®

Check for
updates

Reflections on Termination of Linear
Loops

Shaowei Zhu®™)® and Zachary Kincaid

Princeton University, Princeton, NJ 08544, USA
{shaoweiz,zkincaid}@cs.princeton.edu

Abstract. This paper shows how techniques for linear dynamical sys-
tems can be used to reason about the behavior of general loops. We
present two main results. First, we show that every loop that can be
expressed as a transition formula in linear integer arithmetic has a best
model as a deterministic affine transition system. Second, we show that
for any linear dynamical system f with integer eigenvalues and any inte-
ger arithmetic formula G, there is a linear integer arithmetic formula
that holds exactly for the states of f for which G is eventually invari-
ant. Combining the two, we develop a monotone conditional termination
analysis for general loops.

Keywords: Termination - Conditional termination - Best abstraction -
Reflective subcategory - Linear dynamical systems - Monotone analysis

1 Introduction

Linear and affine dynamical systems are a model of computation that is easy to
analyze (relative to non-linear systems), making them useful across a broad array
of applications. In the context of program analysis, affine dynamical systems
correspond to loops of the form

while (G(x)) do x := Ax + b)
where G is a formula, A is a matrix, x is a vector of program variables, and b is
a constant vector. The termination problem for such loops has been shown to be
decidable for several variations of this model [4,9,12,24,29]. However, few loops
in real programs take this form, and so this work has not yet made an impact on
practical termination analysis tools. This paper bridges the gap between theory
and practice, showing how techniques for linear and affine dynamical systems
can be used to reason about general programs.

Example 1. We illustrate our methodology using the example program in Fig. 1
(left). First, observe that although the body of this loop is not of the form (), the
value of the sum x 4 y decreases by z each iteration, and z remains the same.
Thus, we can approximate the loop by the linear dynamical system in Fig. 1
(right), where the nature of the approximation is given by the linear map in the
center of Fig. 1 (i.e., the a coordinate corresponds to x +y, and the b coordinate

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 51-74, 2021.
https://doi.org/10.1007/978-3-030-81688-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_3&domain=pdf
http://orcid.org/0000-0002-0335-1151
http://orcid.org/0000-0002-7294-9165
https://doi.org/10.1007/978-3-030-81688-9_3

52 S. Zhu and Z. Kincaid

w

1 z:=1 m_{ouo} x

2 while (z > 0 A y > 0) do bl |10001] |y

3 w = 3w+ z+ 1 z a 1-1] Ta
4 if ((x-y h2==0: =----------o-omoe- ’ M = [0 1} M
5 T i=x -z

6 else:

7 Y =y -z

Fig. 1. Over-approximation of a loop by a linear dynamical system.

to z). The linear map is a simulation, in the sense that it transforms the state
space of the program into the state space of the linear dynamical system so that
every step in the loop has a corresponding step in the linear dynamical system.

Next, we compute the image of the guard of the loop (z > 0 Ay > 0)
under the simulation, which yields @ > 0 (corresponding to the constraint = +
y > 0 over the original program variables). We can compute a closed form for
this constraint holding on the kth iteration of the loop by exponentiating the
dynamics matrix of the linear dynamical system, multiplying on the left by the
row vector corresponding to the constraint, and on the right by the simulation:

i {1—1}’“[0110}
0 Jot1] |ooot
Constraint ~———~—""—~—"

Dynamics Simulation

=(z+y)— k=

e 8 8

We then analyze the asymptotic behavior of the closed form:

—oo ifz>0
Ask —oo,(x+y)—kz—<z+y ifz=0
00 if <0

We conclude that z > 0V (z + y) < 0 is a sufficient condition for the loop to
terminate. N

The paper is organized as follows. To serve as the class of “linear models”
of loops, we introduce deterministic affine transition systems (DATS), a com-
putational model that generalizes affine dynamical systems. Sect.3 shows that
any loop expressed as a linear integer arithmetic formula has a DATS-reflection,
which is a best representation of the behavior of the loop as a DATS. Moreover,
this holds for a restricted class of DATS with rational eigenvalues. Section 4
shows that for a linear map f with integer eigenvalues and a linear integer arith-
metic formula G, there is a linear integer arithmetic formula that holds exactly
for those states such that G(f*(z)) holds for all but finitely many k € N.
Section 5 brings the results together, showing that the analysis of a DATS with
rational eigenvalues can be reduced to the analysis of a linear dynamical system

Reflections on Termination of Linear Loops 53

with integer eigenvalues. The fact that DATS-reflections are best implies mono-
tonicity of the analysis. Finally, in Sect. 6, we demonstrate experimentally that
the analysis can be successfully applied to general programs, using the framework
of algebraic termination analysis [34] to lift our loop analysis to a whole-program
conditional termination analysis. Some proofs are omitted for space, but may be
found in the extended version of this paper [33].

2 Preliminaries

This paper assumes familiarity with linear algebra — see for example [19]. We
recall some basic definitions below.

In the following, a linear space refers to a finite-dimensional linear space
over the field of rational numbers Q. For V a linear space and U C V', span(U)
is the linear space generated by U; i.e., the smallest linear subspace of V' that
contains U. An affine subspace of a linear space V is the image of a linear
subspace of V under a translation (i.e., a set of the form {v+ vy : v € U} for
some linear subspace U C V and some vy € V). For any scalar a € Q, and any
linear space V', we use a to denote the linear map @ : V — V that maps v — av
(in particular, 1 is the identity). A linear functional on a linear space V is a
linear map V' — @Q; the set of all linear functionals on V' forms a linear space
called the dual space of V', denoted V*. A linear map f : Vi — V5 induces a
dual linear map f* : V3* — V;* where f*(g) = go f. For any linear space V, V is
naturally isomorphic to V**, where the isomorphism maps x — Af : V*.f(z).

Let V be a linear space. A linear map f : V — V is associated with a
characteristic polynomial p(x), which is defined to be the determinant of
(I — Ay), where Ay is a matrix representation of f with respect to some basis
(the choice of which is irrelevant). Define the spectrum (set of eigenvalues)
of f to be the set of (possibly complex) roots of its characteristic polynomial,
spec(f) = {X € C : py(\) = 0}. We say that f has rational spectrum if
spec(f) C Q; equivalently (by the spectral theorem — see e.g. [19, Ch. 6, Theorem

7):

— There is a basis {x1,...,x,} for V consisting of generalized (right) eigenvec-
tors, satisfying (f — Ai)™(x;) = 0 for some \; € spec(f) and some 7; > 1 (r;
is called the rank of x;)

— There is a basis {g1, ..., gn } for V* consisting of generalized left eigenvectors,
satisfying g; o (f — Ai)"™ = 0 for some \; € spec(f) and some 7; > 1

Tt is possible to determine whether a linear map has rational spectrum (and com-
pute the basis of eigenvectors for V' and V*) in polynomial time by computing
its characteristic polynomial [15], factoring it [22], and checking whether each
factor is linear.

54 S. Zhu and Z. Kincaid

The syntax of linear integer arithmetic (LIA) is given as follows:

2 € Variable
neci
teTermu=x |n|n-t|t;+ts
F e Formulaz:=t; <ty | (n|t) | A ANFy | LV Fy | -F | 32.F | Vo.F

Let X C Variable be a set of variables. A valuation over X isamap v : X —
Z. If F is a formula whose free variables range over X and v is a valuation over
X, then we say that v satisfies F' (written v = F) if the formula F is true when
interpreted over the standard model of the integers, using v to interpret the free
variables. We write F' |= G if every valuation that satisfies F' also satisfies G.

2.1 Transition Systems

A transition system T is a pair T = (Sp, Rr) where St is a set of states and
Ry C St x St is a transition relation. Within this paper, we shall assume that
the state space of any transition system is a finite-dimensional linear space (over
Q). We write z —7 2’ to denote that the pair (z,z’) belongs to Ry. We define
the domain of a transition system 7, dom(T') = {z € St : 3z’.x —r 2'}, to be
the set of states that have a T-successor. We define the w-domain dom®(7") of
T to be the set of states from which there exist infinite T-computations:

dom®(T) £ {z¢ € St : Ix1, 3, ... such that zg —7 x; —7 29 —p---} .

A transition formula F(X,X’) is an LIA formula whose free variables
range over a designated finite set of variables X and a set of “primed copies”
X' ={2': x € X}. For example, a transition formula that represents the body
of the loop in Fig. 1 is

z>0Ny>0Nw =3w+z+1A2 =2

/\<v((2Iw—y)Aw’=m—sz’=y))> (1)

CQlz—y) Ay =y—zAa' ==z

We use TF to denote the set of tramsition formulas. A transition formula
F(X, X’) defines a transition system where the state space is the set of functions
X — Q, and where v —p ¢’ if and only if both (1) v and v' map each x € X
to an integer and (2) [v,v'] E F, where [v,v'] denotes the valuation that maps
each z € X to v(z) and each 2’ € S’ to v'(z). Defining the state space of F to
be X — Q rather than X — Z is a technical convenience (X — Q = QXlis a
linear space), but does not materially affect the results of this paper since only
(integral) valuations are involved in transitions.
Let T'= (St, Rr) be a transition system. We say that T is:

— linear if Rt is a linear subspace of St x St,
— affine if Rr is an affine subspace of Sp x S,
— deterministic if x —r 2} and ¢ — 2} implies 2} = 4

Reflections on Termination of Linear Loops 55

— total if for all x € St there exists some 2’ € St with z —1 2’
For example, the transition system 7" with transition relation

o Ta 10 o 21 . 0
w2 LB oo)= o Bl
v 0of Y o1 W1 1
is deterministic and affine, but not linear or total. The transition system U with
transition relation

w ({6 el -l

is total, linear (and affine), but not deterministic. The classical notion of a linear
dynamical system—a transition system where the state evolves according to
a linear map—corresponds to a total, deterministic, linear transition system.
Similarly, an affine dynamical system is a transition system that is total,
deterministic, and affine.

For any map s : X — Y, and any relation R C X x X, define the image
of R under s to be the relation s[R] = {(s(x),s(z')): (x,2') € R}. For any
relation R C Y x Y, define the inverse image of R under s to be the relation
s7THR] = {{(z,2') : (s(z),s(z')) € R}. Let T = (St, Rr) and U = (Sy, Ry) be
transition systems. We say that a linear map s : S — Sy is a linear simulation
from T to U, and write s : T — U, if for all z —¢ 2/, we have s(z) —y s(z’).
Observe that the following are equivalent: (1) s is a simulation, (2) s[Rr] C Ry,
and (3) Ry C s~ [Ry].

An example of a simulation between a transition formula and a linear dynam-
ical system is given in Fig. 1. In fact, there are many linear dynamical systems
that over-approximate this loop; however, the simulation and linear dynamical
system given in Fig. 1 is its best abstraction.

To formalize the meaning of best abstractions, it is convenient to use the
language of category theory [17]. Any class of transition systems defines a cat-
egory, where the objects are transitions systems of that class, and the arrows
are linear simulations between them. We use boldface letters (Linear, Affine,
Deterministic, Total) to denote categories of transition systems (e.g., DATS
denotes the category of Deterministic Affine Transition Systems).

If T is a transition system and C is a category of transition systems, a C-
abstraction of T is a pair (U, s) consisting of a transition system U belonging to
C and a linear simulation s : T'— U. A C-reflection of T is a C-abstraction that
satisfies a universal property among C-abstractions of T: for any C-abstraction
(V,t) of T there exists a unique simulation ¢ : U — V such that t o s = ¢; i.e.,

the following diagram commutes:
/i
t
S

S---d <

T

56 S. Zhu and Z. Kincaid

If D is a category of transition systems and C is a subcategory such that
every transition system in D has a C-reflection, we say that C is a reflective
subcategory of D.

Our ultimate goal is to bring techniques from linear dynamical systems to
bear on transition formulas. Fig. 1 gives an example of a program and its linear
dynamical system reflection. Unfortunately, such reflections do not exist for all
transition formulas, which motivates our investigation of alternative models.

Proposition 1. The transition formula x' = x Ax = 0 has no TDATS-
reflection.

Proof. Let F be the 1-dimensional transition formula 2’ = x A x = 0. For a
contradiction, suppose that (A, s) is a TDATS-reflection of F'. Since F' contains
the origin, then so must the transition relation of A, and so A is linear. Next,
consider that for any A € QQ, we have the simulation id : F' — A), where id is
the identity function and Ay = (Q, z — Az). Since (A4, s) is a reflection of F, for
any A, there is some ty such that ¢ty : A — Ay and id = t) o s. Since ty is a
simulation, we have Aty = Ay oty = t) o A. Since id = t) o s, we must have ¢,
non-zero, and so ty is a left eigenvector of A with eigenvalue A. Since this holds
for all A, A must have infinitely many eigenvalues, a contradiction.

3 Linear Abstractions of Transition Formulas

Proposition 1 shows that not every transition formula has a total deterministic
affine reflection. In the following we show that totality is the only barrier: every
transition formula has a (computable) DATS-reflection. Moreover, we show that
every transition formula has a rational spectrum DATS (Q-DATS)-reflection,
a restricted class of DATS that generalizes affine maps x — Ax + b where A
has rational eigenvalues. The restriction on eigenvalues makes it easier to reason
about the termination behavior of Q-DAT'S.

In the remainder of this section, we show that every transition formula has
a Q-DATS-reflection by establishing a chain of reflective subcategories:

Corollary 1
T emmal g bemmad o g YOO L6 DATS

The fact that Q-DATS is a reflective subcategory of TF then follows from
the fact that a reflective subcategory of a reflective subcategory is reflective.

3.1 Affine Abstractions of Transition Formulas

Let F(X, X’) be a transition formula. The affine hull of F', denoted aff(F), is
the smallest affine set off(F) C (X UX') - Q 2 (X — Q) x (X — Q) that
contains all of the models of F. Reps et al. give an algorithm that can be used
to compute aff(F'), by using an SMT solver to sample a set of generators [26].

Reflections on Termination of Linear Loops 57

Lemma 1. Let F(X,X’) be a transition formula. The affine hull of F (con-
sidered as a transition system) is the best affine abstraction of F (where the
sitmulation from F to aff(F) is the identity).

Ezxample 2. Consider the example program in Fig. 1. Letting F' denote the tran-
sition formula corresponding to the program, aff(F') can be represented as the
solutions to the constraints

!
1000 ;”, 310 0 Z’ (1)
o110l |5 | =]0o11-1 + 1, (2)
0001 |?, 000 1| Y
z z 0

Notice that aff(F') is 4-dimensional and has a transition relation defined by
3 constraints, and thus is not deterministic. The next step is to find a suitable
projection onto a lower-dimensional space so that the resulting transition system
is deterministic.

3.2 Reflections via the Dual Space

This section presents a key technical tool that will be used in the next two
subsections to prove the existence of reflections. For any transition system T,
an abstraction (U, s) of T consisting of a transition system U and a simulation
s : St — Sy induces a subspace of S7., which is the range of the dual map s*
(i.e., the set of all linear functionals on St of the form g o s where g € Sfy).
The essential idea is we can apply this in reverse: any subspace A of S7. induces
a transition system U and a simulation s : T — U that satisfies a universal
property among all abstractions (V,v) of T" where the range of v* is contained
in A. We will now formalize this idea.

Let T be a transition system, and let A be a subspace of S%. Define a4 (T)
to be the pair a,(T) = (U, s) consisting of a transition system U and a linear
simulation s : T'— U where

— 8:S7 — A* sends each © € St to Af : A.f(x)
~ Sy & A* and Ry = s[Rr) = {{s(x),s(z")) : (x,2') € Rr}

Lemma 2 (Dual space simulation). Let T be a transition system, let A be
a subspace of S%., and let (U, s) = aa(T). Suppose that Z is a transition system
and z : T — Z is a simulation such that the range of z* is contained in A. Then
there exists a unique simulation Z : U — Z such that Zo s = z.

Proof. The high-level intuition is that since the range of z* is contained in A,
we may consider it to be a map z* : S} — A; dualizing again, we get a map
2** 1 A* — 8%, whose domain is Sy and codomain is (isomorphic to) Sz.

More formally, let j : Sz — S3* be the natural isomorphism between Sz and
S%* defined by j(y) £ \g : S%.g(y). Define z : A* — Sz by

Z(h) &7 (Ag : S5(go) .

58 S. Zhu and Z. Kincaid

First we show that Zos = z. Let x € Sz. Then we have

(Zos)(z) = 5(8(93))
77 (Ag: 85.(s(x))(g02))
JTH g S5 Af(@)(g02))
77 (Ag + S%g(2()))
(93)

Next we show that Z is a simulation. Suppose y —¢ ¢'. Since Ry = s[Rr], there
is some z, ' € St such that © —7 2/, s(z) =y, and s(z’) =¢'. Since z: T — Z
is a simulation, we have that z(x) —z z(x), and so z(s(z)) —z Z(s(z’)), and we
may conclude that z(y) —z z(y').

Finally, observe that s is surjective, and therefore the solution to the equation
Z o s = z is unique.

We conclude this section by illustrating how to compute the function « for
affine transition systems. Suppose that T is an affine transition system of dimen-
sion n. We can represent states in St by vectors in Q™, and the transition rela-
tion Ry by a finite set of transitions B C Q™ x Q" that generates Rp (i.e.,
Ry = aff(B)). Suppose that A is an m-dimensional subspace of S%; elements of
S7. can be represented by n-dimensional row vectors, and /A can be represented
by a basis fT,... fT. We can compute a representation of (U,s) = as(T) as
follows. The elements of Sy = A* can be represented by m-dimensional vectors
(with respect to the basis g1, ..., gm such that g; is the linear map that sends
ij to 1if ¢ = j and to 0 otherwise). The simulation s can be represented by the
m X n matrix where the ith row is f7. Finally, the transition relation Ry can be
represented by a set of generators {(s(x), s(x')) : (x,x’) € B}.

3.3 Determinization

In this section, we show that any transition system operating over a finite-
dimensional vector space has a best deterministic abstraction, and give an algo-
rithm for computing the best deterministic affine abstraction (or determiniza-
tion) of an affine transition system.

Towards an application of Lemma 2, we seek to characterize the determiniza-
tion of a transition system by a space of functionals on its state space. For any
linear space V and space of functionals A on V', define an equivalence relation
=ponVbyax=,yiff f(x)= f(y)forall f € A If T is a transition system and
A, A" are spaces of functionals on St, we say that T is (A, A’)-deterministic
if for all @y, 2o 2,24 such that 21 =4 2, 1 —71 2}, and 3 —7 25, then we
also have x} =4/ 2. Observe that if D is a deterministic transition system and
d:T — D is a simulation, then 7" must be (A4, A4)-deterministic, where A, is
the range of the dual map d*.

For any T and A, define Det(T,A) £ {f:T is (A, {f})-deterministic} to
be the greatest set of functionals such that T is (A, Det(T, A))-deterministic.

Reflections on Termination of Linear Loops 59

Observe that Det(T, —) is a monotone operator on the complete lattice of linear
subspaces of S% (i.e., if A3 C A then Det(T, A;) C Det(T, Az), since A; induces
a coarser equivalence relation than As). By the Knaster-Tarski fixpoint theorem
[28], Det(T,—) has a greatest fixpoint, which we denote by Det(T). Then we
have that T is (Det(T'), Det(T))-deterministic, and Det(7T") contains every space
A such that T is (4, A)-deterministic.

Lemma 3 (Determinization). For any transition system T, apeyr)(T) is a
deterministic reflection of T.

Proof. Let (D, d) = apet(7) (T). First, we show that D is deterministic. Suppose
that y —p y] and y —p yb; we must show that y]; = y}. Since Rp is defined
to be d[Rr], there must be x1, 2, 2}, and x4 in Sy such that x1 —p 2,
xo —1 xh, d(z1) = d(z2) =y, d(z}) = yi, and d(xh) = y2. Since d(z1) = d(z2),
we have (Af : Det(T').f(x1)) = (Af : Det(T). f(x2)), and therefore 21 =pey(ry 2.
We thus have o} =pet(1,pet(1)) 75, and since Det(T', Det(T')) = Det(T'), we have
i = d(ah) = d(z}) — v,

It remains to show that (D,d) is a deterministic reflection of T. Suppose
that (U, u) is another deterministic abstraction of T'. Define G to be the range
of u*. Since U is deterministic, we must have G C Det(T, G), and since Det(T)
is the greatest fixpoint of Det(T, —) we have G C Det(T). By Lemma 2, there is
a unique linear simulation @ : D — U such that wod = u.

If a transition system T is affine, then its determinization can be computed in
polynomial time. Fixing a basis for the state space St (of some dimension n), we
can represent the transition relation of 7" in the form Ry = {(x,x’) : Ax’" = Bx+
c} where A, B € Q™*" and ¢ € Q™ (for some m). We can represent functionals
on St by n-dimensional vectors, where the vector v € Q™ corresponds to the
functional that maps u — vTu. A linear space of functionals A can be represented
by a system of linear equations A = {x : Mx = 0}. The ith row a]v = bJu+¢;,
of the system of equations Ax’ = Bx + ¢ can be read as “T" is ({b]},{a]})-
deterministic.” Thus, the functionals fT such that T is (A, {fT7})-deterministic
are those that can be written as a linear combination of the rows of A such that
the corresponding linear combination of the rows of B belongs to 4; i.e.,

Det({(x,x) : AxX' = Bx+c},{f: Mf =0}) ={d: Jy.MBTy =0A ATy =d} .

A representation of Det(T, A) can be computed in polynomial time using Gaus-
sian elimination. Since the lattice of linear subspaces of S} has height n, the
greatest fixpoint of Det(T', —) can be computed in polynomial time.

Ezxample 3. Continuing the example from Fig. 1 and Example 2, we consider the
determinization of the affine transition system in Eq. (2). The rows of the matrix
on the left-hand side correspond to generators for Det(aff(F),Q*"):

Det(aff(F),Q*") = span({[1000],[0110],[0001]})
Det(aff(F), Det(aff(F),Q*")) = span({[0110],[0001]})

60 S. Zhu and Z. Kincaid

which is the greatest fixpoint Det(aff(F')). Intuitively: after one step of aff(F),
the values of w, = + y, and z are affine functions of the input; after two steps
x4y and z are affine functions of the input but w is not, since the value of w on
the second step depends upon the value of x in the first, and x is not an affine
function of the input.

This yields the deterministic reflection (D, d) (pictured in Fig.1) where

wo= {0 = TR e o= Band]

3.4 Rational-Spectrum Reflections of DATS

In this section, we define rational-spectrum DATS and show that every DATS
has a rational-spectrum-reflection.

In the following, it is convenient to work with transition systems that are
linear rather than affine. We will prove that every deterministic linear transition
system has a best abstraction with rational spectrum. The result extends to the
affine case through the use of homogenization: i.e., we embed a (non-empty) affine
transition system into a linear transition system with one additional dimension,
such that if we fix that dimension to be 1 then we recover the affine transition
system. If the transition relation of a DATS is represented in the form Ax’ =
Bx + ¢, then its homogenization is simply

A0] [x'| _|Be| |x

01| |y| |01] |y
For a DATS T, we use homog(T') to denote the pair (L, h), consisting the DLT'S
L resulting from homogenization and the affine simulation h : T'— L that maps

1 (i.e., the affine simulation h formalizes the idea that if we

fix the extra dimension y to be 1, we recover the original DATS T').

Let T be a deterministic linear transition system. Since our goal is to analyze
the asymptotic behavior of T', and all long-running behaviors of T" reside entirely
within dom®(T'), we are interested in the structure of dom® (7) and T"’s behavior
on this set. First, we observe that dom®”(7T) is a linear subspace of Sy and is
computable. For any k, let T% denote the linear transition system whose transi-
tion relation is the k-fold composition of the transition relation of R. Consider
the descending sequence of linear spaces

each x € St to {X}

dom(T) D dom(T?) D dom(T3) D ...

(i.e., the set of states from which there are T computations of length 1, length
2, length 3, ...). Since the space St is finite dimensional, this sequence must
stabilize at some k. Since the states in dom(7*) have T-computations of any
length and 7T is deterministic, we have that dom(7T"%) is precisely dom®(T).
Since T is total on dom®“(T) and the successor of a state in dom®(7") must
also belong to dom®(T'), T defines a linear map T, : dom“(T") — dom® (7). In

Reflections on Termination of Linear Loops 61

this way, we can essentially reduce asymptotic analysis of DATS to asymptotic
analysis of linear dynamical systems. The asymptotic analysis of linear dynam-
ical systems developed in Sects.4 and 5 requires rational eigenvalues; thus we
are interested in DATS T such that T'|, has rational eigenvalues. With this in
mind, we define spec(T) = spec(T|,), and say that T has rational spectrum
if spec(T) C Q. Define Q-DLTS to be the subcategory of DLTS with rational
spectrum, and Q-DATS to be the subcategory of DATS whose homogenization
lies in Q-DLTS.

Ezample 4. Consider the DLTS T with

1 100] 20 1]
Ry 2 M R LI D R (2T
i 0o1| |7, 0037

000 1-10

The bottom-most equation corresponds to a constraint that only vectors where
the z and y coordinates are equal have successors, so we have:

dom(T") = {[myzr cx =y}

Supposing that the = and y coordinates are equal in some pre-state, they are
equal in the post-state exactly when z = 0, so we have

dom(T?) = {[zy2]T :a=yAz=0}

It is easy to check that dom(7) = dom(7?), and therefore dom®“ (T") = dom(7?).
The vector [11 0] is a basis for dom“(T’), and the matrix representation of T,
with respect to this basis is [2] (i.e., [1 1 O]T —7 [2 2 O}T). Thus we can see
spec(T) = {2}, and T is a Q-DLTS. J

Towards an application of Lemma 2, define the generalized rational
eigenspace of a DLTS T to be

Eo(T) £ span ({f € S} :IN€ Q,Ir e NT.fo (T|, — A)" =0}).

Lemma 4. Let T be a DLTS, and define (Q,q) = agyr)(T). Then for any
Q-DLTS U and any simulation s : T — U, there is a unique simulation S :
Q — U such that so q = s.

While ag, () (T) satisfies a universal property for Q-DLTS, it does not neces-
sary belong to Q-DLT'S itself because it need not be deterministic. However, by
iterative interleaving of Lemma 4 and determinization as shown in Algorithm 1,
we arrive at a Q-DLTS-reflection. Example 5 demonstrates how we calculate a
Q-DLTS-reflection of a particular DLTS.

62 S. Zhu and Z. Kincaid

Ezample 5. Consider the DLTS T with transition relation

o1 T 1000] -, 1100
i o1oof |“ 1100
RTé<§,z,>:oo1o z,:0001§
117 0001 |7, 00 -10f”
0000 1-100
T

We can calculate the w-domain of T dom® (T") = { [w Ty z] Tw = m}, which has

abasis B=[1100]",[0010]",[0001]". With respect to B, T|,, corresponds
to the matrix
200

Tl,=1001
0-10

and so we have spec(T) = {2,i, —i}. We may calculate Eg(T') by finding (gener-
alized) left eigenvectors with eigenvalue 2, the only rational number in spec(T):

188 200 200
Eqo(T) vivT 001 -1020]=0
010
001 0-10 002
~——
T Tl 21

= span([1100],[1-100])

Finally, we have (Q, q) = ag,)(T), where

R aa’_(l)? a’_gga 1100
SN ol T] L = 11-100
Q is deterministic and has rational spectrum, so (@, ¢) is a Q-DLTS-reflection

of T.

Theorem 1. For any deterministic linear transition system, Algorithm 1 com-
putes a Q-DLTS-reflection.

Finally, by homogenization and Theorem 1, we conclude with the desired
result:

Corollary 1. Q-DATS is a reflective subcategory of DATS.

4 Asymptotic Analysis of Linear Dynamical Systems

This section is concerned with analyzing the behavior of loops of the form

while (G(x)) do x := Ax ,

Reflections on Termination of Linear Loops 63

Input : A DLTST.
Output : Q-DLTS-reflection of T'
U—T;
s — Axr.x /* Invariant: s is a simulation from T to U */
while spec(Ul.) € Q do
(Q,q) — agy,a)(U) ; /* Lemma 4 */
(U, d) — aper(0)(Q) ; /* Lemma 38 */

s« dogqos;

b =R B VI VI

return (U, s)
Algorithm 1: Computation of a Q-DLTS-reflection of a DLTS

where the G(x) is an LIA formula and A is a matrix with integer spectrum. Our
goal is to capture the asymptotic behavior of iterating the map A on an initial
state xo with respect to the formula G. Specifically, we show that

Theorem 2. For any LIA formula G and any matriz A with integer spectrum,
there is a periodic sequence of LIA formulas Hy, Hy1, Hs, ... such that for any
initial state xo € Q", there exists K such that for any k > K, G(A*x) holds if
and only if Hi(xo) does.

Recall that an infinite sequence Hy, H1, Ha, ... is periodic if it is of the form
(Ho,Hy,...,Hp)” 2 Hy,Hy,...,Hp,Hy,Hy,..., Hp, ...

We call the periodic sequence (Hg, H1,...,Hp)¥ the characteristic sequence of
the guard formula G with respect to dynamics matrix A, and denote it by
x(G, A). Note that G(A¥xq) holds for all but finitely many k exactly when
AL, Hi(xo) holds.

In the remainder of this section, we show how to compute characteristic
sequences. Let G be an LIA formula and let A be a matrix with integer spectrum.
To begin, we compute a quantifier-formula G’ that is equivalent to G (using,
for example, Cooper’s algorithm [7]). We define x(G’, A) by recursion on the
structure of G’. For the logical connectives A, V, and —, characteristic sequences
are defined pointwise:

X(ﬁHv A) £ (ﬁ(X(Ha A)O)? ﬁ(X(I—L A)l)a .-)
X(Hy A Ha, A) £ (x(Hy, A)o A x(Ha, A)o, x(H1, A)1 A x(Hz, A)1,...)
X(H1V Ha, A) £ (x(Hy, A)o V x(Hz, A)o, x(H1,A)1 V x(Ha, A)1, ...)

It remains to show how x acts on atomic formulas, which take the form of
inequalities t; < to and divisibility constraints n | t. An important fact that we
employ in both cases is that for any linear term c¢Tx over the variables x, we can
compute a closed form for cT A¥(x) by symbolically exponentiating A. Since (by
assumption) A has integer eigenvalues, this closed form has the form %(p(x, k))
where @@ € N and p is an integer exponential-polynomial term, which takes

the form
MEDalx +--- + M\ pdmal x (3)

64 S. Zhu and Z. Kincaid
where \; € spec(A), d; € N, and a; € Z".!

Characteristic Sequences for Inequalities. Our method for computing
characteristic sequences for inequalities is a variation of Tiwari’s method for
deciding termination of linear loops with real eigenvalues [29)].

First, suppose that p(x, k) is an integer exponential-polynomial of the form
in Eq. (3) such that each)\; is a positive integer. Further suppose that the
summands are ordered by asymptotic growth, with the dominant term appearing
earliest in the list; i.e., for # < j we have either A\; > A;, or A; = A; and d; > d;.
If we imagine that the variables x are fixed to some x¢ € Z", then we see that
p(xo, k) is either identically zero or has finitely many zeros, and therefore its
sign is eventually stable. Furthermore, the sign of p(xg, k) as k tends to oo is
simply the sign of its dominant term — that is, the sign of alx for the least
i such that aJx(is non-zero. Thus, we may define a function DTA that maps
any exponential-polynomial term p(x, k) (with positive integral ;) to an LIA
formula such that for any x¢ € Z", xo = DTA(p) holds if and only if p(xg, k) is
eventually non-negative (p(xg, k) > 0 for all but finitely many k& € N). DTA is
defined as follows:

DTA(0) £ true
DTA(Nk%aTx +p) £ aTx > 1V (aTx = 0 A DTA(p))
Finally, we define the characteristic sequence of an inequality atom as follows.

An inequality ¢; < ty over the variables x can be written as ¢Tx + d > 0 for
c € Z" and d € Z. Let ﬁpeven(x,k) and ﬁpodd(x,k) be the closed forms
of cTA%*(x) and cTA%**+1(x), respectively; by splitting into “even” and “odd”
cases, we ensure that the exponential-polynomial terms peyen(x, k) and poqa(X, k)
have only positive \; and thus are amenable to the dominant term analysis DTA
described above. Then we define:

X (CTX + d Z Oa A) £ (DTA(peven(Xa k) + dQeven), DTA(podd(X> k) + ondd))w

Example 6. Consider the matrix A and its exponential A* below:

x 110 0 0] |z
Y 011 0 0] |y
A z = (001 0 Of |=
a 000-30{ |a
b 000 0 2| |b
x 1k @ 0 0 (= 1(zk? + (2y — 2)k + 22)
y 01 k 0 ofly zk+y
ARzl | =100 1 0 0f |z = z
a 00 0 (=3)%0] |a (—3)*a
b 00 0 0 2% |b 2kp

! Technically, we have %(A]fkdl al +--- 4+ AFkdmal) = cTA"x for all k greater than
rank of the highest-rank generalized eigenvector of 0, but since we are only interested

in the asymptotic behavior of A we can disregard the first steps of the computation.

Reflections on Termination of Linear Loops 65

First we compute the characteristic sequence x(x > 0, A). Applying the domi-
nant term analysis of the closed form of = yields

z2>0
DTA (zk* + (2y —2)k+2) = [V(z=0A2y — 2> 0) ,
V(iz=0A2y—2z=0A2>0)

Since the closed form involves only positive exponential terms, we need not split
into an even and odd case, and we simply have:
xX(x>0,A)=(z2>0V(z=0A2y—2>0)V(z=0A2y—2=0Az>0))*

Next we compute the characteristic sequence x(a — b > 0, A), which does
require a case split. Applying dominant term analysis of the closed form of

(a —b) yields
DTA(a- (=3)* —b-22*) =a >0V (a=0A—b>0)
DTA(a- (=3)**! —b- 2%ty = 4> 0V (—a=0A—-b>0).
and thus we have
x(a—b>0,A)=(a>0V(a=0A-b>0),—a>0V(—a=0A-b>0))*.

|

Characteristic Sequences for Divisibility Atoms. Last we show how to
define y for divisibility atoms n | t. Write the term ¢ as ¢™x + d and let the
closed form of ¢TA¥(x) be

1
Q

The formula n | ¢T A¥(x) +d is equivalent to Qn | \¥k@1a]x+ - -+ \E kdmal x +
Qd. For any i, the sequence (A¥k% mod Qn)2, is ultimately periodic, since
(1) (kmod Qn), = (0,1,...,Qn — 1)*, (2) (A\¥ mod Qn)32, is ultimately
periodic (with period and transient length bounded above by Qn)?, and (3)
ultimately periodic sequences are closed under pointwise product. It follows that
for each i, there is a periodic sequence of integers (zi7k>;°=0 that agrees with
(AFk% mod Qn)22, on all but finitely many terms. Finally, we take

(MWEBalx 4+ \E Edmal x) .

x(n|t,A) £(Qn | z1pa]x + -+ + 2m raf,x + Qd)pZ, -

Example 7. Consider matrix A and the closed form of its exponents below

T 110] |z T 10| |z

Al lyl | =1(o10] |y Ayl =010 |y

2 005| |z z 005%| |2
2 An infinite sequence s, 51, Sz, . . . is ultimately periodic, if there exists N such that
SN, SN+1,SN+2,-.. i1 a periodic sequence. We call N the transient length of this

sequence.

66 S. Zhu and Z. Kincaid

We show the characteristic sequences for some divisibility atoms w.r.t A:
X3 a,4) = (3] 2,3 |2 +y,3 |z +2)"
(31 5+2,4)= (3| 2+2,3 | 5+y+2,3|z+2y+2)
X3z A4)=31z3]22)° -

5 A Conditional Termination Analysis for Programs

This section demonstrates how the results from Sects. 3 and 4 can be combined
to yield a conditional termination analysis that applies to general programs.

Integer-Spectrum Restriction for Q-DLTS. Section 3 gives a way to com-
pute a Q-DATS-reflection of any transition formula. Yet the analysis we devel-
oped in Sect. 4 only applies to linear dynamical systems with integer spectrum.
We now show how to bridge the gap. Let V be a Q-DATS. As discussed in
Sect. 3.4, we may homogenize V to obtain a Q-DLTS T'. Define Z(T) to be the
space spanned by the generalized (right) eigenvectors of T'|,, that correspond to
integer eigenvalues:

Z(T) = span({x € dom®(T) : Ir e Nt X\ € Z.(T|, — A)"(z) = 0})

Since Z(T) is invariant under T, and thus T, T defines a linear map 7|z :
Z(T) — Z(T), and by construction T'|z has integer spectrum. The following
lemma justifies the restriction of our attention to the subspace Z(T).

Lemma 5. Let F be a transition formula, let (V,s) be a Q-DATS-reflection of
F, and let (T, h) = homog(V'). For any state v € dom”(F'), we have h(s(v)) €
Z(T).

Ezample 8. The following loop computes the number of trailing 0’s in the binary
representation of integer x and its corresponding transition formula:

Il ¢:=0 @] z)

i thl_lex(/xé 2==0) do F(z,e,2’,d)=| Az —1< 22" A2 < x)
J = /

4 c=c+1 A =etl)

The homogenization of the Q-DATS-reflection of F' is the Q-DLTS T,

x T’ T %OO x
Rp = <c Ll >: dl =1011] |¢
h I I 001f (A

The w-domain of T is the whole state space Q3. Since the eigenvector [1 0 0] T of
the transition matrix corresponds to a non-integer eigenvalue %, the z-coordinate
of states in Z(T') must be 0; i.e., Z(T) = {(z,¢,y) : © = 0}. We conclude that
x # 0 is a sufficient condition for the loop to terminate.

Reflections on Termination of Linear Loops 67

Input : A transition formula F(x,x’) € TF in linear integer arithmetic.

Output : A mortal precondition mp(F') for F.
1 A« off(F); /* Affine hull [26]; Lemma 1 */
2 (D,d) «+ ape(a)(A) ; /* Determinize; Lemma 3 */
3 (V,q) — Q-DATS-reflection of D ; /* Algorithm 1 */
4 v+gqod; /*{(V,v) is a Q-DATS-reflection of F */
5 (T, h) < homog(V) ; /* Homogenization of V. */
6 L« howv; /*t is an affine simulation F — T */
7 p < (any) linear projection of St onto Z(T);

8 C < matrix such that Cw =0 <= w € Z(T);
Let G(w) « 3x,x" . F(x,x') Aw = p(t(x)) A Ct(x) = 0;
10 (Ho(w),...,Hp(w))* « x(G(w),T|z) ; /* Section 4 */
11 return - ((A, Hi(p(t(x)))) A Ct(x) = 0)
Algorithm 2: Procedure for computing mp(F).

©

The Mortal Precondition Operator. Algorithm 2 shows how to compute
a mortal precondition for an LIA transition formula F(x,x’) (i.e., a sufficient
condition for which F' terminates). The algorithm operates as follows. First, we
compute a Q-DATS-reflection of F, and homogenize to get a Q-DLTS T and
an affine simulation ¢ : F — T. Let p denote an (arbitrary) projection from St
onto Z(T) (so p is a simulation from T to T'|z). We then compute an LIA formula
G which represents the states w of T'| such that there is some v € dom(F") such
that t(v) € Z(T) and p(t(v)) = w. Letting (Hy, ..., Hp)“ be the characteristic
sequence x(G,T|z), we have that for any v € dom®(F), t(v) must belong to
Z(T) and p(t(v)) satisfies each H;, so we define

mp(F) £ {v e Sp:t(v) ¢ Z(T) or v [/\Hl(p(t(x)))

Within the context of the algorithm, we suppose that states of F' are repre-
sented by n-dimensional vectors, states of T are represented as m-dimensional
vectors, and state of T'|; are represented as g-dimensional vectors. The affine sim-
ulation ¢ is represented in the form x — Ax + b, where A € Z™*" and b € Z™,
the projection p as a Z?*™ matrix, and the linear map T'|z as a Q?*? matrix. The
fact that p and ¢ have all integer (rather than rational) entries is without loss of
generality, since any simulation can be scaled by the least common denominator
of its entries.

Theorem 3 (Soundness). For any transition formula F, for any state s such
that s € mp(F), we have s ¢ dom”(F).

Proof. Let T, t, p, C, G, and Hy,...,Hp be as in Algorithm 2. We prove the
contrapositive: we assume v € dom® (F') and prove v ¢ mp(F), or equivalently
v = H;(p(t(x))) for each i and t(v) € Z(T). We have t(v) € Z(T) by Lemma 5,
so it remains only to show that v = H;(p(¢(x))) for each i.

Since v € dom®“(F), there exists an infinite trajectory of F' starting from
v: v —p v; —p V2 —p ... For any j, let w; = T|}(p(t(v))). Since pot

68 S. Zhu and Z. Kincaid

is an (affine) simulation, we have w; = p(t(v;)) for all j. It follows that for
any j, we have [v;,v,41] | F(x,x) A w; = p(t(x;)) A Ct(x;) = 0, and so
G(w;) = 3Ix,x" . F(x,x")Aw; = p(t(x))ACt(x) = 0 holds for all j. By Theorem 2,
H;(p(t(x))) holds for all H;.

The proof of soundness requires only that we can compute Q-DATS-
abstractions of transition formulas. The following is the culmination of our devel-
opment of Q-DATS-reflections:

Theorem 4 (Monotonicity). For any transition formulas Fy and Fy such that
F, E F», we have mp(Fy) E mp(F1).

The desire for monotonicity is inspired by the principle that changes to a pro-
gram should have a predictable impact on its analysis [34]. Monotonicity guaran-
tees that more information into the analysis always leads to better results—for
example, if a user annotates a procedure with pre-conditions or adds loop invari-
ants into the program, our termination analysis can only produce weaker (that
is, better) preconditions for termination. Moreover, in the context of this work,
monotonicity also guarantees that if we cannot prove termination using the mp
operator that we defined, then any linear abstraction of the loop has reachable
non-terminating states.

6 Evaluation

Section 5 shows how to compute mortal preconditions for transition formulas.
Using the framework of algebraic termination analysis [34], we can “lift” the
analysis to compute mortal preconditions for whole programs. The essential idea
is to compute summaries for loops and procedures in “bottom-up” fashion, apply
the mortal precondition operator from Sect.5 to each loop body summary, and
then propagate the mortal preconditions for the loops back to the entry of the
program (see [34] for more details). We can verify that a program terminates by
using an SMT solver to check that its mortal precondition is valid.

We have implemented Algorithm 2 as a mortal precondition operator mp;
(“mortal precondition via Linear Reflections”) in ComPACT, a tool that imple-
ments the termination analysis framework presented in [34]. We compare the
performance of our analysis against 2LS [5], Ultimate Automizer [10] and
CPAchecker [23], the top three competitors in the termination category of
Competition on Software Verification (SV-COMP) 2020.

Experiments are run on a virtual machine with Ubuntu 18.04, with a single-
core Intel Core i7-9750H @ 2.60 GHz CPU and 8 GB of RAM. All tools were run
with a time limit of 10 min.

Benchmarks. We tested on a suite of 263 programs divided into 4 categories.
The termination and recursive suites contain small programs with challeng-
ing termination arguments, while the polybench suite contains larger real-world
programs that have relatively simple termination arguments. The termination

https://sv-comp.sosy-lab.org/2020

Reflections on Termination of Linear Loops 69

Table 1. Termination verification benchmarks; time in seconds.

Benchmark |#tasks| mppr 2LS UAutomizer CPAChecker
F#£correct |time |#correct |time |#correct|time F#£correct | time
Termination|171 98 100.8|115 1966.0 (161 4772.2|126 12108.6
Recursive 42 4 51.0 |- - 30 1781.7| 23 530.6
Polybench 30 30 128.3| 0 7602.7 0 16241.6| O 4035.8
Linear 20 20 37.0/ 6 17.6| 8 2841.3| 3 3470.7
Total 263 152 317.1|121 9586.3 | 199 25636.8|152 20145.7

Table 2. Comparing mp; z and ComPACT; time in seconds.

F#tasks| mpr ComPACT-mpr g | ComPACT+mpr »
F£correct |time | #correct | time #£correct | time
Termination | 171 98 100.8 141 1184 |146 114.4
Recursive 42 4 51.0 31 95.4 32 94.6
Polybench 30 30 128.3| 30 179.6 30 179.1
Linear 20 20 37.0| 15 116.5 20 65.1
Total 263 152 317.1 217 509.9 |228 453.3

category consists of the non-recursive, terminating benchmarks from SV-COMP
2020 in the Termination-MainControlFlow suite. The recursive category con-
sists of the recursive, terminating benchmarks from the recursive directory and
Termination-MainControlFlow. Note that 2LS does not handle recursive pro-
grams, so we exclude it from the recursive category. Finally, we created a new
test suite linear consisting of programs with terminating linear abstractions.
This suite is designed to exercise the capabilities of the mp; g, and includes
all examples from Ben-Amram and Genaim'’s article [1] on multi-phase ranking
functions, loops with disjunctive and/or modular arithmetic guards, and loops
that model integer division and remainder calculation.

How Does Our Analysis Compare with the State-of-the-Art? The comparison of
ComPACT using the mp; p operator against state-of-the-art termination analy-
sis tools is shown in Table 1. ComPACT with mp; i is competitive with (but not
dominating) leading tools in terms of number of tasks solved across the suite,
and uses substantially less time. The mp; g analysis is least successful on the
termination and recursive suites, which are designed to have difficult termi-
nation arguments. Most competitive tools use a portfolio of different termina-
tion techniques to approach such problems (e.g., Ultimate Automizer synthesizes
linear, nested, multi-phase, lexicographic and piecewise ranking functions); we
investigate the use of mp;r in a portfolio solver in the following.

ComPACT with mp; solves all tasks in the polybench suite, which con-
tains numerical programs that have simple termination arguments, but which
are larger than the SV-COMP tasks. 2LLS, Ultimate Automizer, and CPAChecker

70 S. Zhu and Z. Kincaid

exhaust time or memory limits on all tasks. Nested loops are a problematic pat-
tern that appears in these programs, e.g.,

for(int ¢ = 0; ¢ < 4096; ¢ += step)
for (int j = 0; j < 4096; j += step)
// mo modifications to i, j, or step

For such loops, mp; is guaranteed to synthesize a conditional termination
argument that is at least as weak as step > 0 (regardless of the contents of the
inner loop) by monotonicity and the fact that the loop body formula entails
1 < 4096 A 7' = i + step A step’ = step. Ultimate Automizer, CPAChecker, and
2LS cannot make such theoretical guarantees.

The linear suite demonstrates that mp; is capable of proving termination
of programs that lie outside the boundaries of the other tools.

Can Our Analysis Improve a Portfolio Solver? We compare mp;r and Com-
PACT in Table2. The columns correspond to running ComPACT with the fol-
lowing options: excluding the portfolio from [34] (mpyR), including the port-
folio but excluding mp;r (ComPACT-mp;), and including the portfolio and
mprr (ComPACT+mp;). ComPACT+mp;r can solve 11 additional tasks
over ComPACT-mp; rp while adding negligible runtime overhead. In fact, adding
mppr to the portfolio decreases the amount of time it takes for ComPACT to
complete all benchmark suites. Note that the combined tool is successful on the
most termination tasks among all the tools we tested, both overall and for each
individual suite except the termination category.

7 Related Work

Termination Analysis of Linear Loops. The universal termination problem for
linear loops (or total deterministic affine transition systems, in the terminology
of Sect.4) was posed by Tiwari [29]. The case of linear loops over the reals was
resolved by Tiwari [29], over the rationals by Braverman [4], and finally over
the integers by Hosseini et al. [14]. In principle, we can combine any of these
techniques with our algorithm for computing DATS-reflections of transition
formulas to yield a sound (but incomplete) termination analysis. The significance
of computing a DATS-reflection (rather than just “some” abstraction) is that is
provides an algorithmic completeness result: if it is possible to prove termination
of a loop by exhibiting a terminating linear dynamical system that simulates it,
the algorithm will prove termination.

The method introduced in Sect.4 to compute characteristic sequences of
inequalities is based on the method that Tiwari used to prove decidability of
the universal termination problem for linear loops with (positive) real spectra
[29]. Tiwari’s condition of having real spectra is strictly more general than the
integer spectra used by our procedure; requiring that the spectrum be integer
allows us express the DTA procedure in linear integer arithmetic rather than
real arithmetic. Similar procedures appear also in [12,18]. We note in particular

Reflections on Termination of Linear Loops 71

that our results in Sects.4 and 5 subsume Frohn and Giesl’s decision proce-
dure for universal termination for upper-triangular linear loops [12]; since every
rational upper-triangular linear loop has a rational spectrum (and is therefore a
Q-DATS), the mortal precondition computed for any rational upper-triangular
linear loop is valid iff the loop is universally terminating.

Linear Abstractions. The formulation of “best abstractions” using reflective sub-
categories is based on the framework developed in [17]. A variation of this method
was used in the context of invariant generation, based on computing (weak)
reflections of linear rational arithmetic formulas in the category of rational vec-
tor addition systems [27]. This paper is the first to apply the idea to termination
analysis.

A method for extracting polynomial recurrence (in)equations that are
entailed by a transition formula appears in [16]. The algorithm can also be
applied to compute a TDATS-abstraction of a transition formula. The pro-
cedure does not guarantee that the TDATS-abstraction is a reflection (best
abstraction); Proposition 1 demonstrates that no such procedure exists. In this
paper, we generalize the model to allow non-total transition systems, and show
that best abstractions do exist. The techniques from Sect.3 can be used for
invariant generation, improving upon the methods of [16].

Kincaid et al. show that the category of linear dynamical systems with peri-
odic rational spectrum is a reflective subcategory of the category of linear dynam-
ical systems [18]. A complex number n is periodic rational if n? is rational for
some p € Z>°. Combining this result with the technique from Sect. 3 yields the
result that the category of DATS with periodic rational spectrum is a reflec-
tive subcategory of TF. The decision procedure from Sect.4 extends easily to
the periodic rational case, which results in a strictly more powerful decision
procedure.

Termination Analysis. Termination analysis, and in particular conditional ter-
mination analysis, has been widely studied. Work on the subject can be divided
into practical termination analyses that work on real programs (but offer few
theoretical guarantees) [2,6,8,11,13,20,30-32], and work on simplified model
(such as linear, octagonal, and polyhedral loops) with strong guarantees (but
cannot be applied directly to real programs) [1,3,4,14,21,25,29]. This paper
aims to help bridge the gap between the two, by showing how to apply analyses
for linear loops to general programs, while preserving some of their desirable
theoretical properties, in particular monotonicity.

Acknowledgments. This work was supported in part by the NSF under grant num-
ber 1942537 and by ONR, under grant N00014-19-1-2318. Opinions, findings, conclu-
sions, or recommendations expressed herein are those of the authors and do not nec-
essarily reflect the views of the sponsoring agencies.

72

S. Zhu and Z. Kincaid

References

10.

11.

12.

13.

14.

15.

. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:

Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601-620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_32

. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodriguez-Carbonell,

E., Rubio, A.: Proving termination through conditional termination. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99-117. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_6

Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491-504. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988_48

Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372-385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963_34

Chen, H., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-precise
procedure-modular termination analysis. ACM Trans. Program. Lang. Syst. 40(1),
1:1-1:38 (2018). https://doi.org/10.1145/3121136

Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328-340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1.32

Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7(91-99), 300 (1972)

Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2012, pp. 245-258. Association for Com-
puting Machinery, New York (2012). https://doi.org/10.1145/2103656.2103687
Cyphert, J., Breck, J., Kincaid, Z., Reps, T.: Refinement of path expressions for
static analysis. Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.org/10.
1145/3290358

Dietsch, D., Heizmann, M., Nutz, A., Schétzle, C., Schiissele, F.: Ultimate taipan
with symbolic interpretation and fluid abstractions. In: TACAS 2020. LNCS, vol.
12079, pp. 418-422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7_32

D’Silva, V., Urban, C.: Conflict-driven conditional termination. In: Kroening, D.,
Pasareanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 271-286. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21668-3_16

Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig,
1., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426-444. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5_24

Ganty, P., Genaim, S.: Proving termination starting from the end. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397-412. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_27

Hosseini, M., Ouaknine, J., Worrell, J.: Termination of linear loops over the inte-
gers. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) ICALP.
LIPIcs, vol. 132, pp. 118:1-118:13. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik (2019). https://doi.org/10.4230/LIPIes. ICALP.2019.118

Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci. 36(2-3), 309-317 (1985)

https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/11817963_34
https://doi.org/10.1145/3121136
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1145/2103656.2103687
https://doi.org/10.1145/3290358
https://doi.org/10.1145/3290358
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-319-21668-3_16
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-642-39799-8_27
https://doi.org/10.4230/LIPIcs.ICALP.2019.118

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Reflections on Termination of Linear Loops 73

Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-linear reasoning for invariant
synthesis. PACMPL 2(POPL), 54:1-54:33 (2018)

Kincaid, Z.: Numerical invariants via abstract machines. In: Podelski, A. (ed.)
SAS 2018. LNCS, vol. 11002, pp. 24-42. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99725-4_3

Kincaid, Z., Breck, J., Cyphert, J., Reps, T.: Closed forms for numerical loops.
Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290368
Lax, P.D.: Linear Algebra and Its Applications, 2 edn. Wiley-Interscience (2007)
Le, T.C., Qin, S., Chin, W.N.: Termination and non-termination specification infer-
ence. In: PLDI, PLDI 2015, pp. 489-498. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2737924.2737993

Leike, J., Heizmann, M.: Ranking templates for linear loops. In: TACAS, pp. 172—
186 (2014)

Lenstra, A.K., Lenstra, HW., Lovéasz, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515-534 (1982)

Ott, S.: Implementing a termination analysis using configurable program analysis.
Master’s thesis, University of Passau (2016)

Ouaknine, J., Pinto, J.S., Worrell, J.: On termination of integer linear loops. In:
SODA, pp. 957-969 (2015)

Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: VMCALI, pp. 239-251 (2004)

Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252-266.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0-21
Silverman, J., Kincaid, Z.: Loop summarization with rational vector addition sys-
tems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 97-115.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_7

Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285-309 (1955)

Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70-82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9_6

Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo, F.,
Fahndrich, M. (eds.) SAS, pp. 43-62 (2013)

Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412-431. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8_22

Urban, C., Miné, A.: A decision tree abstract domain for proving conditional ter-
mination. In: Miiller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp.
302-318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10936-7_19
Zhu, S., Kincaid, Z.: Reflections on termination of linear loops (2021). https://
arxiv.org/abs/2105.13941

Zhu, S., Kincaid, Z.: Termination analysis without the tears (2021)

https://doi.org/10.1007/978-3-319-99725-4_3
https://doi.org/10.1007/978-3-319-99725-4_3
https://doi.org/10.1145/3290368
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1007/978-3-030-25543-5_7
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-319-10936-7_19
https://arxiv.org/abs/2105.13941
https://arxiv.org/abs/2105.13941

74 S. Zhu and Z. Kincaid

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Reflections on Termination of Linear Loops
	1 Introduction
	2 Preliminaries
	2.1 Transition Systems

	3 Linear Abstractions of Transition Formulas
	3.1 Affine Abstractions of Transition Formulas
	3.2 Reflections via the Dual Space
	3.3 Determinization
	3.4 Rational-Spectrum Reflections of DATS

	4 Asymptotic Analysis of Linear Dynamical Systems
	5 A Conditional Termination Analysis for Programs
	6 Evaluation
	7 Related Work
	References

