generate potential anomalous sequences, technically, we can
generate an infinite number of anomalous sequences. We fur-
ther investigate the impact of generated anomalous sample size
on anomaly detection performance. In particular, we generate
six anomalous datasets with different sizes, where the ratios
of generated anomalous datasets |D*| to the training dataset
|D| are 0.5, 1, 5, 10, 15, 20, respectively. Figure 3 shows
the performance of anomaly detection on three datasets by
training on different sizes of datasets. We have the following
observations. First, for all the datasets, the precision values
are high for different training sizes. Second, for the BGL and
Thunderbird datasets, the recall values almost keep increasing
along with the increase of sizes of anomalous datasets. For
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example, for the BGL dataset (shown in Figure 3a), the best
performance is achieved when the size of generated anomalous
dataset is 15 times larger than the training dataset, while
for the Thunderbird dataset (shown in Figure 3b), a good
performance is achieved only when the anomalous dataset
is 20 times larger than the training dataset. It indicates that
after training on a set of generated anomalous samples, the
classification model can always detect some anomalies based
on the observed samples. Hence, the precision values are high
even with a small set of anomalous samples. It also shows the
effectiveness of the negative sampling algorithm. However, in
order to detect more anomalies (increasing recall), we need to
generate more anomalous samples to cover various anomalous
scenarios. Once we have sufficient anomalous samples to train
the classification model, we can get good recall values as
well as the F-1 scores. For HDFS, we notice that the overall
performance keeps stable over different sizes of anomalies.
This is because HDFS only has 19 unique log keys in
the training set, which means the search space is relatively
small. Comparing with BGL and Thunderbird, which have
318 and 774 unique log keys, respectively, the number of
potential anomalous scenarios in HDFS is much smaller. As a
consequence, generating 50,000 anomalies is sufficient enough
to cover most of the anomalous scenarios.

Visualization. We consider the last hidden state in the LSTM
model as the sequence representation and adopt the t-SNE
algorithm [39] to map the sequence representations into a
two-dimensional space. For each dataset, we randomly select
1000 normal, anomalous, and generated samples, separately.
As shown in Figure 4, for all datasets, the generated samples
via negative sampling can cover the space of real anomalous
samples. Especially, for BGL and HDFS datasets (Figures 4a
and 4c), the points of generated anomalous samples and true
anomalous samples are highly overlapped, while the majority
of normal samples are outside the regions of anomalous sam-
ples. For the Thunderbird dataset (Figure 4b), the generated
samples and abnormal samples are on left side of the space,
while the normal samples are on the right side. Based on the
visualization results, it is straightforward to notice that the
LSTM model trained on the normal sequences and generated
anomalous sequences can detect the real anomalous sequences
for all three datasets.

C. Experimental Results on Anomalous Event Detection

We then study the performance of InterpretableSAD on
anomalous event detection. When evaluating InterpretableSAD
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TABLE III: Results on Anomalous Event Detection

Method BGL Thunderbird
etho Precision | Recall | F-1 score | Precision | Recall | F-I score
Anchors 031 856 0.60 758 1462 698
Low-Freq 3876 | 9359 | 5482 5261 | 99.00 | 68.70
1G wio val 656 | 9027 | 1223 1036 | 8565 | 1849
G w/ val 243 | 383 | 5380 2002 | 4448 | 2843
InterpretableSAD | 5 g7 | 8953 | 64.80 9498 | 8679 | 90.70
w/o val
fnterpre@bleSAD 630> | 8253 | 7511 0384 | 9831 | 96.02

and IG with the zero embedding matrix as the feature attri-
bution baseline, we consider two scenarios, with or without a
validation set consisting of 10% anomalous sequences in the
testing datasets to tune a detection threshold 7. Recall that we
only consider the events with anomalous scores greater than 7,
are anomalous. The default value of 7 is O without tuning on
a validation set. As shown in Table III, InterpretableSAD with
a validation set achieves the best performance for anomalous
event detection on both datasets. Meanwhile, even we use the
default threshold n = 0 to detect the anomalous events, the
performance is still good. The performance of IG with the zero
embedding matrix as feature attribution baseline is poor, even
we use a validation set to tune 7). It indicates the importance
of designing a good feature attribution baseline for the IG
model, and the zero embedding matrix that is widely used as
the feature attribution baseline in interpreting text classifica-
tion models is not suitable for sequential anomaly detection.
Moreover, we notice that simply labeling low frequent events
as anomalous cannot achieve good results in terms of precision
and F-1 score, even though the recall values are high on both
datasets. It indicates that anomalous events are usually low
frequent in the training dataset, but many normal events could
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also have low frequent, which will lead to low precision. It is
hard to balance the precision and recall simply based on the
frequency of events. For Anchors, it cannot achieve reasonable
performance on both datasets. This could be because long
sequences have huge search spaces to locate the anchors.

35000
Low error
High error

Low error
High error 30000
25000

20000

Count
Count

15000

10000

5000

10 20 30 40 50 60 10 20 30 40 50
Distance from an Anomalous Sequence to the Generated Baseline Distance from an Anomalous Sequence to the Generated Baseline

(a) BGL (b) Thunderbird

Fig. 5: The correlation between the performance of anomalous
event detection and the distances from sequences to corre-
sponding baselines. Low error indicates given an anomalous
sequence, InterpretableSAD correctly detect at least 80% of
anomalous events.

Sensitivity analysis on the distances between sequences
and the feature attribution baselines. The performance of
Integrated Gradients heavily relies on the feature attribution
baselines. When we generate the feature attribution base-
lines, we expect the baseline has a short distance to the
original sequence. To further show the impact of baselines
on anomalous event detection, we consider the anomalous
event detection results into two categories, low error and high
error. If InterpretableSAD correctly detects at least 80% of
anomalous events in an anomalous sequence, we consider
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Fig. 6: An anomalous sequence in the HDFS dataset and the
corresponding anomalous scores

the prediction result as low error; otherwise, we consider
the prediction result as high error. Then, we explore the
correlation between the performance of anomalous event de-
tection and the distances from sequences to corresponding
feature attribution baselines. The distance is the L2 distance
between the embedding matrices of the original sequence and
baseline sequence. As shown in Figure 5, for both datasets,
if baseline sequences have small distances to the original
anomalous sequences, in most cases, we can achieve low
error for anomalous event detection. For example, because we
achieve a high F-1 score (96.02%) on the Thunderbird dataset,
most sequences have small distances to the corresponding
feature attribution baselines (shown in Figure 5b), while only
a few sequences have large distances to the baselines. Similar
observations on Figure 5a, the majority of sequences with high
errors have larger distances to the feature attribution baselines.
Hence, based on Figure 5, we have two findings. First, IG
is sensitive to the feature attribution baselines, so choosing
a good baseline is critical for anomalous event detection.
Second, in practice, a good feature attribution baseline should
meet the following requirements: 1) the feature attribution
baseline can be predicted as normal sequence; 2) the distance
from the original sequence to the feature attribution baseline
should be small.

Case Study. For the HDFS dataset, we do not have the fine-
grained event labels. We apply the case study to show the
effectiveness of InterpretableSAD on anomalous event detec-
tion. Figure 6 shows an example of the model prediction on an
anomalous sequence in the HDFS dataset. The model predicts
a sequence (session ID: “blk_-4364732810285057372”) with
22 events as anomalous. Besides detecting the anomalous
sequence, InterpretableSAD further derives the anomalous
score for each event in the sequence. Specifically, this log
sequence records a set of operations about failing to create
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a block. We notice that the event “0567184d” has a high
anomalous score (1.73), which means it is responsible for the
anomalous prediction outcome. “0567184d” indicates receiv-
ing an empty packet for the block. Based on the highlighted
event “0567184d”, we can understand that the failure of
creating a block is caused by receiving empty packets for the
block several times. Meanwhile, for all other operations in
this sequence, such as block allocation, adding the block to
an invalid set, and block deletion, InterpretableSAD assigns
negative scores, which means these operations are common in
a block creating procedure and not anomalous. Based on this
case study, we show that according to the derived anomalous
scores, system administrators can quickly locate the exactly
anomalous events without manually examining each event in
a sequence. This improvement can further help the system
administrators to effectively mitigate the system failure.

V. CONCLUSION

In this work, we have developed InterpretableSAD for
anomalous log sequence and more fine-grained anomalous log
event detection. Considering the rare of anomalous samples,
InterpretableSAD leverages the data augmentation strategy to
generate anomalous samples by proposing a novel negative
sampling algorithm. Then, a binary classification model can
be trained on observed normal and generated anomalous
sequences. A well-trained classifier is able to detect the
real anomalous sequences. Since an anomalous log sequence
usually consists of a large number of events, only detect-
ing anomalous sequences is not sufficient to help domain
experts locate the exact anomalies. InterpretableSAD further
applies an interpretable machine learning technique, Integrated
Gradients (IG), to detect the potential anomalous events in
sequences. IG is able to show the importance of each feature
to the prediction outcome of the classifier. We consider the
importance scores derived from IG as anomalous scores to
detect anomalous events. To apply IG for anomalous event
detection, we propose a novel feature attribution baseline
generation algorithm because a good baseline is critical for
IG to derive reasonable scores of events. Experimental results
on three log datasets show that our model can achieve state-
of-the-art performance on the anomalous sequence and event
detection. In the future, we plan to study how to efficiently
generate negative samples so that a small ratio of generated
samples can still cover the majority anomalous scenarios and
also explore the baseline generation algorithms for anomaly
detection with theoretical guarantees. Another direction of
future work is to study an intrinsically interpretable model
that is able to detect anomalous sequences and events in an
end-to-end manner.
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