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Malicious insiders cause significant loss to organizations. Due to an extremely small number of malicious activities from

insiders, insider threat is hard to detect. In this article, we present a Dirichlet Marked Hawkes Process (DMHP) to detect

malicious activities from insiders in real-time. DMHP combines the Dirichlet process and marked Hawkes processes to model

the sequence of user activities. The Dirichlet process is capable of detecting unbounded user modes (patterns) of infinite user

activities, while, for each detected user mode, one set of marked Hawkes processes is adopted to model user activities from

time and activity type (e.g., WWW visit or send email) information so that different user modes are modeled by different

sets of marked Hawkes processes. To achieve real-time malicious insider activity detection, the likelihood of the most recent

activity calculated by DMHP is adopted as a score to measure the maliciousness of the activity. Since the majority of user

activities are benign, those activities with low likelihoods are labeled as malicious activities. Experimental results on two

datasets show the effectiveness of DMHP.
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1 INTRODUCTION

Insider threat, which is one of the most challenging cybersecurity issues, indicates malicious threat from people
within an organization. The insider threat is comprised of both malicious and unintentional threat, while, in this
article, we focus on the former, which may involve intentional fraud, the theft of confidential or commercially
valuable information, or the sabotage of computer systems. The attacks from malicious insiders are more diffi-
cult to detect compared to those from external attackers because insiders are usually authorized users who can
legitimately access the IT system inside the organization. The 2018 U.S. State of Cybercrime Survey indicates
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that 25% of the cyberattacks are committed by insiders, and 30% of respondents indicate incidents caused by
insider attacks are more costly or damaging than outsider attacks [4].
Various insider threat detection approaches have been proposed [6, 16, 23, 27–29, 34, 37]. However, the existing

works usually focus on detecting malicious sessions, e.g., a sequence of activities in a day, and cannot achieve the
dynamic malicious activity detection in a real-time manner. In this article, we aim to develop a detection model
that can dynamically detect malicious activities. To this end, besides adopting the activity type (e.g., WWW visit,
send email) information, we further consider the crucial activity time information since the time an activity
occurred is also a strong indicator about whether the activity is malicious. A potential example of an insider
threat attack is an employee who normally does not work after-hours being found connecting a USB flash drive
to an office computer system after midnight.
The intuitive idea of detecting malicious insider activities is to model the occurrence likelihoods of activities in

terms of activity type and time. Since the majority of activities are benign even for the insiders, the likelihoods of
benign activities should be high. Hence, if an activity is occurred with a low likelihood in terms of activity type
and time, it could be a malicious activity. In this work, we adopt theMarked Temporal Point Process (MTPP),
which is a general mathematical framework, to model the user activities over time. Specifically, we adopt the
Hawkes process to model the temporal information of user activities, while the activity types are captured by a
mark model. Hawkes process is a self-exciting point process, in which the probability of observing a new activity
increases due to previous activities. This phenomenon is commonly observed in our daily activities. For example,
when a user starts editing a document, the majority of following activities will be about editing a document.

However, the activity sequence from a user consists of various temporal patterns that are driven by his working
patterns. For example, if the user is in a work mode, his activities are dense in a short time window, and the
activity types mainly consist of file editing. If the user is in the leisure mode, his activities would be sparse in a
time window, and the activity types may be more about Web surfing. We call the different working patterns user
modes. Hence, only using one marked Hawkes process model is unable to capture the dynamic user activities
under various user modes. Meanwhile, due to the potential infinite number of user activities, the number of
user modes is also unknown. Hence, it is hard to use a fixed number of marked Hawkes processes to model the
complicated user activities. The effectiveness of modeling the sequence of activities and the following detecting
malicious insider activities depends on how to capture the unbounded user modes from the observed sequence.
In this article, we develop the Dirichlet Marked Hawkes Process (DMHP) to detect malicious insider

threats. DMHP is able to cluster user activities into user modes, in which all activities have a similar tempo-
ral dynamic pattern in terms of activity type and time. Then, DMHP models the user activities in a specific
mode by a marked Hawkes process. For each particular activity in the sequence, we then derive an occurrence
likelihood based on DMHP and use it as an evaluation score for predicting whether or not the activity is mali-
cious. Compared with the classical marked temporal point process model, DMHP is able to identify user modes
automatically and model these modes by different temporal point processes. Meanwhile, DMHP does not need
to preset the number of user modes in the sequence of user activities. Theoretically, the number of user modes
generated by DMHP can be infinite, which matches the scenario that user activity stream is also infinite.
Our work makes the following contributions: (1) we develop a dynamic and unsupervised insider threat activ-

ity detection model that considers both activity type and time information; (2) to this end, we propose a Dirichlet
Marked Hawkes Process that can effectively capture the sequence of user activities with unbounded number of
modes; (3) we conduct experiments on two datasets, the CERT Insider Threat Dataset [9] and the UMDWikipedia
dataset [15], and evaluation results demonstrate the effectiveness of our model for malicious activity detection.
We emphasize that insider attacks are subtle and dynamic and the number of malicious insider activities is only
a very small fraction of all activities from insiders (e.g., 0.01% to 0.3% in CERT data). Detection models based
on supervised learning usually do not work here due to lack of labeled insider activity records. On the other
hand, our DMHP detection model, which is based on unsupervised learning, does not require any labeled attack
records, and can score each coming activity in a real-time manner.
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This article is organized as follows: Section 2 reviews the related work in the field of insider threat detection.
Section 3 gives a brief introduction of the Dirichlet process and temporal point process. Section 4 introduces
our DMHP model for the malicious activity detection by deriving a score based on the occurrence likelihood.
Section 5 describes the experiments of applying DMHP on two datasets for insider threat detection. Section 6
concludes the article and points out the potential future directions.

2 RELATED WORK

Increasingly sophisticated cyber attacks are one form of insider attacks by people that have both the capability,
intent, and domain knowledge about the system (even including deployed attack detection systems). An insider
attack often involves multiple phases, and malicious activities are hidden among a huge number of normal activ-
ities. The subtle, dynamic, and multi-phase nature of insider attacks makes detection extremely difficult. In liter-
ature, based on the intention of attacks, there are three types of insiders, i.e., traitors who misuse their privileges
to commit malicious activities,masqueraders who conduct illegal actions on behalf of legitimate employees of an
organization, and unintentional perpetrators who unintentionally make mistakes [20]. Based on the malicious ac-
tivities conducted by insiders, insider threats can also be categorized into three types, IT sabotagewhich indicates
to directly use IT to make harm to organizations, theft of intellectual property which indicates to steal information
from organizations, fraud which indicates unauthorized modification, addition, or deletion of data [11].
It is well accepted that insiders’ behaviors are different from behaviors of legitimate employees. Hence, analyz-

ing employees’ behaviors via audit data plays an important role in detecting insiders [36]. In general, there are
three types of data sources, host-based, network-based, and context data. The host-based data record activities of
employees on their own computers, such as command lines, mouse operations, and the like. The network-based
data indicate the logs recorded by network equipment such as routers, switches, firewalls and so on. The context
data indicate the data from an employee directory or psychological data.
Analysts apply various insider threat detection algorithms given different types of data sources. For example,

some researchers propose to adopt decoy documents or “honeypots” to lure and identify insiders [31]. Mean-
while, one common scenario is to consider the insider threat detection as an anomaly detection task and adopt
the widely used anomaly detection approaches, e.g., one-class SVM, to detect the insider threats [28]. More-
over, some approaches treat the employee’s actions over a period of time on a computer as a sequence. The
sequences that are frequently observed are normal behavior, while the sequences that are seldom observed are
abnormal behavior that could be from insiders. Research in [23] adopts Hidden Markov Models (HMMs) to
learn the behaviors of normal employees and then predict the probability of a given sequence. An employee
activity sequence with low probability predicted by HMMs could indicate an abnormal sequence. Research in
[16] evaluates an insider threat detection workflow using supervised and unsupervised learning algorithms, in-
cluding self-organizing maps, HMMs, and decision trees. Research in [34] adopts a recurrent neural network to
detect malicious activities based onmanually designed input features. Research in [18] proposes a heterogeneous
graph embedding approach considering each log entry as a node for insider threat detection. After learning the
node embeddings, a clustering algorithm is adopted to detect malicious clusters containing malicious activities.
Although the proposed graph embedding approach is able to detect malicious activities, it cannot detect them in
a real-time manner since the heterogeneous graph is constructed based on activities in several days.
Anomaly detection in streaming data has also received attention recently. Research in [12] uses a small set of

dynamically maintained orthogonal basis vectors, which represent all the prior non-anomalous data points, to
reconstruct an upcoming point, and then marks as anomalous if it cannot be reconstructed well by these basis
vectors. However, most existing studies do not provide a practically effective streaming-based model to describe
the physical time information and the associated text information. In this work, we model both physical activity
time and categorical activity type to achieve insider threat detection at the activity level in a streaming manner.
Moreover, to achieve high detection accuracy, we introduce the use of Dirichlet process to capture hidden mode
information.
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3 PRELIMINARY

3.1 Dirichlet Process

Identifying user modes from an activity sequence can be viewed as a task for clustering sequential data. The
widely used models for clustering data from the topic modeling literature are the Latent Dirichlet Allocation
(LDA) [3], where the number of topics is fixed, and its improved model,Hierarchical Dirichlet Process (HDP)

[33] with an unbounded number of topics.
TheDirichlet Process (DP) is a Bayesian nonparametric model to cluster data without specifying the number

of clusters in advance [1, 2, 8, 32]. The Dirichlet process is parameterized by a concentration parameter η > 0 and
a base distribution G0 over a space Θ. It indicates that a random distribution G drawn from DP is a distribution
over Θ, denoted asG ∼ DP (η,G0). For example, ifG is a distribution on reals,G0 must be a distribution on reals
too. The expectation of the distribution G is the base distribution G0. The concentration parameter controls the
variance ofG, where the higher values of η lead to tight distributions aroundG0. DP is widely used for clustering
with the unknown number of clusters.

Chinese Restaurant Process (CRP) is one kind of representations for Dirichlet process. CRP assumes a
restaurant with an infinite number of tables, each of which can seat an infinite number of customers. Within the
context of clustering, each table indicates a cluster while each customer is a data point. The simulation process
of CRP is as follows:

(1) The first customer always sits at the first table.
(2) Customer n (n > 1) is distributed to:
(a) a new table with probability

η

η+n−1 .

(b) an existing table z with probability nz
η+n−1 where nz is the number of customers at table z.

Let β1, . . . , βn be a sequence sampled from CRP. The conditional distribution of βn can be written as:

βn |β1:n−1 ∼
1

η + n − 1
�
�
ηG0 +

∑
z

nzδβz
�
�
, (1)

where δβz is a pointmass centred at βz . According to Equation (1), we can see that the probability to be distributed
to a new table is associated with concentration parameter η, while the likelihood of an upcoming sample βn to
be allocated to an existing table z is proportional to the table size nz . In other words, the table with a bigger size
has more opportunity to serve the upcoming customer. Therefore, we can see DP has a clustering property (“The
rich gets richer”) for the online streaming data.

3.2 Temporal Point Process

A Temporal Point Process (TPP) is a stochastic process composed of a time series of events that occur in
continuous time [24]. The temporal point process is widely used for modeling the temporal dynamics pattern
behind a time-series of events that occur in continuous time, such as health-care analysis, earthquakes and
aftershocks modeling, and social network analysis [7, 25, 38]. Conditional intensity function, which describes the
instantaneous rate for the occurrence of an upcoming event, is one important metric to characterize temporal
point process. Given an event time sequence T = {t1, . . . , tn }, the conditional intensity function at time t (t > tn )
can be expressed as

λ∗ (t ) = λ(t |Htn ) = lim
dt→0

E[N ([t , t + dt]) |Htn ]

dt
, (2)

where N ([t , t + dt]) indicates the number of events occurred in a time interval dt , Htn = {tn′ |tn >= tn′ } is the
collection of historical events until time tn , and symbol ∗ indicates that the intensity may rely on the history
Htn .

Digital Threats: Research and Practice, Vol. 3, No. 1, Article 5. Publication date: October 2021.



Using Dirichlet Marked Hawkes Processes for Insider Threat Detection • 5:5

Besides λ∗ (t ), survival is another significant metric to measure the probability that an upcoming event does
not occur until time t , and is formulated as

S∗ (t ) = S (t |Htn ) = exp

(
−
∫ t

tn

λ∗ (τ )dτ

)
. (3)

The conditional density function at time t can be described as

f ∗ (t ) = λ∗ (t ) · S∗ (t ) = λ∗ (t ) · exp
(
−
∫ t

tn

λ∗ (τ )dτ
)
. (4)

With an observation window [0,T ], the likelihood of the observed event time sequence T = {t1, . . . , tn }, s.t.
T > tn , is formulated as

LT =
∏
ti ∈T

f ∗ (ti ) =
∏
ti ∈T

λ∗ (ti ) · exp
(
−
∫ T

0

λ∗ (τ )dτ
)
. (5)

The Hawkes process is one category of temporal point processes and it has a distinctive feature: self-
excitation, the occurrence likelihood of an upcoming event increases due to the previous events which have
just occurred [10, 26]. In the Hawkes process, the conditional intensity function is defined as:

λ∗ (t ) = λ0 +
∑
ti ∈T

γ (t , ti ), (6)

where λ0 > 0 is the base intensity which is independent of the historical events, γ (t , ti ) is the triggering kernel
that is usually a monotonically decreasing function to guarantee recent events have more influence on the oc-
currence of the upcoming event. The Hawkes process models the self-excitation phenomenon that a new event
arrival increases the upcoming event’s conditional intensity which then decreases back towards λ0 gradually.
The Hawkes process is widely used to model the cluster patterns, e.g., the information diffusion on online social
networks or the earthquake occurrences.
Recently, several studies combine the Hawkes process and Dirichlet mixture model for clustering event

streams [5, 21, 30, 35]. For example, research in [5] proposes a Dirichlet Hawkes process to cluster document
streams, while research in [21] proposes a Hierarchical Dirichlet Hawkes process to identify the learning pat-
terns from detailed traces of learning activity. In this article, our task is to detect whether the most recently
observed activity from a user’s activity sequence is malicious or not, rather than clustering streaming activities
into groups. Our detection algorithm is based on Dirichlet Marked Hawkes process that adopts the categorical
distribution to model activity type and uses mode to effectively capture user behavior pattern, thus achieving
high detection accuracy.

4 FRAMEWORK

Considering an activity sequence E = {e1, . . . , en , . . . }, en = (tn ,yn ) indicates the activity with typeyn occurring
at time tn , where yn ∈ Y = {1, . . . ,D} and D is the number of activity types. Our insider threat detection task is
to detect malicious activities that have different behavior patterns from normal ones. For this task, we develop a
DMHP framework that is an infinite mixture model based on the Chinese restaurant process (Section 3.1). Our
mixture model assumes that the activity stream E consists of unbounded hidden clusters Z = {zk }Kk=1 where
zk ∈ Z and K , like the number of occupied tables in CRP, represents the number of hidden clusters. Note that K
changes dynamically along the activity stream. In our insider threat detection scenario, we refer to these hidden
clusters as user modes and use the term mode throughout this article. Table 1 shows the summary of notations.
Our DMHP adopts the Dirichlet process to determine the prior distribution of user modes. Each mode has its
temporal dynamics in terms of activity type and time. We adopt one set of marked Hawkes processes to describe
each mode. For each activity in the streaming sequence, we calculate a combined likelihood score based on the
current K modes we have at hand and use the score to predict whether the activity is malicious.
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Table 1. Summary of Notations

Symbol Definition

(tn ,yn ) The nth activity occurring at time tn with activity type yn .
zn The mode assignment for activity (tn ,yn ).
D The category number of activity types.

K The number of modes we have till tn .
L The number of triggering kernels for one specific mode.

λ0 The base intensity of the Hawkes process.

λ∗, f ∗, S∗ The conditional intensity, density, and survival functions, respectively.

λ∗zn The conditional intensity of th4 Hawkes process for the mode zn .
(α ′1, . . . ,α

′
L ) The concentration parameter of Dirichlet prior for the Hawkes process.

(θ ′1, . . . ,θ
′
D ) The concentration parameter of Dirichlet prior for categorical distribution.

α zn The weight vector for L different time scale kernels.

θzn The parameter vector for categorical distribution with mode zn .
s (tn ,yn ) The combined score provided by the Dirichlet mode-specific model for (tn ,yn ).

ϵ The insider activity detection threshold.

ϕcn The weight of particle c at timestamp n.

4.1 Marked Hawkes Process

In this section, we develop a marked Hawkes process model with Dirichlet priors to capture both time and type

information.
Time. We adopt Hawkes process to model the time information. Given an observed activity stream

(t1,y1), . . . , (tn−1,yn−1), for an upcoming activity (tn ,yn ) with an unknown mode assignment zn , based on Equa-
tion (4), the occurrence likelihood associated with time is measured by:

p (tn |zn , t1:n−1) = λ∗zn (tn ) · exp
(
−
∫ tn

tn−1

λ∗zn (τ )dτ
)
, (7)

and its intensity value is as follows:

λ∗zn (tn ) = λ0 +
∑
ti<tn

γzn (tn , ti )1[zi = zn], (8)

where zi refers to the mode assigned to the ith activity, and γzn (tn , ti ) is the triggering function of mode zn with
the form

γzn (tn , ti ) =
L∑
l=1

α lzn · κ (τl , tn − ti ), (9)

α zn ∼ Dir (α ′1,α
′
2, . . . ,α

′
L ), (10)

κ (τl , tn − ti ) = exp (−((tn − ti ) − τl )2/2σ 2
l )/
√
2πσ 2

l
, (11)

whereDir (α ′1,α
′
2, . . . ,α

′
L ) =

Γ(
∑
l α
′
l
)∏

l Γ(α
′
l
)

∏L
l=1 α

α ′
l
−1

zn,l
κ (τl , tn −ti ) is the Gaussian radial basis function (RBF) kernel

function, α zn ∈ RL is the weight vector for L different time scale kernels, α ′ = (α ′1,α
′
2, . . . ,α

′
L ) ∈ R

L are the
corresponding hyperparameters of Dirichlet prior, and τl is the typical reference time points.

Type. We make use of the categorical distribution with a Dirichlet prior to model the upcoming activity type
yn underlying mode zn

p (yn |zn ,y1:n−1) ∼ Cat (θzn ), (12)
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θzn ∼ Dir (θ ′1,θ
′
2, . . . ,θ

′
D ), (13)

where θzn ∈ RD is the parameter vector for categorical distribution with mode zn and θ ′ = (θ ′1,θ
′
2, . . . ,θ

′
D ) ∈

R
D is the corresponding hyperparameters of Dirichlet prior. Then, based on the historical activity types, by

the Dirichlet-Categorical conjugate relation, the occurrence likelihood associated with type can be concretely
represented as

p (yn = d |zn ,y1:n−1) =
Cyn=d,zn + θ ′

yn=d

Czn +
∑D

i=1 θ
′
i

, (14)

whereCyn=d,zn is the number of activities with type d in mode zn excluding the current activity, θ ′
yn=d

is the dth

element of hyperparameter vector θ ′ that is related to activity type yn , and C
zn is the total number of activities

in mode zn excluding the current activity.
Time & Type. Given the history of past activities, the conditional density function that the upcoming activity

will happen at time tn with type yn can have different forms. In practice, we typically choose a simple factorized
formulation to reduce the excessive complications caused by jointly and explicitly modeling the time and type
information. In our article, by Equations (7) and (14), the joint occurrence likelihood of the upcoming activity
(tn ,yn ) under user mode zn provided by marked Hawkes process is formulated as

p (tn ,yn |zn , t1:n−1,y1:n−1) = p (yn |zn ,y1:n−1) · p (tn |zn , t1:n−1). (15)

4.2 Dirichlet Marked Hawkes Process

Our proposed DMHP model is a mixture model consisting of a set of marked Hawkes processes. As a non-
parametric Bayesian model, DMHP can be taken as a generative model. Its equivalent generative process for one
user-specific activity stream can be described as follows:

(1) Initialize parameters: Base intensity λ0, hyperparameters for Dirichlet priors, (α ′1,α
′
2, . . . ,α

′
L ) and

(θ ′1,θ
′
2, . . . ,θ

′
D )

(2) Draw α1 from Dir(α ′1,α
′
2, . . . ,α

′
L) and θ1 from Dir(θ ′1,θ

′
2, . . . ,θ

′
D )

(3) Draw t1 from Poisson(λ0) and y1 ∼ Cat(θ1)
(4) Assign K ← 1 and z1 ← K
(5) For n > 1:
(a) Draw time tn > tn−1 for the new activity from Poisson(λ0 +

∑n−1
i=1 γzi (tn , ti ))

(b) Draw the mode zn for the new activity

p (zn = k |t1:n ) =
⎧⎪⎪⎨⎪⎪⎩

λ∗
zn=k

(tn )

λ0+
∑
n−1
i=1 γzi (tn,ti )

, k = 1, . . . ,K
λ0

λ0+
∑
n−1
i=1 γzi (tn,ti )

, k = K + 1
(16)

If zn = K + 1, draw α zn from Dir(α ′1,α
′
2, . . . ,α

′
L), draw θzn from Dir(θ ′1,θ

′
2, . . . ,θ

′
D ), K ← K + 1.

(c) Draw type for the new activity

yn |zn ,y1:n−1 ∼
∑
d

Cyn=d,zn + θ ′
yn=d

Czn +
∑D

i=1 θ
′
i

· δd , (17)

where δd is a point mass centred at activity type d .

In the above process, K is a mode counter to record the total number of modes we have until now, k refers
to some certain mode, and zn represents the mode assignment of the nth activity. In step 5(a), we first draw
time tn for the new activity by a Poisson process parameterized by an intensity value that is derived from the
historical activities and current user modes. The generation of the activity timing in the process can be viewed as
the superposition of a Poisson process λ0 and multiple Hawkes processes. In step 5(b), we draw the mode zn for
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the new activity with the probability mass function (shown in Equation (16)) that is constructed by Equation (8).
If it is a new mode, we draw its weight vector α zn for the L scale kernels, θzn to parameterize the categorical
distribution and then increase K by one. In step 5(c), we draw type for the new activity with the mass function
constructed by Equation (14).

4.3 Insider Malicious Activity Detection

In insider threat detection, our goal is to evaluate whether or not the most recently observed activity (tn ,yn )
is anomalous on the fly. The above Dirichlet Marked Hawkes process gives a basic idea on how a sequence of
samples {(tn ,yn )} is generated. In particular, we show in Equation (16) of step 5(b) how to calculate the probability
of mode zn given the time sequence, i.e., p (zn = k |t1:n ). In step 5(c), we further show in Equation (17) how to
generateyn givenmode zn and the previous type sequencey1:n−1. This generative process gives us an idea on how
to distribute the most recent observed activity (tn ,yn ) to user modes in a probabilistic way. Formally, we have:

p (zn = k |t1:n ,y1:n ) ∼ p (yn |zn = k,y1:n−1) · p (zn = k |t1:n ). (18)

We then derive a combined likelihood score for the most recent activity (tn ,yn ) given the previously observed
activity stream (t1,y1), . . . , (tn−1,yn−1). The score is based on current K modes and is formulated as

s (tn ,yn ) =
K∑
k=1

p (tn ,yn |zn = k, t1:n−1,y1:n−1)︸































︷︷































︸
intra-mode likelihood

·p (zn = k |t1:n ,y1:n )︸
















︷︷
















︸
mixture weight

. (19)

Note that p (zn = k |t1:n ,y1:n ) measures the mixture weight of (tn ,yn ) from mode k given the whole activity
sequence until (tn ,yn ) and p (tn ,yn |zn = k, t1:n−1,y1:n−1) is the probability of activity (tn ,yn ) occurring inside
the given mode k . In our work, we assume time and type are conditionally independent given the user mode zn
and apply Equation (15) to reduce the excessive complications.
Algorithm 1 shows the framework of our insider activity detection. We assume the first activity (t1,y1) is

normal. For each activity (tn ,yn ) s.t. n > 1, lines 3–7 illustrate whether a new mode is needed for the upcoming
activity. Lines 8–12 are the loop to iterate all of modes we have at hand to calculate the corresponding likelihood
scores under specific modes, the mixture weights, and the final combined likelihood score. In particular, line 9 is
for the computation of likelihood given a specific mode k ; line 10 is for calculating the mixture weights over all
the modes. Then, a combined likelihood score of the activity is derived in line 12. Given a predefined threshold ϵ ,
lines 13–17 are to evaluate whether activity (tn ,yn ) is malicious or not: if the combined likelihood score is below
ϵ , it is labeled as an insider activity; otherwise, it is normal. In general, the complexity of Algorithm 1 for online
detection is O(K) [17].
Our DMHP detection framework consists of two components, time and type. For an ablation evaluation, we

have listed three variants of our proposed model based on different input information:

(1) Time model. Only uses activity time information as input. Given Algorithm 1, we need do the following
adaptions:

(a) In line 9, to fix the likelihood score, we replace Equation (15) with Equation (7).
(b) In line 10, for the computation of mixture weights, we rewrite Equation (18) as p (zn = k |t1:n ,y1:n ) ∼

p (zn = k |t1:n ).
(2) Type model. Only uses type information as input. To formulate this model, we need do the following

adaptions based on Algorithm 1:
(a) In line 9, to derive the likelihood score, we replace Equation (15) with Equation (14).
(b) In line 10, to calculate the mixture weights, we rewrite Equation (18) as p (zn = k |t1:n ,y1:n ) ∼ p (zn =

k |y1:n ).
(3) Time&type model. Takes both time and type information as input, which is depicted in Algorithm 1.
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ALGORITHM 1: Insider Threat Detection via Dirichlet Marked Hawkes Process

Input: Activity stream (t1,y1), . . . , (tn ,yn ), . . . , concentration factors λ0, (α
′
1,α
′
2, . . . ,α

′
L
), (θ ′1,θ

′
2, . . . ,θ

′
D
), and insider

likelihood threshold ϵ .
Output: Real-time insider activity detection report Y : 1 represents the insider activity and 0 indicates the normal one.

1: Y ← list[0]; K ← 1

2: for each activity (tn ,yn ),n = 2, . . . do

3: Draw r ∼ Uniform(0,1)

4: if r < λ0
λ0+
∑
n−1
i=1 γzi (tn,ti )

then

5: Generate a new mode by Equation (16)

6: K ← K + 1
7: end if

8: for k ∈ {1, . . . ,K } do
9: Compute the likelihood of (tn ,yn ) in mode k by Equation (15)

10: Compute the weight of mode k for (tn ,yn ) by Equation (18)

11: end for

12: Compute the combined likelihood score s (tn ,yn ) by Equation (19)

13: if s (tn ,yn ) < ϵ then

14: Y .insert(1)
15: else

16: Y .insert(0)
17: end if

18: end for

19: return Y

4.4 Inference

Given an observed activity stream (t1,y1), . . . , (tn−1,yn−1), our goal is to judge whether the most recent activ-
ity (tn ,yn ) is abnormal via a combined likelihood score. In this on-the-fly detection, one challenge is how to
efficiently derive the latent variables, user mode zn , from the posterior distribution p (zn = k |t1:n ,y1:n ) (Equa-
tion (18)). To address this issue, we apply a Sequential Monte Carlo (SMC) method [22] to infer the latent
variables in our DMHP framework. Generally speaking, the inference algorithm consists of two parts: sampling

user modes and updating triggering kernel.
Sampling User Mode. An SMC is used to get an approximation for the posterior p (zn |t1:n ,y1:n ) in which a

number of particles are maintained, and each particle refers to an instance of latent variable (i.e., a hidden mode)
and has a weight to tell how well this instance can interpret the data. The weight of particle c at timestamp n
goes as follows:

ϕcn =
p (z1:n |y1:n , t1:n )
q(z1:n |y1:n , t1:n )

, (20)

where c ∈ {1, . . . ,C} and C is the total number of particles; p (·) is the true posterior distribution, and q(·) is the
corresponding proposal distribution.
To minimize the variance of the resulting particle weight, we take the posterior distribution

p (zn |z1:n−1,y1:n , t1:n ) as the proposal distribution q(·). Then, given the weight of particle c at time-stamp n − 1,
i.e. ϕcn−1, the unnormalized weight ϕcn can be recursively updated by

ϕcn = ϕcn−1 · p (yn |zcn ,y1:n−1). (21)

Updating Triggering Kernel. Updating Triggering Kernel. For a stream of activities (t1,y1), . . . , (tn ,yn ), with
current user activity (tn ,yn ), time parameterα zn should be updated before the next activity is coming. Following
the work in [5], a set of samplesα are drawn from a Dirichlet distribution, {α i

zn
}Ni=1 ∼ Dir (α ′1,α

′
2, . . . ,α

′
L ), where
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ALGORITHM 2: Inference Algorithm of the DMHP

1: Initialize ϕc1 to 1
C for all c ∈ {1 . . . C}

2: for each activity timing tn ,n = 1, 2, . . . do

3: for c ∈ {1, . . . ,C} do
4: if one activity type yn occurs at the time tn then

5: sample mode zn with Equation (18)

6: update triggering kernel parameter α by the sampling method stated above.

7: update particle weights with Equation (21)

8: end if

9: end for

10: Normalize particle weights

11: if | |ϕn | |−22 < threshold then

12: resample particles;

13: end if

14: end for

N is the sampling size, and these α s are used to obtain an estimation of the time parameter via maximizing the
likelihood of activity streaming in terms of time information (Equation (5)).

Algorithm 2 shows the sequential Monte Carlo framework for mode sampling and triggering kernel updating.
Line 1 initializes the particles and, for one specific activity, lines 3–9 iterate all particles to sample the mode and
update the time parameter: line 5 is for the mode sampling, line 6 aims to trigger kernel updating, and line 7 is to
update particle weights. In addition, lines 11–13 show the rules for particle resampling after the particle weight
normalization (line 10). The Algorithm 2 preserves complexity of O(C) [22].

5 EXPERIMENTS

5.1 Experiment Setup

Dataset. We adopt the CERT Insider Threat Dataset [9], which is the only publicly available dataset, to evaluate
insider threat detection. In Section 5.4, we apply our model for detecting vandalism on Wikipedia and report
evaluation results on the UMD Wikipedia dataset [15]. The CERT dataset consists of five log files that record
the computer-based activities for all employees: logon.csv that records logon and logoff operations of all em-
ployees, email.csv that records all the email operations (send or receive), http.csv that records all the web
browsing operations (visit, download, or upload), device.csv that records the usage of a thumb drive (connect
or disconnect) and file.csv that records activities (open, write, copy or delete) on a removable media device. To
describe employees’ action behavior, instead of the five original coarse-grained categories for activities, we ap-
ply 18 fine-grained categories to describe the employees’ operations. For example, based on the occurrence time,
logon can be detailed as Weekday_Logon_Normal, Weekday_Logon_After, Weekend_Logon and Logoff. We show
the 18 fine-grained categories in Table 2.
The CERT dataset contains 3,995 benign employees and 5 insiders. For each user, it records activities from

January 2010 to June 2011. On average, the number of activities for each employee is around 40,000. We pre-
process the original dataset by joining all the log files, grouping them by each employee, and then sorting the
activities of each employee based on the recorded time- stamps. We include all five insiders and randomly select
five benign employees in our experiment. We can see that from Table 3 that malicious activities take up a very
small percentage of all activities: ACM2278 only has 0.0701% (22/31,370) malicious activities; CDE1846 only has
0.3549% (134/37,754) malicious activities, CMP2946 only has 0.3920% (243/61,989) malicious activities, MBG3183
only has 0.0094% (4/42,438) malicious activities, and PLJ1771 only has 0.0858% (18/20,964) malicious activities.
It is challenging to detect effective insider threat detection algorithm due to the extremely low percentage of
malicious activities.
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Table 2. Operation Types Extracted from Log Files

Files Operation Types

logon.csv
Weekday_Logon_Normal (on weekdays, employees log on in working hours.)
Weekday_Logon_After (on weekdays, employees log on out of working hours.)
Weekend_Logon (employees log on at weekends)
Logoff (employees log off)

email.csv
Email_In (an email operation between employees in the same company)
Email_Out (an email operation between one company employees and people out of this company)

http.csv
WWW_Visit (employees visit a website)
WWW_Download (employees download files from a website)
WWW_Upload (employees upload files to a website)

device.csv

Connect_normal (a device connection operation occurs on a weekday at working hours)
Connect_after (a device connection operation occurs on a weekday after working hours)
Connect_weekend (a device connection operation occurs on weekends)
Disconnect (a device disconnection operation occurs)

file.csv

File_exe (employees do some operations on an executive file)
File_jpg (employees do some operations on a picture with extended name .jpg)
File_zip (employees do some operations on a compressed file with extended name .zip)
File_txt (employees do some operations on a plain text file)
File_doc (employees do some operations on a text file with extended name .doc)

Table 3. Statistics of Malicious Users

ACM2278 CDE1846 CMP2946 MBG3183 PLJ1771

# of Malicious Activities 22 134 243 4 18

# of Total Activities 31370 37754 61989 42438 20964

In our experiment, we treat each employee’s activities as one sequence, each of which is sorted by the activity
occurrence time, and we have ten streams which are from five insiders above and five normal users randomly
selected. For each activity sequence, we feed it into our proposed DMHP algorithm and then obtain the combined
likelihood score of each activity from one specific employee dynamically. Given an empirical threshold ϵ , each
activity in the stream can be judged by the real-time combined likelihood score: it is labeled as an insider activity
if the corresponding combined likelihood score is less than τ ; otherwise, it is labeled as a normal activity.

Hyperparameters. For the time model, we set the base intensity of Hawkes process λ0 = 0.1, the number of
RBF Kernels L = 7, the relevant reference time points as 3, 7, 11, 24, 48, 96, 192 hours to capture both short-
term and long-term dependence of user activities, and the corresponding bandwidths are 1, 5, 7, 12, 24, 24, 24.
Dir (α ′1,α

′
2, . . . ,α

′
L ) is a symmetric Dirichlet distribution with the concentration parameter value 0.1. For the type

mode, Dir (θ ′1,θ
′
2, . . . ,θ

′
D ) is one symmetric Dirichlet distribution with the concentration parameter value 0.01.

We do not specify the exact value of likelihood threshold ϵ ; instead, we rank each activity based on its likelihood
value and report the number of real malicious activities in the certain percentage of ranked activities. For the
reproducibility, the source code is available online.1

Baselines. Our DMHP time&type uses both type and time information in the modeling. In our evaluation, we
compare it with five baselines, DMHP time, DMHP type, Isolation Forest [19], Local Outlier Factor [14], and
ADeMS [12]. DMHP time only uses time information as input, and DMHP type only uses activity type informa-
tion. Hence, the comparison with these two baselines can be considered as an ablation study. Isolation Forest and
Local Outlier Factor are two typical unsupervised anomaly detection methods. Isolation Forest detects anomalies

1https://github.com/PanpanZheng/DMHP.
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Fig. 1. ROC curve for malicious activity detection.

based on the concept of isolation without employing distance or density metrics whereas Local Outlier Factor
identifies anomalies by measuring the local deviation of a given data point with respect to its neighbors. ADeMS
is a state-of-the-art streaming-based anomaly detection algorithm. ADeMS maintains a set of few orthogonal
vectors to capture the prior from the historical non-anomalous data points and use a reconstruction error test
to evaluate the anomaly of upcoming data. On the implementation, we use scikit-learn for Isolation Forest and
Local Outlier Factor, and the GitHub implementation2 for ADeMS. To build the inputs of Isolation Forest and
Local Outlier Factor, we encode each activity by a vector with 43 dimensions, in which we adopt the one-hot
vector to represent the 24 hours in a day as time information and 18 activity types as type information, while one
dimension to indicate the time gap since the previous activity. For the baseline ADeMS, the input vector does not
include the time gap information because including the time gap information would damage the performance in
the CERT dataset, based on our experiments.

Training & Testing. The activities in the first 1.5 months are used to train the proposed model and baselines.
We think the dynamic models would stabilize after training with activities of the first 1.5 months. All the rest
activities (16.5 months) are employed for evaluation. In all models, we also treat all WWW_visit activities as
normal as WWW_visit activities trivially contribute to the insider threat detection.

5.2 Malicious Insider Activity Detection

Figure 1 shows the receiver operating characteristic (ROC) curves and the corresponding area under the ROC
curve (AUC) values of our DMHP models (time&type, type, time), Local Outlier Factor, and Isolation Forest. We
can see that our DMHP time&type achieves the best accuracy with the AUC value of 0.9509, which is significantly
higher than time (AUC 0.5031) and type (AUC 0.6530). The reason behind this can summarized as follows: First,
our time model is a self-exciting Hawkes process that the occurrence likelihood of a new event increases due to
just occurred events (Equation (6)); therefore, if a series of malicious activities occur consecutively in a very short
period of time, our timemodel tends to provide high likelihoods for these malicious activities. Second, in general,

2https://github.com/takuti/stream-anomaly-detect.
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Table 4. Category-Specific AUC Values

Logon Email Http Device File

Local outlier factor 0.8789 0.8568 0.8852 0.8945 0.9208

Isolation forest 0.8524 0.9127 0.7605 0.9012 0.8637

ADeMS 0.9437 0.9204 0.9533 0.9334 0.9457

Time model 0.4982 0.5970 0.4405 0.4392 0.4738

Type model 0.6931 0.4931 0.7616 0.6884 0.7907

Time&type model 0.9592 0.9314 0.9844 0.9535 0.9585

Table 5. The Number of Detected Malicious Activities in the Top 15% of Total Activities
with the Lowest Likelihood Scores

ACM2278 CDE1846 CMP2946 MBG3183 PLJ1771

# of Total Activities 31,370 37,754 61,989 42,438 20,964

# of Malicious Activities 22 134 94 4 15

Isolation forest 8 133 77 0 11

Local outlier factor 16 114 54 3 13

ADeMS 22 130 72 4 11

Time model 0 26 13 0 0

Type model 22 76 23 4 9

Time&type model 22 134 91 4 15

our typemodel is a frequency-based model that it tends to assign a high (low) likelihood to the activity type with
a high (low) frequency. Notably, in the CERT dataset, some malicious activities are of high-frequency, e.g., email-

in, email-out or website visit, which makes the type model difficult to achieve high accuracy. However, as shown
in Figure 1, our time&type model, which combines the time and type models, assigns a smaller likelihood to the
malicious activity. This demonstrates the advantage of combining both activity type and time information in
sequence modeling for insider threat detection. In addition, the time&type model also significantly outperforms
Local Outlier Factor (AUC 0.8857), Isolation Forest (AUC 0.8808), and ADeMS (AUC 0.9353).
For a comprehensive evaluation, we report in Table 4 the corresponding AUC values from all comparedmodels

for each of the five log categories, i.e., logon, email, http, device, and file. We can observe that time&type obtains
the highest AUC values in all five categories, logon 0.9592, email 0.9314, http 0.9844, device 0.9535, and file 0.9585.
For baselines, ADeMS performs well on all activity types, while Isolation Forest achieves good AUC values in
email and device but poor AUC values in logon, http and file. We also observe that DMHP with time information
alone does not achieve good performance across all five categories.
We also show in Table 5 a detailed comparison of model performance for each insider.We calculate the number

of detected malicious activities in the top 15% activities with the lowest likelihood scores from each model. As
shown in Rows 2 and 3, the malicious activities take up a very small percentage of activities of insiders. Moreover,
those malicious activities are often hidden among normal activities and occur in a long period. Our time&type

achieves highest recalls for all insiders except CMP2946. Concretely, it captures 22 real malicious activities for
ACM2278 with recall 22/22 = 100%, 128 real malicious activities for CDE1846 with recall 134/134 = 100%, 91 real
malicious activities for CMP2946 with recall 91/94 = 96.80%, 4 real malicious activities for MBG3183 with recall
4/4 = 100%, 15 real malicious activities for PLJ1771 with recall 15/15 = 100%. Generally, ADeMs also performs
well in the malicious activity detection. Isolation Forest achieves its highest recall for CDE1846. However, it
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Table 6. Malicious Activities of ACM2278 (Activities 1-12 and 13-22 form Two Attack Instances)

ID Malicious Activities ID Malicious Activities

1 08-18 21:47:42 Weekday_Logon_After 12 08-19 06:10:59 Logoff

2 08-18 22:59:20 Connect_After 13 08-24 01:02:58 Weekday_Logon_After

3 08-19 01:34:19 WebsiteUpload 14 08-24 03:24:16 Connect_After

4 08-19 01:34:19 File_jpg 15 08-24 03:48:51 WebsiteUpload

5 08-19 01:37:20 WebsiteUpload 16 08-24 03:48:51 File_jpg

6 08-19 01:37:20 File_jpg 17 08-24 03:43:48 WebsiteUpload

7 08-19 01:38:10 WebsiteUpload 18 08-24 03:43:48 File_doc

8 08-19 01:38:10 File_txt 19 08-24 03:34:21 WebsiteUpload

9 08-19 01:46:04 WebsiteUpload 20 08-24 03:34:21 File_txt

10 08-19 01:46:04 File_zip 21 08-24 04:15:32 Disconnect

11 08-19 05:23:05 Disconnect 22 08-24 04:20:39 Logoff

Table 7. Detected Malicious Activities of ACM2278 in Top 3% of Activities
with the Lowest Likelihood Scores

Detected Activity # Detected Activity IDs

Isolation Forest 2 11, 12

Local Outlier Factor 7 2, 11, 12, 14, 17, 21, 22

ADeMS 22 1–22

Time model 0 -

Type model 19 1–6, 8, 10–17, 19–22

Time&type model 22 1–22

obtains fairly low recall values for other insiders, e.g., ACM2278 (36.36%) and MBG3183 (0%). This is because
malicious activities in ACM2278 andMBG3183 are heavily associated with http, and Isolation Forest seems to be
not good at capturing the malicious http behavior pattern, which is demonstrated by the comparably lower AUC
in Table 4.

5.3 Insider Threat Detection: Case Study

In accordance with Table 5, the high recall values provided by DMHP time&type model in the top 15% activities
lead us to a hypothesis that DMHP time&type has a tendency to assign low (high) combined likelihood scores
to the malicious (normal) activities. To further testify our hypothesis and provide a clear picture for malicious
activity detection, we focus on one insider, ACM2278, as a case study.
With the scenario design of CERT dataset, we learn that ACM2278 refers to an insider who did not previously

use removable drives or work after hours begins logging in after hours, using a removable drive, and uploading data

to wikileaks.org and then, leaves the organization shortly thereafter. There are 22 malicious activities carried by
ACM2278, which form two concrete instances of insider behavior pattern: one instance is from activities 1 to
12 and another is from activities 13 to 22. For reproducibility purpose, we list them in Table 6. In both attack
instances, the insider logs on the company’s computer after work, connects the removable drives to computer,
uploads data, and finally ends at the next day’s morning before the working hour.
Table 7 shows the performance of insider threat detection provided by all models for ACM2278. We report

the recall value calculated in the top 3% percent of activities with the lowest combined likelihood scores from
each model. In accordance with Table 7, we can see that DMHP time&type model and ADeMS both perform well

Digital Threats: Research and Practice, Vol. 3, No. 1, Article 5. Publication date: October 2021.



Using Dirichlet Marked Hawkes Processes for Insider Threat Detection • 5:15

Fig. 2. Histogram of likelihood scores of activities from ACM2278 in terms of time, type, and both time and type.

and they detect all 22 malicious insider activities in the top 3% percent of alerted activities; type model performs
better than the other two baselines with recall 19/22 = 86.36% while time and Isolation Forest perform poor.

Empirical Distribution of Occurrence Likelihoods. In Figure 2, the green histograms indicate occurrence likeli-
hoods for normal activities of ACM2278, while the red histograms indicate occurrence likelihoods for malicious
activities.
Figure 2(a) shows that the likelihood scores of malicious activities derived from the time model mainly lie in

two intervals [0.5, 0.6] and [0.7, 0.9]. Similarly, we can observe that the empirical distribution of normal activities
derived from the time model roughly has two peaks with 0.3 and 0.7 as centers. In this case, likelihood scores of
malicious and normal activities are interleaved together and it is hard to find a good threshold to separate them
clearly, which results in a low AUC for time model.
On the contrary, Figure 2(b) shows that likelihood scores of insider-threat malicious activities for type ranges

between 0.7 and 0.9, while the ones of normal activities mainly spread from 0.9 to 1.0. Hence, we can notice that
type model can generally separate malicious and normal activities, which results in a good recall for ACM2278

shown in Table 5. From Figure 2(c), we can clearly observe that the combined likelihood scores of malicious
activities from the time&typemodel concentrates on the extreme left part of the empirical distribution of normal
activities. As a result, time&type model produces a high AUC value as shown in Figure 1.

5.4 Wikipedia Vandal Detection

In this subsection, to further show the advantage of our DMHP model, we conduct a different task, i.e., detecting
vandalism on Wikipedia by using the UMDWikipedia dataset [15]. In Wikipedia, each article page is edited by
users including certified editors and volunteers. Each edit contains various attributes such as page ID, title, time,
categories, page type, revert status, and content. Because Wikipedia is based on crowdsourcing mechanism and
applies the freedom-to-edit model (i.e., any user can edit any article), it leads to a rapid growth of vandalism
(deliberate attempts to damage or compromise integrity). Those vandals who commit acts of vandalism can be
considered as insiders in the community ofWikipedia contributors. It is worth noting that user edits inWikipedia
are in principle similar to user activities in insider threat detection that are recorded in log files. Hence, we can
leverage log files from Wikipedia to detect the malicious activities conducted by the vandals.
In this experiment, we focus on identifying malicious activities on Wikipedia pages. Because DMHP needs a

number of historical activities to capture the patterns, we selected threeWikipedia pages, “List of metro systems”,
“Star Trek Into Darkness”, and “St. Louis Cardinals”, which have a large number of edits on the UMDWikipedia
dataset. For each page, we collect all edits from its contributors (including vandals). Each page has more than 300
edits and at least three malicious edits. Specifically, if an edit is reverted by bots or certified editors, we consider
it malicious. We define two types of activities based on whether the edit is on a content page or a meta page.
The reason we treat the edits of each page (rather than of a contributor) as a sequence is to have the ground
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Fig. 3. ROC curve for malicious edit detection.

Table 8. The Performance of Malicious Activity and Hidden User Detection
with Various λ0 Values on Page “List of Metro Systems”

λ0
Predicted
User #

AUC AMI V-measure Homogeneity NMI

0.00001 10 0.8440 0.4446 0.6287 1.0000 0.6771

0.001 16 0.8464 0.3146 0.5001 1.0000 0.5774

0.01 16 0.8464 0.3146 0.5001 1.0000 0.5774

0.1 20 0.8815 0.2352 0.4075 1.0000 0.5058

0.2 22 0.8031 0.2163 0.3840 1.0000 0.4875

0.3 32 0.6719 0.1464 0.2887 1.0000 0.4107

truth of user modes. In this setting, the number of user modes is the same as the number of contributors and
the edits from the same contributor can be considered as activities under a user mode in DMHP. To build the
inputs of baselines, we represent each activity by a vector with 26 dimensions, in which 24 dimensions are used
to represent 24 hours in a day as time information and 2 dimension are used to represent activity types.

Experimental Results. Figure 3 shows the ROC curve of malicious edit detection. We can observe that the
time&type model significantly outperforms baselines in terms of AUC on malicious edit detection. Similar to
results on the CERT dataset, with combining activity types and time information, time&type achieves higher
AUC value than the model using activity type or time alone. We also observe that, in contrast with the CERT
dataset, baselines (especially Isolation Forest) achieve poor performances on Wikipedia dataset. This is because
Isolation Forest is based on attribute-wise analysis so that it tends to fail when the distribution for anomalous
points becomes less discriminative, e.g., if the anomalous and non-anomalous points share the similar attribute
range or distribution [13]. Compared with the CERT dataset, activity-type information in the Wikipedia dataset
is subtle with only the choices ofmeta page or not, which is not sufficient to discriminate whether or not an activ-
ity is malicious. We further select the page “List of metro systems” for our case study. The edit sequence consists
of 396 edits from 6 contributors, among which there are 20 malicious edits. Table 8 shows the performance of
malicious edit detection with various λ0 values. Our time&type model achieves good performance on detecting
malicious edits on the page with AUC = 0.8815 when λ0 = 0.1. A further investigation shows that our time&type

model can detect 12 out of 20 malicious edits in 10% of total edits with the lowest combined likelihood scores.
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Sensitivity of Hyperparameters. We further study whether the detection performance of our DMHP is sensitive
to hyperparameters. From Equation (16), we can see that the base intensity λ0 mainly determines whether a
new mode is created or not for an upcoming activity. In other words, λ0 affects the number of modes which
may further affect the detection performance. To evaluate the performance of DMHP with various λ0 values,
we use the Wikipedia page “List of metro systems” as an illustrative example. We can observe from columns
1 and 2 in Table 8 that the number of modes increases with the increment of λ0. This is because, as shown in
Equation (16), the bigger λ0 is, the higher probability of creating a new cluster will be. Concretely, the empirical
quantity relation between the number ofmodes and λ0 follows the rule: as λ0 approaches 0, the number ofmodes

goes to 1, while it goes to the total number of activities in the stream as λ0 approaches +∞ [33].
To investigate the relationship between the number ofmodes and the detection accuracy, we report the changes

of AUC values with variation of λ0 in column 3 of Table 8.We can seewhen λ0 ranges from 0.00001 to 0.1, the AUC
values do not change much although the number of predicted hidden users (modes) increases accordingly. This
is because, as λ0 is 0.00001, the number of predicted users is 10, which is larger than the ground-truth number of
real contributors. In other words, the model tries to distinguish different editing styles in a fine-grained manner
even if these edits are actually from the same user. As a result, the AUC values slightly increase from 0.8440
to 0.8815. However, if the λ0 keeps increasing, we can observe a significant reduction of AUC values. This is
because the number of the predicted user is too large compared with ground-truth, which is out of a reasonable
range. In this case, the model has already been overfitted, so it is very important to choose an appropriate value
for λ0 which is sensitive.
To study why the number of predicted hidden users (modes) does not affect much the detection performance

when λ0 ranges from 0.00001 to 0.1, we further adopt four clustering metrics, Adjusted Mutual Information

(AMI), V-measure, Homogeneity, and Normalized Mutual Information (NMI), to evaluate the performance of our
time&type model on the cluster result. Note that we have the ground truth about which user (mode) each edit is
from for UMDWikipedia data. From Table 8, we can observe that with the increasing of the predicted number of
modes, the values of all clustering metrics except Homogeneity decrease. However, the Homogeneity scores are
always 1 with different λ0 values, which indicates that each mode contains edits from one single user. This ex-
plains why the detection performance in terms of AUC is insensitive to the parameter value of the base intensity
λ0 in the range of (0.00001, 0.1).

6 CONCLUSIONS AND FUTURE WORK

In this article, we have developed the DMHP framework for insider threat detection. DMHP adopts the Dirichlet
process as a prior to identify the underlying user modes of a user activity sequence. For each user mode, the
marked Hawkes process is adopted tomodel the user activities in terms of type and temporal information. DMHP
is able to detect malicious activities in real-time by modeling the occurring likelihood of user activities such that
a low likelihood of an activity could indicate a suspicious malicious activity. Our experiments on two datasets
show that DMHP can assign low likelihoods to malicious activities and achieve good performance in terms of
AUC.

Our DMHP framework can seamlessly integrate more information about user activities. For example, we can
incorporate topic modeling in DMHP to model the content information such as emails or visited Web pages. We
plan to extend our framework to capture those content and contextual information in our future work. We also
emphasize that our introduced user mode in DMHP can help accurately model a user’s activity sequence because
in practice one user often has multiple roles and different working patterns. In our future work, we will conduct
more studies to learn how various parameter settings in DMHP (e.g., base intensity, concentration parameters,
reference time) affect the number of modes and the detection accuracy. We will further evaluate the statistical
significance of our model over baselines under different parameter settings. Moreover, in our DMHP model, we
introduce the use of a user-specified threshold ϵ to judge whether the most recent activity is malicious or not. In
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fact, it is difficult to specify the appropriate threshold value as ϵ is different for different users and should also
dynamically change along the time. We plan to study how to adjust ϵ values dynamically based on the capacity
of examining the alerted fraudulent activities each day. Finally, we are interested in how to improve efficiency
of DMHP models (e.g., by using different approximations for posteriors).
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