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ABSTRACT

A subshift with linear block complexity has at most countably many er-

godic measures, and we continue the study of the relation between such

complexity and the invariant measures. By constructing minimal subshifts

whose block complexity is arbitrarily close to linear but have uncountably

many ergodic measures, we show that this behavior fails as soon as the

block complexity is superlinear. With a different construction, we show

that there exists a minimal subshift with an ergodic measure such that

the lim inf of the slow entropy grows slower than any given rate tending

to infinitely but the lim sup grows faster than any other rate majorizing

this one yet still growing subexponentially. These constructions lead to

obstructions in using subshifts in applications to properties of the prime

numbers and in finding a measurable version of the complexity gap that

arises for shifts of sublinear complexity.
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1. Introduction

Assume that (X,σ) is a subshift over the finite alphabet A, meaning that

X ⊂ AZ is a closed set that is invariant under the left shift σ : AZ → AZ.

The block complexity pX(n) of the shift is defined to be the number of words

of length n which occur in any x ∈ X . Boshernitzan [1] showed that a minimal

subshift with linear block complexity has only finitely many ergodic measures,

where the number depends on the complexity growth. In [2], we showed that

any subshift (minimal or not) with linear block complexity has at most finitely

many nonatomic ergodic measures, and so at most countably many ergodic

measures (with no requirement that the measures are nonatomic). In the same

article, we give examples of subshifts with block complexity arbitrarily close

to linear which have countably many nonatomic ergodic measures. Our main

result is to show there is no complexity bound beyond linear on a subshift that

suffices for guaranteeing there are at most countably many ergodic measures.

More precisely, we show as soon as the growth is superlinear, we can have the

maximal number of ergodic measures:

Theorem 1.1: If (pn)n∈N is a sequence of natural numbers such that

lim inf
n→∞

pn
n

= ∞,

then there exists a minimal subshift X which supports uncountably many er-

godic measures and is such that

lim inf
n→∞

PX(n)

pn
= 0.

The distinction between countably and uncountably many ergodic measures

supported by a subshift has recently received attention, as it plays a role in the

deep results of Frantzikinakis and Host [4] on the complexity of the Liouville

shift. More precisely, by studying the subshift naturally associated to Liouville

function λ(n) (see Section 2.4) and the number of ergodic measures it supports,

they conclude that the Liouville function has superlinear complexity. Given

the example we construct in Theorem 1.1, any approach to showing that the

Liouville function has higher growth rates must rely on further properties of

the shift beyond the cardinality of the set of ergodic measures supported by

subshifts whose complexity grows at a given rate. In a further development,

using different methods McNamara [7] has shown that the Liouville function

has at least quadratic complexity.
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Katok and Thouvenot [6] and Ferenczi [3] defined the slow entropy, as a

measure theoretic invariant to capture a measurable version of the (topological)

complexity. They defined two growth rates, P−
T (n) and P+

T (n) of a measure

preserving system (X,µ, T ), and whether each of these growth rates is slower ≺
or faster & than a given growth rate is a measure theoretic invariant for the

system and computable using a generating partition (see Section 4 for precise

definitions). Using a different construction, we exhibit the freedom on growth

rate of the slow entropy, with a minimal subshift of zero topological entropy

such that the slow entropy grows slower than some (arbitrarily slowly growing)

given sequence while faster than another (arbitrarily quickly within the class of

subexponentially growing) given sequence:

Theorem 1.2: Assume (an)n∈N and (bn)n∈N are two non-decreasing sequences

of positive integers such that limn→∞ an = ∞, limn→∞
1
n · log(bn) = 0, and

an ≤ bn for all n ∈ N. There exists a minimal subshift (X∞,σ) of topolog-

ical entropy zero and an ergodic measure µ supported on X∞ such that

P−
σ (n) ≺ (an) and P+

σ (n) & (bn).

If we only consider the upper growth rate P+
T (n), related constructions are

given in Katok and Thouvenot [6] and Serafin [9] of a subshift with zero topolog-

ical entropy and P+
T (n) growing arbitrarily quickly (but still subexponentially).

The restrictions given in our theorem on the sequences (an)n∈N and (bn)n∈N
are the weakest for which a result like ours could hold, in a precise sense that

we explain (see Section 4). By a theorem of Ferenczi [3], it follows from the

lower bound on the growth P+
σ (n) & (bn), that the system we construct is not

a Kronecker system. From the upper bound P−
σ (n) ≺ (an), it follows that

there is no sequence (an) increasing to infinity and such that the analogous

bound would give P−
σ (n) ≺ (cn) for all sequences (cn) increasing to infinity.

This exhibits a different behavior than what happens in the topological setting.

Namely, the Morse–Hedlund Theorem states that if there exists some n ∈ N
such that PX(n) ≤ n for some system (X,σ), then we have that the topological

complexity function PX(n) is actually bounded for all n ∈ N. Our construction

shows that the measurable analog of the result fails. Since P+
σ (n) & (bn), by an

approximation argument we have that the topological complexity PX(n) ≥ bn
for infinitely many n. In particular, there is no subexponentially growing se-

quence (bn)n∈N such that any subshift whose word complexity exceeds bn for
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infinitely many n must have positive entropy. This can be viewed as a coun-

terexample to a dual version of the Morse–Hedlund Theorem, meaning there

exists no subexponentially growing sequence that asymptotically bounds the

complexity of every zero entropy subshift.

2. Background and notation

2.1. Symbolic Dynamics. Assume that A is a finite set endowed with the

discrete topology, and we call A the alphabet. The space AZ, endowed with

the product topology, is a compact, metrizable space. An element x ∈ AZ

denotes a bi-infinite sequence in the alphabet A, meaning that x = (xi)i∈Z with

each xi ∈ A. The left shift σ : AZ → AZ defined by

(σx)i := xi+1

is continuous and the dynamical system (AZ,σ) is the full A-shift. A subshift

X ∈ AZ is the restriction of σ to any closed, σ-invariant set X .

2.2. Words and complexity. If w = (w0, . . . , wn−1) ∈ An, the cylinder

set [w] in AZ determined by w is defined to be

[w] := {x ∈ AZ : xi = wi for all 0 ≤ i ≤ n− 1}.

If X ⊆ AZ is a subshift, then the language L(X) of X is the set of all words

w ∈ A∗ such that [w] ∩X ,= ∅. For n ∈ N, the set Ln(X) of words of length

n in X is the set

Ln(X) := {w ∈ An : [w] ∩X ,= ∅}.

The block complexity (also known as the word complexity function)

pX : N → N of X is the function that counts the number of words of each

length in X . Thus

pX(n) := |Ln(X)|.

2.3. The natural subshift associated to a language. Given a subshift

(X,σ), its language L(X) satisfies the properties that:

(i) If w ∈ L(X), then every subword of w also belongs to L(X).

(ii) If w ∈ L(X), then there exist nonempty words u, v ∈ L(X) such that

uwv ∈ L(X).
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Conversely, if L is any collection of words over an alphabet A satisfying con-

dition (i), then L = L(X) for some subshift (X,σ). Thus the language of a

subshift determines the subshift, and we can define a subshift by specifying its

language. When we do so, we say that (X,σ) is the subshift defined by the

language L.
Moreover, given a finite list of words v1, . . . , vk, we can consider the collection

of all bi-infinite concatenations of these words, and by taking the shifts of these

bi-infinite sequences, we obtain a subshift (X,σ). We refer to this as the subshift

defined by the words v1, . . . , vk.

2.4. The natural subshift associated to a sequence. Suppose h : N→A
is a function. Fix some a ∈ A and define

y :=





yi = h(i) if i > 0;

yi = a if i ≤ 0.

Then the set

Yh := {σny : n ∈ Z}

is a subshift. Note that Yh contains at most n words of length n that are not

found in contiguous blocks of the function h : N → A. Therefore the number of

such words differs from PYh(n) by at most n. A word w ∈ L(Y ) if and only if

there are arbitrarily large m ∈ N such that wi = h(m + i) for all 0 ≤ i < |w|.
The resulting shift (Yh,σ) is transitive, meaning that it has a point with dense

orbit under the shift (note that the point y has dense orbit).

Of particular interest are functions h that arise in number theory. For ex-

ample, we can consider h to be the Liouville function λ(n), the sequence in

the alphabet {−1, 1} with λ(n) = 1 if n has an even number of prime factors

counted with multiplicity and otherwise is −1, or take h to be the Möbius func-

tion µ(n), the sequence in the alphabet {−1, 0, 1} with µ(n) = 1 if n is square

free and has an even number of prime factors, µ(n) = −1 if n is square free and

has an odd number of prime factors, and otherwise µ(n) = 0. Then studying

the language of Yh gives insight into the number theoretical properties of h.

2.5. Invariant measures on certain subshifts. A Borel measure ν sup-

ported in X is invariant if ν(A) = ν(σ−1A) for all Borel sets A ⊆ X and is

ergodic if ν(A) · ν(X \A) = 0 whenever A = σ−1A. It was recently shown [4]

that if (Y, T ) is a topological dynamical system of entropy zero and if Y supports
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at most countably many ergodic measures, then (Y, T ) satisfies a logarithmic

variant of the Möbius Disjointness Conjecture of Sarnak. Namely, under these

conditions, for every y ∈ Y and every f ∈ C(Y ) we have

lim
N→∞

1

logN

N∑

n=1

f(T ny)µ(n)

n
= 0

where µ is the Möbius function (and the same conclusion holds if µ is replaced

with the Liouville function λ). This result was leveraged in [4] to give a lower

bound on the growth of words in the language of the Liouville shift: Yλ,

showing that the Liouville shift has superlinear block growth (note again that

the question of whether PYλ(n) grows superlinearly is equivalent to the question

of whether the number of words of length n that occur in the Liouville sequence

grows superlinearly). Along with the deep result on logarithmic disjointness

that they prove, they rely on a bound on the number of ergodic measures that

can be supported by a subshift with linear growth.

As a corollary of our result in Theorem 1.1, any proof showing that the

Liouville shift has a growth rate that is faster than some explicit superlinear

bound necessarily relies on deeper information from number theory, rather than

only on estimates on the number of ergodic measures.

3. Proof of Theorem 1.1

Suppose (pn) is a sequence of natural numbers satisfying

lim inf
n→∞

pn
n

= ∞.

We construct a minimal subshift X , depending on the sequence (pn), that sup-

ports uncountably many ergodic measures and is such that

lim inf
n→∞

PX(n)

pn
= 0.

We build the system inductively, by constructing words at each level and

then using these words to define the language of a subshift. Throughout we use

superscripts to denote the level of the construction and subscripts to denote the

words constructed at this level.
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Step 1: the base step of the construction. Set A = {0, 1}. Define

w1
1 = 00 · · · 00︸ ︷︷ ︸

N1 times

1

and

w1
2 = 011 · · ·11︸ ︷︷ ︸

N1 times

,

where N1 is a large integer to be determined later. Note that the words w1
1

and w1
2 are distinct, as can be seen from the different frequencies of 0’s and 1’s.

Define X1 ⊆ AZ to be the subshift of AZ consisting of all x ∈ AZ that can be

written as bi-infinite concatenations of the words w1
1 and w1

2 . Consider n1 =

.N1/2/ (note that .·/ denotes the floor function). Then Ln1(X1) contains a word

of all 0’s, a word of all 1’s, all words with exactly one 1 (by concatenating w1
1

with itself), all words with exactly one 0 (by concatenating w1
2 with itself), all

words that begin with a continuous string of 0’s followed by a continuous string

of 1’s (by concatenating w1
1 and w1

2), and all words with a continuous string

of 1’s followed by a continuous string of 0’s (by concatenating w1
2 and w1

1). Thus

for n1 = .N1/2/,
PX1 (n1) = 4n1 − 2

and so if Y ⊆ X1 is any subshift, then

PY (n1) ≤ 4n1 − 2.

Step 2: the inductive step. Assume we have constructed a nested sequence

of subshifts

Xk ⊆ Xk−1 ⊆ Xk−2 ⊆ · · · ⊆ X1 ⊆ AZ

and an increasing sequence of integers n1 < n2 < · · · < nk such that we have

PXi(ni) ≤
(
ni−1

2

)
· 2i−1|wi−1

1 | · ni

for i = 1, 2, . . . , k. Moreover, for each i = 1, 2, . . . , k, suppose we have con-

structed distinct words

wi
1, w

i
2, . . . , w

i
2i ,

all of which have the same length, all of which lie in L(Xi−1), all of which are

concatenations of words from the set {wi−1
1 , . . . , wi−1

2i−1}, and are such that Xi

is the subshift of Xi−1 consisting of all words that can be written as bi-infinite

concatenations of wi
1, w

i
2, . . . , w

i
2i . Further assume that for any 1 ≤ j < k ≤ 2i,

there is no subword of length |wi
1| that occurs in both wi

jw
i
j and wi

kw
i
k. Note that



126 V. CYR AND B. KRA Isr. J. Math.

since wi
1, . . . , w

i
2i are concatenations of words from the set {wi−1

1 , . . . , wi−1
2i−1}, all

concatenations of wi
1, . . . , w

i
2i are elements of Xi−1. Finally, for i > 1, suppose

that for 1 ≤ j ≤ 2i, the wordwi
j contains each of the wordswi−1

1 , wi−1
2 , . . . , wi−1

2i−1

somewhere as a subword.

To construct Xk+1, we start by defining

wk+1
1 = (

Sk times︷ ︸︸ ︷
wk

1w
k
1 · · ·wk

1 w
k
2 )(

Sk times︷ ︸︸ ︷
wk

1w
k
1 · · ·wk

1 w
k
2 ) · · · (

Sk times︷ ︸︸ ︷
wk

1w
k
1 · · ·wk

1 w
k
2 )︸ ︷︷ ︸

Nk times

wk
2w

k
3 · · ·wk

2k

and

wk+1
2 = (

Sk times︷ ︸︸ ︷
wk

1w
k
1 · · ·wk

1 w
k
1 )(

Sk times︷ ︸︸ ︷
wk

1w
k
1 · · ·wk

1 w
k
1 ) · · · (

Sk times︷ ︸︸ ︷
wk

1w
k
1 · · ·wk

1 w
k
1 )︸ ︷︷ ︸

Nk times

wk
2w

k
3 · · ·wk

2k

where the brackets have no mathematical meaning other than to draw attention

to the periodic nature of the initial prefix of these words and the fact that the

word being periodized in wk+1
1 is different from that in wk+1

2 . Again, Nk and Sk

are large integers to be determined later. We continue the construction: for

1 < j ≤ 2k, defining

vkj =

Sk times︷ ︸︸ ︷
wk

jw
k
j · · ·wk

j ,

we define

wk+1
2j−1 = wk

1w
k
2 · · ·wk

j−1 (v
k
jw

k
j+1)(v

k
jw

k
j+1) · · · (vkjwk

j+1)︸ ︷︷ ︸
Nk times

wk
j+1w

k
j+2 · · ·wk

2k

and

wk+1
2j = wk

1w
k
2 · · ·wk

j−1 (v
k
jw

k
j )(v

k
jw

k
j ) · · · (vkjwk

j )︸ ︷︷ ︸
Nk times

wk
j+1 · · ·wk

2k ,

where wk+1
2k+1+1 := wk+1

1 , meaning that subscripts are understood modulo 2k+1.

Note that for 1 ≤ j < i ≤ 2k+1, we claim that the words of length |wk+1
1 |

that occur in the word wk+1
i wk+1

i are distinct from those that occur in the

word wk+1
j wk+1

j (provided Nk is sufficiently large). If i = j + 1, the claim fol-

lows because wk
j+1 occurs at least Nk times in any subword of length |wk+1

1 |
in wk+1

j wk+1
j (once in each copy of the periodized word vkjw

k
j+1) and occurs

at most |wk
1 | · 2k times in wk+1

i wk+1
i (since it does not occur anywhere in
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the periodized word and can only occur in the prefix or suffix, which collec-

tively have length |wk
1 | · 2k). For Nk > |wk

1 | · 2k, no such word can occur in

both wk+1
j wk+1

j and wk+1
i wk+1

i . If i > j + 1, the claim follows because wk
j

occurs at least Sk · Nk times in any subword of length |wk
1 | in wk+1

j wk+1
j and

occurs at most |wk
1 | · 2k times in wk+1

i wk+1
i . Further note that the frequency

with which words of length |wk
j | that occur in wk

jw
k
j , occur as subwords in wk+1

2j−1

and wk+1
2j is at least NkSk|wk

1 |/|wk+1
1 |. By choosing Nk sufficiently large, this

can be made arbitrarily close to 1. Thus, by choosing Nk sufficiently large, any

word (or collection of words) that occur with frequency δ in wk
jw

k
j can be made

to occur with frequency arbitrarily close to δ in wk+1
2j−1 and wk+1

2j . Furthermore,

for i /∈ {2j − 1, 2j}, the frequency with which words of length |wk
j | that occur

in wk
jw

k
j occur in wk+1

i is at most 1−NkSk|wk
1 |/|wk+1

1 |, as these words do not

occur in any wk
t w

k
t for any t ,= j (and subwords of this form occur with fre-

quency at least NkSk|wk
1 |/|wk+1

1 | in wk+1
i ). Again, by choosing Nk sufficiently

large, this frequency can be made arbitrarily close to zero.

Define Xk+1 ⊆ Xk to be the subshift consisting of all words that can

be written as bi-infinite concatenations of the words wk+1
1 , wk+1

2 , . . . , wk+1
2k+1 .

Note that, by construction, every word of the form wk+1
j contains each of

the words wk
1 , w

k
2 , . . . , w

k
2k as a subword. Furthermore, Xk+1 ⊆ Xk and each

element of Xk+1 can be written as a bi-infinite concatenation of the words

wk+1
1 , wk+1

2 , . . . , wk+1
2k+1 .

Define

nk+1 := .|wk+1
1 |/2/

to be half the (common) length of the words wk+1
1 , . . . , wk+1

2k+1 . We claim that

PXk+1(nk+1) ≤
((

2k

2

)
+ 1

)
nk+1.

Each of the words wk+1
i consists of a prefix region in which wk

1 , . . . , w
k
i−1

are concatenated in order, then a periodic region in which either wk
i is self-

concatenated or wk
i w

k
i · · ·wk

i w
k
i+1 is self-concatenated, and finally a

suffix region in which wk
i+1, . . . , w

k
2k are concatenated in order. Any word

in Lnk+1(Xk+1) occurs either entirely within some word wk+1
i or partially over-

laps two words wk+1
i1

and wk+1
i2

. For words of the first type, they may occur

entirely within the periodic region or they start within the first 2k|wk
1 | letters

or they end within the last 2k|wk
1 | letters of wk+1

i . For those in the periodic

region, there are at most 2k+1(Sk + 1)|wk
1 | many such words since this is the



128 V. CYR AND B. KRA Isr. J. Math.

number of words constructed multiplied by the maximal period of the periodic

region. For those overlapping two of the regions, there are at most 2k+1|wk
1 |

such words. Words of the second type must overlap wk+1
i1

and wk+1
i2

for some

i1 ,= i2 and so must start within the last nk+1 letters of wk+1
i1

, and there are at

most
(
2k+1

2

)
nk+1 such words. Therefore

PXk+1 (nk+1) ≤2k+1(Sk + 1)|wk
1 |+ 2k+1|wk

1 |+
(
2k+1

2

)
nk+1

≤
((

2k+1

2

)
+ 1

)
nk+1,

so long as nk+1 is sufficiently large when compared to nk.

This establishes the assumptions of the inductive hypothesis, and gives us an

infinite nested chain of subshifts

AZ ⊇ X1 ⊇ X2 ⊇ X3 ⊇ · · · ⊇ Xk ⊇ · · · .

Step 3: construction and growth properties of the subshift X. The

word wk+1
1 starts with the word wk

1 for all k and so there is a {0, 1}-coloring of

N such that for all k, the prefix of length |wk
1 | is wk

1 . Let X̃ be the orbit closure

of this word in AN and let (X,σ) be its natural extension to a subshift of AZ.

It follows immediately from the construction that

X ⊆
∞⋂

k=1

Xk

and (X,σ) is a nonempty subshift. We have constructed an increasing sequence

n1 < n2 < · · · < nk < · · · such that

PX(nk) ≤
((

2k

2

)
+ 1

)
nk

for all k > 1. The integers nk are on the order of 1/2 of the parameters Nk|wk
1 |,

and in particular tend to infinity as Nk tends to infinity. The parameters Nk

have not yet been fixed, and we put some constraints on them now. Recall that

we are given the sequence (pn) such that

lim inf
n→∞

pn
n

= ∞.

For each k ≥ 1, there exists Mk such that for all n ≥ Mk, we have

pn > k ·
((

2k

2

)
+ 1

)
n.
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Fix an increasing sequence of integers (Mk) with this property. We assume that

Nk is chosen to be sufficiently large such that Nk > 2Nk−1 and nk > Mk. Since

PX(nk)/pnk < 1/k for all k, we have that

lim inf
n→∞

PX(n)

pn
= 0.

Moreover, note that for any k > 1 we have X ⊆ Xk. Since Xk consists

only of words that can be obtained as bi-infinite concatenations of the words

wk
1 , . . . , w

k
2k and each of these words contains all of the words wk−1

1 , . . . , wk−1
2k−1

as a subword, it follows that each of the words wk−1
1 , . . . , wk−1

2k−1 occurs synde-

tically in every element of Xk (hence also in every element of X) with gap at

most |wk
1 |. Since every word in L(X) is itself a subword of wk

1 for some k, it

follows that every word in L(X) occurs syndetically in every element of X with

a bound on the gap that depends on the word but not on the element of X .

Hence (X,σ) is minimal.

Step 4: the set of ergodic measures on X. Fix a sequence (δi) of positive

real numbers in the interval (0, 1) such that

∆ :=
∞∏

i=1

δi >
9

10
.

Then for any k > 1, we also have
∏∞

i=k δi > 9/10. Recall that every word of the

form wk
i consists of a prefix region, a periodic region, and a suffix region, where

the lengths of the prefix and suffix regions are bounded independently of Nk.

Thus we can further choose Nk to grow sufficiently quickly such that

Nk

|wk+1
i |

· Sk

Sk + 1
> δk

for all i = 1, . . . , 2k (recall that all of these words have the same length). It

follows from this choice that the frequency with which wk
j (and the other words

of length |wk
j | that occur when this word is self-concatenated) occur in wk+1

2j−1

and wk+1
2j is at least δk.

We claim that for each word wk
i , the set of ergodic measures giving measure

at least ∆ to the set [wk
i w

k
i ] is nonempty. Moreover, we claim that the set of

ergodic measures giving measure at least ∆ to the set

|wk
i |⋃

j=0

σj [wk
i w

k
i · · ·wk

i︸ ︷︷ ︸
Sk+1 times

]
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is nonempty and that the set of ergodic measures giving measure at least ∆ to

the set

|

Sk times︷ ︸︸ ︷
wk

i w
k
i · · ·wk

i wk
i+1|⋃

j=0

σj [(

Sk times︷ ︸︸ ︷
wk

i w
k
i · · ·wk

i w
k
i+1)(

Sk times︷ ︸︸ ︷
wk

i w
k
i · · ·wk

i w
k
i+1) · · · (

Sk times︷ ︸︸ ︷
wk

i w
k
i · · ·wk

i w
k
i+1)︸ ︷︷ ︸

Nk times

]

is also nonempty. The first claim follows from either of the latter two. We show

the former, the latter being similar.

Observe that wk+1
2i has a periodic region which is a long series of self- con-

catenations of wk
i , that wk+2

4i has a periodic region which is a long series of

self-concatenations of wk+1
2i , and similarly wk+j

2j i has a periodic region which is

a long series of self-concatenations of wk+j−1
2j−1i . As these are all words in the

language of X and X is closed, there is an element of X for which the natural

frequency of wk
i (and the other words of length |wk

i | that occur when it is

self-concatenated) is at least
∏∞

j=k δj > ∆. This follows because wk
i (and the

other words of length |wk
i | that occur when it is self-concatenated) occur with

frequency at least δk in wk+1
2i , and inductively occurs with frequency at least

#∏

j=k

δj

in w#
w"−ji for any %. Therefore there is an invariant probability measure on X

that gives the union of these cylinder sets measure at least ∆ and so there must

be at least one ergodic measure that also has this property. The claim follows.

We next show that the set of ergodic measures on X is uncountable (in fact

with cardinality c). We have shown that for each k and 1 ≤ i ≤ 2k, there are

two disjoint sets of ergodic measures giving large measure to the word wk
i and

its periodic shifts. The first (which we refer to as type 0) gives large measure

to

wk
i w

k
i . . . w

k
i︸ ︷︷ ︸

Nk times

(and its periodic shifts), whereas the second (which we refer to as type 1) gives

small measure to this set and large measure to

(

Sk times︷ ︸︸ ︷
wk

i w
k
i . . . w

k
i w

k
i+1)(

Sk times︷ ︸︸ ︷
wk

i w
k
i . . . w

k
i w

k
i+1) . . . (

Sk times︷ ︸︸ ︷
wk

i w
k
i . . . w

k
i w

k
i+1)︸ ︷︷ ︸

Nk times
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(and its periodic shifts). Fix an infinite sequence a0, a1, . . . of 0’s and 1’s. For

each j, let νj be an element of the set of ergodic measures on X that start by

giving large measure to w1
1 and then are of type at for each t = 1, 2, . . . , j. Let ν

be a weak-* limit of a subsequence of these measures so that ν gives measure at

least ∆ to the word defining its type for each t = 1, 2, . . . . If we had chosen any

other sequence of 0’s and 1’s it would have differed from (at) at some finite stage

and so there would be a cylinder set the measure resulting from that sequence

gives large measure to which was given small measure by ν. Therefore each

infinite sequence of 0’s and 1’s produces its own measure ν. Now, returning to

the measure ν, consider the sequence (at) and the associate union of cylinder

sets (which we call St) that are given measure at least
∏∞

k=t δk by ν. Define

Aν =
∞⋂

t=1

St.

Note that

ν

(( k−1⋂

t=1

St

)
\
( k⋂

t=1

St

))
≤ 1− δk

and so we can arrange that

ν

( k⋂

t=1

St

)
> 8/10

for all k by choosing δk to tend to 1 sufficiently rapidly. It follows

that ν(Aν ) ≥ 8/10. Therefore there is an ergodic measure giving the set Aν

measure at least 8/10 and so there is no loss of generality in assuming that ν is

ergodic. Therefore the set of ergodic measures is uncountable.

This completes the proof of Theorem 1.1. We note that by modifying the

initial words w1
1 and w1

2 , we can achieve the same result but ensure that the

language has balanced numbers of short patterns. More precisely, replacing

the initial use of 0 by the word 01100110 and the initial use of 1 by the word

11100100 and carrying out the same construction, we have a system in which

the average number of 0’s and 1’s on any short range is approximately one half.

This follows because all words later constructed are concatenations of w1
1 and

w1
2 and so any word in the language of the shift of length larger than fourteen

can be made into a word that is a concatenation of w1
1 ’s and w1

2 ’s by removing

at most seven letters from each side of it (and this slightly shorter word has

precisely the same number of 0’s as 1’s).
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4. Measure-theoretic complexity

4.1. Definition of slow entropy. We review the definition of slow entropy,

as defined by Katok and Thouvenot [6] and Ferenczi [3], adopting Ferenczi’s

notation in a way more convenient for our setting.

Assume that (X,σ) is a subshift. For u, v ∈ Ln(X), the Hamming distance

dH(u, v) between u and v is

dH(u, v) =
|{0 ≤ i < n : ui ,= vi}|

n
,

and this defines a metric on Ln(X). For fixed ε > 0 and u ∈ LN (X), define the

ball Bε(u) of radius ε around u by

Bε(u) = {v ∈ Ln(X) : dH(u, v) < ε}.
Further assume that µ is an invariant measure on the shift (X,σ). When slow

entropy is defined in [6] and [3], they consider an arbitrary measure preserv-

ing system and so a generating partition is a necessary ingredient. As we are

restricting ourselves to symbolic systems, we can assume that the space X is

partitioned into cylinder sets of length one. We implicitly make this assumption

throughout and omit the partition from the notation.

Define K(n, ε,σ) to be the minimum number of words u1, u2, . . . , uk ∈ Ln(X)

such that

µ

( k⋃

i=1

Bε(ui)

)
> 1− ε.

If ε1 < ε2, then for any u ∈ Ln(X), we have Bε1(u) ⊆ Bε2(u). Thus

K(n, ε2,σ) ≤ K(n, ε1,σ),

meaning that K(n, ε,σ) increases as ε decreases. If (cn)n∈N is a non-decreasing

sequence of positive integers with cn → ∞, we say P−
σ (n) & (cn) if

lim
ε→0

lim inf
n→∞

K(n, ε,σ)

cn
≥ 1.

Similarly, we say that P−
σ (n) ≺ (cn) if

lim
ε→0

lim inf
n→∞

K(n, ε,σ)

cn
≤ 1.

The analogous limits with lim inf replaced by lim sup define the conditions that

P+
σ (n)&(cn) and P+

σ (n)≺(cn), respectively. It is shown in [6] and [3] that for any

fixed sequence (cn), the statement P−
σ (n)≺(cn) is a measure theoretic conjugacy

invariant for (X,µ,σ) (as is the analogous statement for P+
σ (n)&(cn)).
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These notions of P−
σ (n) and P+

σ (n) clarify the statement of Theorem 1.2, and

we reproduce the statement:

Theorem (Theorem 1.2): Assume (an)n∈N and (bn)n∈N are two non-decreasing

sequences of positive integers such that lim an = ∞, lim 1
n · log(bn) = 0, and

an ≤ bn for all n ∈ N. There exists a minimal subshift (X∞,σ) of topological

entropy zero and an ergodic measure µ supported on X∞ such that

P−
σ (n) ≺ (an) and P+

σ (n) & (bn).

Before turning to the proof, we make a few remarks to place the result in

context. Ferenczi showed the following:

Theorem 4.1 (Ferenczi [3, Proposition 3]): Let (X,σ) be a subshift and sup-

pose µ is an ergodic measure supported onX . Then the following are equivalent:

(i) (X,µ,σ) is a Kronecker system;

(ii) P−
σ (n) ≺ (cn) for any non-decreasing sequences (cn) that tends to

infinity;

(iii) P+
σ (n) ≺ (cn) for any non-decreasing sequences (cn) that tends to

infinity.

This means that the assumption on the lower bound (an)n∈N in Theorem 1.2

can not be lowered as long as we still require that P+
σ (n) & (bn), as this second

condition implies that (X,µ,σ) is not a Kronecker system and so there must be

some sequence (cn)n∈N that tends to infinity and is such that P−
σ (n) & (cn).

At the other extreme, Katok showed:

Theorem 4.2 (Katok [5, Theorem 1.1]): Let (X,σ) be a subshift and suppose µ

is an ergodic measure supported on X . Then the following are equivalent:

(i) (X,µ,σ) has positive entropy;

(ii) there exists λ > 1 such that P−
σ (n) & (λn);

(iii) there exists λ > 1 such that P+
σ (n) & (λn).

In particular, since (an)n∈N grows subexponentially and P−
σ (n) ≺ (an), this

implies that (X,µ,σ) has zero entropy and so we cannot have P+
σ (n) & (bn)

for any sequence (bn)n∈N with positive exponential growth rate. Theorem 1.2

implies that, even subject to the requirement that P−
σ (n) ≺ (an), P+

σ (n) can

grow as quickly as we want, subject to the necessary condition that it grow

subexponentially, as given by Katok’s Theorem.
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Katok and Thouvenot [6] and Serafin [9] give constructions of a subshift with

zero topological entropy and P+
σ (n) growing arbitrarily quickly (of course still

subject to the condition that the growth be subexponential), but without a re-

quirement that P−
σ (n) grow slowly. In showing that we achieve our upper bound

(what we refer to as the loud phase), our construction and the derivation of its

properties has many features in common with their constructions. However, as

we generalize this approach, we include all details for the sake of clarity.

4.2. Large-scale features of the construction. We fix the non-decreas-

ing sequences (an)n∈N and (bn)n∈N of positive integers such that limn→∞ an=∞,

limn→∞
1
n · log(bn) = 0, and an ≤ bn for all n ∈ N. Let (εn)n→∞ be a decreas-

ing sequence of positive real numbers such that limn→∞ εn = 0. We inductively

construct a descending sequence of positive entropy subshifts:

AZ =: X0 ⊇ X1 ⊇ X2 ⊇ X3 ⊇ · · · ⊇ Xn ⊇ · · ·

and an increasing sequence of positive integers

N1 < P1 < N2 < P2 < N3 < P3 < · · · .

In our construction, we show that

X∞ :=
∞⋂

i=1

Xi

is nonempty and show that if µ is any ergodic measure supported on X∞, then

(1) K(Ni, 1/8,σ) > bNi

and

(2) K(Pi, εi,σ) ≤ aPi .

Since K(n, ε,σ) increases as ε decreases, it follows that for sufficiently small

ε > 0,

lim sup
n→∞

K(n, ε,σ)

bn
≥ lim sup

i→∞

K(Ni, ε,σ)

bNi

≥ lim sup
i→∞

K(Ni, 1/8,σ)

bNi

≥ 1,

meaning that

lim
ε→0

lim sup
n→∞

K(n, ε,σ)

bn
≥ 1,
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and so P+
σ (n) & (bn). Similarly, since limi→∞ εi = 0 and again passing to the

subsequence (Pi)i∈N, it follows that

lim inf
n→∞

K(n, ε,σ)

an
≤ lim inf

i→∞

K(Pi, ε,σ)

aPi

≤ lim inf
i→∞

K(Pi, εi,σ)

aPi

≤ 1.

This means that

lim
ε→0

lim inf
n→∞

K(n, ε,σ)

an
≤ 1

and so P−
σ (n) ≺ (an). Therefore, to prove Theorem 1.2, it suffices to construct

the shift X∞, the ergodic measure µ and show that they satisfy (1) and (2). To

show that this construction can be carried out to produce a minimal shift, we

note that by the Jewett–Krieger Theorem there is a strictly ergodic model for

(X∞, µ,σ) and this model must obey the same slow entropy bounds because

they are invariants of measure theoretic conjugacy. We start in Section 4.3

by providing estimates on how the words in the language of the shift must be

constructed and then in Section 4.4 complete the construction of the subshift

and verify its properties.

4.3. Estimates for the language. We start with a lemma for use in the

proof of the main theorem:

Lemma 4.3: Let k, n ∈ N be fixed and let A1, . . . , A2k−1 ⊆ {1, 2, . . . , n} be any

collection of subsets satisfying |Ai| ≥ n/2 for i = 1, . . . , 2k−1. Then there exist

distinct indices 1 ≤ i1 < i2 < · · · < ik ≤ 2k − 1 and s ∈ {1, 2, . . . , n} such that

s ∈ Aij for all j = 1, 2, . . . , k.

Proof. For contradiction, suppose A1, . . . , A2k−1 ⊆ {1, 2, . . . , n} are a collection

of subsets satisfying |Ai| ≥ n/2 for i = 1, . . . , 2k − 1, but no subcollection of k

of these sets have nonempty intersection. For each x ∈ {1, 2, . . . , n}, let i(x)

denote the number of distinct indices j such that x ∈ Aj . Then i(x) ≤ k − 1

for all x and so

n(k − 1) <
2k−1∑

i=1

|Ai| =
k−1∑

m=0

m · |{x : i(x) = m}|

≤
k−1∑

m=0

(k − 1) · |{x : i(x) = m}| = n(k − 1),

where the last equality holds since the level sets of i(x) partition {1, 2, . . . , n}.
Thus no such collection of sets exists.
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Lemma 4.4: Let A be a finite alphabet and suppose k,N,M ∈ N are fixed and

assume that M > 1. Let w1, . . . , wk ∈ LN (AZ) and for each 1 ≤ i ≤ k, let

vi = wiwiwi · · ·wi︸ ︷︷ ︸
M times

.

Let (X,σ) denote the subshift (with alphabetA) defined by the words v1, . . . , vk.

Assume P ∈ [1, NM) is an integer and letWP ⊆ LP (X) be the set of all words u

for which there exists i such that u is a subword of vi. Then if µ is any ergodic

measure supported on X , we have

µ

( ⋃

w∈WP

[w]

)
≥ 1− P − 1

NM
.

Proof. Assume µ is an ergodic measure supported onX and set S =
⋃

w∈WP
[w].

By the pointwise ergodic theorem, there exists x ∈ X such that

µ(S) = lim
n→∞

1

2n+ 1

n∑

i=−n

1S(σ
ix).

By definition of the subshift (X,σ), the element x can be parsed into a bi-

infinite concatenation of the words v1, . . . , vk. Fix one such way to parse x and

let I ⊆ Z be the set of indices at which these words begin; note that I is an

arithmetic progression in Z with gap NM . For each i ∈ Z, the cylinder set of

length P that contains σix is contained in S, unless i lies within distance P − 1

of the smallest element of I larger than i. Thus for any n ∈ N,
n∑

i=−n

1S(σ
ix) ≥ 2n+ 1− (P − 1) · |I ∩ [−n, n]|.

Since I is an arithmetic progression with gap NM , it follows that

µ(S) ≥ lim
n→∞

2n+ 1− (P − 1) · |I ∩ [−n, n]|
2n+ 1

≥ 1− P − 1

NM
.

Lemma 4.5: LetN ∈ N and ε > 0 be fixed. For each n, letWn ⊆ {1, 2, . . . , N}n

be the set of words w = (w0, w1, . . . , wn−1) for which

(1 − ε)
n

N
< |{i ∈ [0, n) : wi = a}| < (1 + ε)

n

N

for all a ∈ {1, 2, . . . , N}. Then there exists M such that for all n > M , we have

|Wn| > (1 − ε)Nn.
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Proof. Let ν be the (1/N, 1/N, . . . , 1/N)-Bernoulli measure on {1, 2, . . . , N}N.
By the pointwise ergodic theorem, for almost all x ∈ {1, 2, . . . , N}N and for each

a ∈ {1, 2, . . . , N} we have

lim
n→∞

1

n

n−1∑

i=0

1[a](σ
ix) = ν([a]) =

1

N
.

Therefore there exists M(x) such that for all n > M(x) we have

1− ε

N
<

1

n

n−1∑

i=0

1[a](σ
ix) <

1 + ε

N

for all a ∈ {1, 2, . . . , N}. Thus there is some M and a set S of ν-measure at

least 1 − ε such that these inequalities hold for any x ∈ S and any n > M .

Setting wn(x) = (x0, x1, . . . , xn−1), we have that

ν

( ⋃

x∈S
[wn(x)]

)
≥ ν(S) ≥ 1− ε.

Since the ν-measure of each word of length n is 1/Nn, it follows that the number

of distinct words of length n that can be written as wn(x) for some x ∈ S is at

least (1− ε)Nn.

We combine these to derive our key estimate on the statistics in the language:

Proposition 4.6: Let N ∈ N, ε > 0, and 0 < α < N−1
N be fixed. Then there

exists M ∈ N and λ = λ(N, ε,α) > 1 such that for any n > M , there is a set of

words w1, . . . , wk ∈ {1, 2, . . . , N}n satisfying

dH(wi, wj) > α for all i ,= j

with k > λn and for all a ∈ {1, 2, . . . , N},

(1− ε)
n

N
< |{i ∈ [0, n) : wi = a}| < (1 + ε)

n

N
.

Moreover, these words can be chosen such that for any 1 ≤ j1 < j2 ≤ k, no

word of length n that occurs as a subword of wj1wj1 is also a subword of wj2wj2 .

Proof. Let w ∈ {1, 2, . . . , N}n be fixed. A classical use of Stirling’s Formula

(see for example [5, Equation (1.3)]) shows that, since 0 < α < N−1
N ,

lim
n→∞

1

n
log |{u ∈{1, 2, . . . , N}n : dH(u,w) < α}|

=α log(N − 1)− α logα− (1− α) log(1− α).
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Set

f(x) = x log(N − 1)− x log x− (1− x) log(1− x).

Then for x < (N − 1)/N , the derivative of f(x) is positive and

lim
x→[(N−1)/N ]−

f(x) = log(N).

Thus f(α) < log(N), and so there exists M ∈ N and δ > 0 sufficiently small

such that (1 + δ)f(α) < log(N) and such that for all n > M ,

|{u ∈ {1, 2, . . . , N}n : dH(u,w) < α}| < 2n·(1+δ)f(α).

By Lemma 4.5, ifWn is the set of all wordsw=(w0, w1, . . . , wn−1)∈{1, 2, . . . , N}n

for which

(1− ε)
n

N
< |{i ∈ [0, n) : wi = a}| < (1 + ε)

n

N
,

then |Wn| > (1 − ε)Nn for all sufficiently large n. Adjusting the value of M if

necessary, we can assume this holds for all n > M . But for each w ∈ Wn, we

have

|{u∈Wn : dH(u,w)<α}|≤ |{u ∈ {1, 2, . . . , N}n : dH(u,w) < α}| ≤ 2n·(1+δ)f(α).

This means there is a set of at least
⌊ (1− ε)Nn

2n·(1+δ)f(α)

⌋

elements of Wn that are pairwise at least α separated in the Hamming distance.

If u, v are two words in this set and if some word w of length |u| = |v| occurs as
a subword of uu and vv, then u is itself a subword of vv. Thus there is a subset

of size at least

k(n) :=
1

n
·
⌊ (1− ε)Nn

2n·(1+δ)f(α)

⌋

with the additional property that for any u, v in this list, no word of length n

occurs as a subword of both uu and vv.

Since (1 + δ)f(α) < log(N), it follows that

g := lim
n→∞

log k(n)

n
= log(N)− (1 + δ)f(α) > 0.

Thus if λ := 2g/2, then λ > 1 and k(n) ≥ λn for all n > M .
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4.4. Construction of the subshifts. The remainder of this section is de-

voted to the proof of Theorem 1.2.

We construct a sequence of subshifts inductively. Each step of the construc-

tion involves the construction of two nested subshifts, with the larger one being

referred to as the “noisy” phase and the smaller one being referred to as the

“quiet” phase. At each stage of the construction, we appeal to Proposition 4.6,

and this necessitates the definition of two auxiliary sequences. Set α0 = 1/3

and let (αi)i>0 be an increasing sequence of real numbers with 0 < αi < 1 for

all i ∈ N and such that

(3)
∞∏

i=1

αi >
3

4
.

This sequence provides the parameter α appearing in Proposition 4.6 for each

step of the construction. Next let {εi}i≥0 be a decreasing sequence of real

numbers with 0 < εi < 1 for all i and such that

(4)
∞∏

i=1

(1− εi) >
99

100
.

This sequence provides the parameter ε appearing Proposition 4.6.

Base Loud Phase. Let X0 := {1, 2}Z and M0 = 1. Thus X0 is a subshift

on N0 := 2 letters. Since 1/3 = α0 < N0−1
N0

, we can apply Proposition 4.6

with parameters N = N0, ε = ε0, and α = α0. Thus there exists λ0 > 1

such that for any sufficiently large integer n, we can find a set of words

w1(n), w2(n), . . . , wk(n)(n) ∈ {1, 2}n where k(n) > λn
0 and such that for each

a ∈ {1, 2}, the following conditions are satisfied:

(i) We have the estimate (1 − ε0)n2 < Ba < (1 + ε0)n2 for all i, where Ba

denotes the number of locations where the letter a occurs in wi(n).

(ii) We have the distances separated, meaning that dH(wi(n), wj(n)) > α0

for any i ,= j.

(iii) No word of length n occurs as a subword of both wi(n)wi(n) and

wj(n)wj(n) for some i ,= j.

Let N1 be an integer which is sufficiently large that we can choose such a set

of words, such that λN1
0 > 4bN1, and such that α1 < N1−1

N1
. Let k1 := k(N1) be

the number of words constructed in this way and let w1, . . . , wk1 ∈ {1, 2}N1 be

the words produced by the construction. Finally let L1 ⊆ X0 be the subshift

of X0 defined by the words w1, w2, . . . , wk1 .
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Base Quiet Phase. Choose an integer P1 > N1 sufficiently large that

|w1|+ |w2|+ · · ·+ |wk1 | = k1N1 < aP1

and then choose an integer M1 such that (P1 − 1)/(N1M1) < ε0. For each

1 ≤ i ≤ k1, define

vi := wiwiwi · · ·wi︸ ︷︷ ︸
M1 times

.

Let X1 ⊆ L1 be the subshift defined by the words v1, . . . , vk1 . We apply

Lemma 4.4 with parameters A = {1, 2}, k = k1, N = N1, M = M1, and

P = P1 ∈ [1, NM). If W = WP1 is the set of words of length P1 that occur

as subwords of the words v1, . . . , vk1 , then for any ergodic measure µ supported

on X1 we have

µ

( ⋃

w∈W
[w]

)
> 1− P1

N1M1
> 1− ε0

and if W̃ = W̃N1 is the set of words of length N1 that occur as subwords of the

words v1, . . . , vk1 , then

µ

( ⋃

w∈W̃

[w]

)
> 1− N1

N1M1
> 1− ε0.

Inductive Loud Phase. Assume we have constructed subshifts

{1, 2}Z =: X0 ⊇ L1 ⊇ X1 ⊇ L2 ⊇ X2 ⊇ · · · ⊇ Li ⊇ Xi,

a sequence of integers N1 < P1 < N2 < P2 < · · · < Ni < Pi, a sequence of

integers M1 < M2 < · · · < Mi, such that the following hold: for each 1 ≤ j ≤ i,

(i) Nj is sufficiently large such that αj <
Nj−1
Nj

;

(ii) there exists λj > 1 and an integer kj such that kj > λ
Nj

j > 4bNj ;

(iii) there exist words wj
1, w

j
2, . . . , w

j
kj

∈ {1, 2}Nj·
∏j−1

s=0 NsMs such that Lj is

comprised of all elements of Xj−1 defined by the words wj
1, . . . , w

j
kj

and for i1 ,= i2 we have

dH(wj
i1
, wj

i2
) >

j∏

s=1

αs

and additionally no word of length |wj
1| occurs as a subword of both

wj
i1
wj

i1
and wj

i2
wj

i2
;
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(iv) for each 1 ≤ t ≤ kj , there is a word

vjt := wj
tw

j
tw

j
t · · ·w

j
t︸ ︷︷ ︸

Mj times

where for any t1 ,= t2 no subword of length

Nj ·
j−1∏

s=0

NsMs

in vjt1 is also a subword of vjt2 , and Xj ⊆ Lj is the subshift of Lj defined

by the words vj1, v
j
2, . . . , v

j
kj
;

(v) if j > 1, then for each 1 ≤ t ≤ kj the word wj
t can be written as a con-

catenation of the words vj−1
1 , . . . , vj−1

kj−1
and so by identifying this set of

kj−1 words with the alphabet {1, 2, . . . , kj−1}, we can identify wj
t with

a word of length Nj written in these letters; with this identification,

for each a ∈ {1, 2, . . . , kj−1}, we have

Nj

kj−1
· (1 − εj−1) < |{i ∈ [0, n) : the ith letter in wj

t is a}|

<
Nj

kj−1
· (1 + εj−1);

(vi) we have Pj > kj , Mj > |wi
1|kj/εj, and (Pj − 1)/(NjMj) < εj , and

if W = WPj is the set of all words of length Pj that occur in Xj as

subwords of vj1, v
j
2, . . . , v

j
kj

and if µ is any ergodic measure supported

on Xj , then

µ

( ⋃

w∈W
[w]

)
> (1− εj),

and if W̃ = W̃Nj is the set of all words of length Nj that occur in Xj

as subwords of vj1, v
j
2, . . . , v

j
kj
, then

µ

( ⋃

w∈W̃

[w]

)
> (1− εj).

Since αi <
Ni−1
Ni

, we can apply Proposition 4.6 with parameters N = ki, ε = εi,

and α = αi. Thus there exists λi > 1 such that for any sufficiently large inte-

ger n, there is a set of words w1(n), w2(n), . . . , wk(n)(n) ∈ {1, 2, . . . , ki}n where

k(n) > λn
i and such that for any a ∈ {1, 2, . . . , ki}, the following conditions are

satisfied:
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(i) We have the estimate (1 − εi) n
ki

< Ba < (1 + εi) n
ki
, where again Ba

denotes the number of locations where the letter a occurs in wi(n).

(ii) We have the distances separated, meaning that dH(wi(n), wj(n)) > αi

for any i ,= j.

(iii) No word of length n occurs as a subword of both wi(n)wi(n) and

wj(n)wj(n) for any i ,= j.

Let Ni+1 be a sufficiently large integer such that we can find such a set of words,

such that λNi+1

i > 4bNi+1 , and such that αi+1 < Ni+1−1
Ni+1

. Let ki+1 := k(Ni+1)

be the number of words constructed in this way. Finally let

wi+1
1 , wi+1

2 , . . . , wi+1
ki+1

∈ {1, 2}Ni+1·
∏i

s=0 NsMs

be the words constructed by concatenating wi
1, . . . , w

i
ki

according to the letters

of the words w1(n), . . . , wki+1(n): for 1 ≤ j ≤ ki+1 if wj(n) = a1a2 · · ·aki then

we define

wi+1
j = wi

a1
wi

a2
· · ·wi

aki
.

Finally let Li+1 ⊆ Xi be the subshift of Xi that is defined by the words

wi+1
1 , wi+1

2 , . . . , wi+1
ki+1

.

Inductive Quiet Phase. Choose an integer Pi+1 > Ni+1 sufficiently large such

that

(5) |wi+1
1 |+ |wi+1

2 |+ · · ·+ |wi+1
ki+1

| = ki+1Ni+1 ·
i∏

s=0

NsMs < aPi+1 .

Find an integer Mi+1 > |wi+1
1 |ki+1/εi+1 such that (Pi+1−1)/(Ni+1Mi+1) < εi.

For each 1 ≤ j ≤ ki+1, define

vi+1
j := wi+1

j wi+1
j wi+1

j · · ·wi+1
j︸ ︷︷ ︸

Mi+1 times

.

Let Xi+1 ⊆ Li+1 be the subshift of Li+1 defined by the words vi+1
1 , . . . , vi+1

ki+1
.

As in the base case, for each 1 ≤ j ≤ ki+1, we choose wi+1
j = wi

a1
wi

a2
· · ·wi

aNi

as a way to parse wi+1
j into a concatenation of words with superscript i. Then

define

ṽi+1
j = (a1a2 · · · aNi)(a1a2 · · · aNi) · · · (a1a2 · · · aNi)︸ ︷︷ ︸

Mi+1 times

to be the identification of vi+1
j with a concatenation of letters {1, 2, . . . , ki},

rather than words {wi
1, w

i
2, . . . , w

i
ki
}. Let X̃i+1 be the subshift of {1, 2, . . . , ki}Z
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defined by the words ṽi+1
1 , . . . , ṽi+1

ki+1
. We then apply Lemma 4.4 with parameters

A = {1, 2, . . . , ki}, k = ki+1, N = Ni+1, M = Mi+1, and we choose

P = Pi+1 ∈ [1, Ni+1Mi+1).

Then if W = WPi+1 denotes the set of words of length Pi+1 that occur as

subwords of ṽi+1
1 , ṽi+1

2 , . . . , ṽi+1
ki+1

and if ν is any ergodic measure supported

on X̃i+1, then

ν

( ⋃

w∈W
[w]

)
> 1− Pi+1

Ni+1Mi+1
> (1− εi).

If W̃ = W̃Ni is the set of words of length Ni that occur as subwords of

ṽi+1
1 , . . . , vi+1

ki+1
, then

ν

( ⋃

w∈W̃

[w]

)
> 1− Ni+1

Ni+1Mi+1
> (1− εi).

Therefore conditions (i)–(vi) of the induction hypothesis are satisfied for j= i+1.

Thus, by induction, we obtain an infinite descending sequence of subshifts

{1, 2}Z =: X0 ⊇ L1 ⊇ X1 ⊇ L2 ⊇ X2 ⊇ · · · ⊇ Li ⊇ Xi ⊇ · · · .

We define

X∞ :=
∞⋂

i=0

Xi.

Since {1, 2}Z is a Baire space (with the usual metric), the intersection of any

nested sequence of subshifts is nonempty and so X∞ is nonempty.

We now assume that µ is an ergodic measure supported on X∞ and we study

its properties.

Analysis of P+(n). Our goal is to show that

K(α, Ni, 1/8,σ) > bNi

for all i. Fix i ∈ N. First we recall the definition of K(Ni, 1/8,σ). For

u ∈ LNi(X∞), let

B1/8(u) = {w ∈ LNi(X∞) : dH(u,w) < 1/8}

be the (1/8)-Hamming ball around u. Define

[B1/8(u)] :=
⋃

w∈B1/8(u)

[w].



144 V. CYR AND B. KRA Isr. J. Math.

With this notation,K(Ni,1/8,σ) is the smallest cardinality of a set U⊆LNi(X∞)

such that

(6) µ

( ⋃

u∈U
[B1/8(u)]

)
>

7

8
.

Fix such a set U ⊆ LNi(X∞). To establish (1), we are left with showing that

|U| > bNi .

Since µ is an ergodic measure supported on X∞, it is also an ergodic measure

supported on Xi (albeit not a measure of full support). The shift Xi is con-

structed by first constructing a set of words wi
1, w

i
2, . . . , w

i
ki

of length Ni and

using them to construct words vi1, v
i
2, . . . , v

i
ki

via the formula

vij = wi
jw

i
jw

i
j · · ·wi

j︸ ︷︷ ︸
Mi times

and Mi is a parameter chosen during the construction. Thus the language

of Xi is defined to be all elements of {1, 2}Z that can be written as bi-infinite

concatenations of vi1, v
i
2, . . . , v

i
ki
. The choice of Mi guarantees, by induction

hypothesis (vi), that for any ergodic measure supported on Xi (in particular,

for µ) if W̃ is the set of words of length Ni that occur as subwords of one of

vi1, v
i
2, . . . , v

i
ki
, then

(7) µ

( ⋃

w∈W̃

[w]

)
> 1− εi.

The construction also guarantees, by induction hypothesis (iii), that for j1 ,= j2
we have

dH(wi
j1 , w

i
j2) >

i∏

s=0

αs ≥
∞∏

s=0

αs > 1/4

(recall that α0 = 1/3 and equation (3)). Now observe that from (6) and (7),

if V ⊆ W̃ is the set of all w ∈ W̃ such that there exists u ∈ U such that

dH(u,w) < 1/8, then

µ

( ⋃

w∈V
[w]

)
>

7

8
− εi ≥

3

4

provided i is sufficiently large. Next observe that if w ∈ V , then w is a word of

length Ni that occurs as a subword of one of vi1, v
i
2, . . . , v

i
ki
. In particular, this

means there exists 1 ≤ j ≤ ki such that w is a subword of wi
jw

i
j (recall that vij
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is just the concatenation of a large number of copies of wi
j and |wi

j | = Ni). We

write

[[wi
j ]] =

⋃

w↪→wi
jw

i
j

[w]

where w ↪→ wi
jw

i
j means w is a word of length Ni that occurs as a subword

of wi
jw

i
j . Therefore there exists a smallest integer 1 ≤ t(w) < Ni such that

the subword of wi
jw

i
j of length Ni that starts on the t(w)th letter is w; let

s(w) denote the set whose only element is t(w) (if wi
jw

i
j is periodic of period

smaller than |wi
j |, let s(w) denote the set of starting points of w, excluding |wi

j |
if w = wi

j). Next recall that

X∞ ⊆ Li+1 ⊆ Xi.

The subshift Li+1 is defined by the words wi+1
1 , . . . , wi+1

ki+1
. The words

wi+1
1 , . . . , wi+1

ki+1
are themselves concatenations of the words ui

1, . . . , u
i
ki

and in-

duction hypothesis (v) guarantees that for any 1 ≤ j ≤ ki and any 1 ≤ t ≤ ki+1,

the relative frequency with which ui
j appears in the concatenation defining wi+1

t

lies between (1 − εi)/ki and (1 + εi)/ki. Recall that no word of length |wi
j1 |

occurs as a subword of both wi
j1w

i
j1 and wi

j2w
i
j2 , for j1 ,= j2, and so words

of length |wi
j1 | that occur as subwords of wi

j1w
i
j1 can occur only in wi

j1w
i
j1 or

possibly as a subword of ui
j2u

i
j3 for some j2 ,= j3 and in this case the occurrence

must partially overlap both of the concatenated words. Since µ is ergodic, if w

is a subword of some wi
jw

i
j of length |wi

j |, then

µ([w]) =
1

2n+ 1

n∑

m=−n

1[w](σ
mx)

for µ-almost every x ∈ X∞. Fix some such x and choose some way to parse x

into a concatenation of the words ui
1, . . . , u

i
ki
. Let I ⊆ Z be the locations

where the words in this concatenation begin; this is an arithmetic progression

in Z with gap NiMi. The frequency with which a shift of x brings one of

the elements of I within distance Ni of the origin (meaning when the word of

length Ni determined by this shift of x is a word that partially overlaps the

break between two of the words in our concatenation) is

Ni/NiMi = 1/Mi.
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Thus we can check:

(1 − 2εi)|s(w)|
ki|wi

1|
≤ (1− εi)|s(w)|

ki|wi
1|

− Ni

NiMi

≤ lim
n→∞

1

2n+ 1

n∑

m=−n

1[w](σ
mx)

≤ (1 + εi)|s(w)|
ki|wi

1|
+

Ni

NiMi

≤ (1 + 2εi)|s(w)|
ki|wi

1|

since Mi > |wi
1|ki/εi by induction hypothesis (vi) (recall that s(w) is 1 unless

it counts the number of occurrences of w in the concatenation wi
jw

i
j where it

occurs). Therefore,

(1 − 2εi)|s(w)|
ki|wi

1|
≤ µ([wi

j ]) ≤
(1 + 2εi)|s(w)|

ki|wi
1|

for all 1 ≤ j ≤ ki. Since

µ

( ⋃

w∈V
[w]

)
≥ 3

4

and since µ[w] ≤ (1+2εi)/ki for each w ∈ V , it follows that |V| ≥ (3ki)/(4+8εi).

For each 1 ≤ j ≤ ki, let Aj ⊆ {1, 2, . . . , |wi
j |} be the set

Aj = {s(w) : w is a word of length |wi
j | that occurs wi

jw
i
j and is in V}.

Since

µ

( ⋃

w∈V
[w]

)
≥ 3

4

and since
(1− 2εi)|s(w)|

ki|wi
1|

≤ µ[w] ≤ (1 + 2εi)|s(w)|
ki|wi

1|
for all w ∈ V , the number of elements of V is at least

3

4
· ki|wi

1|
(1 + 2εi)

≥ ki|wi
1|

2
,

where we count each w ∈ V with multiplicity |s(w)|. Therefore for at least half
of the integers, 1 ≤ j ≤ ki we have

|Aj | ≥
ki
2
.
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By Lemma 4.3, there exists some integer 1 ≤ s ≤ ki such that s ∈ Aj for at

least 1/4 of the integers 1 ≤ j ≤ ki. Let T be this set of integers. Then V
contains the subword of length |wi

1| that occurs in wi
tw

i
t, beginning at location

s for all t ∈ T . Since dH(wi
t1 , w

i
t2) > 1/4 for all t1 ,= t2, it follows that the

subword of length wi
t1 that occurs in wi

t1w
i
t1 starting at location s is Hamming

distance at least 1/4 from the analogous subword in wi
t2w

i
t2 . It follows from

our construction that every element of V is within Hamming distance 1/8 of

some element of U . Since two words of Hamming distance 1/4 cannot be within

distance 1/8 of the same element of U , it follows that |U| is at least |T | ≥ ki/4.

But by construction, ki/4 > bNi , by induction hypothesis (ii). Thus |U| > bNi,

and since U was arbitrary, (1) holds.

Analysis of P−
σ (n). Our goal is to show that

K(Pi, εi,σ) < aPi .

Fix i ∈ N. Note that if w ∈ LPi(X∞), then w ∈ LPi(Xi+1). By induction

hypothesis (vi) recall that if W is the set of words in the language of Xi+1 that

occur as subwords of vi+1
1 , . . . , vi+1

ki+1
then for any ergodic measure µ supported

on Xi+1 we have

µ

( ⋃

w∈W
[w]

)
> 1− εi.

Therefore we can take εi-Hamming balls centered on words in W as a way to

cover a subset of µ-measure at least 1 − εi. But by construction, the words

vi+1
1 , . . . , vi+1

ki+1
are all periodic words of period |wi

1| = |wi
2| = · · · = |wi

ki
| and so

|W| ≤ |wi
1|+ |wi

2|+ · · ·+ |wi
ki
|.

By (5) we know that this quantity is at most aPi . Therefore it is possible to cover

a subset X∞ of µ-measure at least 1 − εi with at most aPi many εi-Hamming

balls around words of length Pi. Therefore

K(Pi, εi,σ) < aPi

and so (2) holds.

Our construction produces a subshift (X∞,σ) with the property that for any

ergodic measure µ supported on σ, we have P−
σ (n) ≺ (an) and P+

σ (n) & (bn).

Since all ergodic measures supported onX∞ satisfy P−
σ (n) ≺ (an) and since (an)

grows subexponentially, Katok’s theorem guarantees that X∞ supports only
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zero entropy measures. Furthermore, the Jewett–Krieger Theorem (see for ex-

ample, Petersen [8]) guarantees that if (Y, T, µ) is an ergodic system of (measure

theoretic) entropy less than log(N), then there is a minimal and uniquely er-

godic system that is measure theoretically isomorphic to our system. Taking

this model for the system, we have the existence of a subshift with all of the

desired properties.

This completes the proof of Theorem 1.2.
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Journal d’Analyse Mathématique 44 (1984), 77–96.

[2] V. Cyr and B. Kra, Counting generic measures for a shift of linear growth, Journal of

the European Mathematical Society 21 (2019), 355–380.

[3] S. Ferenczi, Measure-theoretic complexity of ergodic systems, Israel Journal of Mathe-

matics 100 (1997), 189–207.

[4] N. Frantzikinakis and B. Host, The logarithmic Sarnak conjecture for ergodic weights,

Annals of Mathematics 187 (2018), 869–931.

[5] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Institut

des Hautes Études Scientifiques. Publications Mathématiques 51 (1980), 137–173.
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