Ergod. Th. & Dynam. Sys. (2020), 40, 1788-1804 (© Cambridge University Press, 2018
doi:10.1017/etds.2018.126

The automorphism group of a shift of slow
growth is amenable

VAN CYRT and BRYNA KRA#

+ Bucknell University, Lewisburg, PA 17837, USA
(e-mail: van.cyr@bucknell.edu)
+ Northwestern University, Evanston, IL 60208, USA
(e-mail: kra@math.northwestern.edu)

(Received 21 August 2017 and accepted in revised form 2 November 2018)

Abstract. Suppose (X, o) is a subshift, Py (n) is the word complexity function of X, and
Aut(X) is the group of automorphisms of X. We show that if Py (n) = o(n? / log2 n), then
Aut(X) is amenable (as a countable, discrete group). We further show that if Px(n) =
o(nz), then Aut(X) can never contain a non-abelian free monoid (and, in particular, can
never contain a non-abelian free subgroup). This is in contrast to recent examples, due
to Salo and Schraudner, of subshifts with quadratic complexity that do contain such a
monoid.
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1. Amenability and the automorphism group

For a subshift (X, o) over a finite alphabet, let Aut(X) = Aut(X, o) denote the group
of all automorphisms of the system, meaning the collection of all homeomorphisms
¢ : X — X such that ¢ o0 =0 o¢. The automorphism group of many subshifts with
positive entropy, including the full shift and more generally any mixing shift of finite
type, is a countable group that contains many structures, including isomorphic copies of
any finite group, countably many copies of Z, and the free group on countably many
generators (see [1, 8]). In particular, when given the discrete topology, these automorphism
groups are never amenable. This behavior is in contrast to what happens in minimal
shifts of zero entropy: if the complexity function Pyx(n), which counts the number
of words in the language of the shift, satisfies lim sup,,_, (log(Px (n))/nf) =0 for
some B < 1/2, then the automorphism group Aut(X) is amenable; furthermore, every
finitely generated torsion-free subgroup of the automorphism group has subexponential
growth [5]. For lower complexities, one can sometimes carry out a more detailed analysis
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of the automorphism group, and this is done for polynomial growth in [S], and with
extra assumptions on the dynamics, sometimes one can give a complete description of
the automorphism group (see [3, 4, 6]).

We continue the systematic study of automorphism groups here, focusing on subshifts
with zero entropy. These automorphism groups are constrained by the subexponential
growth rate of words in the language of the shift, and it seems plausible that for any subshift
(X, o) of zero entropy, we may have the following dichotomy: either Aut(X) contains a
non-abelian free subgroup or Aut(X) is amenable. Somewhat surprisingly, we cannot
rule out that such an alternative holds for any shift, even without an assumption on the
entropy. For example, this dichotomy holds for any mixing subshift of finite type [1],
since the automorphism group contains the free group on two generators, and it holds
for other classes of subshifts with positive entropy, such as Toeplitz systems, where the
automorphism group is abelian [7]. In a different vein, the automorphism group of a zero-
entropy subshift can never contain logarithmically distorted elements [2].

Furthermore, a stronger result is plausible, namely that for any zero-entropy subshift,
the automorphism group is amenable. Numerous results support this statement: the
automorphism group is amenable for any minimal subshift whose complexity is stretched
exponential with exponent less than 1/2, for all subshifts with linear complexity, and for
several other classes of low complexity shifts (see [3-6]).

To address these questions and conjectures, we give a detailed analysis of the algebraic
properties of Aut(X) for shifts whose complexity is at most quadratic. In [3], we showed
that for a transitive shift with subquadratic growth, after quotienting the automorphism
group by the subgroup generated by the shift, we are left with a periodic group. This left
open a stronger description of this automorphism group, as well as what happens without
an assumption of transitivity. As a first step in addressing this, we show (see §2 for precise
definitions) the following theorem.

THEOREM 1. Assume that (X, o) is a subshift whose complexity function satisfies
Px(n) =o(n?/ log2 n). Then Aut(X) is amenable (as a countable discrete group).

In particular, the automorphism group of any shift whose complexity is o(n>~¢), for
some ¢ > 0, is amenable.

The techniques to prove Theorem 1 follow a basic strategy developed in [5], but
deducing the theorem without the assumption that X is minimal adds significant technical
difficulties. One of the new ideas used is the construction of a descending chain of subshifts
for which each term retains some of the properties that make minimal shifts easier to study.
We believe that this technique should prove to be applicable in other settings.

Unfortunately, our methods do not easily extend to a shift whose complexity is o(n?),
but in this setting we are able to prove a morally weaker result that holds for this larger
class of shifts.

THEOREM 2. Assume that (X, o) is a subshift whose complexity function satisfies

liminf_, o (Px(n)/n?) =0. Then Aut(X) does not contain an isomorphic copy of the
free monoid on two generators.
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In particular, such an automorphism group cannot contain any non-abelian free
subgroup. The interest in this theorem is the contrast with a recent result of Salo
and Schraudner [11]. They constructed a subshift (X, o) whose complexity function
satisfies Px(n) = (n + 1)? and whose automorphism group contains a free monoid on two
generators, and the automorphism group is still amenable. This highlights the subtle issues
that arise in addressing questions and conjectures on amenability of Aut(X) when (X, o)
is not minimal, and the difficulty in passing beyond quadratic complexity.

2. Background
2.1. Subshifts. Let A be a finite alphabet and endow A% with the topology induced by
the metric

d(x, y) ;=2 nfllilxi#yil,

For x € AZ, we denote the ith coordinate of x by x;. For neN, an element w =
(wo, ..., wy—1) € A" is called a word of length n. If w is a word of length n, then the set

[w];)r :={xe.AZ:x,-=w,- forall0 <i <n}

is the cylinder set determined by w. The (left) shift o : AZ — AZ is the map x > ox
given by (ox); := x;41 for all i € Z, and it is a homeomorphism of A% 1If x € A% and
there exists p > 0 such that 0 ”x = x, then x is periodic of period p. If no such p exists, x
is aperiodic.

A closed, o-invariant subset X C AZ together with the shift o : X — X is called a
subshift. If X is a subshift, we define the language L£(X) of X to be

o
L(X):= {w € U A [w]arﬂXyéQ}.
n=1
For n € N, the set £,(X) := L(X)N A" denotes the set of words of length n in the
language of X, and we denote the length of word w € L(X) by |w|.

2.2. Complexity. The complexity function of X is the function Px : N — N defined by
Px(n) := |L,(X)|. If x € A%, then the orbit closure O(x) of x under the shift

Ox):={oix:ieZ)

is also a subshift. We commit a slight abuse of terminology and refer to Pm(n) as the
complexity function of x. To avoid confusion, we use the lower-case letter x to refer to an
element of A% and the upper-case letter X to refer to a subshift of A%, The basic result
relating dynamical properties of x to its complexity is the Morse—Hedlund theorem [9]:
an element x € A? is aperiodic if and only if its complexity function is bounded below by
n + 1 for all n.

Suppose w = (wy, ..., wy—1) € L,(X) and L € N is fixed. We say that w extends
uniquely L times to the right and left (in the language of X) if there is a unique u =
(uo, - - . s Uupt2r—1) € Lyor(X) such that w; =u;yp for0<i <n. Ifw e L(X) and u €
L,(X) for some n > |w|, we say that w is a subword of u if there exists 0 <i <n — |w|
such that u; = w; for i < j < |w|. Thus if w extends uniquely L times in X, then if
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xe€X and if w=(xj,...,xj43,—1) for some j€Z, then u = (x;_r, ..., Xj1ntL-1)-
Rephrasing this, whenever w is a word in x, then u is also a word in x and w is a subword
of u.

2.3. The automorphism group. 1If (X, o) is a subshift and Hom(X) is the group of
all homeomorphisms from X to itself, then the group of automorphisms of X, denoted
Aut(X), is the centralizer of o in Hom(X). (Strictly speaking, we should write Aut(X, o)
instead of Aut(X), but we assume that the subshift is endowed with the shift and omit
explicit mention of o from most of our notation.) A function ¢ : X — X is called a sliding
block code if there exists R € N U {0} such that (px)g is a function of (x_g, ..., xg) for
all x € X. In this case, R is called a range of ¢. The classical Curtis—Hedlund-Lyndon
theorem [8] states that every automorphism of X is a sliding block code. In particular, this
means that for any subshift (X, o), the automorphism group Aut(X) is countable.

For R € N U {0}, define Autg(X) to be the set of all ¢ € Aut(X) such that both ¢ and
its inverse are given by sliding block codes of range R. Since any block code of range R
is also a block code of range R + 1, we have

Autp(X) C Aut)(X) C Autp(X) C Autz(X) C - - -

and Aut(X) = U%OZO Autg(X). If ¢ € Autg(X) and if w € L(X) is such that |w| >
2R + 1, then we define ¢ (w) to be the word of length |w| — 2R obtained by applying the
block code (of range R) defining ¢ to w. Note that this definition is not intrinsic to ¢ but
rather to ¢ together with a range R. Whenever we apply an automorphism ¢ € Autg(X)
to a word w, we are implicitly choosing R to be the range of ¢.

For each w € £(X) and n € N, define the function W : ([w](')F N X) = Ljw|+2:(X) by

WY (X) = (X—py X ptls ooy X05 X1s v+ s X|w|4n—25 Xjw|4n—1)-
With this notation, w extends uniquely 7 times to the right and left (in the language of X)
if WY (x) is independent of x € [w]a' N X.

Suppose uy, ..., ug, v € L(X). An automorphism ¢ € Aut(X) preserves occurrences
of v if ¢(l]f NX)Cvlf NX and ¢~ ' (W] NX)Cvlf NX. If DeN, then ¢
preserves occurrences of v when it is D units from uy, . .., uy if, for any x € [v]g nx
such that W}, (x) does not contain u; as a subword for any 1 <i <k, we have ¢(x) €
[vl§ N X and ¢! (x) € W] N X.

To illustrate the usefulness of this notion, we note the following lemma.

LEMMA 3. Let R € NU {0} be fixed and suppose ¢, ¢ € Autg(X). Suppose w € L(X)
extends uniquely 2R times to the right and left and let w € L(X) be the unique word
obtained by this extension. If () = W (), then ¢! o W preserves occurrences of W.

Proof. Since w extends uniquely 2R times to both sides (to w), it suffices to show that
¢~ oy preserves occurrences of w. Let x € [w]ar N X. By assumption, W, (x) = w.
Since ¢ and v are block codes of range R,

((@x)=R» - - - » (@) wj+r-1) = (W) =Y (W) = (YX)=R, . - ., (Y X)|w|+R-1)-

1

Since ¢! is a block code of range R and ¢! (¢px) =x € [w]g, we have

(@' Y)o. - (@ V) =w

Downloaded from https://www.cambridge.org/core. 02 Mar 2022 at 16:36:09, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

1792 V. Cyr and B. Kra

for any y € X satisfying
(Y=Rs - s Ywl+R-1) = ¢(W).

Since y := yx satisfies this condition, it follows that (¢! o ¥)(x) € [w]ar . A similar

argument, with the roles of ¢ and  reversed, shows that (1//_1 op)(x) € [w]ar .
Therefore we have (¢! o ) ([w]§ N X) S [w]f N X and (¢~ o y) "' ([w]lf N X) €

[wlf NX. o

Let (X, o) be a subshift and suppose w € £(X). Let X(w) C X denote the (possibly
empty) subshift of X obtained by forbidding the word w:

X(w):={xeX:o'x ¢ [w] forall j € Z}.

2.4. Amenability. 1If G is a group and F C G, let | F| denote the cardinality of the set
F, and for g € G the set gF is defined to be the set {gf : f € F}. A discrete, countable
group G is amenable if there exists a sequence (Fi)ien of finite subsets of G such that
every g € G is contained in all but finitely many F; and such that

|FrAgFy|

lim =0

k— 00 | Fx|

for all g € G. In this case, the sequence (Fj)ien is called a Fplner sequence for G.

3. Technical lemmas
We start with a bound on the complexity for the subshift obtained by forbidding the
occurrences of some word.

LEMMA 4. Suppose (X, o) is a subshift and w € L(X). If the cylinder set [w](')|r nx
contains at least one aperiodic point, then, for all n > |w|, we have

Pxy(n) < Px(n) — (n — |w| + 1).

Proof. Let x € [u)]o+ N X be aperiodic and let n > |w| be fixed. There are two cases to
consider.

Case 1. Assume that every word of length n that occurs in x contains w as a subword. By
the Morse—Hedlund theorem and aperiodicity of x, there are at least n + 1 distinct words
of length n that occur in x. Since none of these words are in the language of X (w), we
have Pxy)(n) < Px(n) — (n + 1), which gives the inequality in the statement.

Case 2. Assume there is a word of length n that occurs in x that does not contain w
as a subword. Without loss of generality, we can assume that x € [w]a', and that either
(X1, ..., X)) OF (Xjw|—n—1, - - - » X|w|—2) does not contain w as a subword (otherwise we
replace x with an appropriate shift of itself). First suppose that (xi, ..., x,) does not
contain w as a subword and, for each y € X, let WW(y) denote the unique v € £, (X) such
that y € [v]ar . Then our assumption is that w is the leftmost subword (of length |w|) in
W(x) and w is not a subword of W(ox). Therefore each of the words W(x), W(o ~'x),
W(o~2x), ..., W(c!"I="x) contains w as a subword, and the rightmost occurrence of w
as a subword of W(o ~ x) begins at the ith letter, for each 0 <i <n — |w| + 1. It follows
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that these words are all distinct and none of them are words in the language of X (w).
Therefore Py (y)(n) < Px(n) — (n — |w| + 1) in this case. On the other hand, if w is not
a subword of (x|y|—n—1, . . ., Xjw/—2), the argument is similar with the roles played by left
and right reversed. O

We use this to bound the maximal length of a descending chain of subshifts obtained by
forbidding a word at each step.

LEMMA 5. Suppose (X, o) is a subshift and L € N is fixed. Let
X=X0D2X1DX2D---DXi

be a descending chain of non-empty subshifts, where for 0 <i <k we have Xy =
X;(w;) for some word w; € L(X;) with |w;| < L. Further, suppose that for each i =
0,1,...,k—1thecylinder set [wi]g‘ N X; contains at least one aperiodic point. Then

k < Pxy(2L —1)/L.

Proof. By inductively applying Lemma 4 and using the fact that |w;| < L for all i, we
have Px,(2L —1) < Px(2L —1) — kL. If k> Px(2L —1)/L, then Px,(2L —1) <0.
However, this is impossible, as a non-empty subshift has at least one word of every
length. O

The proof of the following lemma is a straightforward modification of the proof of
Lemma 3.1 in [5].

LEMMA 6. Let d, N e N withd > 1 and N > 2d/log2. Suppose (X, o) is a subshift
such that Px(n) < nd foralln > N. Define k,, to be

min{k € N : no word w € L,,(X) extends uniquely k times to the right and left}.

Then, for all integers n > N, there exists m <nlogn satisfying k,, > Cn where C =
log(2)/2d.

Proof. Suppose Px(n) <n? for all n > N. For contradiction, suppose that there exists
n > N such that k,, < Cn for all m <nlogn. Then since every word of length s can be
extended in at least two distinct ways to a word of length s + 2k, (by adding k; letters to
each side), we have that

Px (s + 2kgs) = 2Px(s).

Therefore the assumption that k,, < Cn for all m <nlogn and the fact that n > N >

2d/ log 2 imply that
(log2)/C (log2)/C 2d
|[nlogn]/Cn (nlogn—1)/Cn __ n _ n n_
Px(lnlogn]) =2 >2 T ol/Cn T D2d/nlog2 = 2
But this contradicts the fact that Py (n log n) < (n log n¢ <n? /2. O

Suppose Y C X are two subshifts where Y is obtained by forbidding a finite number of
words from the language of X. If u € £(Y) and u extends uniquely 7 times to the right
and left (as a word in the language of Y), it might not extend uniquely 7 times to the right
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and left when thought of as a word in the language of X. The following lemma resolves
this issue, showing that if # appears in some element of X and is sufficiently far from any
occurrence of the forbidden words, then u# behaves as though it occurs in the language
of Y.

LEMMA 7. Let (X, o) be a subshift and let wy, . .., wr—1 € L(X). Suppose
Y:{xeX:ai(x)¢[wj]a'foranyieZandje{l,2,...,k—l}}

and suppose u € L(Y) is a word which extends uniquely (in L(Y)) at least T times to the
right and left. Let v € Ly 121 (Y) be the unique word such that u is obtained by removing
the rightmost and leftmost T letters from v. Then there exists D € N such that, for any
X € [u]a' NnX, ifa‘ﬁc ¢ [w./]gforany —D<i<Dandl <j<k,then o Txe [v]g.

Proof. For contradiction, suppose not. For each D € N, choose xp € [u]g N X such that
o Txp ¢ [vl§ and o'xp ¢ [w;]] forany —D<i<Dand1<j<k LetxeXbea
limit point of {xp : D € N}. Then x € [u](J)r and o'x ¢ [wj](J)r foranyi e Zand 1 <j <k.
Thus x € Y, and since u extends uniquely 7 times to the right and left (as a subword of Y)
we have o~ 7x € [v]{. This contradicts the fact that 0 =7 xp ¢ [v]{ forall D € N and x is
a limit point of {xp : D € N}. O

We now generalize Lemma 3 to a form which is more useful in our setting.
LEMMA 8. Let R € N be fixed and suppose (X, o) is a subshift. Let
X=X0D2X1D2X2D:---D Xk

be a descending chain of non-empty subshifts, where for 0 < i < k there exists w; € L(X;)
such that w; extends uniquely at least 2R times to the right and left (as a word in L(X;)),
and Xij4+1 = X;(w;). Suppose, further, that there exists wy € L(Xy) that extends uniquely
at least 2R times to the right and left but for which Xy(wy) = @. Let w; € L(X;) be
the unique word of length |w;| + 4R obtained by extending w; by 2R letters on each
side. If ¢, ¥ € Autg(X) are such that (w;) =Yy (w;) foralli =0, 1, ..., k, then there
exists D such that for all i =0, 1,2, ..., k the automorphism (go_1 o ) preserves all
occurrences of wo and preserves all occurrences of Ww; that occur at least D units from
wo, Wiy - v vy Wi—1.

Proof. Fix ¢, ¥ € Autg(X). First we show that ¢! o ¥ preserves occurrences of 1y.
Let x € [Wol] N X. Since ¥ (o) = ¢ (o), it follows that ¥ (x) € [p(Wo)]§ N X. Note
that (o) is 2R letters shorter than wy, since the block code defining ¢ has range R.
Since ¢~ ([ (Wo)I§ N X) C [wold N X, we have that (¢~ ! o ¥)(x) € [wolg N X. But
[wo]a' NX= O’_R([ﬂ){)](—)'—) N X since wq extends uniquely 2R times to the right and left.
Since x € [Wol] N X was arbitrary, we have (¢~! o y)([Wol§ N X) C [Wolf NX. A
similar argument, with the roles of ¢ and ¥ reversed, shows that (¥ ~! o (p)([zbo]g nx)c
[ﬁ)o]a' N X. Therefore (p*1 o Y preserves occurrences of wy.

For the second statement, we proceed by induction. Assume that we have shown that
¢~ oy and ! o ¢ preserve occurrences of Wy and there exists Dy such that, for all
i <k, the automorphisms ¢! oy and ¥ ~! o ¢ preserve occurrences of w; that occur
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at least Dy units from wg, wy, ..., w;j—;. We show that there exists Dy > D¢ such
that 9! o ¢ and ¥ ! o ¢ also preserve occurrences of Wy that occur at least Dy units
from wo, ..., wx—1. By Lemma 7 applied to the subshifts X and Y := X}, there exists
Dyy1 > Dy such that, for any x €[] N X, if o'x ¢ [w;]§ for any —Diy1 <i < Dyq
and 1 < j <k, thenoRx e [d)k]g. Define Dyt := (k + I)Dk+] and let x € [ﬁ)k]a’ nx
be such that o/ x ¢ [111]']8r forany —Dy41 <i < Dy4+1 and 1 < j < k. Define

Po:={peZ:oPxewolf}.

Since ¢! o ¥ and ¥ ~! o ¢ both preserve occurrences of g, observe that Py is equal to

theset{peZ: 01’(<p_1 oY)x € [ﬁ)o]ar} (in other words, occurrences of W can neither be
created nor destroyed by applying ¢! o ¥ to x). Next define

Piri={peZ:oPxe[w]]}

Since ¢! o ¢ and ¥ ~! o ¢ both preserve occurrences of i when they occur at least Dy

units from wy, it follows that for any ¢ € N any element of
PiA(p eZ:oP (9! o) (x) € L ]])
is within distance Dy of an element of Py. Further, defining for each 1 < i < k the set
Pi:={peZ:oPxe [ﬁ)i]g},
it follows by induction that, for any ¢ € N, any element of
Pis{peZ:oP(@™" o) (x) € [d;]7)

lies either within distance i Dy of an element of Pp, within distance (i — 1) Dy of an
element of Py, ..., or within distance Dy of an element of Px_;. Recall that, by

assumption, the set
k—1

{p €Z:oPx e U[d)i]a'}
i=0

does not contain any element within distance Dy of the origin. But Dk+ 1 < Dgy1 —
k Dy, and so, for any ¢ € N, the set

k—1

{p €Z:ol(@ o) (x) € U[wi]g}

i=0
does not contain any element within distance Dk+1 of the origin. However, x € [izk]aL and
s0, as previously, we have (go_1 o Y)x, (1//‘1 o)X € [wk](')". Since this occurrence of wy
(in the element x) is at least Dk+1 units from any occurrence of wy, ..., Wx—1, we have
(@~ ow)x, (¥ op)x €[]y )

Finally, note that, although the parameter Dy may depend on the automorphisms ¢ and
V¥, any parameter D > Dy also suffices to reach the conclusion on the lemma for these
automorphisms. Since Autg(X) is finite, we can take D to be the largest of the parameters
Dy, that are constructed as ¢, ¥ € Autg(X) vary over all possible combinations. O

The following lemma allows us to adapt techniques from [5] which relied on the fact
that in a minimal shift all words occur syndetically.
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LEMMA 9. Suppose (X, o) is a subshift. Let
X=X0D2X1D2X2D:---D Xk

be a descending chain of non-empty subshifts where for each 0 <i < k there exists w; €
L(X;) such that w; extends uniquely at least T times to the right and left (as a word in
L(X;)), and X;+1 = X;(w;). Suppose, further, that there exists wy € L(X}) that extends
uniquely at least T times to the right and left but for which Xy (wy) = @. Let w; € L(X;)
be the unique word of length |\w;| + 2T obtained by extending the word w; by T letters
on each side. Finally, for eachi =1,2, ..., k, let D € N be the constant obtained from
Lemma 8. Then there exists G € N such that, for any x € X, the set

Sy :={jeZ:ajxe[ﬁ)o](')"}u{jeZ:ojxe[d),-]a'forsomelgiSk
andasx¢[ﬁ),]gforanyt<iandanyj—kD§s§j+kD+|zD,-|—1}

is syndetic with gap at most G.

Proof. If not, then for each G € N there exists xg € X such that S, is not syndetic
with gap less than G. Without loss (shifting x if necessary), we can assume that

{—=1G/2],...,0,...,1G]/2}NS, =@. Since X is compact, we can pass to a
subsequence of (xg)gen converging tosome y € X. Then S, = @. Therefore y € Xy (wy),
contradicting the assumption that X (wy) = . O

We use this to describe the set of automorphisms preserving occurrences of the sequence
of words.

LEMMA 10. Assume (X, o) is a subshift and D € N. Let W = {wg, W1, . .., Wr} C L(X)
be a finite set of words for which there exists G € N such that, for any x € X, the set

Sy :={jEZ:ajxe[lilo]ar}U{jeZ:ajxe[lT)i]arforsome1§i§k
butoc’x ¢ [&),]a'foranyt <iandany j —kD <s < j+kD}

is syndetic with gap at most K. Let R € N be such that |w;| > 2R for all w; € VW and
define

H :={p € Autg(X) : ¢ preserves occurrences of Wg and occurrences of

w; that occur at least D units from wg, Wy, ..., wi—| forall 1 <i <k}.
Then (H), the subgroup of Aut(X) generated by H, is finite.
Proof. For any x € X, define
So(x) :={j € Z:0'x € [Wol]}-
Note that, since any element of H preserves occurrences of wg, we have
So(x) =Sp(px) forany x € X and ¢ € H.

Since every element of (#) is a product of elements of H, it follows that Sp(x) = Sp (¥ x)
forany x € X and ¢ € (H).
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For any x € X and 1 <i <k, define
Si(x):={j €Z:olxe [LT)i]ar but for any ¢t < i and
any j — (i —t)D <s < j+ (i —t)D we have 6°x ¢ [1]),]8'}.

We claim that S;(x) =S;(px) for any x € X, o € H, and i <k. We proceed by
induction on i (the case i = 0 having already been shown). Suppose i < k and we have
Sp(x) =Sy (px) for any x € X, peH, and 0 <m <i. Fix xe X and p e H. We
first show that S;y1(x) € Siy1(px). If j € Si11(x), then o/x € [11),-_5_1]6F and, for any
j—D<s<j4+ D andr <i, we have o°x ¢ [11),]8'. Since ¢ preserves occurrences of
;11 that occur at least D units from 1y, . .., W;, we have o/ (px) € [tI),'H](')F. Since
@ preserves occurrences of wg, we also have o*(¢x) ¢ [11)0](')F forany j —(i4+1)D <
s < j 4 (@@ + 1)D, by definition of S;11(x). We want to show that j € S;;+1(¢x). For
contradiction, suppose there were some 1 <f <iandsome j — (i +1—-)D<s<j+
(i + 1 —t)D for which o (¢x) € [,]. Then o*(x) ¢ [W,]{ because j € Si11(x). But
since ¢ preserves all occurrences of w; that occur at least D units from wo, ..., W;_1,
there must be some 0 < u <t such that s is within D units of an occurrence in x of
w, (otherwise w; could not appear at location s in @x). Since s is within (i +1 —¢)D
units of j, this occurrence of w, in x must be within ( +1—¢t+1)D<(+1—u)D
units of j. But this contradicts the fact that j € S;41(x). Therefore no such ¢ exists and
so 0¥ (px) ¢ [w]§ forall t <iandall j—(+1—1)D<s<j+(@{+1—1)D. This
means that j € S;+1(px). It follows that S; 11 (¢x) € S;+1(x). The reverse containment is
proven similarly using the point y = ¢x and the automorphism ¢! € H. Thus S;41(x) =
Si+1(px). By induction, we have S;(x) = S;(¢x) for any x € X, ¢ € H, and i <k, as
claimed.
Now for x € X, define

k
7; = U Si (x)
i=0

We have shown that for any ¢ € H we have 7,, =7,. Since any element of () is a
product of elements of H, this result holds for any ¢ € () as well. Furthermore, note that
Sy € T and so by assumption there exists K > 1 such that 7 is syndetic with gap at most
K for all x € X. Fix x € X and order the elements of 7, as
< jao<ja<jo<ji<jp<---.
For any n € Z, let mi(n), ma(n) €{0, 1, ..., k} be such that o/"x € [y, ]f and
olntix e [ﬁ)mz(,,)](‘)". Let ue L be a word of length at most K such that o/nx €
[zi)ml(n)uﬁ)mz(n)]g. If ¢ € H, then since T,y = T, we have on(px) e [zbml(n)vﬁ)mzm)]g
for some v € £(X) such that |v| = |u|. Moreover, since |w;| > 2R and ¢ € Autg(X), the
block code defining ¢ has the property that, for any y € X, if m(n), ma(n) € 7, (and
are consecutive in 7) and if oy e [Wyn, (,,)uﬁ)mz(n)]g, then o /7 (py) € [Wyn, (,1)1)12),”2(,1)]3
(in other words, the fact that the word u turned into the word v upon application of ¢ is
independent of y). Since any element of (#) is a product of elements of #, this same
result holds for any ¢ € (H).
By assumption, any element x € X can be decomposed as

X =--- lf)_zu_zﬁ)_lu_llbou()ﬁ)lullf)zuz ey,

Downloaded from https://www.cambridge.org/core. 02 Mar 2022 at 16:36:09, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

1798 V. Cyr and B. Kra

where |u;| < K and w; begins at a location in 7, for all i € Z. Therefore if ¢ € (), then
¢ is determined entirely by which word v; it turns u; into (recall |v;| = |u;| < K and the
mapping u; — v; is independent of x). As there are only finitely many permutations of the
set of words of length at most K in £(X), () has only finite many elements. O

Our final technical lemma quantifies a property of functions which grow
subexponentially.

LEMMA 11. Let g:N— N be such that logg(n) =o0(n). For any ke N and
all sufficiently small ¢ >0, there exists M € N such that if N>M and if f:

{0,1,..., N} > N is a non-decreasing function satisfying f(N) < g(N), then there
exists x € {0, 1, ..., N — k} such that
fx+k)— fx)
—_— T <
Jx)
Proof. Letk € N and ¢ > 0 be fixed. Find M € N such that for all N > M we have
log g(N)
—_— 4k. 1
N <eg/ (D
Without loss of generality, we can assume that M >k. Let N> M and let f:
{0, 1, ..., N} = N be non-decreasing. Suppose that for all 0 <x < N — k we have
fa+h—f@
—_— " >¢
fx)

Then by induction, f(nk) > (1 4+ ¢)" f(0) forall 0 <n < | N/k]. In particular, since f is
non-decreasing,

F(N) = (1 +e)" f(0)
where n = [ N/k]. Therefore

N N
log ¢(N) = log f(N) = nlog(1 +2) +log £(0) = 5. log(1 +) > 3—;

for all sufficiently small ¢, a contradiction of (1). O

4. Amenability of Aut(X)
Our goal in this section is to prove Theorem 1. We do this first with the added assumption
that (X, o) has dense aperiodic points.

THEOREM 12. Let X be a subshift with dense aperiodic points and suppose Px(n) =
o(n?/ log2 n). Then Aut(X) is amenable (as a countable discrete group).

Proof. Let C be as in Lemma 6. Fix R € N sufficiently large such that Py (n) < n?
for all n > 2R/C. Define Xo = X and, by Lemma 6, choose a word wqg € L(X¢) such
that |wp| < (2R/C)1log(2R/C) and wq extends uniquely at least 2R times to the right
and to the left. Define wo to be the (unique) extension of wg exactly 2R times to
each side and set X|:= Xo(wg). Continue this process inductively: once we have
constructed the non-empty subshift X;, apply Lemma 6 to find a word w; € L(X;) such
that [w;| < (2R/C) log(2R/C) and such that w; extends at least 2R times to the right and
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to the left (note that Py, (n) < PXj (n) for all n, whenever i > j, and so the parameter N
appearing in Lemma 6 can be taken to be 2R/ C for all of the shifts we construct). Define
w; to be the (unique) extension (in £(X;)) of w; exactly 2R times to each side and set
Xi+1:= X;(w;). If X;41 is empty, the process ends. By Lemma 5 this process ends after
at most sg steps, where sg < Py(2L — 1)/L and L = [2R/C log2R/C]. It follows that,
as a function of R, sg = o(R/ log R). To summarize, for any R € N we have constructed
a sequence of non-empty subshifts

X =X0D2X1D2X2D:---D X

such that foreachi =0, 1, ..., kg — 1 there exists w; € L(X;) that extends uniquely (in
L(X;)) at least 2R times to each side and is such that |w;| < (2R/C)log(2R/C) and
Xi+1 = Xi(w;) (where w; is the extended version of w;). Note that for all sufficiently

large R, |w;| < RZ. For fixed R € N, let Wg = {wo, . .., Ws,} and let D be the parameter
coming from Lemma 8. Let Gr C Aut(X) be the subgroup of automorphisms generated
by

{o € Autg(X) : ¢ preserves occurrences of wg and occurrences of

w; that occur at least D units from wg, wy, ..., w;_1 forall 1 <i <k}.
By Lemma 9, there exists G € N such that for any x € X the set

Syi={j€Z:0/x eliolf}U{jeZ:o'x €[] forsome 1 <i <k
buto*x ¢ [ ] forany r <iandany j — D <s < j+ D + || — 1}

is syndetic with gap at most G. By Lemma 10, G, is finite. Furthermore, by the pigeonhole
principle, if S C Autg(X) is any set satisfying

IS| > Px(R%)*F,

then there exist ¢, ¥ € S such that ¢(w;) = ¢ (w;) for alli =0, 1, 2, ..., sg. In other
words, if S C Autg(X) is any set satisfying |S| > Px (R?)S® then there exist o, es
such that (¢~ ! o ¥) € Gg.

Since Px(R?) < R*/ logz(Rz) < R* for all sufficiently large R, we have

Px (R2)SR < (R4)0(R/ log(R)) _ eO(R),

meaning that this grows subexponentially in R. Define g : N — N by g(R) := Px(R?)°k.
Then, by Lemma 11, for any k € N and any sufficiently small & > 0, there exists M such
for any N > M and any non-decreasing function f : {0, 1, ..., N} — N, which satisfies
JF(N) < g(N), there exists 0 < x < N — k such that

S +k)—f
—_———— <e.
f )
We are now ready to prove that Aut(X) is amenable. Let k € N be fixed. Choose
& < 1/k sufficiently small such that Lemma 11 applies and let M be the constant obtained
from this lemma. Choose R > max{k, M} large enough such that

g§R+k) —g(R) ¢

< .
g(R) 4k

Downloaded from https://www.cambridge.org/core. 02 Mar 2022 at 16:36:09, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

1800 V. Cyr and B. Kra

Let f:{0,1,2..., R} - N be the function

f () == [{(po), (1), ..., 9(Wig)) : @ € Aut, (X) — Autr(X)}].

Here, for n < R, the notation Aut,(X) <> Autr(X) refers to the embedded image of
Aut, (X) in Autg(X) obtained by using the natural identification of a block code of range
n as a block code of range R. It follows that if S C Aut,(X) is any set containing more
than f(n) elements, then there exist ¢, ¥ € Aut,(X) such that (¢! o ¥) € Gg. In other
words, Aut, (X) can be covered by f(n) cosets of Gg.

By Lemma 11, there exists 0 <n < R — k such that

fontk)—f) _

F o/
Fix such an n and let ¢y, ..., ¢ () € Aut,(X) be representatives of distinct cosets of G
and such that Aut, (X) is contained in
fn)
Fy = U ©i - GR.
i=0
Observe that Fj is finite and contains Aut,(X). Now let @ru)t1, ..., @fmtk) €

Aut, 1 (X) be f(n+ k) — f(n) additional representatives of distinct cosets of Gg and
such that Aut, 1 (X) is contained in

f(n+k)
Fo= ] oGk
i=0
Observe that if ¥ € Autg(X) then for any i =0,1,..., f(n) we have (Y o¢;) €
Auty, 41 (X). Therefore
Yo Fp C ﬁk

and since Fj, C I:“k, we have

Fb@ o F)l _ AR\ Fil _2(ft k)= f) _ 1
| Fil T | f(n) Tk
Let n; € N be the constant n constructed above. Observe that n; — oo as k — oo.
Construct the set Fy for each k € N. We claim that (Fy)en is a Fglner sequence in
Aut(X). By construction, Fj is finite for each k and we have shown that

b o FOl _ 1

| Fil k
for each k € N. Finally, since ny — oo as k — oo, we have that if ¢ € Aut(X) then {k :
¥ ¢ Fr} is finite. Thus we have constructed a Fglner sequence for Aut(X) and so it is

amenable. O

We use this to complete the proof of Theorem 1.

Proof of Theorem 1. Let Y C X be the closure of the aperiodic points in X. By
Theorem 12, Aut(Y) is amenable. For any ¢ € Aut(X), observe that x € X is aperiodic
if and only if ¢(x) is aperiodic. Therefore for any ¢ € Aut(X), we have ¢(Y) =Y and the
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map h : Aut(X) — Aut(Y) given by h(¢) := ¢|y is a homomorphism. Since the image of
h is a (closed) subgroup of Aut(Y), it is amenable. Thus to check that Aut(X) is amenable,
it suffices to check that ker(%) is amenable.

To show this, it suffices to show that any finitely generated subgroup of ker(h) is

amenable. Let ¢, ..., ¢, € ker(h). We claim that the set
S:={x € X : ¢;(x) # x for at least one element of {(¢1, ..., @)}
is finite. For contradiction, suppose S is infinite. Choose R € N such that ¢y, ..., ¢, €

Autg(X). By construction, if w € L(Y) is a word of length R and if Id € Aut(Y) denotes
the identity, then ¢;(w)=1Id(w) (as a block map). Therefore if x € S, there exists
j €7 such that o/x € [u]O+ for some word u € L(X) \ L(Y) of length R (otherwise x
is comprised entirely of words of length R on which ¢ acts as the identity). For each
x € S choose a word u, € Lr(X) \ Lr(Y) such that 6/ x € [ux]ar for some j € Z. Since
Lr(X)\ Lr(Y) is finite, there exists u € Lg(X) \ Lg(Y) such that u, = u for infinitely
many x € S. For each such x, let j, € Z be such that ohx e [u]ar . Every infinite collection
of points has an aperiodic limit point, and so there is some aperiodic y € [u]ar (see, for
example, [4, Lemma 4.1]). This contradicts the fact that u ¢ L£(Y). Therefore S is finite,
proving the claim.

Since the set S is finite, it follows that (@1, . . ., ¢y, ) is finite (and hence amenable). O

COROLLARY 13. Let X be a subshift and suppose there exists € > 0 such that Px(n) =
O (n*%). Then Aut(X) is amenable (as a countable discrete group).

Proof. Any function which is O(n*7¢) is also o(n?/ log2 n), and so this follows
immediately from Theorem 1. O

5. Shifts of subquadratic growth
Recall that if G is a group and g1, g2 € G then

(g1, 820" :==1{gi,gi, -~ &i; ti1. ... ij €{1,2}, ke NU{0}}

is the monoid generated by g1 and g> in G (where we interpret the case k = 0 to give the
identity). This monoid is free if whenever

gilgiz o 'gij :gklgkz o 'gkj

we have j =l and g;, =g, foralln =1, ..., j. If this monoid is free, it is said to have
rank 2 because it is generated by two elements of G.

Let (X, o) be a subshift. The full group of (X, o), denoted [o ], is the group of all maps
¢ : X — X such that there exists k : X — Z such that ¢(x) = o™ (x) for all x € X. The
group [o] N Aut(X) is the group of all orbit-preserving automorphisms. This is a normal,
abelian subgroup of Aut(X).

We recall the statement of Theorem 2.

THEOREM 2. Let (X, ) be a subshift such that lim inf Px (n)/n? = 0. Then Aut(X) does
not contain a free monoid of rank 2.
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Our main tool to prove this theorem is the following rephrasing given in [3] of a result of
Quas and Zamboni.

LEMMA 14. (Quas and Zamboni [10]) Letn, k € N. Then there exists a finite set F C 72 \
{(0, 0)} (which depends on n and k) such that, for every n € .AZ2 satisfying Py(n, k) <
nk/16, there exists a vector v € F such that n(x 4+ v) = n(x) forall x € 72,

We now adapt the technique developed in [3] to prove Theorem 2.

Proof of Theorem 2. Let X C A” be a subshift and suppose Px(n) =o(n?). For each
@ € Aut(X) and each x € X, define ny » € .AZ2 by setting 0y, x (i, j) := ((pjai)(x) (this is
the space time of the system). Finally, let

Ypx C AL = {pr 0 SITI : (i, j) € 22}

where S, T :Z2 — 7% are the vertical and horizontal shifts, respectively: S(i, j) :=
(i, j+Dand T(, j):= (i + 1, j). Since Px(n) = o(n?), it follows from [3, Lemma 2.1]
that Py, (n, n) = 0(n?) (however, the rate at which Py (n)/n? tends to zero depends on
the range of ¢).

For contradiction, suppose ¢, ¥ € Aut(X) generate a free monoid. Let Z C X be the
closure of the aperiodic elements of X and, as already noted, Z is Aut(X)-invariant. By
Lemma 14, there exists a finite set F C Z? \ {(0, 0)} such that for any x € Z the maps
Ne,x and ny , are both periodic with some period vector in F. Note that if x is aperiodic,
then 1y, and 1y ; cannot be horizontally periodic. Therefore there exists M € N such that
Ne,x and ny , both have period vectors with y-coordinate M, for all aperiodic x € Z. It
follows that 9™ x and ™ x are both shifts of x. As this holds for all aperiodic x € X, the
restrictions of @™ and Y™ to Z are both elements of the abelian group Aut(Z) N [o]. In
particular, the restriction of the commutator [p™, M] to Z is the identity.

Suppose the range of [p™, yM]is R. If w € L(X) is such that [w];)r contains an
aperiodic point, then [@™, ] acts like the identity map (when thought of as a block
code of range R) on w. It follows that if [¢™, %™ ] does not act like the identity map on
[w]g , then [w]a' N X does not contain any aperiodic points. Furthermore, this means that
[w](‘; M X cannot contain periodic points of arbitrarily large period. Therefore, X \ Z is
finite and so there exists k € N such that [<pkM , wkM ] is the identity on X, contradicting
the fact that ¥ and ¥*¥ do not commute (since ¢ and ¥ generate a free monoid). O

Remark 15. Note that our proof shows a slightly stronger result, namely that if ¢, ¥ €
Aut(X) then there exists n > 0 such that ¢" commutes with y".

While Theorem 2 applies to a larger class of shifts than Theorem 1, it does not conclude
that Aut(X) amenable. Nevertheless, Theorem 2 does give algebraic information about
Aut(X) (in particular, it cannot contain a non-abelian free subgroup) and a recent result of
Salo and Schraudner shows that it is essentially optimal.

THEOREM 16. (Salo and Schraudner [11]) There exists a subshift (X, o) such that
Px(n) = (n+1)*

and is such that Aut(X) is amenable and contains a free monoid of rank 2.
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The example that they construct is the Cartesian product of two copies of the subshift
X on the alphabet {0, 1} where each x € X contains at most one occurrence of 1.

We present here a second example (different from that of [11]) of a shift of quadratic
growth whose automorphism group contains a free monoid of rank 2.

Let A be the eight-letter alphabet {0, 1, a, b, p, 1p, ap, bp}. We consider the subshift
X c A” consisting of the following:
(i)  the coloring of all Os;
(i) any coloring which is all Os except at a single location where it is one of 1, a, b, p,

1p, ap, or bp;
(iii) any coloring which is all Os except at two locations, one of which is p and the other
of which is one of 1, a, or b.

We leave it to the reader to check that this does indeed form a (closed) subshift and that
its complexity function grows quadratically. To show that this contains a free monoid,
we define two automorphisms of X which we call ¢, and ¢,. These are block codes of
range 1 and we claim they generate a free monoid of rank 2. Rather than define them
on each block, we find the following description helpful. A person, p, walks down a bi-
infinite hallway. At one location in the hallway there is a nail on the wall and there are
two possible pictures, a and b, than can be hung on the nail. When the nail is unoccupied,
its location is denoted 1. When it holds picture a, its location is a. When it holds picture
b, its location is b. If the person is standing in front of the nail, the person/nail is denoted
1p, ap, or bp (depending on the state of the nail). Now we can define our automorphisms.
When ¢, is applied to an element of X it moves the person one space to the right. If this
causes the person to be standing in front of the nail they take one of three actions:
e if the nail is unoccupied, the person hangs picture a on it;
e if the nail holds picture a, the person removes it and leaves the nail unoccupied;
e if the nail holds picture b, the person leaves the picture undisturbed.
We claim that these rules can be implemented by a block code of range 1 and that ¢, is
invertible. Similarly, when g, is applied to an element of X it moves the person one space
to the right. If this causes the person to be standing in front of the nail, the analogous rules
(with the roles of a and b reversed) apply. This is also invertible and can be implemented
by a block code of range 1. Note that ¢, and ¢} carry elements of X to elements of X.
Finally, suppose w = (w1, wa, ..., w) € {a, b}k and let g € (¢4, ¢p)T be

8=8182" " 8k

where g; € {¢4, ¢p} for each 1 <i <k is the automorphism corresponding to letter w;.
First we show how to find k by observing the action of g on X. Foreachi e N, let x; € X
be the configuration which has a 1 at the origin, a p exactly i spaces to the left of the origin,
and Os elsewhere. Note that gx; places the person at the origin and gx; places the person
off the origin for all i # k. Consequently, the length of a minimal presentation of g by ¢,
and ¢ can be deduced from this information and all representations of g as a product of
¢, and @, (but not their inverses) have the same length. Now fix 1 <i < k. Then gxz_;+
is a configuration with the letter representing g; (a or b) at the origin. Therefore the natural
surjection from {a, b}* to (¢,, ¢p)T is an injection and so this is the free monoid of rank 2.
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