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Abstract—Recent years have witnessed the growth of the size

and dimensionality of data from various applications at an un-

precedented rate. Detecting anomalies in these high-dimensional

data has a great significance yet remains challenging due to the

sparsity, noise, and irrelevant features in the high-dimensional

data. Principle Component Analysis (PCA) and AutoEncoder

(AE) are the two most widely used dimension reduction (DR)

methods where it reduces the number of features while capturing

the most necessary information of the original data. PCA alone

is, however, less effective for complex data though it is fast and

has explained variance to measure the preserved information

of reduced data. While combining PCA with AE can be more

effective, determining optimal latent representation is a challeng-

ing problem. In this work, we propose a cascaded dimension

reduction method (CDR) for effective anomaly detection. In

CDR, we combine AE and PCA to reduce dimension size

significantly while incorporating a knee point detection algorithm

to automatically select optimal dimension size k that maximizes

the anomaly detection accuracy. Our extensive evaluation of

various datasets and anomaly detection models demonstrate that

our proposed CDR can significantly reduce dimension size while

preserving the most necessary information for effective anomaly

detection. As a result, CDR achieves 80%⇠98% of reduction

ratios and 4⇠21x of speedup and outperforms state-of-the-art

anomaly detection methods.

Index Terms—dimension reduction, anomaly detection, high-

dimensional data, knee point detection

I. INTRODUCTION

Anomaly detection, also known as outlier detection or nov-
elty detection, refers to the process of identifying anomalies
that significantly deviate from the normal data instances [1].
Anomaly detection is important as it has been widely used
in real-world applications, such as network intrusion de-
tection [2], medical diagnosis [3], or senor networks [4].
Anomaly Detection has been studied for decades, and nu-
merous anomaly detection models have been proposed, such
as [5]–[10]. While there has been significant progress in
improving detection accuracy, effective anomaly detection in
data remains challenging due to several reasons. First, recent
years have observed the growing size and dimensionality
of data from various applications at an unprecedented rate.
Second, as the dimension increases, the space for data points
increases proportionally. As a result, data points become more
sparse, making many conventional algorithms, such as nearest-
neighbor or clustering algorithms, suffer from the curse of
dimensionality [11]. Moreover, high-dimensional data usually
contain irrelevant or noisy features that conceal the evident

features that can be used for discriminating anomalies from
normal instances [12]. Lastly, high-dimensional data requires
more memory and incurs a heavy computational burden.
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Fig. 1. An example of uncertainties in the high-dimensional and low-
dimensional representation of the MNIST dataset. The dimension of the orig-
inal image is 784, and the dimension size of high-dimensional representation
and low-dimensional representation is 512 and 64, respectively.

Dimension reduction (DR) is a natural fit to tackle these
problems associated with high dimensionality. DR aims to
minimize the number of features such that a smaller set
of feature can capture the most crucial information from
original high-dimensional data [13]. Also, DR techniques
help eliminate the irrelevant or noisy features, such that
the uncertainties in high-dimensional data become smaller,
which is beneficial to discriminate anomalies from normal
instances [14]. Figure 1 illustrates such an example of un-
certainties in high-dimensional representation (i.e., dim 512)
and low-dimensional representation (i.e., dim 64) of MNIST
dataset [15]. We can observe that uncertainties (e.g., irreg-
ularities in hand-written digits) in low-dimensional data are
smaller than those in high-dimensional data. In other words,
classifiers can easily discriminate between anomalies and
normal instances using a low-dimensional representation that
captures most essential information while irrelevant and noisy
features are removed.

Principal Component Analysis (PCA), one of the most com-
monly used DR methods, projects data into lower dimensional
space [16], [17]. The underlying assumption of this approach
is that a smaller set of principal components can capture most
information (i.e., most variance) [1]. In other words, we can
eliminate principal components with low variance or little
information to reduce the number of features. In Figure 2a,
we present examples of PCA dimension reduction for the



MNIST [15] data, where the original image size is 32⇥32. In
image processing, each pixel can be considered as a feature
for an image. In other words, the dimension of original image
data is 784. After applying PCA on the original images, we
use only 128 principal components to reconstruct images. As
shown in the second column of Figure 2a, the reconstructed
images are almost identical to the original images, which
indicates the low-dimensional representation could capture the
most necessary information. However, when the dimension
size gets reduced significantly, such as n=2 in the third column
of Figure 2a, the reconstructed images appear blurred or
distorted, making the evident characteristics of original images
unnoticeable. In other words, some important information in
the original images is missing. The reason behind this dispro-
portionally higher information loss with higher dimensional
reduction is that PCA is linear. Therefore, it is difficult to
represent complex data, such as MNIST in Figure 2a when
the dimension gets small.
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Fig. 2. Examples of commonly-used dimension reduction methods on MNIST.

Another widely used type of DR method is AutoEncoder
(AE) [18] [19], Variational AutoEncoder (VAE) [20], or their
variants. AE/VAE usually consists of an encoder and a de-
coder, where it encodes original high-dimensional data into
lower dimensions (bottleneck layer or latent space). Then the
decoder uses the compressed data to reconstruct the original
input. Contrary to PCA, in most AE/VAE networks, the
activation function is non-linear, such as ReLU [21]. AE/VAE
learns the representation z with lower dimension by extract-
ing important features and discarding noise and redundancy.
As an example, Figure 2b shows the original images with
784 dimensions are compressed into AE representation with
128 dimensions. The second column shows the reconstructed
images from those 128 dimensions of compressed data. The
results also show the compressed representation z can preserve
the most critical information from the original images. While
the AE/VAE has eliminated certain redundancy, there is still
space to minimize the redundancy [22].

While decreasing the dimension of latent representation in
AE/VAE is straightforward, selecting an optimal dimension k
for z is a challenging problem, and greedy search or exhaustive
searching is time-consuming and impractical. Typically, the
dimension of AE/VAE is set heuristically, whereas in PCA,
selecting the number of principal components (PCs) based on

variance is measurable and controllable. Thus, we explore the
case where PCA is applied on the AE/VAE representation z.
To demonstrate the information preserved in the same data
size, we select the first two PCs that capture around 63%
of the variance of z to reconstruct images. As shown in the
third column of Figure 2b, the reconstructed images are clear
enough to be distinguished from other classes (i.e., other digits
in MNIST). Moreover, with the same small dimension (e.g.,
n=2), the reconstruction quality of PCA on z is much better
than directly using PCA on original images.

Motivated by the advantages and disadvantages of PCA
and AE and the potential of exploiting benefits of both, we
propose a cascaded dimension reduction (CDR) method that
combines AE and PCA to reduce the dimension of high-
dimensional data to the potential maximum while capturing
the most useful information for effective anomaly detection.
To achieve this, we propose two techniques to select a proper
reduced dimension of k automatically. Our key contributions
are summarized as follows:

• We propose a simple yet effective dimension reduction
method called CDR for efficient anomaly detection,
which can achieve 80%⇠98% of reduction ratios and
4⇠21x speedup compared with using original image data
or AE/VAE compressed data.

• We incorporate a knee point detection algorithm in CDR
to select a proper reduced dimension k automatically.
We also propose a measurable method where users can
decide how much information (i.e., variance) to preserve
for optimal k selection.

• We conduct extensive experiments on various datasets
and anomaly detection models. The evaluation results
demonstrate that CDR can significantly reduce the dimen-
sion size of various high-dimensional data and preserve
sufficient essential information for making anomaly de-
tection effective. Moreover, CDR for anomaly detection
consistently outperforms the state-of-the-art techniques
on various datasets.

II. PRELIMINARIES

A. Combination of PCA and AE

To assess the impact of dimensional reduction from PCA
and AE, especially the significant of reduction order, we first
explore the combination of PCA and AE: AE only, PCA only,
PCA on AE (AE + PCA), and AE on PCA (PCA + AE). As
shown in Figure 3, AE generally performs better than PCA to
represent the original data when the dimension is small. AE
generates better results because it is non-linear and incorpo-
rates a more sophisticated mechanism so that the model can
generalize more complex relationships of the data. Moreover,
the combination of PCA on AE (the 4th column) obtains the
best reconstruction quality, outperforming the PCA only (the
3rd column) or the AE only (the 2nd column), while the
reconstruction quality of PCA on AE (the 5th column) is the
worst. The reason behind this is that after AE has extracted the
most useful information, PCA further compacts the dimension
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to remove noisy or irrelevant features. On the other hand, when
we apply PCA first on the original image, compared to AE
with the same dimension size, less information is preserved in
PCA. Therefore, more useful information could be lost further
in the AE compressor due to the insufficient information fed
as input.
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Fig. 3. Examples of using the combination of PCA and AE/VAE for dimen-
sion reduction on MNIST. The dimension of the original image (Ori img)
is 784, and the reduced dimensions is 16. Specifically, the dimension of
representation is set as 16 in AE only (the 2nd column), and 16 principal
components (PCs) are selected in PCA only (the 3rd column). In AE+PCA
(4th column), we first use AE to obtain representation z with 128 dimensions
and then apply PCA on z to select 16 PCs. In PCA+AE, we use PCA for
original images first and select 128 PCs. Then, we apply AE to extract 16
dimension features from the selected 128 PCs.

Original Image 1st Component 2nd Component 16th Component 32nd Component

Fig. 4. Reconstructed images using different PCA components in MNIST
and Fashion MNIST: the first column shows original images, the second to
fifth columns are reconstructed images using 1st, 2nd, 16th, and 32nd PCA
components, respectively.

B. Essential Information Compacted in Few Components
Since AE+PCA has the potential, we next investigate if

most essential information can be compacted in a small set of
PCs after applying PCA on z. Figure 4 demonstrates images
reconstructed from the 1st, 2nd, 16th, and 32nd components of
AE representation z, respectively. We can observe that the first
two components (the 2nd and 3rd columns) capture the most
essential information while the higher components (the 4th and
5th columns) contain irregularities or noises. For example, in
the MNIST dataset of hand-written digits, the tilt in the 16th or
32nd component of ‘8’ may make it look like ‘1’ or ‘7’ instead
of ‘8’. We obtain similar observations on the Fashion MNIST
dataset [23]. For instance, the higher components of the trouser
(the 3rd and 4th columns of row 3) add noisy information that
looks like a coat, while the first two components capture the
most useful information of the trouser.

Our preliminary investigation shows the potential of com-
bining PCA and AE to reduce the dimension of high-
dimensional data. Among the combination of PCA and AE, we
obtain the best reconstruction results when we apply AE first
and then apply PCA on AE learned representation. Also, we
can observe that a small number of PCs can contain the most
essential information in original high-dimensional data (i.e.,
original images). However, different datasets exhibit varied
characteristics, so does the number of PCs required to contain
sufficient information for anomaly detection. In this paper, we
propose two techniques to select a proper reduced dimension
of k automatically.

III. OUR METHODOLOGY

Figure 5 depicts an overview of our proposed method:
cascaded dimension reduction (CDR) for efficient and effective
anomaly detection. First, we apply the AE/VAE network to
extract the latent representation z. We then apply PCA on z
and calculate the cumulative explained variance (CEV) on the
PCA components, where the cumulative proportion of variance
of z is calculated. Next, we use the user-defined percentage of
CEV to select reduced dimension k as needed or auto-select
the dimension size k via knee point detection on CEV. Then
the selected k components are used as inputs for anomaly
detection algorithms, such as a neural network classifier.
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Fig. 5. Overview of our proposed method.

A. AE Compression
AE is an unsupervised neural network with an encoder-

decoder architecture, where the encoder compresses high-
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dimensional data into low-dimensional data (i.e., compressed
data), and the decoder uses the compressed data to reconstruct
the original high-dimensional data. The AE network is usually
trained to minimize the reconstruction loss functions, such as
mean square error (MSE), cross-entropy (CE), or structural
similarity index measure (SSIM). To illustrate how CDR
works, let us denote the x as original inputs, e as encoder,
d as decoder, and ✏ as reconstruction error. We formulate the
first step of CDR using AE to learn encoded representation z
as follows:

(e⇤, d⇤, z) = argmin ✏(x, d(e(x))). (1)

Besides AE, we also use VAE in CDR. VAE assumes the
original data follow a certain underlying probability distri-
bution, such as Gaussian distribution. The loss function of
VAE, besides the reconstruction loss like AE, also includes
Kullback–Leibler (KL) divergence to constraint the latent dis-
tribution. Usually, we assume the latent vectors are produced
from a Gaussian distribution p✓(z) with a zero mean and unit
variance, and a VAE network tries to learn an approximated
distribution q�(z|x) based on the input data. Similarly, we
can formulate the first step of CDR using VAE to obtain z as
follows:

(e⇤, d⇤, z) = argmin{✏(x, d(e(x))) +KL(q�(z|x)||p✓(z))}.
(2)

B. Auto-Select Dimension k

After obtaining the representation z from an AE or VAE
network, we apply PCA on z. In PCA, the relationship among
features is identified through a covariance matrix, and we can
obtain the eigenvectors and eigenvalues � via eigendecompo-
sition of the covariance matrix. We then transform the data
into principal components with the identified eigenvectors.
Meanwhile, we can use eigenvalues to calculate CEV to select
the most important k principal components. CEV is calculated
as:

CEV =

Pk
i=1 �iP
n
i=1�i

, (3)

where �i is the eigenvalue of i-th principle component, n
is the dimension number of z, and k  n. We use CEV
to measure how much variance is captured in the selected
k components, such as 90%, 95% of the variance. In other
words, we can set a threshold of CEV that represents how
much variance is required to preserve and then decide how
many components we need to select. Note that the variance
in PCA components is sorted. Therefore, the first component
contains the most variance, the second component captures the
second most variance, and so on.

In addition to selecting k components via a pre-defined CEV
threshold, we propose a knee point detection technique on
CEV to automatically decide the k. In this paper, we define
knee point as the optimal point that can best balance between
the dimension size and preserved information (i.e., variance).
In other words, the cost of increasing dimension sizes is

Fig. 6. Example of applying knee point detection algorithm on CEV.

no longer worth the expected benefit of preserving useful
information beyond the knee point. Therefore, the degree of
increase in CEV starts to decrease when the dimension size
is larger than the knee point. In Figure 6, we demonstrate
an example of how to find the optimal k via our knee point
detection algorithm. First, we fit the CEV of latent represent
into a smoothing spline so that it can preserve the overall
behavior of the latent distribution. Then we normalize the
CEV and feature number into a unit square. The knee point
on the normalized CEV (z) curve (in blue color) is the point
that has maximum curvature. That is the maximum distance
between the normalized CEV (z) curve and the line of y = x.
Mathematically, the knee point is a local maximum that can
be calculated via the first and second derivatives of the spline
curve (i.e., CEV curve in our case). We calculate the knee
point using the equation denoted as:

KCEV (z) =
CEV 00(z)

(1 + CEV 0(z)2)1.5
, (4)

where K is the knee point of the CEV curve of z (i.e.,
CEV (z)). For example, in Figure 6, after applying the knee
point detection algorithm on normalized CEV (z), we obtain
that the knee point is 0.11. That means 11% of the total
number of features of z (i.e., 128) is selected for the optimal
k dimension, which is 0.11 ⇥ 128 ⇡ 14. The complete
training procedure of our proposed method CDR is illustrated
in Algorithm 1.

IV. EVALUATION

A. Experiment Setup
a) Datasets: We evaluate our proposed method on five

benchmark datasets with high dimensions: MNIST [15], Fash-
ion MNIST (FMNIST) [23], CIFAR-10 [24], KDDCUP99
(KDDCUP) [25], and Arrhythmia [26]. Table I shows the
statistics of these evaluated datasets.

• MNIST, FMNIST, CIFAR-10: Each dataset has ten
classes, and we create ten one-class classification setups,
similar to the setup in DeepSVDD [27]. That is, we create
one class from the entire class as a normal class, and
the remaining classes are processed as anomalies. For
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Algorithm 1 Cascaded Dimension Reduction (CDR).
Input: Dataset X with m features.

f✓ : AE/VAE network.
z: latent representation obtained (dimension size n).
�: eigenvalues of PCA transformation of z.
CEV : cumulative explain variance.
K: knee point detection model.
Method 1: knee point detection; Method 2: pre-defined CEV threshold ⌘.

Output: k selected components.
1: z  f✓(X).
2: PCs, eigenvalues �  apply PCA on z.
3: CEV (z) � via Equation 3.
4: if choose to use method 1 then

5: k  K(CEV (z)) via Equation 4.
6: else if choose to use method 2 then

7: for i = 1, 2, ...n do

8: if CEV (zi) � ⌘ then

9: k  i.
10: end if

11: end for

12: end if

TABLE I
STATISTICS OF THE EVALUATED DATASETS.

Dataset # Dimensions # Instances Anomaly ratio

MNIST 784 70,000 0.1
FMNIST 784 70,000 0.1
CIFAR10 3072 60,000 0.1
KDDCUP 120 494,021 0.2
Arrhythmia 274 452 0.15

example, samples of classes ‘1-9’ are anomalies for the
data of normal class ‘0’. We adopt the original training
and test split of these datasets and use the respective
normal class only for the AE/VAE training step of CDR.
In this way, the train set size is n ⇡ 6, 000 for each class
of MNIST and FMNIST, and n = 5, 000 for CIFAR-10.
All the test sets have 10,000 samples, including samples
from the remaining nine abnormal classes in each setup.

• KDDCUP: The KDDCUP dataset consists of 494,021
network logs. Each log has 41 features, where seven
features are categorical and the others are continuous.
Though there are different ways to encode the features,
for a fair comparison, we adopt the preprocess mechanism
used in DAGMM [28]: we apply one-hot representation
for the categorical features, and eventually, obtain the
KDDCUP dataset with 120 dimensions for evaluation.

• Arrhythmia: The Arrhythmia dataset is used to deter-
mine the type of arrhythmia via the ECG recordings [26].
It contains 452 recordings and 16 classes, and each
recording contains 274 features. Similarly, we adopt the
process of Arrhythmia in DAGMM [28] for anomaly
detection: we combine classes 3, 4, 5, 7, 8, 9, 14, and 15,
which have the smallest amount of recordings, to form the
anomaly class, and the remaining classes are combined
as the normal class.
b) Network Architecture:

• MNIST, FMNIST, CIFAR-10: For a fair comparison,
we adopt a similar encoder-decoder network setting used

in DeepSVDD for the AE/VAE part in CDR. Specifically,
each convolutional neural network (CNN) block consists
of a convolutional layer followed by an activation func-
tion of leaky ReLU and 2⇥2 max-pooling. For MNIST
and FMNIST, we use two CNN blocks with 8⇥ (5⇥5⇥1)-
filters, 4⇥ (5⇥5⇥1)-filters, and a dense layer of 128
units for latent vectors. For CIFAR-10, we use three
CNN blocks with 32⇥ (5⇥5⇥3)-filters, 64⇥ (5⇥5⇥3)-
filters, 128⇥ (5⇥5⇥3)-filters, and a dense layer of 512
units for latent vectors. For anomaly detection, we use
scikit-learn [29] MLPClassifier with a hidden layer size
of 100. The batch size is 512, and the training epoch is
100 for MNIST and FMNIST and 200 for CIFAR-10.
The initial learning rate is 0.001 and gradually decreases
during training, and the weight decay is set to 1e� 6.

• KDDCUP: Unlike the above-mentioned image datasets,
KDDCUP data is sequential, thus we use fully connected
(FC) layers for AE/VAE part of CDR. Specifically, the
network consists of FC(120, 60)-FC(60, 30)-FC(30, 10)-
FC(10, 30)-FC(30, 60)-FC(60, 120) and the activation
function of tanh is used for each FC layer.

• Arrhythmia: Similar to KDDCUP, data in Arrhythmia is
sequential and we use (FC) layers to build the AE/VAE
network in CDR. The network comprises FC(274, 64)-
FC(64, 16)-FC(16, 64)-FC(64, 274), and also we use the
activation function of tanh for each FC layer.
c) Evaluation Schemes: First, we analyze the low-

dimensional representation learned via CDR. We then evaluate
the anomaly detection performance using the low-dimensional
representation and compare it with the detection perfor-
mance of using original images and using AE/VAE only,
and state-of-the-art methods, including DeepSVDD [27] and
DAGMM [28]. Next, we calculate the data reduction ratios by
CDR and its speedup compared with other methods. Also, we
evaluate eleven additional commonly used detection models to
verify the applicability of CDR.

B. Representation learned by CDR
As CDR consists of two cascaded compressors, AEs and

PCAs, we evaluate various combinations of AEs (AE and
VAE) and PCAs (PCA and its non-linear variant Kernel PCA
(KPCA) [30]). Specifically, The combination includes PCA
on AE (AE + PCA), KPCA on AE (AE + KPCA), PCA on
VAE (VAE + PCA), and KPCA on VAE (VAE + KPCA), and
we also compare with PCA/KPCA on original images (Orig
+ PCA/KPCA). As shown in Figure 7, CDR using AE (rows
3 and 4) and VAE (rows 5 and 6) performs much better than
using original images (rows 1 and 2). Regarding VAE and
AE, VAE performs better than AE. AE + KPCA performs
slightly better than AE + PCA. VAE + PCA obtains the best
reconstruction quality, especially when the dimension is small
(e.g., n=2).

Furthermore, we analyze the CEV and MSE of original
images (Orig img), AE encoded representation (AE-z), and
VAE latent representation (VAE-z) to verify the reasons behind
the observations in Figure 7. As the ranges of CEV and
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Orig + PCA

Orig + KPCA

AE + PCA

AE + KPCA

VAE + PCA

VAE + KPCA

n = 784 n = 128 n = 64 n = 32 n = 16 n = 8 n = 4 n = 2

Fig. 7. Comparison of various combinations of evaluated dimension reduction
schemes.

dimension sizes are different for Orig img and AE/VAE-z, we
normalize the CEV range to [0, 1] and normalize the dimension
(i.e., number of PCA components) to 0% to 100%. In Figure 8,
the primary (left) y-axis represents the normalized CEV that
evaluates the percentage of information preserved, and the
secondary y-axis (right) is MSE that is used to evaluate the
reconstruction error, and the x-axis represents the normalized
number of PCA components used. As shown in Figure 8, the
CEV of VAE-z is most concentrated in the smallest number
of PCA components. For VAE-z, less than 10% of PCA
components can preserve 95% of CEV while AE-z requires
around 20% of PCA components, and Orig img requires
even more number of PCA components to maintain the same
amount of CEV. Also, VAE-z has the least reconstruction error
when the dimension size is small ( 35% of total number
PCA components). In other words, CDR using VAE-z can
capture the most useful information (in CEV) and have the
lowest reconstruction error (MSE) using the least amount of
PC components.

Fig. 8. Cumulative Explained Variance and MSE of original images, AE, and
VAE compressed data.

C. Anomaly Detection Performance
We next evaluate the anomaly detection performance using

the low-dimensional representation of CDR and compare it
with using the original image and VAE latent representation.
Also, we compare the anomaly detection performance with
the state-of-the-art deep learning anomaly detection methods:
Deep-SVDD [27] and DAGMM [28]. As described in Sec-
tion III, CDR has two schemes to select the reduced dimension
size k: fixed CEV threshold and knee point detection. For the
fixed CEV scheme, we use � 95% of CEV (CDR-095). Note
that the knee point detection (CDR-k) selects dimension size
k automatically. Table II shows the evaluation results using
MNIST. We can observe that our proposed method, CDR-
095 or CDR-k, outperforms the state-of-the-art methods and
the methods using original images or VAE only. Between
our two methods, CDR-k performs slightly better than CDR-
095, which indicates our knee point detection algorithm can
adaptively select a more appropriate k than using a fixed CEV
threshold.

TABLE II
COMPARISON OF ANOMALY DETECTION PERFORMANCE ON MNIST

USING ORIGINAL IMAGES, VAE COMPRESSED DATA, STATE-OF-THE-ART
METHODS (DEEP-SVDD AND DA-GMM), AND OURS (CDR-095 AND
CDR-K). AVERAGE AUCS IN % WITH STDDEVS (OVER 10 SEEDS) PER

METHOD.

Normal Orig img VAE-z DEEP- DA- CDR-095 CDR-k
Class SVDD GMM (ours) (ours)

0 98.2±0.6 97.3±0.6 98.0±0.7 98.0±0.5 96.0±0.5 97.3±0.5
1 99.1±0.2 99.1±0.1 99.7±0.1 99.4±0.2 98.3±0.2 98.9±0.2
2 91.5±0.6 96.7±0.8 91.7±0.8 90.2±2.8 96.5±0.8 96.3±0.8
3 92.8±0.7 92.9±0.7 91.9±1.5 92.2±1.7 93.4±0.6 93.9±0.6

4 93.3±0.5 93.1±0.5 94.9±0.8 90.0±2.0 92.2±0.7 92.8±0.6
5 89.4±0.9 90.7±0.8 88.5±0.9 87.4±2.9 90.9±0.8 91.1±0.7

6 96.9±0.4 97.6±0.5 98.3±0.5 96.5±0.9 98.3±0.4 98.3±0.4

7 94.6±0.5 95.7±0.5 94.6±0.9 93.2±1.2 94.8±0.5 95.5±0.5
8 95.0±1.3 93.8±0.9 93.9±1.6 92.6±1.2 95.8±1.1 95.5±1.1
9 95.7±0.4 95.4±0.3 96.5±0.3 95.3±0.8 95.3±0.3 95.8±0.2

In Figure 9, we demonstrate examples of using different
representation for anomaly detection: original images (dimen-
sion size n=784), VAE latent representation (n=128) and CDR
representation using knee point detection (n=12 for ‘5’ and
n=11 for ‘6’). The normal classes are 5 and 6 as shown in
Figure 9a and Figure 9b, respectively. First, we can observe
CDR can effectively extract the most important information
from original images like VAE. The visual outcome from
both VAE and CDR are similar, but CDR requires a much
smaller dimension size, 128 vs. 11 or 12. Moreover, CDR
could capture more useful information than VAE and remove
noisy or irrelevant features, improving the anomaly detection
performance accordingly. For example, in the first two rows of
Figure 9b and the second row of Figure 9a, the reconstructed
images using the representation by CDR are visually more
evident than using VAE, which would make the classifier
easier to classify them correctly. Also, we present examples
in which the classifier failed to classify samples correctly by
using original image or VAE representation but succeed by
using CDR representation. The last row in Figure 9a shows

6



the case where normal class samples are misclassified as
anomalies. The original image of ‘5’ is significantly irregular.
As the representation with higher dimensions tends to keep the
original irregular information, the reconstructed image from
the VAE representation looks more like ‘3’ instead of ‘5’.
While the reconstructed image from CDR representation still
can be recognized as ‘5’ by a classifier. Also, in the last row
in Figure 9a, the number ‘1’ is an anomaly for the normal
class of ‘6’, and the classifier misclassifies it as normal by
using VAE representation, as it includes some noises that make
it look like ‘6’. However, by using CDR representation, the
classifier correctly detects it as an anomaly. This behavior is
because CDR reduces the irrelevant noise and preserves the
most essential information with lower dimension sizes.

!"#$#%&' #(&$) *+, -.#(/0123 456 -.#(/013

(a) Normal Class 5

!"#$#%&' #(&$) *+, -.#(/0123 456 -.#(/003

(b) Normal Class 6

Fig. 9. Examples of VAE and CDR for images dimension reduction.

Figure 10 demonstrates visualization of learned representa-
tion using different approaches, which helps explain why our
proposed method, CDR, outperforms the others. We can ob-
serve that anomalies and normal instances are more separated
in Figure 10c and Figure 10f. In other words, the uncertainties
between normal and abnormal samples are smaller, such that
the classifiers are easier to determine samples are anomalies or
normal, thereby achieving higher detection performance. Also,
compared Figure 10c (i.e., CDR-k) with Figure 10f (i.e., CDR-
095), the separation between normal and abnormal instances in
CDR-k is slightly more than that of CDR-095, which explains
why CDR-k performs slightly better than CDR-095 in anomaly
detection.

Lastly, Table III, Table IV, and Table V present the compar-
ison results of anomaly detection performance on CIFAR-10,
FMNIST, KDDCUP, and Arrhythmia, respectively. Note that
there is no comparison with Deep-SVDD in Table IV as Deep-
SVDD [27] did not evaluate the performance on FMNIST,
and in Table V, we adopt the same metrics (i.e., precision,
recall, and F1 score) used in DAGMM to evaluate KDDCUP
and Arrhythmia. As we can see, CDR for anomaly detection
consistently outperforms state-of-the-art techniques. Overall,
the extensive evaluations on various datasets have demon-
strated that CDR can effectively extract the most important
information while requiring a smaller dimension size.

TABLE III
COMPARISON OF ANOMALY DETECTION PERFORMANCE ON CIFAR-10

USING ORIGINAL IMAGES, VAE COMPRESSED DATA AND
STATE-OF-THE-ART METHODS. AVERAGE AUCS IN % WITH STDDEVS

(OVER 10 SEEDS) PER METHOD.

Normal Orig img VAE-z DEEP- DA- CDR-095 CDR-k
Class SVDD GMM (ours) (ours)

AIRPLANE 65.3±3.4 64.9±3.5 61.7±4.1 61.0±3.8 65.8±3.6 65.2±3.8
AUTOMOBILE 69.5±1.2 69.3±1.3 65.9±2.1 63.2±2.4 63.9±1.7 68.7±1.3
BIRD 58.1±0.8 58.4±0.9 50.8±0.8 52.7±1.3 58.4±0.9 58.9±0.9

CAT 58.9±1.0 58.5±1.1 59.1±1.4 58.1±3.8 59.3±1.2 59.7±1.1

DEER 64.2±0.5 63.4±0.5 60.9±1.1 64.5±1.5 65.9±0.7 63.8±0.8
DOG 65.4±1.9 65.8±2.6 65.7±2.5 62.7±2.6 63.0±2.4 62.4±2.4
FROG 74.7±1.5 73.1±1.6 67.7±2.6 72.7±1.8 68.4±1.8 75.4±1.5

HORSE 65.8±0.9 66.0±1.0 67.3±0.9 64.5±1.9 65.0±1.0 66.1±0.8
SHIP 76.0±0.8 76.2±0.8 75.9±1.2 73.6±1.0 75.7±0.8 77.4±0.8

TRUCK 72.2±1.2 70.3±1.1 73.1±1.2 72.6±1.1 67.5±1.3 69.2±1.2

TABLE IV
COMPARISON OF ANOMALY DETECTION PERFORMANCE ON FASHION

MNIST USING ORIGINAL IMAGES, VAE COMPRESSED DATA AND
STATE-OF-THE-ART METHODS. AVERAGE AUCS IN % WITH STDDEVS

(OVER 10 SEEDS) PER METHOD.

Normal Orig img VAE-z DA- CDR-095 CDR-k
Class GMM (ours) (ours)

T-SHIRT/TOP 86.9±0.5 87.0±0.5 83.1±0.8 86.4±0.6 86.6±0.6
TROUSER 93.6±0.1 94.8±0.2 92.5±0.4 94.6±0.2 95.7±0.1

PULLOVER 90.2±0.7 89.4±0.7 88.4±1.2 89.6±0.7 90.4±0.7

DRESS 94.3±0.6 94.1±0.9 91.6±1.1 92.9±0.8 93.4±0.7
COAT 84.0±0.9 84.1±1.0 84.5±1.5 84.8±0.9 84.1±1.0
SANDAL 95.7±0.4 96.3±0.4 94.2±0.7 95.3±0.4 95.2±0.4
SHIRT 80.1±0.4 79.8±0.5 78.7±1.2 78.7±0.5 82.0±0.5

SNEAKER 92.8±0.5 93.4±0.6 94.5±0.9 93.4±0.6 94.4±0.3

BAG 96.5±0.3 97.7±0.5 95.6±1.0 97.4±0.5 97.5±0.5
ANKLE BOOT 97.1±0.2 97.5±0.3 92.7±0.5 97.6±0.3 97.7±0.2

D. Dimension Reduction and Speedup

In Table VI, we present the reduced dimension size from
CDR representation (i.e., the selected k components) using
two schemes: CDR-095 and CDR-k on the three datasets:
MNIST, FMNIST, CIFAR-10. Overall, CIFAR-10 requires
more components for the representation than FMNIST and
MNIST as CIFAR-10 is more complex than the other two.
Similarly, more complex classes in a given dataset require
more components. For example, in MNIST, number ‘5’ needs
more components than number ‘1’. The selected k in each
dataset is relatively stable using knee point detection while
using a pre-defined CEV threshold (i.e., 95%) obtains more
fluctuated values. In other words, our knee point detection
adaptively preserves the necessary information (i.e., variance)
across the classes compared with a fixed threshold. Also, on
average, the selected k via knee point detection algorithm is
slightly larger than using the pre-defined threshold for each
dataset.

Next, we evaluate the reduction ratio (RR) by CDR and the
speedup as a result. The reduction ratio is defined as:

RR =
|D|� |D0|

|D| , (5)

where D is the dimension size of original data and |D0| is
the dimension size of compressed data. Higher RR indicates
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(a) Orig img (b) DeepSVDD (c) CDR-k

(d) VAE-z (e) DAGMM (f) CDR-095

Fig. 10. Visualization of representation using different schemes for anomaly detection.

TABLE V
COMPARISON OF ANOMALY DETECTION PERFORMANCE ON KDDCUP

AND ARRHYTHMIA USING ORIGINAL IMAGES, VAE COMPRESSED DATA,
AND STATE-OF-THE-ART METHODS.

Method KDDCUP Arrhythmia
Precision Recall F1 Precision Recall F1

Orig 0.8679 0.92 0.8932 0.4875 0.5016 0.4944
VAE-z 0.8943 0.9402 0.9167 0.5029 0.5113 0.5071
DEEPSVDD 0.9024 0.9487 0.9250 0.5160 0.5027 0.5092
DAGMM 0.9297 0.9442 0.9369 0.4909 0.5078 0.4983
CDR (ours) 0.9341 0.9615 0.9476 0.5246 0.5815 0.5516

TABLE VI
THE REDUCED DIMENSION SIZE IN CDR REPRESENTATION (I.E., THE

SELECTED k COMPONENTS) USING TWO METHODS: PRE-DEFINED CEV
THRESHOLD 95% (CDR-095) AND KNEE POINT DETECTION (CDR-K) ON

THREE DATASETS: MNIST, FMNIST, CIFAR10.

Class MNIST FMNIST CIFAR10
CDR-095 CDR-k CDR-095 CDR-k CDR-095 CDR-k

0 11 12 13 14 43 35
1 6 7 12 15 30 36
2 11 12 11 15 22 21
3 12 11 12 14 29 39
4 10 11 12 13 34 38
5 11 12 17 16 51 37
6 11 11 13 14 32 36
7 10 11 9 12 30 35
8 10 11 14 16 35 34
9 12 11 16 15 32 40

Average 10 11 13 14 34 35

greater dimension reduction. In CDR, we evaluate two types
of RR: RR with respect to original image size (RR orig) and
RR with respect to the dimension size of AE/VAE latent rep-

resentation (RR ae). Specifically, we use the dimension size
of original images as D in Equation 5 to calculate RR orig
and use the dimension size of AE/VAE latent representation
for RR ae. D0 is the dimension size of CDR representation
for both RR orig and RR ae. The dimension size of different
types of representation and corresponding CR are shown in
Table VII. Note that, for CDR-095 and CDR-k, we use the
average reduced dimension size for each dataset (the last
row in Table VI). As we can observe from this table, CDR
significantly reduces the dimension size, achieving an 80% to
93% reduction ratio with respect to AE/VAE representation
sizes and over 98% reduction ratio with respect to original
image sizes. In other words, CDR needs only around 10% of
the AE/VAE representation size and less than 2% of original
image sizes to extract the most useful information.

TABLE VII
DIMENSION REDUCTION AND REDUCTION RATIO OF CDR.

Dataset Orig img AE/VAE-z CDR RR ae RR orig

MNIST 784 128 11 91.4% 98.6%
FMNIST 784 128 14 89.1% 98.2%
CIFAR10 3072 512 35 93.2% 98.9%
KDDCUP 120 10 2 80.0% 98.3%
Arrhythmia 274 16 3 81.3% 98.9%

Lastly, Figure 11 presents the speedup brought by CDR
on inference time, compared with using the original image,
only AE/VAE representation, and the state-of-the-art meth-
ods. Compared with other techniques, our proposed method
achieves 4⇠8x speedups across various datasets and achieves
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Fig. 11. Speedup brought by CDR for the five evaluated datasets: MNIST, FMNIST, CIFAR10, KDDCUP, and Arrhythmia.

13⇠21x speedups compared with one using original images.
We also evaluate the PCA transformation and knee point
detection time and observe that those times are less than 0.1%
of AE/VAE training time. In other words, the overhead of
applying PCA on AE/VAE representation is negligible, and we
obtain much more benefit for the downstream task of anomaly
detection: less training and inference time and improvement
of anomaly detection performance.

E. Verification on More Detection Methods

We thus far have demonstrated that our proposed CDR
can obtain informative representation with minimal dimension
size. We further showed that the neural network classifier
performs well on the dimension-reduced representation via
CDR. In this subsection, we verify if CDR is applicable to
other anomaly detection models. Specifically, we evaluate the
CDR representation for eleven additional detection models,
including Logistic Regression (LR), Nearest Neighbors (NN),
Support Vector Machine (SVM), Decision Tree (DT), Random
Forest (RF), AdaBoost (AB), Naive Bayes (NB), Quadratic
Discriminant Analysis (QDA), KMeans, Gaussian Mixture
Model (GMM), and Kernel Density Estimation (KDE). The
evaluation results are shown in Table VIII. For most detection
models, CDR consistently outperforms the AE/VAE compres-
sor with a smaller dimension size and achieves better anomaly
detection performance. CDR reduces the dimension size and
scarcity among data, which is beneficial for the distant-based
model such as NN and SVM, or the model that prefers small
dimension size, such as NB and QDA. Overall, supervised
classification models (i.e., the first 8 rows in Table VIII)
perform better than unsupervised clustering models (i.e., the
last 3 rows in Table VIII) since the labeled data in supervised
models provide useful prior knowledge that can help improve
the detection performance. Among three clustering methods,
more sophisticated models like GMM and KDE perform better
than KMeans.

V. RELATED WORK

a) High-dimension Data Anomaly Detection.: Anomaly
detection (AD) has been actively studied and been widely
used in real-world applications, such as network intrusion

TABLE VIII
COMPARISON OF ANOMALY DETECTION PERFORMANCE BY CDR WITH

ELEVEN ADDITIONAL DETECTION MODELS.

Method MNIST FMNIST CIFAR10
VAE-z CDR-k VAE-z CDR-k VAE-z CDR-k

LR 94.4±0.4 94.2±0.5 63.4±1.5 62.5±1.4 90.5±0.5 90.0±0.5
NN 90.2±0.6 90.5±0.6 63.0±1.3 63.3±1.3 89.8±0.7 90.1±0.6

SVM 92.4±0.5 92.5±0.5 63.8±1.5 62.9±1.5 86.0±0.7 84.7±0.7
DT 91.7±0.5 91.5±0.5 58.3±1.8 59.0±1.7 84.2±0.6 84.5±0.6

RF 93.5±0.5 93.5±0.4 59.5±1.6 60.1±1.4 88.3±0.5 87.7±0.6
AB 92.2±0.5 93.2±0.6 65.4±1.4 65.6±1.4 90.3±0.4 91.3±0.3

NB 92.1±0.4 92.6±0.4 63.7±1.5 64.3±1.3 86.2±0.6 90.2±0.5

QDA 90.2±0.6 94.6±0.5 64.3±1.6 66.0±1.5 88.1±0.5 91.5±0.3

KMeans 87.3±0.1 85.4±0.2 61.4±0.2 61.2±0.2 79.5±0.1 80.7±0.2

GMM 92.1±0.1 91.2±0.1 58.1±0.2 61.4±0.3 82.9±0.2 83.0±0.3

KDE 83.3±0.1 86.8±0.1 56.2±0.2 60.6±0.1 86.3±0.1 83.4±0.1

detection [2], medical diagnosis [3], or senor networks [4].
Prior studies have proposed numerous anomaly detection tech-
niques, including classification-based [5] [6] [7] [31] [32] [33],
distance-based [10] [34] [35], probabilistic or spectral tech-
niques [16] [8] [9]. However, as application data are growing
rapidly in both size and dimensionality, most conventional
AD methods are increasingly becoming less effective due
to sparsity and irrelevant features, noise emerging in high-
dimensional data [17]. Numerous methods have been proposed
to reduce the dimension of the data, such as subspace-
based [19] [36] [37] [38] and feature selection-based meth-
ods [39] [40] [41]. While these methods are effective for
reducing dimension size, they cannot guarantee whether proper
and sufficient information has been preserved in the subspace
or the selected features for the downstream task of detecting
anomalies accurately [42].

In recent years, deep learning has demonstrated promising
results in learning expressive representation from complex
data, such as using autoencoder to learn the representation of
high-dimensional data (e.g., image data). Several deep learning
anomaly detection methods have been proposed to address
the problem of high-dimensional data anomaly detection. For
example, [27] proposed a deep one-class classification model
(Deep-SVDD) in which a deep learning network is trained to
obtain a hypersphere where normal data is mapping inside
the hypersphere whereas anomalies fall outside the hyper-
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sphere. In [28], a deep autoencoding Gaussian mixture model
(DAGMM) is proposed, which combines deep autoencoder
and Gaussian mixture model to learn compressed represen-
tation and anomaly detection. In [43], a deep autoencoder and
density estimation are combined to enable the simultaneous
detection of both global anomaly and local anomaly. However,
these deep learning anomaly detection models are sophisti-
cated with complex designs that require long training time and
inference time, as they mainly focus on the accuracy of detec-
tion performance, not the efficiency. In this work, we propose
a simple yet effective method called CDR, which focuses on
both efficiency and accuracy of detection performance.

b) Dimension Reduction.: A common strategy to handle
high-dimensional anomaly detection problems is dimension
reduction (DR). Dimension reduction is a technique that
reduces the number of features to obtain lower-dimensional
data that captures essential information in original data. There
are two main approaches to perform dimension reduction:
feature selection (or feature elimination) and feature extraction
(or feature transformation) [17]. Feature selection techniques
preserve only some important existing features and discard
insignificant ones. Feature extraction techniques generate a
reduced number of new features from the original features
via the transformation techniques such as PCA [16], Au-
toEncoder [18], and t-SNE [44]. PCA projects data into the
direction of high variance, transforming the original data into
principal components. The principal components (PCs) with
the most important information (i.e., highest variance) are kept
and the PCs with lower variance are removed. Kernel PCA
(KPCA) [30] is an extension of PCA for non-linear cases.
KPCA uses a kernel function, such as polynomial or Gaussian
kernel, to project data into a higher dimensional feature space
where the data become linearly separable. Due to the relatively
complex computation involved in KPCA, it is slower than
PCA.

AutoEncoder (AE), on the other hand, consists of an en-
coder and decoder, where the encoder compacts the high-
dimensional data to lower-dimension data, and the decoder
uses the compressed data to reconstruct back the original data.
Intuitively, AE creates a bottleneck that only the main infor-
mation of the data can go through. Variational AutoEncoder
(VAE) [20] is a generative model that learns an approximated
probability distribution where the data are sampled from. It has
similar architectures for dimension reduction like AE but also
adds the regularization of latent distribution, which helps push
the representation far from irrelevant or insignificant factors.
However, as there is no general way to select a proper reduced
dimension size k for AE or VAE, the k is set heuristically
and tends to be larger than necessary. In other words, there
is still an opportunity to minimize the redundancy [22] as the
results we have shown in Figure 2b. In our proposed method
CDR, we incorporate a knee point detection algorithm to select
k automatically for the latent representation and minimize
k while preserving necessary and sufficient information for
anomaly detection. DPZ [45] proposed a multi-stage method
that combines discrete cosine transform, PCA, quantization,

and encoding to compress scientific datasets. While CDR is
also a multi-stage method, it combines AE and PCA in series
to extract the most significant features for anomaly detection.

VI. CONCLUSION

In this work, we propose a cascaded dimension reduction
(CDR) technique for effective anomaly detection. In CDR, we
serially apply two popular DR techniques, AE/VAE and PCA,
and incorporate knee point detection to select the optimal k
dimension automatically. Specifically, we use AE/VAE first to
obtain representation z and then apply PCA on z to reduce
dimension further. By utilizing the knee point detection algo-
rithm for the cumulative explained variance (CEV) on z, we
can auto-select the optimal reduced dimensional k for effective
anomaly detection. The extensive evaluation using various
datasets and detection models has demonstrated that CDR can
significantly reduce the dimension size while preserving most
essential information. Our results have also shown that CDR
for anomaly detection consistently outperforms state-of-the-
art techniques. Moreover, compared with using AE/VAE com-
pressed data or original images, CDR can achieve 80%⇠98%
reduction ratio and 4⇠21x speedup.
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