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Abstract—Detecting anomalous events in online computer sys-
tems is crucial to protect the systems from malicious attacks
or malfunctions. System logs, which record detailed information
of computational events, are widely used for system status
analysis. In this paper, we propose LogBERT, a self-supervised
framework for log anomaly detection based on Bidirectional
Encoder Representations from Transformers (BERT). LogBERT
learns the patterns of normal log sequences by two novel self-
supervised training tasks, masked log message prediction and
volume of hypersphere minimization. After training, LogBERT is
able to capture the patterns of normal log sequences and further
detect anomalies where the underlying patterns deviate from
expected patterns. The experimental results on three log datasets
show that LogBERT outperforms state-of-the-art approaches for
anomaly detection.

I. INTRODUCTION

Online computer systems are vulnerable to various mali-

cious attacks in cyberspace. Detecting anomalous events from

online computer systems in a timely manner is the fundamental

step to protect the systems from attacks or malfunctions.

System logs, which record detailed information about com-

putational events generated by computer systems, play an

important role in anomaly detection nowadays.

Currently, many traditional machine learning models are

proposed for identifying anomalous events from log messages.

These approaches extract useful features from log messages

and adopt machine learning algorithms to analyze the log

data [1]. Due to the data imbalance issue, it is hard to train

a binary classifier to detect anomalous log sequences in a

supervised learning setting. As a result, many unsupervised

learning models, such as Principal Component Analysis (PCA)

[2], or one class classification models, such as one-class SVM

[3], [4], are adopted to detect anomalies. However, traditional

machine learning models, which are based on hand-craft

features, are infeasible to capture the temporal information

of discrete log messages.

Recently, deep learning models, especially recurrent neural

networks (RNNs), are widely used for log anomaly detection

since they are able to capture the temporal information in

sequential data [5], [6], [7]. However, there are still some

limitations of using RNN for modeling log data. First, the

traditional RNN cannot encode the context information of a

log sequence from both the left and right context. However,

it is crucial to observe the complete context information

instead of only the information from previous steps when

detecting malicious attacks based on log messages. Although

a Bidirectional RNN is commonly used nowadays to capture

the contextual information, which consists of two hidden

layers that pass information in both forward and backward

directions, it still faces the problem of vanishing or exploding

gradients, which means the model is hard to capture the long

term dependency. Because log sequences usually consist of

many log messages, capturing the long term dependency is

critical for detecting the anomalies. Second, current RNN-

based anomaly detection models are trained to capture the

patterns of normal sequences by prediction the next log

message given previous log messages. This training objective

mainly focuses on capturing the correlation among the log

messages in normal sequences. When such correlation in a log

sequence is violated, the RNN model cannot correctly predict

the next log message based on previous ones. Then, we will

label the sequence as anomalous. However, only using the

prediction of next log message as objective function cannot not

explicitly encode the common patterns shared by all normal

sequences.

To tackle the existing limitations of RNN-based models, in

this work, we propose LogBERT, a self-supervised framework

for log anomaly detection based on Bidirectional Encoder

Representations from Transformers (BERT). Inspired by the

great success of BERT in modeling sequential text data [8], we

leverage BERT to capture patterns of normal log sequences.

By using the structure of BERT, we expect the contextual em-

bedding of each log entry can capture the information of whole

log sequences with various lengths. In order to train LogBERT

for anomalous sequence detection with the consideration of the

shortage of anomalous data, we propose two self-supervised

training tasks: 1) masked log message prediction, which aims

to correctly predict log messages in normal log sequences that

are randomly masked; 2) volume of hypersphere minimization,

which aims to make the normal log sequences close to each

other in the embedding space. By training to predict the

randomly masked log messages, we expect BERT is able

to capture the correlation among log messages so that an

anomalous log sequence that violates such correlation can

be detected. Moreover, by minimizing the volume of the

hypersphere, we can force the BERT model to capture some

common patterns from various normal log sequences because

the model is trained to map the log sequences into the center

of the hypersphere. Then, the anomalous log sequences that

do not have the common patterns will be far from the center

of hypersphere. After training, we expect LogBERT encodes
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Fig. 1: The overview of LogBERT

the information about normal log sequences and then derive

a criterion to detect anomalous log sequences. Experimental

results on three log datasets show that LogBERT achieves the

best performance on log anomaly detection by comparing with

various state-of-the-art baselines.

II. RELATED WORK

System logs are widely used by large online computer

systems for troubleshooting, where each log message is usu-

ally a semi-structured text string. The traditional approaches

explicitly use the keywords (e.g., “fail”) or regular expressions

to detect anomalous log entries. However, these approaches

cannot detect malicious attacks based on a sequence of op-

erations, where each log entry looks normal, but the whole

sequence is anomalous. To tackle this challenge, many rule-

based approaches are proposed to identify anomalous events

[9], [10]. Although rule based approaches can achieve high

accuracy, they can only identify pre-defined anomalous sce-

narios and require heavy manual engineering. Once attackers

conduct new types of attacks, the rule-based approaches cannot

achieve good performance.

As malicious attacks become more complicated, various

learning-based approaches are proposed. The typical pipeline

for these approaches consists of three steps [11]. First, a log

parser is adopted to transform log messages to log keys. A

feature extraction approach, such as TF-IDF, is then used

to build a feature vector to represent a sequence of log

keys in a sliding window. Based on the extracted feature

vectors, some supervised learning approaches, such as decision

tree or SVM, are used to detect the anomalous sequences

[11]. However, due to the scarcity of anomalous sequences,

manually collecting and labeling large amounts of anomalous

data is not practical. Hence, in most cases, an unsupervised

approach is applied for detecting the anomalous sequences

[12], [13]. The major limitation of the traditional machine

learning methods is that they cannot capture the temporal

information from the sequence data.

Recently, many deep learning-based log anomaly detection

approaches are proposed for log anomaly detection [14], [5],

[15], [6], [16], [7]. Most of the existing approaches adopt

recurrent neural networks (RNNs), especially long-short term

memory (LSTM) or gated recurrent unit (GRU) to model

the normal log key sequences and derive anomalous scores

to detect the anomalous log sequences [5], [6], [7]. The

main idea of the existing work is to adopt RNN to predict

the next possible log message based on previous messages

in a sequence. An anomalous sequence will be detected if

the actual message is out of a candidate set of expected

normal log messages. A recent study builds a graph based on

log sequences and leverages the graph embedding approach

to detect the anomalies [16]. In this work, we explore the

advanced BERT model to capture the information of log

sequences and propose two novel self-supervised tasks to train

the model.

III. LOGBERT

In this section, we introduce our framework, LogBERT,

for log sequence anomaly detection. Inspired by BERT [8],

LogBERT leverages the Transformer encoder to model log

sequences and is trained by novel self-supervised tasks to

capture the patterns of normal sequences. Figure 1 shows the

whole framework of LogBERT.

A. Framework

Given a sequence of unstructured log messages, we aim to

detect whether this sequence is normal or anomalous. In order

to represent log messages, following a typical pre-processing

approach, we first extract log keys (string templates) from

log messages via a log parser (shown in Figure 2). Then, we

can define a log sequence as a sequence of ordered log keys

S = {k1, ..., kt, ..., kT }, where kt ∈ K indicates the log key

in the t-th position, and K indicates a set of log keys extracted

from log messages. The goal of this task is to predict whether a

new log sequence S is anomalous based on a training dataset

D = {Sj}Nj=1 that consists of only normal log sequences.
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Fig. 2: Log messages in the BGL dataset and the corresponding log keys extracted by a log parser. The message with red

underscore indicates the detailed computational event.

To achieve that, LogBERT is trained to model the normal

sequences and further derives an anomaly detection criterion

to identify anomalous sequences.

Input Representation. Given a normal log sequence Sj ,

we first add a special token, DIST, at the beginning of

Sj = {kj1, ..., k
j
t , ..., k

j
T } as the first log key, which is used

to represent the whole log sequence based on the structure of

Transformer encoder. We will use the contextual embedding

of DIST to constraint the distribution of normal log sequences.

LogBERT then represents each log key kjt as an input repre-

sentation x
j
t , where the representation x

j
t is a summation of a

log key embedding and a position embedding. The purpose of

log key embeddings is to map the log keys into a embedding

space. In this work, we adopt a matrix E ∈ R
|K|∗d as the log

key embedding matrix, where d is the dimension of log key

embedding.

Different from RNN, the Transformer encoder does not have

a recurrent structure. In order to model the order information

in a sequence, Transformer encoder adopts the position em-

beddings to inject the position information of log keys in the

sequence. We denote the position embeddings as T ∈ R
T∗d,

which has the same dimension as the log key embeddings.

Especially, we adopt the same sinusoid function as the po-

sition encoding in [17] to generate the position embeddings,

which are defined as Tt,2i = sin(t/100002i/d);Tt,2i+1 =
cos(t/100002i/d), where t is the t-th position in a sequence;

i is the i-th dimension of the d-dimensional embedding. The

advantage of using sinusoid function is that it allows the model

to easily learn to attend by relative positions, since for any

fixed offset k, Tt+k can be represented as a linear function of

Tt.

Finally, the input representation of the log key kt is defined

as:

x
j
t = ekj

t
+ tkj

t
. (1)

Transformer Encoder. LogBERT adopts Transformer en-

coder to learn the contextual relations among log keys in a se-

quence. Transformer encoder consists of multiple transformer

layers. Each transformer layer includes a multi-head self-

attention sub-layer and a position-wise feed forward sub-layer,

in which a residual connection is employed around each of two

sub-layers, followed by layer normalization [17]. The multi-

head attention employs H parallel self-attentions to jointly

capture different aspect information at different positions over

the input log sequence. Formally, for the l-th head of the

attention layer, the scaled dot-product self-attention is defined

as:

headl = Attention(XjW
Q
l ,X

jWK
l ,XjWV

l ), (2)

where Attention(Q,K,V) = softmax(QKT

√
dv

)V; Xj ∈

R
T∗d is the input representation of the log sequence; W

Q
l ,

WK
l and WV

l are linear projection weights with dimensions

R
d∗dv for the l-th head, and dv is the dimension for one

head of the attention layer. Each self-attention makes each

key attend to all the log keys in an input sequence and

computes the hidden representation for each log key with

an attention distribution over the sequence. Based on the

attention mechanism, LogBERT is able to capture the long-

term dependency among log keys.

The multi-head attention employs a parallel of self-

attentions to jointly capture different aspect information at

different log keys. Formally, the multi-head attention concate-

nates H parallel heads together as:

f(Xj) = Concat(head1, ..., headH)WO, (3)

where WO ∈ R
hdv∗do is a projection matrix, and do is the

dimension for the output of multi-head attention sub-layer.

Then, the position-wise feed forward sub-layer with a ReLU

activation is applied to the hidden representation of each

activity separately. Finally, by combining the position-wise

feed forward sub-layer and multi-head attention, a transformer

layer is defined as:

transformer layer(Xj) = FFN(f(Xj))

= ReLU(f(Xj)W1)W2,
(4)

where W1 and W2 are trained projection matrices.

The Transformer encoder usually consists of multiple trans-

former layers. We denote h
j
t as the contextual embedding

vector of the log key kjt produced by the Transformer encoder,

i.e.,

h
j
t = Transformer(xj

t ). (5)

B. Objective Function

In order to train the LogBERT model, we propose two self-

supervised training tasks to capture the patterns of normal log

sequences.

Task I: Masked Log Key Prediction (MLKP). In order to

capture the bidirectional context information of log sequences,

we train LogBERT to predict the masked log keys in log

sequences. In our scenario, LogBERT takes log sequences

with random masks as inputs, where we randomly replace a

ratio of log keys in a sequence with a specific MASK token.
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The training objective is to accurately predict the randomly

masked log keys. The purpose is to make LogBERT encode

the correlation among log keys in normal log sequences.

To achieve that, we feed the contextual embedding vector

of the i-th MASK token in the j-th log sequence h
j
[MASKi]

to a

softmax function, which will output a probability distribution

over the entire set of log keys K:

ŷ
j
[MASKi]

= Softmax(WCh
j
[MASKi]

+ bC), (6)

where WC and bC are trainable parameters. Then, we adopt

the cross entropy loss as the objective function for masked log

key prediction, which is defined as:

LMLKP = −
1

N

N∑

j=1

M∑

i=1

y
j
[MASKi]

log ŷj
[MASKi]

, (7)

where y
j
[MASKi]

indicates the real log key for the i-th masked

token, and M is the total number of masked tokens in the j-th

log sequence.

Once LogBERT is able to correctly predict the masked log

keys in normal sequences, it indicates LogBERT captures the

correlation among log keys. Because the correlation among log

keys in an anomalous log sequence is different from that of

in normal log sequences, LogBERT cannot correctly predict

the masked log keys in an anomalous sequence. Hence, we

expect after training, LogBERT can distinguish the normal

and anomalous log sequences.

Task II: Volume of Hypersphere Minimization (VHM). In-

spired by the Deep SVDD approach [18], where the objective

is to minimize the volume of a data-enclosing hypersphere,

we propose a spherical objective function to regulate the

distribution of normal log sequences. The motivation is that

normal log sequences should be concentrated and close to

each other in the embedding space, while the anomalous log

sequences are far to the center of the sphere. We first derive

the representations of normal log sequences and then compute

the center representation based on the mean operation. In

particular, we consider the contextual embedding vector of

the DIST token h
j
DIST, which encodes the information of

entire log sequence based on the Transformer encoder, as the

representation of a log sequence in the embedding space. To

make the representations of normal log sequences close to each

other, we further derive the center representation of normal

log sequences c in the training set by a mean operation, i.e.,

c = Mean(hj
DIST). Then, the objective function is to make

the representation of normal log sequence h
j
DIST close to the

center representation c:

LV HM =
1

N

N∑

j=1

||hj
DIST − c||2. (8)

By minimizing the Equation 8, we expect the center c

could encode the extracted common patterns from normal

log sequences. As a result, after training, all the normal log

sequences in the training set should be close to the center,

while the anomalous log sequences have a larger distance

to the center. Meanwhile, another advantage of the spherical

objective function is that by making the sequence represen-

tations close to the center, the Transformer encoder can also

leverage the information from other normal log sequences via

the center representation c, since c encodes common patterns

of normal log sequences. As a result, the model should be able

to predict the masked log keys with higher accuracy for normal

log sequences because the normal log sequences should share

similar patterns.

Finally, the objective function for training the LogBERT is

defined as below:

L = LMLKP + αLV HM , (9)

where α is a hyper-parameter to balance two training tasks.

C. Anomaly Detection

After training, we can deploy LogBERT for anomalous

log sequence detection. The idea of applying LogBERT for

log anomaly detection is that since LogBERT is trained on

normal log sequences, it can achieve high prediction accuracy

on predicting the masked log keys if a testing log sequence

is normal. Hence, we can derive the anomalous score of a

log sequence based on the prediction results on the MASK

tokens. To this end, given a testing log sequence, similar to

the training process, we first randomly replace a ratio log

keys with MASK tokens and use the randomly-masked log

sequence as an input to LogBERT. Then, given a MASK token,

the probability distribution calculated based on Equation 6

indicates the likelihood of a log key appeared in the position of

the MASK token. Similar to the strategy in DeepLog [5], we

build a candidate set consisting of g normal log keys with the

top g highest likelihoods computed by ŷ[MASKi]. If the real

log key is in the candidate set, we treat the key as normal.

However, since anomalous log sequences has the different

patterns from normal sequences, the true masked log keys

in anomalous sequences should have low likelihoods when

we use LogBERT that is trained on the normal sequence for

prediction. Hence, if the observed log key is not in the top-g
candidate set predicted by LogBERT, we consider the log key

as an anomalous log key. Then, when a log sequence consists

of more than r anomalous log keys, we will label this log

sequence as anomalous. Both g and r are hyper-parameters

and will be tuned based on a validation set.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. We evaluate the proposed LogBERT on three log

datasets, HDFS, BGL, and Thunderbird. Table I shows the

statistics of the datasets. For all datasets, we adopt around 5000

normal log sequences for training. The number in the brackets

under the column “# Log Keys” indicates the number of unique

log keys in the training dataset, which means LogBERT only

observes a limited number of log keys for training. In the

testing phase, we use a special taken to indicate the unobserved

log keys.
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TABLE I: Statistics of evaluation datasets

Dataset # Log Messages # Anoamlies # Log Keys
# of Log Sequences in Test Dataset
Normal Anomalous

HDFS 11,172,157 284,818 46 (15) 553,366 10,647

BGL 4,747,963 348,460 334 (175) 10,045 2,630

Thunderbird-mini 20,000,000 758,562 1,165 (866) 71,155 45,385

• Hadoop Distributed File System (HDFS) [12]. HDFS

dataset is generated by running Hadoop-based map-

reduce jobs on Amazon EC2 nodes and manually labeled

through handcrafted rules to identify anomalies. HDFS

dataset consists of 11,172,157 log messages, of which

284,818 are anomalous. For HDFS, we group log keys

into log sequences based on the session ID in each log

message. The average length of log sequences is 19.

• BlueGene/L Supercomputer System (BGL) [19]. BGL

dataset is collected from a BlueGene/L supercomputer

system at Lawrence Livermore National Labs (LLNL).

Logs contain alert and non-alert messages identified by

alert category tags. The alert messages are considered

as anomalous. BGL dataset consists of 4,747,963 log

messages, of which 348,460 are anomalous. For BGL,

we define a time sliding window as 5 minutes to generate

log sequences, where the average length is 562.

• Thunderbird [19]. Thunderbird dataset is another large

log dataset collected from a supercomputer system. We

select the first 20,000,000 log messages from the original

Thunderbird dataset to compose our dataset, of which

758,562 are anomalous. For Thunderbird, we also adopt

a time sliding window as 1 minute to generate log

sequences, where the average length is 326.

Baselines. We compare our LogBERT model with the follow-

ing baselines.

• Principal Component Analysis (PCA) [2]. PCA builds

a counting matrix based on the frequency of log keys

sequences and then maps the original counting matrix into

a low dimensional space to detect anomalous sequences.

• One-Class SVM (OCSVM) [20]. One-Class SVM is a

well-known one-class classification model and can be

deployed for log anomaly detection by building a feature

matrix based on the normal data [3], [4].

• IsolationForest (iForest) [21]. Isolation forest is an un-

supervised learning algorithm for anomaly detection by

representing features as tree structures.

• LogCluster [22]. LogCluster is a clustering based ap-

proach, where the anomalous log sequences are detected

by have long distances to the normal clusters.

• DeepLog [5]. DeepLog is a state-of-the-art log anomaly

detection approach. DeepLog adopts recurrent neural

network to capture patterns of normal log sequences and

further identifies the anomalous log sequences based on

the performance of log key predictions.

• LogAnomaly [6]. Log Anomaly is a deep learning-based

anomaly detection approach and able to detect sequential

and quantitative log anomalies.

Implementation Details. We adopt Drain [23] to parse the

log messages into log keys. Regarding baselines, we leverage

the package Loglizer [11] to evaluate PCA, OCSVM, iForest

as well as LogCluster for anomaly detection and adopt the

open source deep learning-based log analysis toolkit LogDeep

to evaluate DeepLog and LogAnomaly 1. For LogBERT, we

construct a Transformer encoder by using two Transformer

layers. The dimensions for the input representation and hidden

vectors are 50 and 256, respectively. The hyper-parameters,

including α in Equation 9, m the ratio of masked log keys for

the MKLP task, r the number of predicted anomalous log keys,

and g the size of top-g candidate set for anomaly detection are

tuned based on a small validation set. In our experiments, both

training and detection phases have the same ratio of masked

log keys m. The code of our implementation are available

online 2.

B. Experimental Results

Performance on Log Anomaly Detection. Table II shows

the results of LogBERT as well as baselines on three datasets.

We can notice that PCA, Isolation Forest, and OCSVM have

poor performance on log anomaly detection. Although these

methods could achieve extremely high precision or recall

values, they cannot balance the performance on both precision

and recall, which lead to extremely low F1 scores. This

could be because using the counting vector to represent a

log sequence leads to the loss of temporal information from

sequences. LogCluster, which is designed for log anomaly

detection, achieves better performance than PCA, Isolation

Forest, and OCSVM. Meanwhile, two deep learning-based

baselines, DeepLog and LogAnomaly, significantly outper-

form the traditional approaches and achieve reasonable F1

scores on three datasets, which show the advantage to adopt

deep learning models to capture the patterns of sequences.

Moreover, our proposed LogBERT achieves the highest F1

scores on three datasets with large margins by comparing

with all baselines. It indicates that by using self-supervised

training tasks, LogBERT can successfully model the normal

log sequences and further identify anomalous sequences with

high accuracy. Especially, the Transformer encoder used in

LogBERT is able to capture the long term dependency among

log keys. Meanwhile, the self-supervised training task for

minimization the volume of hypersphere can further benefit

the model to learn shared common patterns from normal log

sequences and improve the accuracy on predicting masked log

keys.

1https://github.com/donglee-afar/logdeep
2https://github.com/HelenGuohx/logbert
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TABLE II: Experimental Results on HDFS, BGL, and Thunderbird Datasets

Method
HDFS BGL Thunderbird

Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

PCA 5.89 100.00 11.12 9.07 98.23 16.61 37.35 100.00 54.39

iForest 53.60 69.41 60.49 99.70 18.11 30.65 34.45 1.68 3.20

OCSVM 2.54 100.00 4.95 1.06 12.24 1.96 18.89 39.11 25.48

LogCluster 99.26 37.08 53.99 95.46 64.01 76.63 98.28 42.78 59.61

DeepLog 88.44 69.49 77.34 89.74 82.78 86.12 87.34 99.61 93.08

LogAnomaly 94.15 40.47 56.19 73.12 76.09 74.08 86.72 99.63 92.73

LogBERT 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64

TABLE III: Performance of LogBERT base on One Self-supervised Training Task

HDFS BGL Thunderbird
Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

MLKP 77.54 78.65 78.09 93.16 86.46 89.69 97.07 95.90 96.48

VHM 2.43 39.17 4.58 71.04 43.84 54.22 56.58 43.87 49.42

Both 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64

Ablation Studies. In order to further understand our proposed

LogBERT, we conduct ablation experiments on three log

datasets. LogBERT is trained by two self-supervised tasks.

We evaluate the performance of LogBERT by only using one

training task each time. When the model is only trained by

minimizing the volume of hypersphere, we identify anomalous

log sequences by computing distances of the log sequence

representations to the center of normal log sequences c. If the

distance is larger than a threshold, we consider a log sequence

is anomalous.

Table III shows the experimental results. We can notice

that when only using the task of masked log key prediction

to train the model, we can still get very good performance

on log anomaly detection, which shows the effectiveness

of training the model by predicting masked log keys. We

can also notice that even we do not train the LogBERT

with the task of the volume of hypersphere minimization,

LogBERT achieves higher F1 scores than DeepLog on all three

datasets, which shows that compared with LSTM, Transformer

encoder is better at capturing the patterns of log sequences.

Meanwhile, we can observe that when only training the model

for minimizing the volume of hypersphere, the performance

is poor. It indicates that only using distance as a measure to

identify anomalous log sequences cannot achieve good perfor-

mance. However, combining two self-supervised tasks to train

LogBERT can achieve better performance than the models

only trained by one task. Especially, for the HDFS dataset,

LogBERT trained by two self-supervised tasks gains a large

margin in terms of F1 score (82.32) compared with the model

only trained by MLKP (78.09). For BGL and Thunderbird, the

improvement of LogBERT is not as significant as the model

in HDFS. This could be because the average length of log

sequences in BGL (562) and Thunderbird (326) datasets are

much larger than the log sequences in HDFS (19). For longer

sequences, only predicting the masked log keys can capture

the most important patterns of log sequences since there are

more mask tokens in longer sequences. On the other hand, for

short log sequences, we cannot have many masks tokens. As

a result, the task of the volume of hypersphere minimization

(a) Trained without the VHM
task on the HDFS dataset

(b) Trained by MLKP and VHM
tasks on the HDFS dataset

(c) Trained without the VHM
task on the BGL dataset

(d) Trained by MLKP and VHM
tasks on the BGL dataset

(e) Trained without the VHM
task on the Thunderbird dataset

(f) Trained by MLKP and VHM
tasks on the Thunderbird dataset

Fig. 3: Visualization of log sequences by using the contextual

embedding of DIST tokens hDIST. The blue dots indicate the

normal log sequences, while the orange ‘x’ symbols indicate

anomalous log sequences.

can help to boost the performance. Hence, based on Table III,

we can conclude that using two self-supervised tasks to train

LogBERT can achieve better performance, especially when the

log sequences are relatively short.

Visualization. In order to visualize the log sequences, we

adopt locally linear embedding (LLE) algorithm [24] to map

the log sequence representations into a two dimensional space,
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Fig. 4: Parameter analysis on the BGL dataset.

where the contextual embedding of DIST token hDIST is used

as the representation of a log sequence. We randomly select

1000 normal and 1000 anomalous sequences from each dataset

for visualization. Figure 3 shows the visualization results of

log sequences trained by LogBERT with and without the VHM

task. For the HDFS dataset, we can notice that the normal

and anomalous log sequences are mixed together when we

train the model without the VHM task (shown in Figure 3a).

On the contrary, as shown in Figure 3b, by incorporating

the VHM task, the normal and anomalous log sequences

are clearly separated in the latent space, and the normal log

sequences group together. Therefore, as shown in Table III,

by incorporating the VHM task for self-supervised training,

LogBERT achieves much better performance compared with

the model only using the MLKP task on the HDFS datset. For

the BGL and Thunderbird datsets, we can also notice that by

using both self-supervised training tasks, the representations

of normal sequences are more concentrated (shown in Figures

3d and 3f), which shows the effectiveness of the VHM task.

However, different from the HDFS dataset, for the BGL and

Thunderbird datasets, the normal and anomalous sequences

are relatively separated in the embedding space even without

using the VHM task (shown in Figures 3c and 3e). Hence,

the performance gain on the BGL and Thunderbird datasets

based on both MKLP and VHM tasks is not very significant.

Based on the visualization results, we can notice that the

VHM task is effective in regulating the distributions of normal

sequences. For the short log sequences that do not have enough

information, training LogBERT on both tasks can significantly

separate the normal and abnormal data in latent space.

Parameter analysis. We adopt the BGL dataset to analyze

the sensitivity of model performance by tuning various hyper-

parameters. Figure 4a shows that the model performance is

relatively stable by setting different α values in Equation 9.

This is because, for the BGL dataset, the loss from the masked

log key prediction dominates the final loss value due to the

long log sequences. As a result, the weight for the VHM task

does not have much influence on the performance. Figure 4b

shows the performance with different ratios of masked log

keys. Note that we use the same ratio of masked log keys

in both training and detection phases. We can notice that

increasing the ratios of masked log keys in the sequences from

0.1 to 0.5 can slightly increase the F1 scores while keeping

increasing the ratios makes the performance worse. This is

because while the masked log keys increase in a reasonable

range, the model can capture more information about the

sequence. However, if a sequence contains too many masked

log keys, it loses too much information from the original log

sequences can cannot capture the correlation among log keys

as well as the common patterns in normal log sequences for

making the predictions. Figure 4c shows that when increasing

the size of the candidate set as normal log keys, the precision

for anomaly detection keeps increasing while the recall is

reducing, which meets our expectation. Hence, we need to

find the appropriate size of the candidate set to balance the

precision and recall for the anomaly detection.

V. CONCLUSION

Log anomaly detection is essential to protect online com-

puter systems from malicious attacks or malfunctions. In this

paper, we have developed LogBERT, a novel log anomaly

detection model based on BERT. In order to train LogBERT

only based on normal log sequences, we have proposed two

self-supervised training tasks. One is to predict the masked log

keys in log sequences, while the other is to make the normal

log sequences close to each other in the embedding space.

After training over normal log sequences, LogBERT is able

to detect anomalous log sequences based on the performance

on masked log key prediction. Experimental results on three

log datasets have shown that LogBERT outperforms the state-

of-the-art approaches for log anomaly detection. In the future,

we plan to study how to design self-supervised learning tasks

for anomaly detection based on unlabeled data. Currently, most

of the existing studies are developed based on the one-class

dataset. A more challenging task is to achieve the sequential

anomaly detection based on an unlabeled dataset that consists

of both normal and anomalous log sequences. Furthermore,

one interesting fact of training BERT for natural language

processing tasks is that by incorporating different tokens in

the text data, we can propose various training tasks based on

different information. How to design more appropriate self-

supervised tasks to further improve the performance of log

anomaly detection is also worth to explore.
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