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Abstract—To scale the Internet of Things (IoT) beyond a single
home or enterprise, we need an effective mechanism to manage
the growth of data, facilitate resource discovery and name resolu-
tion, encourage data sharing, and foster cross-domain services. To
address these needs, we propose a GlIObaL Directory for Internet
of Everything (GOLDIE). GOLDIE is a hierarchical location-
based IoT directory architecture featuring diverse user-oriented
modules and federated identity management. IoT-specific features
include discoverability, aggregation and geospatial queries, and
support for global access. We implement and evaluate the
prototype on a Raspberry Pi and Intel mini servers. We show
that a global implementation of GOLDIE could decrease service
access latency by 87% compared to a centralized-server solution.

I. INTRODUCTION

As more devices are connected to the Internet and they
acquire additional capabilities, we are moving from the notion
of the Internet of Things (IoT) to the stage of Internet of
Everything (IoE), a broader view coined by Cisco, integrating
people, processes, data, and things [1].

Most current IoT systems are restricted to a single home
or enterprise, often with devices made by a single hardware
manufacturer or device controller, such as Google Home or
Apple HomeKit. Even if different manufacturers all rely on
similar data models (e.g., JSON) for IoT devices, they do
not interoperate. However, new application scenarios depend
on integrating sensor data across heterogeneous devices and
across administrative domains. As an example, commercial
HVAC systems are often managed both locally and through
device management companies. Energy usage monitoring is
useful both within a home and, in aggregate, for utilities to
detect outages.

As one of the key functions in computing systems, directory
services maintain network resources so as to be identified
in a flexible and efficient way [2]-[4]. IoT devices, given
their heterogeneity, benefit from being reachable not just by
name, but also by properties (metadata), whether location
or sensing and actuating capabilities. For discovery, remote
access, and device management, [oT directories are deemed to
be an essential need [5]. With a global directory maintaining
metadata comprising identifier, name, address, credentials,
etc., IoT devices can therefore be exposed to a larger network,
allowing common users to query and browse data.

However, current name-based directory solutions fail for
IoT scenarios since they lack any of the four key features:
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(1) some directories are designed for unique IoT scenarios
or single administrated, while barely extensible for global
access; (2) IoT devices often have geographic restrictions, as
devices may only be accessible within certain areas and are
often useful only based on their geographic location; (3) many
devices are not entirely public and device owners may want to
limit the visibility of devices beyond designated administrative
domains or beyond a geographic region; (4) IoT applications
benefit from semantically rich queries, such as querying for
aggregated information instead of data from a single sensor
or particular types of data. Here, we implement a directory
service that meets these key requirements.

The body of work on global IoT resource directory is
not large, unfortunately. Kafle et al. [5] present a scalable
IoT directory architecture; it dynamically assigns computing
resources of virtual machines and updates cache replicas to
guarantee the lookup performance. Badii et al. [6] leverage a
directory service to manage registry and ownership of devices
for smart city applications. Shelby et al. [7] analyze the REST
architecture and interfaces of the COAP protocol for severely
resource-constrained IoT devices. Jin and Kim [8] build re-
source directories based on Domain Name System (DNS) for
transparent access in heterogeneous network. However, none
of these meets all the design requirements spelled out in the
previous paragraph.

Thus, we propose and implement GOLDIE (for GlObaL
Directory for Internet of Everything), a federated and ge-
ographically distributed global directory for managing the
metadata for IoT and IoE. GOLDIE provides a variety of
lookup functions such as aggregation queries, location-based
queries, customized queries, metadata discoverability, and
federated authentication. Basic directory operations such as
registration, query, update, and deletion, are designed to fit
IoT scenarios. The design and implementation of GOLDIE
seeks to conform to existing standards and solutions, while
avoiding catering to a specific application domain or service.
The metadata format adopted by our system conforms to the
W3C thing description [9], a working standard to formally
organize metadata of IoT as JSON objects. To enable di-
rectories to validate user identities through trusted parties,
user authentication in GOLDIE builds on OpenlD Connect
(OIDC) [10], a commonly-used federated identity management
model. We have implemented a prototype on a Raspberry Pi
and Intel mini servers and have evaluated its performance.
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Evaluations regarding a real-world dataset of four different
applications justify the merits of deploying such a directory
system. Compared to a centralized solution, service latency
is reduced by 9.7%, 51.4%, 79.9%, and 86.9% for each
application under optimal conditions.

We make the following contributions:

« We analyze and propose a series of design principles for a
global IoT directory, covering architecture, discoverabil-
ity, query functions, and identity management.

¢ We design and implement GOLDIE, a federated and
location-based global directory to manage metadata for
IoT. GOLDIE provides federated identity management
and various query functions, apart from basic registration,
lookup, update, and delete operations.

« We deploy GOLDIE on commodity devices and measure
our implementation against standard generated profiles
as well as a real-world dataset. Extensive evaluation on
various functions validates the efficiency of GOLDIE.

The rest of this paper is organized as follows. Section II
introduces the background and design issues for directory
services based on the features of IoT. Section III proposes
GOLDIE, with an overview of structures and available ser-
vices. Section IV presents the design and implementation of
all the important features, federated identity management, and
supported operations. Section V evaluates our prototype and
demonstrates the efficiency with a real-world dataset. Section
VI discusses potential concerns of the proposed model. Section
VII concludes the paper.

II. DIRECTORY SERVICES FOR IOT

A metadata directory for IoT devices and services offers
numerous benefits as long as it follows a set of design
principles, summarized below. With a focus on building a
global directory, we evaluate existing solutions to see how
well they meet those principles.

A. Requirements for loT Directories

To discover metadata about resources on the Internet, one
may be able to query a “/.well-known” URL on the HTTP
server. The server network address has been obtained by
resolving a domain name, while the URL itself is typically
either guessed by brand (“amazon.com”) or obtained via a
content-based search engine. While the “well-known” URL
could be supported by IoT devices reachable by HTTP(S),
this mechanism does not allow applications to find suitable
IoT devices, as traditional content-based search engines or
brand-based guessing are ill-suited for IoT devices. It also
fails for devices that use other protocols, such as MQTT, or for
devices that are not meant to be accessible globally. Some IoT
devices have constrained energy or computational resources,
so answering directory queries imposes an additional burden
or interferes with their sleep cycles [7], [11], [12]. Thus, a
resource directory, hosted on well-resourced servers, makes
discovery more efficient. IoT resources register and update
their information as needed on these directory services.

In many IoT scenarios, there is often a need to bundle
multiple smart objects into a group or by function, e.g., all
devices that make up a smart home. It is even possible to
fabricate a virtual object, e.g., an intelligent logistics service
or a data aggregation service or logging service that offers
computed data or historical time series. To deal with such
cases, rigid data storage formats and query supports are not
helpful. A better solution is to let local directories reach out
to end users, allowing users to register and manage their own
IoT devices with related metadata.

Successful internet-scale directories such as DNS rely
on a simple organizational and administrative hierarchy
mapped to names, with usually three levels of hierarchy:
top-level domain such as a country or category, dele-
gated domain (example.com) and intra-organizational names
(serverl.example.com). Geographic location is usually irrele-
vant and often intentionally hidden, if the data is served by
a CDN. This simple approach does not work well for IoT
devices. Devices may be managed by multiple entities and
are often best described by a geographic location or region
and a specific function, leading to names that are unusable
for searching by applications. Domain names can still be
used as lower-level identifiers within directories, providing
another layer of indirection and hiding changes in network
attachment points from the directory. Often, the stability of
such names is unpredictable, a new domain name may be
assigned automatically by DHCP or the device itself when a
device is replaced, even though it serves the same function
as the old device it replaces. For example, an application
gathering local temperature measurements may request data
from thermometers in a polygon to average out measurement
errors. Devices making up the ensemble to be queried are
routinely added and removed, so an application should not rely
on a domain name of unknown stability but rather encode a
semantic description of the types of measurements or actuators
that it needs.

Our proposed IoT directory acts as an intermediate that pro-
vides two facets of decoupling, shielding IoT programs from
changes in device identities and unify access to aggregated
data with access to individual devices. Therefore, it provides
an opportunity to connect and leverage data as an ecosystem,
as an experimental form of connecting devices towards the
forthcoming IoE vision. With elaborated authorization man-
agement, device owners would be able to grant fine-grained
access rights of resources to target users. Device owners might
register date and designate access policies of their devices
through user-friendly interfaces, so that their preferences on
data exposure are followed.

To sum up, a global directory system has five responsibili-
ties: (1) facilitate property-based resource discovery; (2) record
grouped and virtual objects; (3) resolve names to individual
devices and data sources; (4) foster data sharing; (5) facilitate
inter-organizational services.
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TABLE I
COMPARISON OF EXISTING DIRECTORIES. @ FULLY DESIGNED 0 PARTIALLY CONSIDERED
Kafle et al. [5] | CoRE [7] | Jinetal [8] | LDAP [13] | Sailhan et al. [14] | Hao et al. [15] | ThingsPage [16] | Thingweb [17] | GOLDIE
Designed for [oT o . . o . o . .
Easy to scale ° . . ° . . .
Location-based queries 0 o . .
Aggregation query . o o .
Flexible updates . . . . . . .
Global access o . . . . . .
Support for federation o .

B. Design Principles

In the previous section, we described the responsibilities of
a global IoT directory. An implementation has to meet

Easy to scale: New directory components, services, re-
sources, or data, must be able to join the system without
requiring manual updates elsewhere.

Flexible query functions: The global directory should sup-
port query types that reflect IoT application scenarios,
such as queries based on geographic locations and shapes.

Dynamic content: Mobile IoT devices may update their lo-
cation or other properties frequently, and may join and
leave the directory.

Limited infrastructural changes: Existing network mecha-
nisms and hardware should not change, i.e., the directory
should provide added value, not impose constraints.

Globally accessible: Access to devices and services should
be governed by policy, not by the limitations of the
directory system.

A comparison among available directories and GOLDIE is
shown in Table I. Aggregation queries refer to queries that
ask for data that is computed across multiple sensors or across
time, for example a current-time average or a time series. It
might be provided by an edge computing service. Location-
based queries may be described by a shape, typically a polygon
with vertices described by longitude and latitude, and possibly
altitude. In other cases, a civic address, such as “Room 520,
1154 Vine Street, North Chicago, IL” is a more convenient
descriptor. Finally, the location may be described by location
function, such as “kitchen” or “stairwell”. Drawing on civic
address standards for emergency calling, civic and functional
locations can be uniquely represented by a set of hierarchical
address facets and thus can be mapped into property-based
query mechanism [18]. We will mainly discuss location-based
queries relying on polygons.

In general, classic network directory designs based on
LDAP, although they exhibit great read-optimized performance
[13], [19], are not suitable for IoT applications since they do
not support location-based queries and lack flexible update
mechanisms. As the table shows, even directories designed
for IoT fail to meet one or more requirements.

III. AN OVERVIEW OF GOLDIE

This section presents an overview of our system model and
briefly introduces the various parts of the system, including
the terminology, typologies, naming services, identity man-
agement processes, and our design philosophy.

A. Terminology

The federated global directory model is essentially a volun-
tary, bottom-up association of local directories. A set of local
directories can be deployed on one or more servers that are
maintained by the same organization, and then export data
outside the local organization. To manage the names, things,
users of its own entities, an organization should be able to
easily structure its own local directories as an information tree.

Necessary terms and conceptions widely used in this paper
and general directory systems are illuminated as follows.

Metadata Profile (MP): A metadata profile is a JSON object
that describes the metadata of an IoT device. An MP is
a digital profile of either a physical entity or a virtual
entity, and the relationships between internal and external
objects.

Physical entity: A physical entity is an object characterized
by having a digital profile (i.e., something that identifies
them in the digital environment, MP in this paper) for
both the directory system and has a physical instance,
such as a temperature sensor.

Virtual entity: A virtual entity is an object that has digital
profile but does not have a physical sensor or actuator
instantiation. Examples include a time series storage unit
or data aggregator.

Sector: A sector manages a logical group of endpoints, where
each endpoint hosts at least one local directory. A sector
can be an organization, an institution, an administration,
or any affiliation that owns and manages a number of IoT
devices and metadata.

Resource owner: A resource owner maintains devices and
their metadata. A resource owner can be either the owner
of devices or the owner of a sector (administrators of the
sector who operate the resources in the directories). In
the directory system, we usually use the latter definition.

Local directory: A local directory is the minimum functional
directory unit that performs basic create, retrieve, update,
and delete operations. A local directory is physically
located at a single computational node. There are two
kinds of local directory: boarder directory and interior
directory.

Border directory: A border directory is a local directory that
serves as a publicly-accessible endpoint within a sector.

Interior directory: An interior directory is a local directory
that is accessible only within a sector.

Directory Information Tree (DIT): A DIT is a tree-like
structure that organizes a set of local directories. The DIT
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is consulted to find a route to a designated entry.

Client: A client interacts with the directory server side by
sending requests and receiving responses. A client can
be part of a web browser, a mobile application or built
into a server application.

B. Topological Structure

-':_',' Border Directory
O Interior Directory

&
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(a) A global view of federated directories. (b) A directory tree structure.

Fig. 1. Topological structure and system architecture of GOLDIE. Each sector
maintains a couple of directory trees. Each directory tree consists of a bunch
of local directories including one or more border directories.

The topology of our proposed directory system is a feder-
ation of tree-like structures. Unlike DNS, which grows top-
down, our system grows bottom-up. As shown in Figure
1(a), there is at least one root node, a border directory,
for each sector. Each node represents a local directory in
charge of physical and virtual entities for a specific geographic
area or administrative domain. In general, leaf directories
are responsible for relatively smaller regions, and directories
with shallower depths are responsible for larger regions. The
location-based topology facilitates aggregation query and sim-
plifies routing inside a topology tree. The number of target
servers in the search space can be also decreased with the
help of aggregated metadata when a certain type of IoT device
(“outdoor temperature sensor”) or a certain set of locations
are requested. Besides, it paves the way to enhance complex
access control mechanisms, since a user with permission to
access one node might not be able to access the nodes of its
subtrees.

This generic structure allows each sector to design its own
tree-like typologies, storage principles, and access policies.
For example, one can design a hierarchical tree where the
metadata profiles can be mostly stored in leaf nodes, and the
parent nodes store their aggregated data. As the size of the
tree is usually not too large, the tree is not too deep as well.
The sector by definition can possibly cover a huge geographic
area, if the sector represents an enterprise with multiple
branches or a large-scale service, e.g., the local directories of a
metropolitan transit authority can be geographically distributed
over a city or a state. Therefore, the local directories are not
always close to each other.

In DNS, domain names are generally discoverable globally,
with no formal provision for more limited visibility. Restrict-
ing visibility of names to within an enterprise requires careful
DNS resolver design and is not supported by the protocol
itself, other than through the .local domain. For IoT, re-

stricting discoverability is crucial; GOLDIE supports visibility
restrictions by geographic area and hierarchy, reflecting the
preference of device or resource owners. Resource profiles
may differ by scope, reflecting access restrictions or simply
appropriate-use preferences. This feature is helpful when an
MP is registered in a local directory, but should be visible to
users across a wider geographic or administrative scope. For
example, building-level data can be published to a campus
directory, so that the data is visible to those access to the
campus directory. As shown in Figure 1(b), a user registered
two metadata profiles in the bottom local directory. The dis-
coverability of the red one (on the left) is 0, which means that
the metadata is stored locally and the access to the metadata is
managed locally as well. The discoverability of the green one
(on the right) is 2, which means that copies of the metadata are
pushed to local directories that are within two levels above.
Access management to the copied metadata also relies on those
directories, and users who access to those directories would
possibly access the copied metadata. The directory only hints
at the availability of the data itself, and listing in the directory
is not guaranteed to be congruent with actual data access,
but well-designed directories will want to prevent unnecessary
denied data queries to devices and services and thus align
directory listings and access permissions.

Inside a sector, directory nodes may not have public IP
addresses and are thus not reachable by external queriers. We
manage local directories of each sector as a DIT. The border
directory proxies external requests to interior directories.

C. Local Directory Architecture
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Fig. 2. Local directory architecture for name resolution. A local directory is
a capable and functional unit that feasibly runs in edge servers.

Figure 2 illustrates the functional architecture of a local
directory. It shows the various modules of each node in Figure
1(a). A local directory can run in an IoT hub, a dedicated
server or as a service on a shared server. A discovery agent,
running in an edge computational node or an IoT gateway,
collects metadata useful for services from local IoT devices.
The metadata can include, among other elements, device
type, location, function, operational state, and access control
information. The collected data is indexed by an indexer,
stored in a database, and updated by the discovery agent. A
query generated by a user or a remote IoT device is then
resolved to the target metadata, with the help of the resolver.
A local directory could authenticate users on its own or rely
on the resource owner via techniques such as OAuth2 [20].
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In principle, local discovery mechanisms adopted by each
discovery agent should be orthogonal to directory services and
left for the sectors to design. Well-studied active or passive
data collection mechanisms [21]-[24] are likely applicable
to propagate device metadata into directories. Additionally,
each local directory can be configured by sectors to further
synchronize data with other nodes or replicas via widely
developed mechanisms, such as publish-subscribe, broadcast
or multicast-based models [25]-[27].

Ideally, application services or local directories can be
hosted on different servers for performance and robustness.
They could also be sharded and replicated to improve scalabil-
ity and availability by utilizing serverless computing platforms.
Classic distributed system concerns (e.g., atomicity, consis-
tency, isolation, durability) are of great importance, but beyond
the scope of this paper.

D. Naming Service

One of the challenging problems for name-based directory
services is managing potential name collisions and the rights
to parts of the name space. DNS had to create a whole new
administrative entity, ICANN, to handle potential conflicts
with trademarks and to manage the entities that have exclusive
control over sub-trees of the overall domain name space.
Naming systems such as DNS also either require resource
owners to purchase a name or become “tenants” of a domain,
losing their identity if they decide to switch providers. Our IoT
directory avoids these problems as devices are identified by
self-deconflicting characteristics, such as geographic location,
that reflect the cyber-physical nature of IoT devices. Thus, it
can be seen as a more facet-based version of named data net-
work [28], albeit with an out-of-band resolution mechanism.

GOLDIE provides the query-to-metadata resolution, where
a query can include an identity, a location, a thing type, or
a polygon. Directory entries represent objects in the name
spaces, which contain arbitrarily many references to subor-
dinate entries (device type, metadata, soft links, and pointers
to other directories). Metadata profile entries in leaf nodes
represent a terminal of the name space. Unifying the naming
convention is not a focus of this paper. A naming convention
is likely feasible, as long as each entity is identified in the
directory information tree. In other words, X.500 standard
[13] is compatible when naming a directory entry, e.g.,
/c=US/0=F00/0U=PEOPLE/CN=ROBERSON.

In principle, naming and directory services can also support
mobility [29]. Indeed, cellular voice networks have relied on
home and visitor location registers to track mobile nodes from
their earliest generations. But most internet-based directory
services are not well-suited to propagate changes, relying
instead on time-to-live (TTL) mechanisms and re-queries. By
being insensitive to underlying device mobility, our interest-
based query model provides an angle to partially address
this problem, but a complete solution will be discussed in a
separate paper.

E. Federated Identity Service

Most directory services do not consider authentication to the
directory. If they need to restrict access to data, it is largely
by hiding the server, e.g., from queries beyond the enterprise
network. We believe that this is a mistake — directories should
be able to return tailored responses that can reflect the identity
or affiliation of the querier. Beyond the local domain, often
only the affiliation of the querier is relevant, not its individual
identity, such as “employee of a university”, “located in New
Jersey,” or “paying user of service X”. Thus, we integrate a
single-sign on (SSO) mechanism into the directory system and
avoid the need for users to create login credentials at a wide
variety of directory services.

F. Design and Implementation Philosophy

Harmonization of information systems first attracted interest
in the 1990s [30]. It becomes a general consensus that such
convergence for global standards would translate into benefits
for consumers, operators, and manufacturers [31]. During
our efforts on realizing the global directory system, we are
aware of the necessity of having IoT management systems be
harmonized, as more vendor-specific or application-specific di-
rectories are problematic towards the forthcoming IoE vision.
GOLDIE cannot overcome the balkanization of control proto-
cols, but provides a common reference to devices regardless of
the data layer protocols and could even include references to
protocol gateways. The data models, communication protocols,
and application program interfaces adopted by GOLDIE are
all widely recognized and codified as standards.
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Fig. 3. A global directory system across multiple administrative domains
from an understanding of network orchestration.

The process of assembling and developing an interorga-
nizational network is referred as network orchestration. Or-
chestrations for IoT benefit creating more flexible services,
reducing the probability of correlated failures between ap-
plication components [32]. The multi-domain orchestration
view of a global directory system is depicted in Figure 3.
GOLDIE orchestrates a multi-domain system to discover re-
sources beyond the boundaries of administrative domains. The
exchange of messages and services are coordinated by a multi-
domain orchestrator that exposes the correlated interfaces and
data. Two essential components included in the multi-domain
orchestrator are service orchestrator and resource orchestrator.
The former carries high-level service orchestration, and the
latter collects resources through local directories of the admin-
istrative domain, joint with underlying domain orchestrators
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that expose metadata profiles stored in each local directory.
When processing a request, local orchestrators have no idea
about resources and topologies of other providers. In the
proposed directory system, multi-domain orchestrators and
domain orchestrators are applied to border directories and
interior directories respectively.

IV. PROTOTYPE FUNCTIONALITY AND IMPLEMENTATION

In this section, we dive into the details and implementation
of our prototype'. We focus on major features of our prototype
and introduce the points of implementation behind them. Then,
the federated identity management by our system is covered
and all supported services are discussed.

A. Application Program Interfaces

We implement a set of Application Program Interfaces
(APIs) for requests processing and fulfillment. These primary
services of directories are designed in terms of IoT-related
features discussed in Section III. An overview of modules and
functionalities is depicted in Figure 4.

User Interfaces Client

Local Directories

Receiver
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Fig. 4. An overview of modules and functionalities in GOLDIE. The

underlying modules are divided into three layers: AAA (short for Account,
Authentication, and Authorization) layer, routing layer, and data layer.

GOLDIE is implemented with the Python Flask framework
to be deployable as a web application. We select MongoDB
as the data store based on the observation in [15], which
demonstrates that MongoDB is a favorable choice for storing
metadata of IoT devices. The device type and spatial coordi-
nates of metadata profiles are indexed by B-tree and 2dsphere.
GOLDIE exposes RESTful APIs in support of the operations
and federated authentication, which are listed below.

Registration adds an MP in the directory. The discoverability
of MP can be specified while registering (by default as
zero, i.e., local only).

Query searches for metadata by directory name, device ID,
device type or any combination of them. The system
responds with all visible MPs by default.

Customized query searches for metadata by customized
JSON scripts. Users can customize aggregated operations,
geographic polygons, and filters specified in MPs.

Thttps://github.com/Halleloya/GOLDIE

Relocation moves an MP from one local directory to another.
It reflects the change of locations when devices move
from one area to another.

Deletion removes an MP that was previously registered.

Authentication manages user identities and federated identi-
ties among directories, discussed in Section IV-C.

There is not always a clear distinction between metadata
and produced data. The metadata we refer to in this paper is
generally any concise, descriptive data that can be put into a
short profile. We do not intend to replicate streaming databases
to search time series data, for example. The MPs stored and
exchanged through interfaces of GOLDIE are formatted as a
W3C thing description [9], a working standard that allows
to formally organize the metadata of physical or virtual IoT
devices as JSON objects.

To give some examples of customized script query, one
can write a script to request: the number of public transit
buses inside a polygon (action: SUM, type: bus, filter: inside a
polygon); the number of lights that are on (action: SUM, type:
lights, filter: status=on); the temperature in NYC (action: AVG,
type: thermometer; location=NYC).

B. Aggregated and Distributed Knowledge

Data privacy is naturally a concern of device owners
and resource owners. Sometimes metadata can be considered
sensitive and the owners only want to expose it to certain
selected groups of users. In addition to reflecting the exposure
preference as discoverability when registering, aggregated data
provides an additional safeguard. Each directory should not
store specific MPs of its lower-level directories, unless those
are explicitly permitted by setting discoverability.

In GOLDIE, each local directory maintains a mapping
from device types to child directories, a notion that which
subsequent directories should further reach, rather than the
detailed knowledge of MPs. Thus, each local directory is
only aware of whether or not subsequent directories have
such type of MPs, without any details. The query model,
specifically for query by device type, relies on such aggregated
knowledge to traverse local directories. To achieve this, a type
information is aggregated to above directories along with a
successful registration of a new type, and a notice to delete
a type is passed up if none of this type left in the directory.
The internal aggregated information leads to the efficiency of
external aggregation query.

Each single directory preserves only distributed knowledge
of location and address information. For each directory, there
is a mapping from directory names to addresses that is config-
ured in advance. It only maintains the names and addresses of
root, parent, and direct children directories. Another mapping
from target directory names to subsequent directories provides
a knowledge on which subsequent directory leads to the target
directory. In other words, the local directory again only knows
which child directories should consult, rather than where is the
target directory.

As shown in Figure 4, those three mappings constitute the
routing module inside a local directory. Any queries specified
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with a target directory, if not reachable from the responsive
directory by consulting the mappings, are forwarded to the
root directory for further routing and process, as any valid
directories are reachable from the root node.

To sum up, there are three types of knowledge for routing
of each local directory: (1) addresses of its directly reachable
nodes; (2) which children nodes should reach, if a query
targets a deeper directory; (3) which children nodes should
reach, if a query asks for a certain type of things. The first
two types of knowledge are configured in advance as current
implementation. The third type of knowledge is automatically
refreshed when a new MP is being registered or deleted.

C. Federated Authentication

Sector A 1. login with Sector B
'—____I account in [——IS—_—‘
i Autl
. Login Sestod 3. auth, consent | uih server
interfaces Auth node

| 2. auth request
© {response type: code, —— 4. auth code

| I

| I

| S |

I Federated J—"lﬂpe: e OPenid}/:; Tokennode):|

: auth and ID d))hmde 6. access token, id token | © :
handler 7. access token (optional) > 1D server

| e

1
¥ 8. additional user information

—— — ——

Fig. 5. Federated identity management with OIDC.

GOLDIE achieves federated user authentication by building
on OpenID Connect (OIDC) [10], the de facto standard in the
OpenID family. The process is depicted in Figure 5, where
sector A relies on sector B for authentication of the user. It
would commonly happen when a user doesn’t have a valid
credential to a directory. The trust relationship between sector
A and sector B is established in advance, and an interface is
exposed to allow users to login with listed third-party identity
providers. In this example, the user has a valid account with
sector B. Then to complete the login process to sector A, it
issues an authentication request to the authentication node
of sector B that authenticates the user and get the consent
to provide relevant information. Whereafter, an authorization
code is returned to the sector A, which is then forwarded to
the token endpoint of sector B to exchange an ID token and
an access token. ID token contains the basic information of
the user, while additional user information can be optionally
retrieved from ID server of sector B using the access token.

V. PERFORMANCE EVALUATION

This section presents the performance evaluation for our
prototype system. We first introduce the evaluation scheme
and testbed configurations. Then we run the evaluation and
analyze the results based on standard metadata and a real-
world dataset.

A. Factors Affecting the Performance

In the following evaluations, we measure response time
as the critical indicator of the system performance, which is
governed by several factors [33]. Since local directories are
arranged as a tree structure, a query might go through several
directories until the required information is reached. Besides,

not all the users and target directories are at the same network,
since a global directory is intended for multiple administrative
sectors. Thus, the distribution of local directories as well as the
propagation delays among directories and users both count.

There are some other factors that impact the response time,
considering the implementation of directories. For instance,
with more aggregation knowledge retained into a directory,
fewer directories need to be consulted. Moreover, network
conditions also make a difference, when queries are processed
with bandwidth or traffic load ranges.

B. Configurations and Settings

We implement a proof-of-concept system and investigate the
performance upon it. A sketch of the system is shown in Figure
6, which consists of a switch, a Raspberry Pi and two Intel
NUC:s. Intel NUC (short for Next Unit of Computing) is a mini
server designed for small space and low power. It is well-suited
for deploying directories in IoT and edge computing scenarios.
The Raspberry Pi represents common IoT devices that perform
operations on the client side. Table II shows configurations of
the utilized hardware.

The directory deployed as a five-level binary tree topology
for our testing goal. Directories in odd levels are deployed in
one NUC server and directories in even levels are deployed
in the other. In this way, we ensure that the traverse between
any two directories goes through the network interface cards
of NUCs and the switch. The parameters of network interfaces
can be therefore adjusted by traffic control commands of the
Linux systems. By default, we set the link delay between two
directories to 20ms, and the link delay between client and
server to 30 ms. Each test of our evaluation is performed 100
times, and all the presented data are averages.

The mock metadata profiles as the source of entries are gen-
erated and validated based on the W3C working standard [9].
The generated data are exploited to evaluate the performance
of functions and interfaces. To further analyze the performance
enhancement under specific circumstances, we leverage a real-
world dataset, Lysis dataset [34], which collects more than
11,000 queries of IoT applications over seven months in 2017.

NoOR X

response time (s)

Pi

Fig. 6. Proof-of-concept system. Fig. 7. Performance of registration.

C. Evaluation of Directory Operations

We evaluate the performance of various operations: regis-
tration, query, customized query, relocation, and deletion. For
space constraints, we exclude the evaluation of relocation, as
it is essentially a deletion followed by a registration. Given
that an operation could act at not only the responsive local
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TABLE II
CONFIGURATIONS OF THE TESTBED

Category
CPU (Raspberry Pi)
System (Raspberry Pi)
Storage (Raspberry Pi)
CPU (NUCs)
System (NUCs)
Storage (NUCs)
Database

Specification
ARMV7 Processor, 4 cores, 1.2GHz
Raspbian GNU/Linux 9
1GB RAM, 32GB microSD
Intel CORE i3-8109U, 2 cores, 3.0GHz
Ubuntu 18.04.2 LTS
16GB RAM, 256GB SSD
MongoDB 3.6.3 [35]

directory, but any directories as well, we denote the number of
levels that an operation recursively traverse as [. If a query only
operates at the responsive directory it accesses, then [ = 0.

Figure 7 shows the evaluation of registering an MP. A
registration takes two parameters along with the MP: a local
directory name and an integer of discoverability. The response
time is generally in direct proportion to both [ and discover-
ability. As [ increases, it takes more time to locate the target
directory. It also takes more time to aggregate information and
push up MPs, while the discoverability becomes higher.

In Figure 8, we measures three basic query functions: query
by id, query by device type, and query by default (to show all
abstract information of MPs in this location). There are four
types of things in our generated MPs for evaluation: transit bus,
thermometer, light, and thing (a default type if a thing is not
categorized to a particular type). We store 1,000 MPs of each
type beforehand. Then we perform our tests for queries. Query
by identity takes less time and the increase with [ going up
is relatively moderate compared with others. The result makes
sense, since the data volume transmitted for query by identity
is much less then others.

N

= by id by type by default _10 @ script 1 __—o—o
23 g g -+ script2 =
= 6 4 script 3

22 ~ ~

£ 24

21 )

g 2

& ~ 0

O y=o 1=1 1=2 1=3 1I=4 s=1 s=2 s=3 s=4 s=5

Fig. 8. Performance of generic Fig. 9. Performance of customized

queries with three basic functions.  query with three scripts.

For customized query, there are actually a lots of options
one can customize through JSON scripts. Here we demonstrate
three kinds of query scripts for the generated MPs: (1) count
the number of transit buses running inside a polygon; (2) fetch
the temperature of this sector; (3) count the number of lights
that are left on. For the first script, the directory essentially
performs polygon queries to determine if the coordinates of
each bus is inside the input polygon. For the second script, it
collects all the displayed data of thermometers and takes the
average of them. For the third one, it filters the status of lights
that are on. It seems less complicated than the other two, since
less time is needed compared to polygon query and a half of
MPs are filtered out by the status condition.

The results are shown in Figure 9, where script 1, 2, and 3
correspond to the three scripts respectively that are illustrated
above. Since such queries require to process at all possible
local directories, we denote how scattered the MPs are located
as s. From s = 1 to s = 5, the MPs are located evenly

from bottom level only to all five levels of directories. As s
increases, more directories are needed to process. The curve
becomes flat, since more processing happens in directories that
are close to the responsive directory (i.e., root directory in
this evaluation). Nearly identical results are achieved when
s =4 and s = 5, because an aggregation happens at the root
directory no matter if there is any MPs residing or not.

Figure 10 shows the evaluation of deleting an MP with
respect to [ and discoverability. When deleting a thing, the
system checks the discoverability of the associated MP. If the
discoverability is greater than zero, the copies in above levels
also need to be erased. Meanwhile, local directories needs to
monitor and update aggregated information about whether the
successive directories still hold these types of things. Hence,
deleting an MP with higher [ or discoverability requires more
efforts.

levels crossed (/)
discoverability

1 2 3
[ or discoverability -1 1°-0

Fig. 10. Performance of deletion. Fig. 11. Distribution of queries.

D. Deploy Directories near End Users

For a city-scale or even larger sector, local directories are
ideally deployed near end users. Distributed local directories,
to be deployed on edge computational nodes, provide an
opportunity to push services near users and therefore reduce
service latency. In our model, a local directory responds to
queries without involvement of other directories, if the coming
request is resolvable by the responsive directory only. If this is
the case, a local directory reduces the search space as well as
propagation delay. Although deployment issue is not a primary
focus of this paper, we run simulations to briefly explore the
potentials of local directories that cache remote data to reach
end users.

Here we simulate the deployment problem utilizing the
Lysis dataset [34]. The geographic distribution of queries
is analyzed in Figure 11, which normalizes the distance
between client and server to [—1, 1]. It shows that queries are
geographically distributed but clustered at some areas.

In the simulation, we evenly deploy local directories as a
four-level quadtree and compare it to the original solution of a
single centralized directory. For the four applications with the
needed distance information (application 2-5 in the dataset),
we simulate and generate the service access latency. From
Figure 12(a) to Figure 12(d), the straightforward deployment
turns out to be more and more feasible, reflected by if it
pushes more data near end users through local directories.
Due to space constraints, we show the first 1,000 queries in
time sequence for each application in Figure 12, regardless
of how many entries in total. The optimal condition is given
by the assumption that all the queries are processed at the
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Fig. 12. Potentials of caching remote data to reach end users. The horizontal
purple dashed line and red dotted line present the average latency of all entries
for each application in the dataset.

nearest local directory. Compared to the centralized solution
of a single directory, the average service latency is reduced
by 9.7%, 51.4%, 79.9%, and 86.9%, respectively, with the
location-based directory solution.

VI. DISCUSSIONS

Authorization: Although authorization problem is beyond
the scope of this paper, it plays a critical role in a practical
directory system. Naturally, the federated system relies on
each resource owner (or administration of each local direc-
tory) to manage access rights and determine their preferred
access control mechanisms. However, if the directory wants
to achieve desired fine-grained access control on exposing
what data to whom, traditional Access Control List (ACL)
and Role-Based Access Control (RBAC) both lack flexibility.
From our perspective, two finer-grained schemes, Attribute-
Based Access Control (ABAC) and Capability-Based Access
Control (CapBAC) [36], [37] are potential solutions.

Search process: In general, there are two types of search
models, iterative search and recursive search, for a tree-like
topology. We are not particular about which one to choose, as
it might touch more on cache design or invoke additional pri-
vacy concerns. In spite of those, we also measure performance
difference between the recursion and iteration implementations
of query mechanisms in Figure 13. Initially, servers would
likely be distant to clients as they reside in cloud comput-
ing centers, which makes client-server communications more
time-consuming than inter-server communications. It makes
sense given that our result seems to favor recursive search
model a bit more. It is not always the case, as directories might
be pushed near end users in the upcoming edge computing era.

Scalability: Scalability can be a reasonable concern for
many globally accessible systems. We would like to identify
that the proposed system, although each DIT is still a single

1 @ delay=0 delay=60
07 © delay=20 delay=80
= delay=40 recursive
2 0s
=
" ' i "
0wl .' N
=1 1=2 1=3 1=4

Fig. 13. Comparison of recursive and iterative search model. Link delay
between client and responsive directory is set at intervals of 20ms.
tree structure, works as a forest with multiple endpoints. Each
local tree owned by a single sector essentially runs like a
web application, and thus the scalability challenges are not
beyond those discussed in [14], [36], [38], [39]. Besides, as
each DIT is organized through a bottom-up approach, and each
local directory only maintain distributed knowledge, adding
or deleting nodes incurs moderate changes. It does not hin-
der sharding or replica mechanisms. Therefore, the proposed
framework unlikely raises huge scalability challenges.
Location-based queries: In Section II, we propose three
kinds of location-based directory queries. GOLDIE achieves
query by geographic polygon through database extensions and
query by location property through filters of related metadata
fields. For query by civic address, an applicable solution is
to let the directory consult a trusted party that provides a
civic address to polygon mapping. An alternative but more
challenging idea is to provide a location to service mapping
[18], which forwards queries to a nearby directory for further
civic address processing. To meet more location-based needs
is a future work of GOLDIE.

VII. CONCLUSION

In this paper, we design and implement GOLDIE, a feder-
ated global directory architecture for IoT and IoE. GOLDIE
meets a series of proposed design principles that reflect the
needs of IoT systems. Aware of harmonization and orchestra-
tion, it implements generic operations including registration,
query, relocation, and deletion. GOLDIE implements essen-
tial features such as discoverability, aggregated information,
location-based query, and customized search. In addition, we
include a federated authentication mechanism using OIDC.
Extensive evaluations on the system deployed on Intel NUC
servers, against generated standard metadata and Lysis dataset,
validate the performance of various operations and show the
merits of the system compared to a centralized-server solution.

In the future, we may investigate access control mechanisms
and directory pollution problems for the proposed system.
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