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ABSTRACT

A subshift with linear block complexity has at most countably many er-
godic measures, and we continue the study of the relation between such
complexity and the invariant measures. By constructing minimal subshifts
whose block complexity is arbitrarily close to linear but have uncountably
many ergodic measures, we show that this behavior fails as soon as the
block complexity is superlinear. With a different construction, we show
that there exists a minimal subshift with an ergodic measure such that
the liminf of the slow entropy grows slower than any given rate tending
to infinitely but the limsup grows faster than any other rate majorizing
this one yet still growing subexponentially. These constructions lead to
obstructions in using subshifts in applications to properties of the prime
numbers and in finding a measurable version of the complexity gap that
arises for shifts of sublinear complexity.
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1. Introduction

Assume that (X, o) is a subshift over the finite alphabet A, meaning that
X c A% is a closed set that is invariant under the left shift o: AZ — AZ.
The block complexity px(n) of the shift is defined to be the number of words
of length n which occur in any # € X. Boshernitzan [1] showed that a minimal
subshift with linear block complexity has only finitely many ergodic measures,
where the number depends on the complexity growth. In [2], we showed that
any subshift (minimal or not) with linear block complexity has at most finitely
many nonatomic ergodic measures, and so at most countably many ergodic
measures (with no requirement that the measures are nonatomic). In the same
article, we give examples of subshifts with block complexity arbitrarily close
to linear which have countably many nonatomic ergodic measures. Our main
result is to show there is no complexity bound beyond linear on a subshift that
suffices for guaranteeing there are at most countably many ergodic measures.
More precisely, we show as soon as the growth is superlinear, we can have the
maximal number of ergodic measures:

THEOREM 1.1: If (p,)nen is a sequence of natural numbers such that

lim inf Pn _ 00,
n—oo N
then there exists a minimal subshift X which supports uncountably many er-
godic measures and is such that
Px(n
lim inf x(n)

n— oo pn

=0.

The distinction between countably and uncountably many ergodic measures
supported by a subshift has recently received attention, as it plays a role in the
deep results of Frantzikinakis and Host [4] on the complexity of the Liouville
shift. More precisely, by studying the subshift naturally associated to Liouville
function A(n) (see Section 2.4) and the number of ergodic measures it supports,
they conclude that the Liouville function has superlinear complexity. Given
the example we construct in Theorem 1.1, any approach to showing that the
Liouville function has higher growth rates must rely on further properties of
the shift beyond the cardinality of the set of ergodic measures supported by
subshifts whose complexity grows at a given rate. In a further development,
using different methods McNamara [7] has shown that the Liouville function
has at least quadratic complexity.
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Katok and Thouvenot [6] and Ferenczi [3] defined the slow entropy, as a
measure theoretic invariant to capture a measurable version of the (topological)
complexity. They defined two growth rates, P; (n) and P;f(n) of a measure
preserving system (X, u, T'), and whether each of these growth rates is slower <
or faster > than a given growth rate is a measure theoretic invariant for the
system and computable using a generating partition (see Section 4 for precise
definitions). Using a different construction, we exhibit the freedom on growth
rate of the slow entropy, with a minimal subshift of zero topological entropy
such that the slow entropy grows slower than some (arbitrarily slowly growing)
given sequence while faster than another (arbitrarily quickly within the class of
subexponentially growing) given sequence:

THEOREM 1.2: Assume (ay,)nen and (b, )nen are two non-decreasing sequences
of positive integers such that lim, ., a, = 00, lim, % -log(b,) =0, and
an < by, for all n € N. There exists a minimal subshift (X.,0) of topolog-
ical entropy zero and an ergodic measure i supported on X, such that

P, (n) < (a,) and PJ(n) > (by).

o

If we only consider the upper growth rate P; (n), related constructions are
given in Katok and Thouvenot [6] and Serafin [9] of a subshift with zero topolog-
ical entropy and Pjt (n) growing arbitrarily quickly (but still subexponentially).
The restrictions given in our theorem on the sequences (an)nen and (by)nen
are the weakest for which a result like ours could hold, in a precise sense that
we explain (see Section 4). By a theorem of Ferenczi [3], it follows from the
lower bound on the growth P, (n) = (b,), that the system we construct is not
a Kronecker system. From the upper bound P, (n) < (a,), it follows that
there is no sequence (a,) increasing to infinity and such that the analogous
bound would give P (n) < (cp) for all sequences (¢p,) increasing to infinity.
This exhibits a different behavior than what happens in the topological setting.
Namely, the Morse-Hedlund Theorem states that if there exists some n € N
such that Px(n) < n for some system (X, o), then we have that the topological
complexity function Px(n) is actually bounded for all n € N. Our construction
shows that the measurable analog of the result fails. Since P, (n) > (b,), by an
approximation argument we have that the topological complexity Px(n) > by,
for infinitely many n. In particular, there is no subexponentially growing se-
quence (b, )nen such that any subshift whose word complexity exceeds b,, for
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infinitely many n must have positive entropy. This can be viewed as a coun-
terexample to a dual version of the Morse-Hedlund Theorem, meaning there
exists no subexponentially growing sequence that asymptotically bounds the
complexity of every zero entropy subshift.

2. Background and notation

2.1. SymBOoLIC DyNAMICS. Assume that A is a finite set endowed with the
discrete topology, and we call A the alphabet. The space A%, endowed with
the product topology, is a compact, metrizable space. An element z € AZ
denotes a bi-infinite sequence in the alphabet A, meaning that = (z;);ez with
each z; € A. The left shift o: A% — A% defined by

(0x); := @iy1

is continuous and the dynamical system (A%, o) is the full A-shift. A subshift
X € A” is the restriction of ¢ to any closed, o-invariant set X.

2.2. WORDS AND COMPLEXITY. If w = (wp,...,w,—1) € A", the cylinder
set [w] in A% determined by w is defined to be

[w]::{xeAZ:xi:wiforallogign—l}.

If X C A” is a subshift, then the language £(X) of X is the set of all words
w € A* such that [w] N X # 0. For n € N, the set £,,(X) of words of length
n in X is the set

Ln(X):={weA": [w]NX #0}.

The block complexity (also known as the word complexity function)
px: N — N of X is the function that counts the number of words of each
length in X. Thus

px(n) == [La(X)]-

2.3. THE NATURAL SUBSHIFT ASSOCIATED TO A LANGUAGE. Given a subshift
(X, 0), its language L(X) satisfies the properties that:

(i) Ifw € L(X), then every subword of w also belongs to £L(X).
(i) If w € £(X), then there exist nonempty words u,v € £(X) such that
uwv € L(X).
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Conversely, if £ is any collection of words over an alphabet A satisfying con-
dition (i), then £ = L(X) for some subshift (X,s). Thus the language of a
subshift determines the subshift, and we can define a subshift by specifying its
language. When we do so, we say that (X, o) is the subshift defined by the
language L.

Moreover, given a finite list of words vy, ..., vg, we can consider the collection
of all bi-infinite concatenations of these words, and by taking the shifts of these
bi-infinite sequences, we obtain a subshift (X, o). We refer to this as the subshift
defined by the words vy, ..., vg.

2.4. THE NATURAL SUBSHIFT ASSOCIATED TO A SEQUENCE. Suppose h: N— A
is a function. Fix some a € A and define

y; = h(i) if i > 0;

Y= .
Yi =a if 1 <0.

Then the set
Yy i={o"y:n € Z}

is a subshift. Note that Y} contains at most n words of length n that are not
found in contiguous blocks of the function h: N — A. Therefore the number of
such words differs from Py, (n) by at most n. A word w € L(Y') if and only if
there are arbitrarily large m € N such that w; = h(m + i) for all 0 < i < |w|.
The resulting shift (Y3, o) is transitive, meaning that it has a point with dense
orbit under the shift (note that the point y has dense orbit).

Of particular interest are functions h that arise in number theory. For ex-
ample, we can consider h to be the Liouville function A(n), the sequence in
the alphabet {—1,1} with A(n) = 1 if n has an even number of prime factors
counted with multiplicity and otherwise is —1, or take h to be the Mdbius func-
tion p(n), the sequence in the alphabet {—1,0,1} with u(n) = 1 if n is square
free and has an even number of prime factors, u(n) = —1 if n is square free and
has an odd number of prime factors, and otherwise p(n) = 0. Then studying
the language of Y}, gives insight into the number theoretical properties of h.

2.5. INVARIANT MEASURES ON CERTAIN SUBSHIFTS. A Borel measure v sup-
ported in X is invariant if v(A4) = v(c~1A) for all Borel sets A C X and is
ergodic if v(A) - v(X \ A) = 0 whenever A = 0~ A. It was recently shown [4]
that if (Y, T') is a topological dynamical system of entropy zero and if Y supports
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at most countably many ergodic measures, then (Y,T) satisfies a logarithmic

variant of the Mdbius Disjointness Conjecture of Sarnak. Namely, under these
conditions, for every y € Y and every f € C(Y') we have

=0

N
. 1 f(Ty)pu(n)
1
Noo log N nzz:l n

where p is the Mobius function (and the same conclusion holds if p is replaced
with the Liouville function \). This result was leveraged in [4] to give a lower
bound on the growth of words in the language of the Liouville shift: Y),
showing that the Liouville shift has superlinear block growth (note again that
the question of whether Py, (n) grows superlinearly is equivalent to the question
of whether the number of words of length n that occur in the Liouville sequence
grows superlinearly). Along with the deep result on logarithmic disjointness
that they prove, they rely on a bound on the number of ergodic measures that
can be supported by a subshift with linear growth.

As a corollary of our result in Theorem 1.1, any proof showing that the
Liouville shift has a growth rate that is faster than some explicit superlinear
bound necessarily relies on deeper information from number theory, rather than
only on estimates on the number of ergodic measures.

3. Proof of Theorem 1.1

Suppose (py) is a sequence of natural numbers satisfying

. . Dn
liminf — = oo.
n—oo n

We construct a minimal subshift X, depending on the sequence (p,, ), that sup-
ports uncountably many ergodic measures and is such that

lim inf Px(n)

n— oo pn

=0.

We build the system inductively, by constructing words at each level and
then using these words to define the language of a subshift. Throughout we use
superscripts to denote the level of the construction and subscripts to denote the
words constructed at this level.
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STEP 1: THE BASE STEP OF THE CONSTRUCTION. Set A = {0,1}. Define

w} = 00---001
N times
and
wy = 011 ---11,
N times
where N is a large integer to be determined later. Note that the words wi
and wi are distinct, as can be seen from the different frequencies of 0’s and 1’s.
Define X; C A” to be the subshift of A% consisting of all z € A% that can be
written as bi-infinite concatenations of the words w} and wi. Consider ny =
| N1/2] (note that |- | denotes the floor function). Then £,,, (X1 ) contains a word
of all 0’s, a word of all 1’s, all words with exactly one 1 (by concatenating w1
with itself), all words with exactly one 0 (by concatenating wi with itself), all
words that begin with a continuous string of 0’s followed by a continuous string
of 1’s (by concatenating w} and wsi), and all words with a continuous string
of 1’s followed by a continuous string of 0’s (by concatenating w3 and w{). Thus
for ny = | N1/2],
Px,(n1) =4n; —2
and so if Y C X7 is any subshift, then

Py(nl) S 4n1 — 2.

STEP 2: THE INDUCTIVE STEP. Assume we have constructed a nested sequence
of subshifts

Xp CXpo1 CXppp € C Xy CA”
and an increasing sequence of integers n; < ng < --- < ng such that we have

Px,(n;) < <"i21) 2wl -y

for ¢ = 1,2,...,k. Moreover, for each i = 1,2,...,k, suppose we have con-
structed distinct words
wh,wh, . whs,

all of which have the same length, all of which lie in £(X;_1), all of which are
concatenations of words from the set {wi™!,..., wéf_ll}, and are such that X;
is the subshift of X;_; consisting of all words that can be written as bi-infinite
concatenations of wt, wj, ..., w; Further assume that for any 1 < j < k < 27,
there is no subword of length |w?}

that occurs in both w;w; and wiw,@ Note that



126 V. CYR AND B. KRA Isr. J. Math.

since wi, ... ,w% are concatenations of words from the set {wifl, ey Woi 11 all
concatenations of wi, .. w%i are elements of X; 1. Flnally, for i > 1 suppose
that for 1 < j < 2¢, the Word w contains each of the words w] -1 wgfl, cee w;;ll

somewhere as a subword.
To construct Xy11, we start by defining

Sk times Sk times Sk times
—_—~
k+1 k, Kk k. ki ok, k k. k k, Kk k. ky, .k, k k
= (wywy - wy wy )(Wywy - wy wy ) - (Wiwy W] wy) Wawy - Woy
Nj. times
and
Sk times Sj times Sj times
—_—~
k+1 k, k P N . k. k k, k k. ky, .k, k k
= (wywy - wy wi)(wywy - wy wy) - (wiwy - wi wy) wawg - Woi

Nj. times

where the brackets have no mathematical meaning other than to draw attention
to the periodic nature of the initial prefix of these words and the fact that the
word being periodized in w’f“ is different from that in w§+1. Again, Ni and Si
are large integers to be determined later. We continue the construction: for
1 < j < 2F, defining

Sk times

we define

E+1 k. k k k, k k k, k E ok k
Wyj_1 = W Wy ** W51 (Uj ijrl)(Uj wj+1) T (Uj wj+1) Wiy Wipg - Wak

Ny times

and

wgfl = whwh .. ~w§-“_1 (vfwf)(vfwf) . (vfw;“) wfﬂ cwhy,

Ny, times

where wé“,i}l 1= w’f+ meaning that subscripts are understood modulo 2F+1.

Note that for 1 < j < i < 281 we claim that the words of length |w’f+1\

that occur in the word u;l?"'lu)’?"rl are distinct from those that occur in the

k“ (provided Ny is sufficiently large). If 4 = j + 1, the claim fol-

+1‘

word w’.C

lows because wj 11 occurs at least Ny times in any subword of length |wy

in whtleht! (once in each copy of the periodized word vj wj+1) and occurs

i W
at most [wf| - 2% times in wf T w! ™ (since it does not occur anywhere in
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the periodized word and can only occur in the prefix or suffix, which collec-
tively have length |wf|-2%). For Ny > |w¥|- 2% no such word can occur in

both w’-““w;ch1 and w’?“w’?“. If i > 74 1, the claim follows because w;“
occurs at least Sy, - Ny times in any subword of length |w¥| in wj+ *1 and

occurs at most [wf| - 2F times in w1 wF T, Further note that the frequency

with which words of length |wk| that occur in wfwf, occur as subwords in ng_ll

and wk;rl is at least NjSy|wk|/|wh™|. By choosing Ny, sufficiently large, this

can be made arbitrarily close to 1. Thus, by choosing Ny, sufficiently large, any

word (or collection of words) that occur with frequency ¢ in w¥w* can be made

3.3
to occur with frequency arbitrarily close to ¢ in ng_ll and w2+1 Furthermore,
for i ¢ {2j — 1,25}, the frequency with which words of length \wﬂ that occur

in wkwk occur in wk'*'1 k+1

is at most 1 — NSy |wF|/|wit!], as these words do not
occur in any wrwf for any t # j (and subwords of this form occur with fre-
quency at least NgSk|wF|/|wit!| in wf ). Again, by choosing Ny, sufficiently
large, this frequency can be made arbitrarily close to zero.

Define Xj11 € Xji to be the subshift consisting of all words that can

be written as bi-infinite concatenations of the words wkH wlj“, . ,wg,ﬂl.
Note that, by construction, every word of the form wk'*'1 contains each of
the words wl,wlg, .. .,wgk as a subword. Furthermore, Xk+1 C X} and each
element of Xj41 can be written as a bi-infinite concatenation of the words
W bkt
Define
mert = b2
to be half the (common) length of the words wf ™!, ... 2,€+1 We claim that

2k
Px, ., (nig1) < ((2) + 1) Tgt1-

k+1

Each of the words w; consists of a prefix region in which wf,... wF

are concatenated in order, then a periodic region in which either w? is self-

concatenated or wfwl .- wFwk ;| is self-concatenated, and finally a

suffix region in which wf,,...,wk, are concatenated in order. Any word

in L, (Xgs1) occurs either entirely within some word wh ™ or partially over-

k+1 k+1

laps two words w; " and w; "". For words of the first type, they may occur

entirely within the periodic region or they start within the first 2¥|w¥| letters

k+1

or they end within the last 2¥|w¥| letters of w;*'. For those in the periodic

region, there are at most 28+1(Sy + 1)|w}| many such words since this is the
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number of words constructed multiplied by the maximal period of the periodic
region. For those overlapping two of the regions, there are at most 2F+1|w}|
k1 k+1
11 2

, and there are at

and w for some

k+1
i

such words. Words of the second type must overlap w
i1 # 12 and so must start within the last ngy; letters of w

gk+1
most ( 9 )nk+1 such words. Therefore

2k+1
Pxy, (Mt1) §2k+1(5k + 1)‘w11€‘ + 2k—"_l|w’1§‘ + < )nk+1

2
2k+1
< << 9 >+1) Nk+1,

so long as nyy1 is sufficiently large when compared to ng.
This establishes the assumptions of the inductive hypothesis, and gives us an
infinite nested chain of subshifts

AP D X1 DX 2X32 - DX D

STEP 3: CONSTRUCTION AND GROWTH PROPERTIES OF THE SUBSHIFT X. The
word wit! starts with the word w¥ for all k and so there is a {0, 1}-coloring of
N such that for all k, the prefix of length |w¥| is w¥. Let X be the orbit closure
of this word in AN and let (X, o) be its natural extension to a subshift of AZ.

It follows immediately from the construction that

oo
X <)X
k=1
and (X, o) is a nonempty subshift. We have constructed an increasing sequence
ny < ng < ---<ng<--- such that

peo < ((2) +1)

for all k > 1. The integers ny are on the order of 1/2 of the parameters Ny |w¥|,
and in particular tend to infinity as Ny tends to infinity. The parameters Ny
have not yet been fixed, and we put some constraints on them now. Recall that
we are given the sequence (p,,) such that

liminf 22 = oc.

n—oo M

For each k > 1, there exists M} such that for all n > M}, we have

oo > - ((22k> +1) n.
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Fix an increasing sequence of integers (M}, ) with this property. We assume that
Ny, is chosen to be sufficiently large such that Ny > 2Ny _1 and ny > M. Since
Px (ng)/pn, < 1/k for all k, we have that

P
lim inf M =0.
n—oo p’ﬂ

Moreover, note that for any £ > 1 we have X C Xj. Since X} consists
only of words that can be obtained as bi-infinite concatenations of the words

wh, ... ,wlgk and each of these words contains all of the words w’ffl, ey w’;,:_ll

as a subword, it follows that each of the words w}™*

e ,wl;k,_}l occurs synde-
tically in every element of X} (hence also in every element of X) with gap at
most |w}|. Since every word in £(X) is itself a subword of w¥ for some k, it
follows that every word in £(X) occurs syndetically in every element of X with
a bound on the gap that depends on the word but not on the element of X.

Hence (X, o) is minimal.

STEP 4: THE SET OF ERGODIC MEASURES ON X . Fix a sequence (¢;) of positive
real numbers in the interval (0, 1) such that

s 9
A;:Eépm

Then for any k > 1, we also have [];2, §; > 9/10. Recall that every word of the
k

form w;’ consists of a prefix region, a periodic region, and a suffix region, where
the lengths of the prefix and suffix regions are bounded independently of Nj.
Thus we can further choose Ny to grow sufficiently quickly such that

Ny Sk

W S+ 1

> 0,

for all i = 1,...,2% (recall that all of these words have the same length). It

follows from this choice that the frequency with which w}“ (and the other words

of length |wf| that occur when this word is self-concatenated) occur in ng_ll

k+1
25
We claim that for each word w¥, the set of ergodic measures giving measure

and w is at least d.
at least A to the set [wFw¥] is nonempty. Moreover, we claim that the set of
ergodic measures giving measure at least A to the set

k
il
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is nonempty and that the set of ergodic measures giving measure at least A to
the set

S}, times
|wfwz L. wiﬁ U’§+1| Sj times Sj times Sj times
I (wFwk- - wk wk ook wFwk ) (wFwF - wF wF
U o [(wiwi'~ - - wyi wiyy ) (Wi wi' - wi wity) - (wWiwg e wi wiy )]
rl
J Nj times

is also nonempty. The first claim follows from either of the latter two. We show
the former, the latter being similar.

Observe that w’ch ! has a periodic region which is a long series of self- con-

+

catenations of wf, that wfji 2 has a periodic region which is a long series of

k+j
2
k+j—1

2i-15 -
language of X and X is closed, there is an element of X for which the natural

self-concatenations of wlgz‘" 1 and similarly w has a periodic region which is

a long series of self-concatenations of w As these are all words in the
frequency of w® (and the other words of length |wF| that occur when it is
self-concatenated) is at least H;O:k §; > A. This follows because w? (and the
other words of length |w¥| that occur when it is self-concatenated) occur with

frequency at least Jy in wlgj' 1 and inductively occurs with frequency at least

¢
114
j=k

¢ for any ¢. Therefore there is an invariant probability measure on X

wt=7ij
that gives the union of these cylinder sets measure at least A and so there must

in w

be at least one ergodic measure that also has this property. The claim follows.
We next show that the set of ergodic measures on X is uncountable (in fact

with cardinality ¢). We have shown that for each k£ and 1 < i < 2% there are

two disjoint sets of ergodic measures giving large measure to the word w¥ and

its periodic shifts. The first (which we refer to as type 0) gives large measure

to

k

k, k
wiw; ... w;

—_————
Ny, times
(and its periodic shifts), whereas the second (which we refer to as type 1) gives

small measure to this set and large measure to

Sg times Sy times Sy times
—N—
k. k k. k k. k k, k

(whwf . wFwk (el wFwl ) (el wlwl )

N times
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(and its periodic shifts). Fix an infinite sequence ag, a1, ... of 0’s and 1’s. For
each 7, let v; be an element of the set of ergodic measures on X that start by
giving large measure to wi and then are of type a; for eacht =1,2,...,j. Let v
be a weak-* limit of a subsequence of these measures so that v gives measure at
least A to the word defining its type for each ¢t = 1,2, .... If we had chosen any
other sequence of 0’s and 1’s it would have differed from (a;) at some finite stage
and so there would be a cylinder set the measure resulting from that sequence
gives large measure to which was given small measure by v. Therefore each
infinite sequence of 0’s and 1’s produces its own measure v. Now, returning to
the measure v, consider the sequence (a;) and the associate union of cylinder
sets (which we call S;) that are given measure at least [],-, dx by v. Define

Note that

((fs) () 1o

and so we can arrange that

,,< (f] St) > 8/10

for all k by choosing §; to tend to 1 sufficiently rapidly. It follows
that v(A,) > 8/10. Therefore there is an ergodic measure giving the set A,
measure at least 8/10 and so there is no loss of generality in assuming that v is
ergodic. Therefore the set of ergodic measures is uncountable.

This completes the proof of Theorem 1.1. We note that by modifying the
initial words wi and wl, we can achieve the same result but ensure that the
language has balanced numbers of short patterns. More precisely, replacing
the initial use of 0 by the word 01100110 and the initial use of 1 by the word
11100100 and carrying out the same construction, we have a system in which
the average number of 0’s and 1’s on any short range is approximately one half.
This follows because all words later constructed are concatenations of w] and
w} and so any word in the language of the shift of length larger than fourteen
can be made into a word that is a concatenation of wi’s and w}’s by removing
at most seven letters from each side of it (and this slightly shorter word has
precisely the same number of 0’s as 1's).
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4. Measure-theoretic complexity

4.1. DEFINITION OF SLOW ENTROPY. We review the definition of slow entropy,
as defined by Katok and Thouvenot [6] and Ferenczi [3], adopting Ferenczi’s
notation in a way more convenient for our setting.

Assume that (X, o) is a subshift. For u,v € £,,(X), the Hamming distance
dgr(u,v) between u and v is
HO<i<m:u; # v}

n )

and this defines a metric on £,,(X). For fixed ¢ > 0 and u € Lx(X), define the

ball B.(u) of radius ¢ around u by
B:(u) ={v € L,(X): dug(u,v) < e}.

Further assume that 4 is an invariant measure on the shift (X, o). When slow

dy(u,v) =

entropy is defined in [6] and [3], they consider an arbitrary measure preserv-
ing system and so a generating partition is a necessary ingredient. As we are
restricting ourselves to symbolic systems, we can assume that the space X is
partitioned into cylinder sets of length one. We implicitly make this assumption
throughout and omit the partition from the notation.

Define K (n,e,0) to be the minimum number of words uy, us, ..., ug € L,(X)
such that

,u<iLleB€(ui)> >1—e.

If 1 < &g, then for any u € £,,(X), we have B, (u) C Be,(u). Thus
K(n,eq,0) < K(n,e1,0),

meaning that K (n,e,0) increases as ¢ decreases. If (¢, )nen is a non-decreasing
sequence of positive integers with ¢, — oo, we say P, (n) = (¢,) if
.. K(nego
lim lim inf K(n.e,0)
e—=0 n—oo Cn

> 1.
Similarly, we say that P; (n) < (cp,) if

lim lim inf M <1.

e—0 n—oo Cn
The analogous limits with lim inf replaced by lim sup define the conditions that
P (n) = (cn) and P (n)=<(cy), respectively. It is shown in [6] and [3] that for any
fixed sequence (¢, ), the statement P, (n) < (¢,) is a measure theoretic conjugacy

invariant for (X, 4, o) (as is the analogous statement for P (n) > (cy)).
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These notions of P, (n) and P, (n) clarify the statement of Theorem 1.2, and
we reproduce the statement:

THEOREM (Theorem 1.2): Assume (ay,)nen and (by,)nen are two non-decreasing
sequences of positive integers such that lima,, = oo, lim% - log(b,) = 0, and
an < by, for all n € N. There exists a minimal subshift (X, o) of topological
entropy zero and an ergodic measure . supported on X, such that

P, (n) < (a,) and PJ(n) > (b,).

o

Before turning to the proof, we make a few remarks to place the result in
context. Ferenczi showed the following:

THEOREM 4.1 (Ferenczi [3, Proposition 3]): Let (X, o) be a subshift and sup-
pose i is an ergodic measure supported on X . Then the following are equivalent:

(i) (X, u,0) is a Kronecker system;
(i) Py

~(n) < (c¢n) for any non-decreasing sequences (c,) that tends to

infinity;
(iii) Pf(n) < (¢,) for any non-decreasing sequences (c,) that tends to
infinity.

This means that the assumption on the lower bound (a,,)nen in Theorem 1.2
can not be lowered as long as we still require that P, (n) > (b,), as this second
condition implies that (X, u, o) is not a Kronecker system and so there must be
some sequence (¢, )nen that tends to infinity and is such that P (n) > (cn).

At the other extreme, Katok showed:

THEOREM 4.2 (Katok [5, Theorem 1.1]): Let (X, o) be a subshift and suppose
is an ergodic measure supported on X. Then the following are equivalent:

(i) (X, u,0) has positive entropy;
(ii) there exists A > 1 such that P, (n) > (\");
(iii) there exists A > 1 such that P} (n) = (A").

In particular, since (an)nen grows subexponentially and P, (n) < (ay), this
implies that (X, u, o) has zero entropy and so we cannot have P} (n) = (by,)
for any sequence (b, )neny With positive exponential growth rate. Theorem 1.2
implies that, even subject to the requirement that P, (n) < (a,), P, (n) can

grow as quickly as we want, subject to the necessary condition that it grow
subexponentially, as given by Katok’s Theorem.
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Katok and Thouvenot [6] and Serafin [9] give constructions of a subshift with
zero topological entropy and P, (n) growing arbitrarily quickly (of course still
subject to the condition that the growth be subexponential), but without a re-
quirement that P, (n) grow slowly. In showing that we achieve our upper bound
(what we refer to as the loud phase), our construction and the derivation of its
properties has many features in common with their constructions. However, as
we generalize this approach, we include all details for the sake of clarity.

4.2. LARGE-SCALE FEATURES OF THE CONSTRUCTION. We fix the non-decreas-
ing sequences (an )nen and (b, )nen of positive integers such that lim,,,~ a, =00,
lim,, 0 % -log(b,) =0, and a,, < b, for all n € N. Let (g,,)n—00 be a decreas-
ing sequence of positive real numbers such that lim,,_,., €, = 0. We inductively
construct a descending sequence of positive entropy subshifts:

AP = Xg D X1 DX 2 X322 X, D
and an increasing sequence of positive integers
N1 <Pi <Ny <Py <Ng<Pyg<:--.

In our construction, we show that
oo
X = ﬂ X;
i=1

is nonempty and show that if p is any ergodic measure supported on X, then

(1) K(N;,1/8,0) > by,
and
(2) K(Pi,{fi,d) Sapi.

Since K (n,e,0) increases as € decreases, it follows that for sufficiently small
e >0,

K K(N; K(N;,1/8
lim sup M > lim sup M > limsup M >1,
n—00 n 1—>00 bNi i—00 bNi
meaning that
K
lim lim sup M >1,
e—=0 nooo bn
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and so Pf(n) = (b,). Similarly, since lim; o, £; = 0 and again passing to the
subsequence (P;);en, it follows that

K K(P; K(P;, ¢;
lim inf M < liminf M < liminf M <1.
n— 00 (o7 i—00 ap; i—00 ap;
This means that
K
lim lim inf M <1
e—0 n—oo an

and so P, (n) < (a,). Therefore, to prove Theorem 1.2, it suffices to construct
the shift X, the ergodic measure p and show that they satisfy (1) and (2). To
show that this construction can be carried out to produce a minimal shift, we
note that by the Jewett—Krieger Theorem there is a strictly ergodic model for
(Xoo, i1, 0) and this model must obey the same slow entropy bounds because
they are invariants of measure theoretic conjugacy. We start in Section 4.3
by providing estimates on how the words in the language of the shift must be
constructed and then in Section 4.4 complete the construction of the subshift

and verify its properties.

4.3. ESTIMATES FOR THE LANGUAGE. We start with a lemma for use in the
proof of the main theorem:

LEMMA 4.3: Let k,n € N be fixed and let Ay, ..., Asx—1 € {1,2,...,n} be any
collection of subsets satistying |A;| > n/2 fori =1,...,2k—1. Then there exist
distinct indices 1 < iy <ig < -+ <1 <2k —1and s € {1,2,...,n} such that
s€ A forallj=1,2,... k.

Proof. For contradiction, suppose Ay, ..., Agr_1 C {1,2,...,n} are a collection
of subsets satisfying |A4;| > n/2 for i = 1,...,2k — 1, but no subcollection of k
of these sets have nonempty intersection. For each z € {1,2,...,n}, let i(x)
denote the number of distinct indices j such that « € A;. Then i(z) < k —1
for all x and so

nk—1) < i |A;| = i m - {z:i(x) =m}|

T s
=

< ) (k=1 H{z:i(z) =m}| = n(k-1),

3
g

where the last equality holds since the level sets of i(x) partition {1,2,...,n}.
Thus no such collection of sets exists. |
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LEMMA 4.4: Let A be a finite alphabet and suppose k, N, M € N are fixed and
assume that M > 1. Let wy, ..., wy € Ly(A?) and for each 1 <i < k, let

Vi = WW W5 + -+ Wy -
T

Let (X, o) denote the subshift (with alphabet A) defined by the words vy, . .., vj.

Assume P € [1, NM) is an integer and let Wp C Lp(X) be the set of all words u

for which there exists i such that u is a subword of v;. Then if p is any ergodic

measure supported on X, we have

u(weLyJVP[w]) 21 Pl

Proof. Assume j is an ergodic measure supported on X and set S = (J,, e, [W]-
By the pointwise ergodic theorem, there exists x € X such that

n

o ;
W) = B 5 Z Ls(oa).

By definition of the subshift (X, o), the element z can be parsed into a bi-
infinite concatenation of the words vy, ..., vg. Fix one such way to parse x and
let Z C Z be the set of indices at which these words begin; note that 7 is an
arithmetic progression in Z with gap NM. For each i € Z, the cylinder set of
length P that contains o’z is contained in S, unless ¢ lies within distance P — 1
of the smallest element of Z larger than i. Thus for any n € N,
n
> 1s(o’r) =2 +1— (P —1)-[ZN[-n,n]|.

i=—n
Since 7 is an arithmetic progression with gap N M, it follows that

41— (P—1)[ZN[-n,n]| P—1
> ] >1— . [ |
w(S) z lim on + 1 = NM

LEMMA 4.5: Let N € N ande > 0 be fixed. For eachn, let W,, C {1,2,...,N}"
be the set of words w = (wg, w1, ..., wy,_1) for which

n

N

for alla € {1,2,...,N}. Then there exists M such that for all n > M, we have
Wh| > (1 —e)N™

(1—5)% <Hie0,n): w; =a}| < (1+e)



Vol. 240, 2020 REALIZING ERGODIC PROPERTIES IN SUBSHIFTS 137

Proof. Let v be the (1/N,1/N,...,1/N)-Bernoulli measure on {1,2,..., N}
By the pointwise ergodic theorem, for almost all # € {1,2, ..., N} and for each
a€{l,2,...,N} we have

1= 1
.[[] —_ i = = —
am Z - La(0z) = vila) = -
1=

Therefore there exists M (z) such that for all n > M (z) we have

n—1
1—-¢ 1 i 1+e
N < o i:EO l[a](O' z) < N

for all a € {1,2,...,N}. Thus there is some M and a set S of v-measure at

least 1 — ¢ such that these inequalities hold for any z € S and any n > M.

Setting wy, (z) = (0, x1,...,Zn—1), we have that

1/< U [wn(x)}> >y(S)>1-ce.

zeS
Since the v-measure of each word of length n is 1/N™, it follows that the number

of distinct words of length n that can be written as wy,(z) for some z € S is at
least (1 —e)N™. |

We combine these to derive our key estimate on the statistics in the language:

PRrROPOSITION 4.6: Let N € N, ¢ >0, and 0 < a < % be fixed. Then there
exists M € N and A = A(N, e, «) > 1 such that for any n > M, there is a set of
words wy, ..., wi € {1,2,..., N}" satisfying
de(w;,w;) >a foralli#j
with k > A" and for all a € {1,2,...,N},
n
N
Moreover, these words can be chosen such that for any 1 < j; < jo < k, no

(1—5)% <[{ie0,n): wi=a} < (1+e)

word of length n that occurs as a subword of w;, wj, is also a subword of wj, wj,.

Proof. Let w € {1,2,...,N}" be fixed. A classical use of Stirling’s Formula

N—-1
N

(see for example [5, Equation (1.3)]) shows that, since 0 < a <
1
lim —log|{u €{1,2,...,N}": dg(u,w) < a}|
n—oo N

=alog(N — 1) — aloga — (1 — a)log(l — «).
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Set
fl@)=2alog(N —1) —zlogzx — (1 — z)log(l — x).

Then for x < (N — 1)/N, the derivative of f(z) is positive and

li = log(NV).
(@) = log(N)
Thus f(a) < log(N), and so there exists M € N and § > 0 sufficiently small
such that (14 6)f(a) < log(N) and such that for all n > M,

Hue {1,2,...,NY": dy(u,w) < a}| < 271+ (@),

By Lemma 4.5, if W, is the set of all words w=(wg, w1, ..., w,—1)€{1,2,...,N}"
for which

(1-e)g <Hi€lon:wi=a}l < (1+2)5,
then |W,| > (1 — e)N™ for all sufficiently large n. Adjusting the value of M if
necessary, we can assume this holds for all n > M. But for each w € W,,, we

have
HueW,: di(u,w)<a}| <|{uec{1,2,...,N}": dg(u,w) < a}| < 2" 1+

This means there is a set of at least

(1—¢)N™
[2n-(1+5)f(a)J

elements of W, that are pairwise at least « separated in the Hamming distance.
If w, v are two words in this set and if some word w of length |u| = |v| occurs as
a subword of uu and vv, then wu is itself a subword of vv. Thus there is a subset
of size at least

1 | 1—-¢)N"

k(n) =2 [2n-(1+6>f(a>J

with the additional property that for any w,v in this list, no word of length n
occurs as a subword of both uu and vv.

Since (1 +9)f(«) < log(N), it follows that

n—00 n

=log(N)— (1+9)f(a) > 0.

Thus if A := 292 then A > 1 and k(n) > A" for all n > M. |
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4.4. CONSTRUCTION OF THE SUBSHIFTS. The remainder of this section is de-
voted to the proof of Theorem 1.2.

We construct a sequence of subshifts inductively. Each step of the construc-
tion involves the construction of two nested subshifts, with the larger one being
referred to as the “noisy” phase and the smaller one being referred to as the
“quiet” phase. At each stage of the construction, we appeal to Proposition 4.6,
and this necessitates the definition of two auxiliary sequences. Set o = 1/3
and let (a;);>0 be an increasing sequence of real numbers with 0 < «; < 1 for
all 7 € N and such that

3) [[e:> Z

This sequence provides the parameter o appearing in Proposition 4.6 for each
step of the construction. Next let {e;};,>0 be a decreasing sequence of real
numbers with 0 < g; < 1 for all 4 and such that

(4) E(l —&i) > %

This sequence provides the parameter £ appearing Proposition 4.6.

Base Loud Phase. Let Xy := {1,2}* and My = 1. Thus Xy is a subshift
on Ny := 2 letters. Since 1/3 = oy < N;{,—gl, we can apply Proposition 4.6
with parameters N = Ny, € = g9, and o = «g. Thus there exists Ag > 1
such that for any sufficiently large integer n, we can find a set of words
wi(n), w2(n), ..., wm)y(n) € {1,2}™ where k(n) > Ay and such that for each
a € {1,2}, the following conditions are satisfied:
(i) We have the estimate (1 —¢9)% < B, < (1 +¢0)% for all i, where B,
denotes the number of locations where the letter ¢ occurs in w;(n).
(ii) We have the distances separated, meaning that dg (w;(n), w;(n)) > ao
for any i # j.
(iii) No word of length n occurs as a subword of both w;(n)w;(n) and
w;(n)w;(n) for some i # j.
Let V7 be an integer which is sufficiently large that we can choose such a set
of words, such that /\(])V1 > 4by,, and such that o < N}V:l. Let k1 := k(N1) be
the number of words constructed in this way and let wy, ..., wg, € {1,2}7* be
the words produced by the construction. Finally let Ly C X be the subshift
of Xg defined by the words wy,wa, . .., Wk, .
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Base Quiet Phase. Choose an integer P; > Nj sufficiently large that
|w1| + |U)2| + -+ "UJ]CI‘ =k N < ap,

and then choose an integer M; such that (P, — 1)/(N1M1) < &9. For each
1 < i < kq, define

Vi 1= WWWG - Wy
Let X1 C L; be the subshift defined by the words vi,...,vr,. We apply
Lemma 4.4 with parameters A = {1,2}, k = k;, N = Ny, M = M, and
P=P €[1,NM). If W = Wp, is the set of words of length P; that occur

as subwords of the words vy, ..., vg,, then for any ergodic measure p supported
on X7 we have
,u( U [w]) >1-— h >1—¢g
wew Nl Ml

and if W = WNI is the set of words of length Nj that occur as subwords of the
words v1, ..., Vk,, then

u( U [w]> >1—NJ§4 > 1 — &,.

. 1
weW

Inductive Loud Phase. Assume we have constructed subshifts
{1,2} = Xg2L12X1 2Ly D2 XoD---2L; D X,

a sequence of integers N1 < P| < Ny < P, < -+ < N; < P;, a sequence of

integers My < Ms < --- < M;, such that the following hold: for each 1 < j <4,

(i) Nj is sufficiently large such that a; < N1

NG
(ii) there exists A; > 1 and an integer k; such that k; > )\;-Vj > 4bn;;
(iii) there exist words w?,wl, ... ,wij e {1, Q}NJ'IH;(I) NsMs guch that L; is
comprised of all elements of X,;_; defined by the words w7, .. .,wij

and for i; # io we have
] . J
g,
dH(wil,wiQ) > | I Qg
s=1

and additionally no word of length |w!| occurs as a subword of both

J
i W

J
i

w and w! w’ ;
1 12 12
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(iv) for each 1 <t < k;, there is a word

W/, B/ B | J
Vp 1= Wi Wy Wy - Wy

M; times

where for any t; # t3 no subword of length
j—1
N; - [ Ve,
s=0
in vgl is also a subword of Ui;, and X; C L; is the subshift of L; defined
by the words v{,v%,...,vij; |
(v) if j > 1, then for each 1 < ¢ < k; the word wi can be written as a con-

1 j —

N4 ! and so by identifying this set of

k;_1 words with the alphabet {1, 2,J. 1 ,k;j_1}, we can identify w{ with
a word of length N; written in these letters; with this identification,
for each a € {1,2,...,k;j_1}, we have
N
ki1

catenation of the words v7~

(1—¢j1) <|{i €[0,n): thei'" letter in w] is a}|

N.
< z . (1 + €j_1);
kj,1

(vi) we have P; > k;, M; > |wi|k;/ej, and (P; — 1)/(N;M;) < €, and
if W = Wp, is the set of all words of length P; that occur in X; as

subwords of v{,vJ, ... ,vij and if p is any ergodic measure supported
on X;, then
i Uml)>a-e),
weW
and if W = VNVNJ, is the set of all words of length NN; that occur in X
as subwords of v],v], ..., vi,j, then
i(Uml)>a-z.
wEW

Since a; < N;‘le, we can apply Proposition 4.6 with parameters N = k;, € = ¢;,

and o = a;. Thus there exists A; > 1 such that for any sufficiently large inte-
ger n, there is a set of words wy(n), w2(n), ..., wm)(n) € {1,2,...,k}" where
k(n) > A" and such that for any a € {1,2,...,k;}, the following conditions are
satisfied:
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(1) We have the estimate (1 —¢&;)7- < Ba < (1 +¢;)7-, where again B,
denotes the number of locations where the letter a occurs in w;(n).
(ii) We have the distances separated, meaning that dg(w;(n), w;(n)) > a4
for any i # j.
(iii) No word of length n occurs as a subword of both w;(n)w;(n) and
w;(n)w;(n) for any i # j.
Let N;11 be a sufficiently large integer such that we can find such a set of words,
such that )\fv“l > 4by and such that a; 11 < % Let kiy1 := k(Nit1)

it19 1
be the number of words constructed in this way. Finally let

wi+17 U.);+1, cee ,w;;:-ll € {17 Q}NHAIHZ:O e M
be the words constructed by concatenating w?, . .. ,wfci according to the letters
of the words wi(n),...,wg,,,(n): for 1 < j < ki if wj(n) = araz-- - ay, then
we define
il i ,
w;- = Wy, W, - - wflk

Finally let L;11 C X; be the subshift of X; that is defined by the words
Wit

Inductive Quiet Phase. Choose an integer P;;1 > N,;1 sufficiently large such
that

i
(5) w4 bt - = R N - [ VoM < ap

s=0
Find an integer Mi—l—l > \wi‘“ ‘ki—i-l/gi—&-l such that (Pi+1 — 1)/(Ni+1MZ‘+1) < &;.
For each 1 < j < k;41, define

RS D B S D R A
v = wl T W W wit .
M4 times
Let X;41 C Lit1 be the subshift of L;;; defined by the words v*!, ..., vfctll
As in the base case, for each 1 < j < k;41, we choose w;-H = wfnwfm wZN

as a way to parse wi™! into a concatenation of words with superscript 4. Then

J
define

/17.;4»1 — (a/la/2'.'a/N7)(a/1a2'.'a/N7)'.'(a/1a2.'.a/N7)
M; 1 times
to be the identification of vé“ with a concatenation of letters {1,2,...,k;},

rather than words {w},w}, ..., w} }. Let X1 be the subshift of {1,2,... k)%
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defined by the words ﬁi“, cee ﬁ;f:l . We then apply Lemma 4.4 with parameters
A={1,2,...ki}, k=kiy1, N=Niy1, M = M, 1, and we choose

P = Pi+1 € [1,Ni+1MZ‘+1).

Then if W = Wp,,, denotes the set of words of length P;;; that occur as

subwords of 171“,175“,...,172,*:1 and if v is any ergodic measure supported

on X;,1, then

1/< U [w]) >1—ﬁ>(1—ei).

weW
If W = VNVN is the set of words of length N; that occur as subwords of
ﬁi""l, ceey vi‘!‘jl, then

Nit1
v w ) >1— ———>(1—¢;).
( U~[ }> Niy1Miq ( )
weW

Therefore conditions (i)—(vi) of the induction hypothesis are satisfied for j=i+1.
Thus, by induction, we obtain an infinite descending sequence of subshifts

(1,2 = Xg 2L DX1 2L D2 X2 DL; DX; D+ .
We define
(oo}
X = ﬂ X;.
i=0
Since {1,2}% is a Baire space (with the usual metric), the intersection of any
nested sequence of subshifts is nonempty and so X, is nonempty.

We now assume that p is an ergodic measure supported on X, and we study
its properties.

Analysis of PT(n). Our goal is to show that
K(OA,NZ‘,]./&O') > bNi

for all i. Fix ¢ € N. First we recall the definition of K(N;,1/8,0). For
u e LNL(Xoo)a let

Byg(u) = {w € Ly, (Xoo): dr(u,w) < 1/8}
be the (1/8)-Hamming ball around . Define
[By/s(u)] :== U [w].

weBy /g(u)
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With this notation, K (N;,1/8,0) is the smallest cardinality of a set U C Ly, (Xoo)
such that

(6) /J( U [Bl/s(u)]) > g
ueU
Fix such a set U C Ly, (X). To establish (1), we are left with showing that
|Z/{‘ > by,
Since p is an ergodic measure supported on X, it is also an ergodic measure
supported on X; (albeit not a measure of full support). The shift X, is con-

structed by first constructing a set of words wj,w}, ..., w; of length N; and
using them to construct words v}, vs,...,v; via the formula
t— ittt - wt
Vj = WW;w; - W,
—_————
M; times

and M; is a parameter chosen during the construction. Thus the language
of X; is defined to be all elements of {1,2}% that can be written as bi-infinite
concatenations of vi, v, ... ,v};i. The choice of M; guarantees, by induction
hypothesis (vi), that for any ergodic measure supported on X; (in particular,
for ) if W is the set of words of length N; that occur as subwords of one of
v}, vy, ..., v}, then

(7) u( U [w]> >1-¢;

wEW

The construction also guarantees, by induction hypothesis (iii), that for j; # ja

we have
i e’}
dp (W}, w,) > Has > Hozs >1/4
s=0 s=0

(recall that ap = 1/3 and equation (3)). Now observe that from (6) and (7),
if V C W is the set of all w € W such that there exists v € U such that
dpr(u, w) < 1/8, then

w(Uwl) > g-=23

provided 1 is sufficiently large. Next observe that if w € V, then w is a word of
length N; that occurs as a subword of one of vi, v}, ..., vi In particular, this

means there exists 1 < j < k; such that w is a subword of w;w; (recall that v;:
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is just the concatenation of a large number of copies of w} and |w}| = N;). We

write

W W W}
g
J

of w;w; Therefore there exists a smallest integer 1 < ¢(w) < N; such that

the subword of w;w; of length N; that starts on the t(w)' letter is w; let
s(w) denote the set whose only element is t(w) (if w;w; is periodic of period

where w — wj-w means w is a word of length N; that occurs as a subword

smaller than |w}|, let s(w) denote the set of starting points of w, excluding |w
if w = w}). Next recall that

i

Xoo € Lit1 € X5

The subshift L;;; is defined by the words wit!, ... ,w;tll The words
wi“, ey w;j:l are themselves concatenations of the words u!, ..., u}§ and in-
duction hypothesis (v) guarantees that for any 1 < j < k; and any 1 <t < k;41,
the relative frequency with which uz appears in the concatenation defining wi'H
lies between (1 —¢;)/k; and (1 +€;)/k;. Recall that no word of length [wj |
i

occurs as a subword of both wj wj and wj w},, for j1 # j2, and so words

171 J27
of length |w} | that occur as subwords of w} wj, can occur only in wj wj or
possibly as a subword of u’_u’ for some js # j3 and in this case the occurrence

J2 73
must partially overlap both of the concatenated words. Since p is ergodic, if w

is a subword of some wjw’ of length |w?|, then

n

p(lwl) = D lpuy(o™z)

for p-almost every x € Xo. Fix some such x and choose some way to parse x
into a concatenation of the words uﬁ,,u}c Let 7 C 7Z be the locations
where the words in this concatenation begin; this is an arithmetic progression
in Z with gap N;M;. The frequency with which a shift of = brings one of
the elements of Z within distance N; of the origin (meaning when the word of
length N; determined by this shift of = is a word that partially overlaps the
break between two of the words in our concatenation) is

N;/N:M; = 1/M;.
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Thus we can check:
(- 26)lstw) _ (L-elsw)| N,

. 1 . m
S T m;n Lui(o™)
_(telsw)] N
(14 2¢;)|s(w)]
kiw |

since M; > |wi|k;/e; by induction hypothesis (vi) (recall that s(w) is 1 unless
it counts the number of occurrences of w in the concatenation w;w; where it
occurs). Therefore,

(1 — 2&)[s(w)]
ki |wi|

for all 1 < j < k;. Since

(1+ 2¢;)|s(w)]
kilwi|

w(Uwl) =]

weY
and since plw] < (14-2¢;)/k; for each w € V, it follows that |V| > (3k;)/(4+8¢;).
For each 1 <j <k;, let A; C{1,2,. ,|w;|} be the set

A; ={s(w): w is a word of length \w;| that occurs w;w; and is in V}.

Since

and since
(= 2e)ls(w)] _ 1 (L4200 [sw)]
ki|wi| - kilw|
for all w € V, the number of elements of V is at least
3 _kilwi|  Kiwi]

4 (1+25i) - 2

plw] <

where we count each w € V with multiplicity |s(w)|. Therefore for at least half
of the integers, 1 < j < k; we have

k.
Al > =,
4] > 5
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By Lemma 4.3, there exists some integer 1 < s < k; such that s € A; for at
least 1/4 of the integers 1 < j < k;. Let T be this set of integers. Then V
contains the subword of length |wi| that occurs in wiw!, beginning at location
s for all t € T. Since dy(wj ,w} ) > 1/4 for all {1 # ta, it follows that the
subword of length w} that occurs in wj w} starting at location s is Hamming
distance at least 1/4 from the analogous subword in wj wj . It follows from
our construction that every element of V is within Hamming distance 1/8 of
some element of . Since two words of Hamming distance 1/4 cannot be within
distance 1/8 of the same element of U, it follows that || is at least |T| > k;/4.
But by construction, k;/4 > by,, by induction hypothesis (ii). Thus |[U| > bn;,
and since U was arbitrary, (1) holds.

Analysis of P, (n). Our goal is to show that
K(P;,ei,0) < ap,.

Fix i € N. Note that if w € Lp,(X), then w € Lp,(X;+1). By induction
hypothesis (vi) recall that if W is the set of words in the language of X;;1 that

occur as subwords of vi“, . ,vli':l then for any ergodic measure p supported
on X, we have
u( U [w}) >1—e;.
weWw

Therefore we can take g;-Hamming balls centered on words in W as a way to
cover a subset of p-measure at least 1 — ¢;. But by construction, the words

i+1 i+l g . P
vl ..., are all periodic words of period |wi| = [wh| = -+ = [w}, | and so

W] < Jwi| + [wh] + -+ + |wj |-

By (5) we know that this quantity is at most ap,. Therefore it is possible to cover
a subset X, of p-measure at least 1 — e; with at most ap, many ¢;-Hamming
balls around words of length P;. Therefore

K(PZ‘,SZ‘,O') < ap;

and so (2) holds.

Our construction produces a subshift (X, o) with the property that for any
ergodic measure u supported on o, we have P, (n) < (a,) and P; (n) = (b,).
Since all ergodic measures supported on X, satisfy P, (n) < (a,,) and since (ay,)
grows subexponentially, Katok’s theorem guarantees that X, supports only
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zero entropy measures. Furthermore, the Jewett—Krieger Theorem (see for ex-
ample, Petersen [8]) guarantees that if (Y, T, i) is an ergodic system of (measure
theoretic) entropy less than log(/N), then there is a minimal and uniquely er-
godic system that is measure theoretically isomorphic to our system. Taking
this model for the system, we have the existence of a subshift with all of the
desired properties.

This completes the proof of Theorem 1.2. |
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