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Abstract—Detecting anomalous events in online computer sys-
tems is crucial to protect the systems from malicious attacks
or malfunctions. System logs, which record detailed information
of computational events, are widely used for system status
analysis. In this paper, we propose LogBERT, a self-supervised
framework for log anomaly detection based on Bidirectional
Encoder Representations from Transformers (BERT). LogBERT
learns the patterns of normal log sequences by two novel self-
supervised training tasks, masked log message prediction and
volume of hypersphere minimization. After training, LogBERT is
able to capture the patterns of normal log sequences and further
detect anomalies where the underlying patterns deviate from
expected patterns. The experimental results on three log datasets
show that LogBERT outperforms state-of-the-art approaches for
anomaly detection.

I. INTRODUCTION

Online computer systems are vulnerable to various mali-
cious attacks in cyberspace. Detecting anomalous events from
online computer systems in a timely manner is the fundamental
step to protect the systems from attacks or malfunctions.
System logs, which record detailed information about com-
putational events generated by computer systems, play an
important role in anomaly detection nowadays.

Currently, many traditional machine learning models are
proposed for identifying anomalous events from log messages.
These approaches extract useful features from log messages
and adopt machine learning algorithms to analyze the log
data [1]. Due to the data imbalance issue, it is hard to train
a binary classifier to detect anomalous log sequences in a
supervised learning setting. As a result, many unsupervised
learning models, such as Principal Component Analysis (PCA)
[2], or one class classification models, such as one-class SVM
[3], [4], are adopted to detect anomalies. However, traditional
machine learning models, which are based on hand-craft
features, are infeasible to capture the temporal information
of discrete log messages.

Recently, deep learning models, especially recurrent neural
networks (RNNs), are widely used for log anomaly detection
since they are able to capture the temporal information in
sequential data [5], [6], [7]. However, there are still some
limitations of using RNN for modeling log data. First, the
traditional RNN cannot encode the context information of a
log sequence from both the left and right context. However,
it is crucial to observe the complete context information
instead of only the information from previous steps when
detecting malicious attacks based on log messages. Although
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a Bidirectional RNN is commonly used nowadays to capture
the contextual information, which consists of two hidden
layers that pass information in both forward and backward
directions, it still faces the problem of vanishing or exploding
gradients, which means the model is hard to capture the long
term dependency. Because log sequences usually consist of
many log messages, capturing the long term dependency is
critical for detecting the anomalies. Second, current RNN-
based anomaly detection models are trained to capture the
patterns of normal sequences by prediction the next log
message given previous log messages. This training objective
mainly focuses on capturing the correlation among the log
messages in normal sequences. When such correlation in a log
sequence is violated, the RNN model cannot correctly predict
the next log message based on previous ones. Then, we will
label the sequence as anomalous. However, only using the
prediction of next log message as objective function cannot not
explicitly encode the common patterns shared by all normal
sequences.

To tackle the existing limitations of RNN-based models, in
this work, we propose LogBERT, a self-supervised framework
for log anomaly detection based on Bidirectional Encoder
Representations from Transformers (BERT). Inspired by the
great success of BERT in modeling sequential text data [8], we
leverage BERT to capture patterns of normal log sequences.
By using the structure of BERT, we expect the contextual em-
bedding of each log entry can capture the information of whole
log sequences with various lengths. In order to train LogBERT
for anomalous sequence detection with the consideration of the
shortage of anomalous data, we propose two self-supervised
training tasks: 1) masked log message prediction, which aims
to correctly predict log messages in normal log sequences that
are randomly masked; 2) volume of hypersphere minimization,
which aims to make the normal log sequences close to each
other in the embedding space. By training to predict the
randomly masked log messages, we expect BERT is able
to capture the correlation among log messages so that an
anomalous log sequence that violates such correlation can
be detected. Moreover, by minimizing the volume of the
hypersphere, we can force the BERT model to capture some
common patterns from various normal log sequences because
the model is trained to map the log sequences into the center
of the hypersphere. Then, the anomalous log sequences that
do not have the common patterns will be far from the center
of hypersphere. After training, we expect LogBERT encodes
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Fig. 1: The overview of LogBERT

the information about normal log sequences and then derive
a criterion to detect anomalous log sequences. Experimental
results on three log datasets show that LogBERT achieves the
best performance on log anomaly detection by comparing with
various state-of-the-art baselines.

II. RELATED WORK

System logs are widely used by large online computer
systems for troubleshooting, where each log message is usu-
ally a semi-structured text string. The traditional approaches
explicitly use the keywords (e.g., “fail”’) or regular expressions
to detect anomalous log entries. However, these approaches
cannot detect malicious attacks based on a sequence of op-
erations, where each log entry looks normal, but the whole
sequence is anomalous. To tackle this challenge, many rule-
based approaches are proposed to identify anomalous events
[9], [10]. Although rule based approaches can achieve high
accuracy, they can only identify pre-defined anomalous sce-
narios and require heavy manual engineering. Once attackers
conduct new types of attacks, the rule-based approaches cannot
achieve good performance.

As malicious attacks become more complicated, various
learning-based approaches are proposed. The typical pipeline
for these approaches consists of three steps [11]. First, a log
parser is adopted to transform log messages to log keys. A
feature extraction approach, such as TF-IDF, is then used
to build a feature vector to represent a sequence of log
keys in a sliding window. Based on the extracted feature
vectors, some supervised learning approaches, such as decision
tree or SVM, are used to detect the anomalous sequences
[11]. However, due to the scarcity of anomalous sequences,
manually collecting and labeling large amounts of anomalous
data is not practical. Hence, in most cases, an unsupervised
approach is applied for detecting the anomalous sequences
[12], [13]. The major limitation of the traditional machine
learning methods is that they cannot capture the temporal
information from the sequence data.

Recently, many deep learning-based log anomaly detection
approaches are proposed for log anomaly detection [14], [5],
[15], [6], [16], [7]. Most of the existing approaches adopt
recurrent neural networks (RNNs), especially long-short term
memory (LSTM) or gated recurrent unit (GRU) to model
the normal log key sequences and derive anomalous scores
to detect the anomalous log sequences [S5], [6], [7]. The
main idea of the existing work is to adopt RNN to predict
the next possible log message based on previous messages
in a sequence. An anomalous sequence will be detected if
the actual message is out of a candidate set of expected
normal log messages. A recent study builds a graph based on
log sequences and leverages the graph embedding approach
to detect the anomalies [16]. In this work, we explore the
advanced BERT model to capture the information of log
sequences and propose two novel self-supervised tasks to train
the model.

ITII. LoGBERT

In this section, we introduce our framework, LogBERT,
for log sequence anomaly detection. Inspired by BERT [8],
LogBERT leverages the Transformer encoder to model log
sequences and is trained by novel self-supervised tasks to
capture the patterns of normal sequences. Figure 1 shows the
whole framework of LogBERT.

A. Framework

Given a sequence of unstructured log messages, we aim to
detect whether this sequence is normal or anomalous. In order
to represent log messages, following a typical pre-processing
approach, we first extract log keys (string templates) from
log messages via a log parser (shown in Figure 2). Then, we
can define a log sequence as a sequence of ordered log keys
S = {ki,...,kt,...,kr}, where k; € K indicates the log key
in the ¢-th position, and K indicates a set of log keys extracted
from log messages. The goal of this task is to predict whether a
new log sequence S is anomalous based on a training dataset
D = {SJ é‘v=1 that consists of only normal log sequences.
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Fig. 2: Log messages in the BGL dataset and the corresponding log keys extracted by a log parser. The message with red

underscore indicates the detailed computational event.

To achieve that, LogBERT is trained to model the normal
sequences and further derives an anomaly detection criterion
to identify anomalous sequences.
Input Representation. Given a normal log sequence S7,
we first add a special token, DIST, at the beginning of
Si = {ki,...k],...,k}} as the first log key, which is used
to represent the whole log sequence based on the structure of
Transformer encoder. We will use the contextual embedding
of DIST to constraint the distribution of normal log sequences.
LogBERT then represents each log key k/ as an input repre-
sentation x7, where the representation x; is a summation of a
log key embedding and a position embedding. The purpose of
log key embeddings is to map the log keys into a embedding
space. In this work, we adopt a matrix E € RIFI*? as the log
key embedding matrix, where d is the dimension of log key
embedding.

Different from RNN, the Transformer encoder does not have
a recurrent structure. In order to model the order information
in a sequence, Transformer encoder adopts the position em-
beddings to inject the position information of log keys in the
sequence. We denote the position embeddings as T € RT*,
which has the same dimension as the log key embeddings.
Especially, we adopt the same sinusoid function as the po-
sition encoding in [17] to generate the position embeddings,
which are defined as Ty o; = sin(t/10000%/4); T 011 =
cos(t/10000%/%), where t is the ¢-th position in a sequence;
i is the i-th dimension of the d-dimensional embedding. The
advantage of using sinusoid function is that it allows the model
to easily learn to attend by relative positions, since for any
fixed offset k, T, can be represented as a linear function of
Tt.

Finally, the input representation of the log key k; is defined
as:

x{zekg —l—tk{. (1)

Transformer Encoder. LogBERT adopts Transformer en-
coder to learn the contextual relations among log keys in a se-
quence. Transformer encoder consists of multiple transformer
layers. Each transformer layer includes a multi-head self-
attention sub-layer and a position-wise feed forward sub-layer,
in which a residual connection is employed around each of two
sub-layers, followed by layer normalization [17]. The multi-
head attention employs H parallel self-attentions to jointly
capture different aspect information at different positions over
the input log sequence. Formally, for the [-th head of the
attention layer, the scaled dot-product self-attention is defined

as:
head; = Attention(XY W2 XIWE XIWY),  (2)

softmax(Q—\/I;—j)V; X7 €
is the input representation of the log sequence; WZQ,
W and W} are linear projection weights with dimensions
R%*dv for the [-th head, and d, is the dimension for one
head of the attention layer. Each self-attention makes each
key attend to all the log keys in an input sequence and
computes the hidden representation for each log key with
an attention distribution over the sequence. Based on the
attention mechanism, LogBERT is able to capture the long-
term dependency among log keys.

The multi-head attention employs a parallel of self-
attentions to jointly capture different aspect information at
different log keys. Formally, the multi-head attention concate-
nates H parallel heads together as:

f(X7) = Concat(heady, ..., headH)WO7 3)

where Attention(Q,K,V) =
RT*d

where WO € Rv*do s a projection matrix, and d, is the
dimension for the output of multi-head attention sub-layer.

Then, the position-wise feed forward sub-layer with a ReLU
activation is applied to the hidden representation of each
activity separately. Finally, by combining the position-wise
feed forward sub-layer and multi-head attention, a transformer
layer is defined as:

transformer_layer(X?) = FFN(f(X?))
= ReLU(f(X7)W )Wy,

where W and Wy, are trained projection matrices.

The Transformer encoder usually consists of multiple trans-
former layers. We denote h; as the contextual embedding
vector of the log key k] produced by the Transformer encoder,
ie.,

“4)

h! = Transformer(z?). ®)

B. Objective Function

In order to train the LogBERT model, we propose two self-
supervised training tasks to capture the patterns of normal log
sequences.

Task I: Masked Log Key Prediction (MLKP). In order to
capture the bidirectional context information of log sequences,
we train LogBERT to predict the masked log keys in log
sequences. In our scenario, LogBERT takes log sequences
with random masks as inputs, where we randomly replace a
ratio of log keys in a sequence with a specific MASK token.
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The training objective is to accurately predict the randomly
masked log keys. The purpose is to make LogBERT encode
the correlation among log keys in normal log sequences.

To achieve that, we feed the contextual embedding vector
of the i-th MASK token in the j-th log sequence th Ask;) 02
softmax function, which will output a probability distribution
over the entire set of log keys K:

nyASK%] = Softmaa:(WcthASKi] +be), (6)

where W and be are trainable parameters. Then, we adopt
the cross entropy loss as the objective function for masked log
key prediction, which is defined as:

N M
1 A »
Lyrixp = _N E E nyASKi] IOg nyASKi]’ @)
J=1i=1

where ny ask,] Indicates the real log key for the i-th masked

token, and M is the total number of masked tokens in the j-th
log sequence.

Once LogBERT is able to correctly predict the masked log

keys in normal sequences, it indicates LogBERT captures the
correlation among log keys. Because the correlation among log
keys in an anomalous log sequence is different from that of
in normal log sequences, LogBERT cannot correctly predict
the masked log keys in an anomalous sequence. Hence, we
expect after training, LogBERT can distinguish the normal
and anomalous log sequences.
Task II: Volume of Hypersphere Minimization (VHM). In-
spired by the Deep SVDD approach [18], where the objective
is to minimize the volume of a data-enclosing hypersphere,
we propose a spherical objective function to regulate the
distribution of normal log sequences. The motivation is that
normal log sequences should be concentrated and close to
each other in the embedding space, while the anomalous log
sequences are far to the center of the sphere. We first derive
the representations of normal log sequences and then compute
the center representation based on the mean operation. In
particular, we consider the contextual embedding vector of
the DIST token hj s, which encodes the information of
entire log sequence based on the Transformer encoder, as the
representation of a log sequence in the embedding space. To
make the representations of normal log sequences close to each
other, we further derive the center representation of normal
log sequences c in the training set by a mean operation, i.e.,
¢ = Mean(hj,s;). Then, the objective function is to make
the representation of normal log sequence hf ¢ close to the
center representation c:

N
1 .
Lvam = > lIbysr — el ®)
j=1

By minimizing the Equation 8, we expect the center c
could encode the extracted common patterns from normal
log sequences. As a result, after training, all the normal log
sequences in the training set should be close to the center,
while the anomalous log sequences have a larger distance

to the center. Meanwhile, another advantage of the spherical
objective function is that by making the sequence represen-
tations close to the center, the Transformer encoder can also
leverage the information from other normal log sequences via
the center representation c, since ¢ encodes common patterns
of normal log sequences. As a result, the model should be able
to predict the masked log keys with higher accuracy for normal
log sequences because the normal log sequences should share
similar patterns.

Finally, the objective function for training the LogBERT is
defined as below:

L=Lyrxp+ oLy, )

where « is a hyper-parameter to balance two training tasks.

C. Anomaly Detection

After training, we can deploy LogBERT for anomalous
log sequence detection. The idea of applying LogBERT for
log anomaly detection is that since LogBERT is trained on
normal log sequences, it can achieve high prediction accuracy
on predicting the masked log keys if a testing log sequence
is normal. Hence, we can derive the anomalous score of a
log sequence based on the prediction results on the MASK
tokens. To this end, given a testing log sequence, similar to
the training process, we first randomly replace a ratio log
keys with MASK tokens and use the randomly-masked log
sequence as an input to LogBERT. Then, given a MASK token,
the probability distribution calculated based on Equation 6
indicates the likelihood of a log key appeared in the position of
the MASK token. Similar to the strategy in DeepLog [5], we
build a candidate set consisting of g normal log keys with the
top g highest likelihoods computed by Jmask,]- If the real
log key is in the candidate set, we treat the key as normal.
However, since anomalous log sequences has the different
patterns from normal sequences, the true masked log keys
in anomalous sequences should have low likelihoods when
we use LogBERT that is trained on the normal sequence for
prediction. Hence, if the observed log key is not in the top-g
candidate set predicted by LogBERT, we consider the log key
as an anomalous log key. Then, when a log sequence consists
of more than r anomalous log keys, we will label this log
sequence as anomalous. Both g and r are hyper-parameters
and will be tuned based on a validation set.

IV. EXPERIMENTS
A. Experimental Setup

Datasets. We evaluate the proposed LogBERT on three log
datasets, HDFS, BGL, and Thunderbird. Table I shows the
statistics of the datasets. For all datasets, we adopt around 5000
normal log sequences for training. The number in the brackets
under the column “# Log Keys” indicates the number of unique
log keys in the training dataset, which means LogBERT only
observes a limited number of log keys for training. In the
testing phase, we use a special taken to indicate the unobserved
log keys.
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TABLE I: Statistics of evaluation datasets

. # of Log Sequences in Test Dataset
Dataset # Log Messages | # Anoamlies | # Log Keys Normal Anomalots
HDFS 11,172,157 284,818 46 (15) 553,366 10,647
BGL 4,747,963 348,460 334 (175) 10,045 2,630
Thunderbird-mini 20,000,000 758,562 1,165 (866) | 71,155 45,385

o Hadoop Distributed File System (HDFS) [12]. HDFS
dataset is generated by running Hadoop-based map-
reduce jobs on Amazon EC2 nodes and manually labeled
through handcrafted rules to identify anomalies. HDFS
dataset consists of 11,172,157 log messages, of which
284,818 are anomalous. For HDFS, we group log keys
into log sequences based on the session ID in each log
message. The average length of log sequences is 19.

o BlueGene/L Supercomputer System (BGL) [19]. BGL
dataset is collected from a BlueGene/L. supercomputer
system at Lawrence Livermore National Labs (LLNL).
Logs contain alert and non-alert messages identified by
alert category tags. The alert messages are considered
as anomalous. BGL dataset consists of 4,747,963 log
messages, of which 348,460 are anomalous. For BGL,
we define a time sliding window as 5 minutes to generate
log sequences, where the average length is 562.

o Thunderbird [19]. Thunderbird dataset is another large
log dataset collected from a supercomputer system. We
select the first 20,000,000 log messages from the original
Thunderbird dataset to compose our dataset, of which
758,562 are anomalous. For Thunderbird, we also adopt
a time sliding window as 1 minute to generate log
sequences, where the average length is 326.

Baselines. We compare our LogBERT model with the follow-
ing baselines.

o Principal Component Analysis (PCA) [2]. PCA builds
a counting matrix based on the frequency of log keys
sequences and then maps the original counting matrix into
a low dimensional space to detect anomalous sequences.

e One-Class SVM (OCSVM) [20]. One-Class SVM is a
well-known one-class classification model and can be
deployed for log anomaly detection by building a feature
matrix based on the normal data [3], [4].

o IsolationForest (iForest) [21]. Isolation forest is an un-
supervised learning algorithm for anomaly detection by
representing features as tree structures.

o LogCluster [22]. LogCluster is a clustering based ap-
proach, where the anomalous log sequences are detected
by have long distances to the normal clusters.

o DeepLog [5]. DeepLog is a state-of-the-art log anomaly
detection approach. DeepLog adopts recurrent neural
network to capture patterns of normal log sequences and
further identifies the anomalous log sequences based on
the performance of log key predictions.

o LogAnomaly [6]. Log Anomaly is a deep learning-based
anomaly detection approach and able to detect sequential
and quantitative log anomalies.

Implementation Details. We adopt Drain [23] to parse the
log messages into log keys. Regarding baselines, we leverage
the package Loglizer [11] to evaluate PCA, OCSVM, iForest
as well as LogCluster for anomaly detection and adopt the
open source deep learning-based log analysis toolkit LogDeep
to evaluate DeepLog and LogAnomaly !. For LogBERT, we
construct a Transformer encoder by using two Transformer
layers. The dimensions for the input representation and hidden
vectors are 50 and 256, respectively. The hyper-parameters,
including « in Equation 9, m the ratio of masked log keys for
the MKLP task, r the number of predicted anomalous log keys,
and g the size of top-g candidate set for anomaly detection are
tuned based on a small validation set. In our experiments, both
training and detection phases have the same ratio of masked
log keys m. The code of our implementation are available
online 2.

B. Experimental Results

Performance on Log Anomaly Detection. Table II shows
the results of LogBERT as well as baselines on three datasets.
We can notice that PCA, Isolation Forest, and OCSVM have
poor performance on log anomaly detection. Although these
methods could achieve extremely high precision or recall
values, they cannot balance the performance on both precision
and recall, which lead to extremely low F1 scores. This
could be because using the counting vector to represent a
log sequence leads to the loss of temporal information from
sequences. LogCluster, which is designed for log anomaly
detection, achieves better performance than PCA, Isolation
Forest, and OCSVM. Meanwhile, two deep learning-based
baselines, DeepLog and LogAnomaly, significantly outper-
form the traditional approaches and achieve reasonable F1
scores on three datasets, which show the advantage to adopt
deep learning models to capture the patterns of sequences.
Moreover, our proposed LogBERT achieves the highest F1
scores on three datasets with large margins by comparing
with all baselines. It indicates that by using self-supervised
training tasks, LogBERT can successfully model the normal
log sequences and further identify anomalous sequences with
high accuracy. Especially, the Transformer encoder used in
LogBERT is able to capture the long term dependency among
log keys. Meanwhile, the self-supervised training task for
minimization the volume of hypersphere can further benefit
the model to learn shared common patterns from normal log
sequences and improve the accuracy on predicting masked log
keys.

Uhttps://github.com/donglee-afar/logdeep
Zhttps://github.com/HelenGuohx/logbert
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TABLE II: Experimental Results on HDFS, BGL, and Thunderbird Datasets

Method _ HDFS _ BGL _ Thunderbird
Precision | Recall | F-1 score | Precision | Recall | F-1 score | Precision | Recall | F-1 score
PCA 5.89 100.00 11.12 9.07 98.23 16.61 37.35 100.00 54.39
iForest 53.60 69.41 60.49 99.70 18.11 30.65 34.45 1.68 3.20
OCSVM 2.54 100.00 4.95 1.06 12.24 1.96 18.89 39.11 25.48
LogCluster 99.26 37.08 53.99 95.46 64.01 76.63 98.28 42.78 59.61
DeepLog 88.44 69.49 77.34 89.74 82.78 86.12 87.34 99.61 93.08
LogAnomaly 94.15 40.47 56.19 73.12 76.09 74.08 86.72 99.63 92.73
LogBERT 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64
TABLE III: Performance of LogBERT base on One Self-supervised Training Task
HDFS BGL Thunderbird
Precision | Recall | F-1 score | Precision | Recall | F-1 score | Precision | Recall | F-1 score

MLKP 77.54 78.65 78.09 93.16 86.46 89.69 97.07 95.90 96.48

VHM 243 39.17 4.58 71.04 43.84 54.22 56.58 43.87 49.42

Both 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64

Ablation Studies. In order to further understand our proposed
LogBERT, we conduct ablation experiments on three log
datasets. LogBERT is trained by two self-supervised tasks.
We evaluate the performance of LogBERT by only using one
training task each time. When the model is only trained by
minimizing the volume of hypersphere, we identify anomalous
log sequences by computing distances of the log sequence
representations to the center of normal log sequences c. If the
distance is larger than a threshold, we consider a log sequence
is anomalous.

Table IIT shows the experimental results. We can notice
that when only using the task of masked log key prediction
to train the model, we can still get very good performance
on log anomaly detection, which shows the effectiveness
of training the model by predicting masked log keys. We
can also notice that even we do not train the LogBERT
with the task of the volume of hypersphere minimization,
LogBERT achieves higher F1 scores than DeepLog on all three
datasets, which shows that compared with LSTM, Transformer
encoder is better at capturing the patterns of log sequences.
Meanwhile, we can observe that when only training the model
for minimizing the volume of hypersphere, the performance
is poor. It indicates that only using distance as a measure to
identify anomalous log sequences cannot achieve good perfor-
mance. However, combining two self-supervised tasks to train
LogBERT can achieve better performance than the models
only trained by one task. Especially, for the HDFS dataset,
LogBERT trained by two self-supervised tasks gains a large
margin in terms of F1 score (82.32) compared with the model
only trained by MLKP (78.09). For BGL and Thunderbird, the
improvement of LogBERT is not as significant as the model
in HDFS. This could be because the average length of log
sequences in BGL (562) and Thunderbird (326) datasets are
much larger than the log sequences in HDFS (19). For longer
sequences, only predicting the masked log keys can capture
the most important patterns of log sequences since there are
more mask tokens in longer sequences. On the other hand, for
short log sequences, we cannot have many masks tokens. As
a result, the task of the volume of hypersphere minimization

(a) Trained without the VHM
task on the HDFS dataset

(b) Trained by MLKP and VHM
tasks on the HDFS dataset

¢

/

/
/
7/

(¢) Trained without the VHM
task on the BGL dataset

(d) Trained by MLKP and VHM
tasks on the BGL dataset

(e) Trained without the VHM
task on the Thunderbird dataset

(f) Trained by MLKP and VHM
tasks on the Thunderbird dataset

Fig. 3: Visualization of log sequences by using the contextual
embedding of DIST tokens hpigr. The blue dots indicate the
normal log sequences, while the orange ‘x’ symbols indicate
anomalous log sequences.

can help to boost the performance. Hence, based on Table III,
we can conclude that using two self-supervised tasks to train
LogBERT can achieve better performance, especially when the
log sequences are relatively short.

Visualization. In order to visualize the log sequences, we
adopt locally linear embedding (LLE) algorithm [24] to map
the log sequence representations into a two dimensional space,
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Fig. 4: Parameter analysis on the BGL dataset.

where the contextual embedding of DIST token hpst is used
as the representation of a log sequence. We randomly select
1000 normal and 1000 anomalous sequences from each dataset
for visualization. Figure 3 shows the visualization results of
log sequences trained by LogBERT with and without the VHM
task. For the HDFS dataset, we can notice that the normal
and anomalous log sequences are mixed together when we
train the model without the VHM task (shown in Figure 3a).
On the contrary, as shown in Figure 3b, by incorporating
the VHM task, the normal and anomalous log sequences
are clearly separated in the latent space, and the normal log
sequences group together. Therefore, as shown in Table III,
by incorporating the VHM task for self-supervised training,
LogBERT achieves much better performance compared with
the model only using the MLKP task on the HDFS datset. For
the BGL and Thunderbird datsets, we can also notice that by
using both self-supervised training tasks, the representations
of normal sequences are more concentrated (shown in Figures
3d and 3f), which shows the effectiveness of the VHM task.
However, different from the HDFS dataset, for the BGL and
Thunderbird datasets, the normal and anomalous sequences
are relatively separated in the embedding space even without
using the VHM task (shown in Figures 3c and 3e). Hence,
the performance gain on the BGL and Thunderbird datasets
based on both MKLP and VHM tasks is not very significant.
Based on the visualization results, we can notice that the
VHM task is effective in regulating the distributions of normal
sequences. For the short log sequences that do not have enough
information, training LogBERT on both tasks can significantly
separate the normal and abnormal data in latent space.

Parameter analysis. We adopt the BGL dataset to analyze
the sensitivity of model performance by tuning various hyper-
parameters. Figure 4a shows that the model performance is
relatively stable by setting different o values in Equation 9.
This is because, for the BGL dataset, the loss from the masked
log key prediction dominates the final loss value due to the
long log sequences. As a result, the weight for the VHM task
does not have much influence on the performance. Figure 4b
shows the performance with different ratios of masked log
keys. Note that we use the same ratio of masked log keys
in both training and detection phases. We can notice that

increasing the ratios of masked log keys in the sequences from
0.1 to 0.5 can slightly increase the F1 scores while keeping
increasing the ratios makes the performance worse. This is
because while the masked log keys increase in a reasonable
range, the model can capture more information about the
sequence. However, if a sequence contains too many masked
log keys, it loses too much information from the original log
sequences can cannot capture the correlation among log keys
as well as the common patterns in normal log sequences for
making the predictions. Figure 4c shows that when increasing
the size of the candidate set as normal log keys, the precision
for anomaly detection keeps increasing while the recall is
reducing, which meets our expectation. Hence, we need to
find the appropriate size of the candidate set to balance the
precision and recall for the anomaly detection.

V. CONCLUSION

Log anomaly detection is essential to protect online com-
puter systems from malicious attacks or malfunctions. In this
paper, we have developed LogBERT, a novel log anomaly
detection model based on BERT. In order to train LogBERT
only based on normal log sequences, we have proposed two
self-supervised training tasks. One is to predict the masked log
keys in log sequences, while the other is to make the normal
log sequences close to each other in the embedding space.
After training over normal log sequences, LogBERT is able
to detect anomalous log sequences based on the performance
on masked log key prediction. Experimental results on three
log datasets have shown that LogBERT outperforms the state-
of-the-art approaches for log anomaly detection. In the future,
we plan to study how to design self-supervised learning tasks
for anomaly detection based on unlabeled data. Currently, most
of the existing studies are developed based on the one-class
dataset. A more challenging task is to achieve the sequential
anomaly detection based on an unlabeled dataset that consists
of both normal and anomalous log sequences. Furthermore,
one interesting fact of training BERT for natural language
processing tasks is that by incorporating different tokens in
the text data, we can propose various training tasks based on
different information. How to design more appropriate self-
supervised tasks to further improve the performance of log
anomaly detection is also worth to explore.
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