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ON CLASS NUMBERS, TORSION SUBGROUPS, AND QUADRATIC
TWISTS OF ELLIPTIC CURVES
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THOMAS C. MARTINEZ

ABSTRACT. The Mordell-Weil groups E(Q) of elliptic curves influence the structures of their
quadratic twists E_p(Q) and the ideal class groups CL(—D) of imaginary quadratic fields. For
appropriate (u,v) € Z?, we define a family of homomorphisms ®,, : E(Q) — CL(—D) for
particular negative fundamental discriminants —D := —Dg/(u,v), which we use to simultaneously
address questions related to lower bounds for class numbers, the structures of class groups, and
ranks of quadratic twists. Specifically, given an elliptic curve F of rank r, let Uy be the set
of suitable fundamental discriminants —D < 0 satisfying the following three conditions: the
quadratic twist E_p has rank at least 1; Fio,(Q) is a subgroup of CL(—D); and h(—D) satisfies
an effective lower bound which grows asymptotically like ¢(E) log(D)? as D — oo. Then for any
€ > 0, we show that as X — oo, we have

#{-X<-D<0:-DeUg} > X

In particular, if £ € {3,5,7} and ¢ | |Eior(Q)], then the number of such discriminants —D for
which ¢ | h(=D) is >, X z~¢. Moreover, assuming the Parity Conjecture, our results hold with
the additional condition that the quadratic twist £_p has rank at least 2.

1. INTRODUCTION AND STATEMENT OF RESULTS

Ideal class groups CL(—D) of imaginary quadratic fields Q(v/—D) are finite abelian groups
isomorphic to the groups of positive definite integral binary quadratic forms of discriminant
—D < 0 studied by Gauss. Although Gauss conjectured that the class number h(—D) tends
to infinity as D — oo, no lower bound on class numbers was established until the 1930s, when
Siegel [26] proved that for any € > 0, there exist constants ¢;(¢), c2(¢) > 0 for which

¢i(e) D27 < h(—D) < cye) D2+,

However, because the constant ¢;(g) depends on the truth or falsity of the Generalized Riemann
Hypothesis, Siegel’s lower bound is not effective. In the 1980s, Goldfeld [12, 14], Gross and
Zagier [17], and Oesterlé [24] used deep results on the Birch and Swinnerton-Dyer Conjecture to
prove the effective lower bound

1 [2v/P)
(1.1) h(—D) > 000 log(D) ] (1 — pﬁ) .

p| D prime
p#D
Recent work improves on this bound by exploiting ideal class pairings E(Q) x E_p(Q) —
CL(—D), first studied by Buell, Call, and Soleng [2, 3, 28]. Griffin, Ono, and Tsai [15, 16] obtain
an effective lower bound of the form h(—D) > ¢;(E)log(D)? for certain families of discriminants,
which improves on (1.1) when the rational Mordell-Weil rank of the elliptic curve r := rqo(E) > 3.
A famous conjecture of Goldfeld asserts that for a given elliptic curve, asymptotically half of

all quadratic twists have rank 0 (resp. 1), which raises the question of how many quadratic twists
1
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have rank at least 2 [13]. For any elliptic curve £ with j(F) # 0,1728, Stewart and Top [30,
Theorem 3] unconditionally prove a lower bound of the form
X D <0 E > 2V > (F 7X%
—A < =D < - :
# ro(B-p) 22} 2 () oy
where ¢y (F) is a constant depending on the elliptic curve. However, improved lower bounds can
be obtained by assuming the Parity Conjecture.

Parity Conjecture. Let E/Q be an elliptic curve with Hasse-Weil L-function L(E,s), and let
€ € {£1} be the sign of its functional equation. Then ro(E) =0 (mod 2) if and only if e = 1.

Gouvéa and Mazur [11, Theorem 2] assume the Parity Conjecture and obtain the lower bound
#{-X < =D <0 : ro(E_p) >2} >, X27°.

Moreover, assuming the Parity Conjecture, Griffin, Ono, and Tsai prove for a particular family
of elliptic curves that the number of fundamental discriminants —X < —D < 0 for which their
lower bound for h(—D) applies and the rank of E_p is at least 2 is asymptotically greater than
X2 [16, Theorem 1.2].

In addition to using ideal class pairings to obtain lower bounds for class numbers and ranks
of quadratic twists, it is natural to ask whether they can also be used to study the structures of
class groups. In the 1980s, Cohen and Lenstra [4] conjectured that for any odd' prime /,
#{-X <-D<0:L|h(-D), =D fundamental} 1 ﬁ < 1 )

=%

I
X s #{—-X < =D < 0: —D fundamental} Pt
However, little is known about the truth of their conjecture. Davenport and Heilbronn [5]
proved a lower bound on the density of the class numbers h(—D) which are not divisible by 3,
and Kohnen and Ono [21] proved a lower bound for the number of h(—D) not divisible by any
odd prime. The current best lower bound for the number of h(—D) divisible by an odd prime ¢

is due to Soundararajan [29]:
#{—X < =D < 0: | h(—D), —D fundamental} > X3*7.

Note that these lower bounds fall short of a positive proportion of the negative fundamental
discriminants, and that X 3 is considered the current standard.

In this paper, we prove a result that simultaneously addresses lower bounds for class numbers,
the structures of class groups, and ranks of quadratic twists. We consider elliptic curves of the
form E : y? = 2® + asx + ag with a4, ag € Z, and their quadratic twists given by the non-standard
model

E_p: 1 -y2:x3+a4x+a6.
To prove our result, we study a family of maps
0, ,: E(Q) = CL(—Dg(u,v))
defined in Section 2, where —Dg(u,v) is the family of negative discriminants defined by
—Dg(u,v) = —4dp(u,v) == —4v (u® + ag uv? — agv?), u,v € ZF.

IFor fundamental discriminants —D < 0, Gauss’s genus theory shows that h(—D) is odd if and only if we have
D=—-4,D = -8, or D = —p for some prime p = 3 mod 4.
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Here, Dg(u,v) and ®,,, are defined in terms of the coefficients a4 and ag, and hence depend on
the particular model for the elliptic curve.

We define a notion of map-suitable pairs (u,v) € Z? in Section 2, and we prove that for all
such pairs (u,v), the map ®,,, is well-defined with the following property.

Theorem 1.1. If the pair (u,v) € Z* is map-suitable for E : y* = 23 + a4z + ag, then the map
., E(Q) = CL(—=Dg(u,v)) is a homomorphism.

To state our applications of Theorem 1.1, we first fix some notation. Recall that forz = = € Q,
where ged(m,n) = 1, the naive height of = is defined by H(z) := max(|m/|, |n|), and the Weil
height is hy (z) :=log(H(2)). If P = (z,y) = (&, &) € E(Q) with ged(A, C) = ged(B,C) =1,
the naive height of P is defined by H(P) := H(x), its Weil height is hy (P) := hw(z), and its
canonical height is given by

P =g
We denote the j-invariant and discriminant of an elliptic curve E by j(F) and A(FE), respectively.
Let €, := 72/T (% 4+ 1) denote the volume of the R™-unit ball, and let P = {P;,..., P} be a
set of r linearly independent points of infinite order in F(Q). We define the regulator and the

diameter of P by

0;€{0,+1}

(12) RQ(P) = det((P,,P>)1<Z j<r and d(P) = Imax 2;1 (zr:(szpl) s

respectively, where (P, Pj) = 3 (iz(P, + P;) — h(P;) — ﬁ(PJ)) denotes the Néron-Tate height
pairing. For notational convenience, we also define the constants

|G| 1 , 1 5
1.3 cqg(P)i= ————-Q, and 6(F):=-h E) 4+ —hw(A(E)) + =
18 eolP) = s () = < hw (GE)) + = hu (A(E) +
for a subgroup G of Ei,(Q). For0<5<%,let
1 4dg(u,v)t=e I(E)
(1.4) Tg(u,v,¢) .—glog< P YR

Using the homomorphism &, , defined in Section 2, we obtain the following result.

Theorem 1.2. Suppose P is a set of linearly independent points in E(Q) and G is a subgroup
of Eior(Q). Let 0 < g1 < % and 0 < a < % — &1, and let Vg denote the set of fundamental
discriminants —Dg(u,v) < 0 with u,v > 0 such that the following are true.

(1) The point (=%, %) € E_p, () (Q) has infinite order.
(2) We have that h(—Dg(u,v)) ( ) - (Tg(u,v,61)% — r/d(P) - Te(u,v,1)"2 ), where

TE(U‘7U7€1> > §10g(dE( ) ))
(3) The class group CL(—Dg(u,

Then for any o > 0, we have
(1.5) #{-X<-D<0:-DeUgl > X2

Moreover, if the conductor N(FE) is not a perfect square and 4N (E) divides ay and ag, then
assuming the Parity Conjecture, we may also require that ro(E_pyww)) > 2.

> c
+ 47 4
v)) contams a subgroup isomorphic to Ey(Q).
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Two Remarks.

(1) The condition that AN (E) | a4, ag can be guaranteed by choosing an appropriate model for E.
(2) The result in the abstract follows from Theorem 1.2 by letting P C E(Q) be a set of r linearly
independent points such that E(Q) = (P) ® Eio(Q), setting G := Eio(Q), and choosing o > 0.

To demonstrate that it is easy to find examples for which the bound given in Theorem 1.2
improves on (1.1), we apply Theorem 1.2 to several explicit infinite families of elliptic curves
with high rank and specified torsion subgroup. Recall that Mazur’s Theorem [23] completely
classifies all torsion subgroups of elliptic curves over Q:

7./ K7, for k=2,...,10, and 12,
Etor(@) = { /

Z]27 x Z/2mZ, form=1,... 4.
Infinite families of elliptic curves with positive rank are known for all torsion subgroups except
Z)97., 7.J10Z, 7./127, and Z/27 x Z/8Z [6]. Using the infinite families described in [6, 7, 8, 9,
10, 19, 20, 22|, we obtain explicit lower bounds for h(—D) that often improve on (1.1).

Theorem 1.3. Let S := {Z/nZ : 2 < n < 8} U{Z/2Z x Z/2nZ : 1 < n < 3}. Then for
each group G € S, there exists an infinite family? Eq of elliptic curves such that the following
conditions hold:
(1) There exist integral polynomials ay(ty, ..., tx) and ag(ty, ... tx), with k =2 if G = Z/27Z,
k=3 if G=17Z/3Z, and k = 1 otherwise, such that each element of Eg is modeled by the
curve y* = 23 + ay(ty, ..., tp)x + ag(ty, ..., tg) for some ty, ... 1, € Z.
(2) For all but finitely many E € Eg, there exists a set P of rmin(Eq) linearly independent
points in E(Q) whose coordinates are rational functions in tq, . .., t.
(3) For each E € &g, if we have E : y* = 23 + ay(t1, ..., tp)x + ag(ty, ..., 1), then there
exist positive constants m(Eq) and (Eq) such that the value of c(P) is greater than the
value cpin(P) given in the following table,® where T := log(max;|t;|+m(Eq)) + u(€a).

Torsion Subgroup | Tmin(Ec) Crmin(P) m(&q) | 1(€a)
Z]2Z 8  [4.050x 10707 T 17 | 0.26
Z7./3Z, 6 2.320x 10°6. 773 | 2 1.45
7.,/3Z, 6 2.320x 1076. 773 | 2 1.66
Z,/3Zs 6 2.320x 107673 | 2 | 0.85
Z/AZ 5 1.693x10°¢-7-3 | 2 | 0.18
ALY/ 2 6.732x 107 -7 | 2 | 0.56
/61 2 7968 x 1071 - T | 2 | 0.62
Z)TZ 1 3.315 x 100 - T2 3 | 033
7/81 2 2990 x 1071771 | 6 | 0.25

727, x 7./ 27 6 1.808 x 1077 - 773 1 0.20
7.)27. % 7.]AZ 4 1.016 x1072-7-2 | 1 | 0.86
7.)27 x 7.]67 2 9.058 x 107+ 71 | 3 | 0.24

TABLE 1. Lower bounds for cg(P) where E has a specified torsion subgroup.

2We give a link to explicit formulas for these families of elliptic curves in Appendix A.
3The family of elliptic curves with torsion subgroup Z/3Z has 3 parameters, two of which were fixed (t; =
2, to =4, t3 = 6) to compute the values listed in Table 1. The subscript indicates the parameter that was varied.
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In practice, the discriminant must be quite large for the lower bound for hA(—D) given in
Theorem 1.2 to improve on (1.1) for these families, but once discriminants exceed a certain
threshold, the improvement is substantial. For instance, fix ¢ = 1/1000, and consider the elliptic
curve Fg obtained from the family £z/67 described in Theorem 1.3 by setting ¢; = 0. One
can verify computationally” that for suitable (u,v) given approximately by (2728 x 22800 22800)
(2728 x 23000 23000) "and (2728 x 230000 930000) "which yield discriminants Dg,(u,v) on the order
of €78 e8332 and e%3192 respectively, we obtain lower bounds for h(—D) of 5, 16, and 2324; (1.1)
meanwhile gives lower bounds of approximately 2, 2, and 12. If one is willing to consider much
larger discriminants, then the families of higher rank from Theorem 1.3 yield better bounds. For
example, for the member FEj of the family £7/57 determined by ¢; = 0 and ¢, = 1, fixing € =
1/1000 and choosing (u, v) & (290291 x 2319618 9319618) qyitable, we find that Dg(u,v) ~ 886195
and that our lower bound for the class number is approximately 1.3 x 107, whereas (1.1) gives a
lower bound of approximately 127.

This paper is organized as follows. In Section 2, we define the family of maps

¢, E(Q) — CL(—Dg(u,v))

and prove Theorem 1.1. Using this result, in Section 3 we give an explicit lower bound for
h(—Dg(u,v)). Finally, in Section 4, we use a theorem of Gouvéa and Mazur [11] to count the
number of discriminants in our family —Dg(u,v) that fulfill the criteria given in Theorem 1.2.
A discussion of Theorem 1.3 is given in Appendix A.
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2. A HoMoMORPHISM FROM ELLIPTIC CURVES TO CLASS GROUPS

Consider an elliptic curve E : y?> = 2° + a4 + ag. Motivated by the ideal class pairings
E(Q) x E_p(Q) — CL(—D) studied by Buell, Call, Soleng, Griffin, and Ono [2, 3, 15, 28],
we define a map ®,,, : £(Q) — CL(—Dg(u,v)) for the infinite family of negative fundamental
discriminants —Dg(u, v) with map-suitable (u,v):

Definition 2.1. We say that a pair (u,v) € Z* is map-suitable for E if the values u, v,
3u? + a,v?, and Dg(u,v) are positive.

For notational convenience, we write dg(u,v) := W. To define our maps ®,, ,,, we will need
the following lemma.

4A link to the code used to compute these results is contained in Appendix A.



6 T. BLUM, C. CHOI, A. HOEY, J. ISKANDER, K. LAKEIN, AND T. MARTINEZ

Lemma 2.2. Suppose (u,v) € Z? is map-suitable for E and —Dg(u,v) is a negative fundamental
discriminant. Then
(1) v is square-free and ged(u,v) = 1.
(2) If P € E(Q) is not the point at mﬁmty O, there exist A, B,C € 7Z with ged(A, C)
ged(B,C) =1, C > 0, such that P = (4, 03) Write a = Av + C?u and g = ged(C,
Then there exists an integer u such that C3/g*- p =1 (mod va/g?).
(8) For any such p, the following formula

).

Buv? w2 B2 + dg(u,v
(2.1) D, (P, 1) ::U—Z-x2+2u—g-xy+ — ( )-y2
g g 2
9

defines a positive definite binary quadratic form with discriminant —Dg(u,v).

Proof. (1) follows from the assumption that —Dg(u,v) is a fundamental discriminant. To prove
(2), we suppose p is a prime such that p | Z—s and p Z—S = M%QCQ"), ie., ¢’°p | C? and
g*p | v(Av+C?u). In particular, we see that p | C and p | v(Av+C?u), so v(Av+C?*u) = Av? =
(mod p). Since A and C' are coprime, we obtain p | ged(C,v) = g. Consequently, p* | v(Av+C?u),
which implies that p? | Av + C%u because v is square-free. This yields Av = 0 (mod p?) and
hence p? | v, which is impossible. Thus, gcd( 7, or) = 1.

We now prove (3). A straightforward computation shows that the form in (2.1) has dis-
criminant —Dg(u,v). To see that @, ,(P, 1) is positive definite for any P € E(Q), we observe
that map—suitability ensures that the coefficient of each power of x in the polynomial expression
(=%~ :)3)3 + as( — % — ) 4 ag is negative. Thus, z° + a4z 4 ag < 0 for all x < —%, implying
that % L or equlvalently, a=C% (02 + %) > 0.

Finally, we show that the form in (2.1) has integral coefficients. The first two coefficients are
clearly integers. For the third, note that we have B?v? = v(A3v3 + a,AC*0? + agC%0?) because
P € E(Q), and C%dg(u,v) = v(C%u® + a4C%uv? — agC%?) by the definition of dg(u,v). This

allows us to write
B** 4+ CYdp(u,v) = v(A%® 4+ C%u® + a,C** (Av + C?u)) = va(A*? — AC*uv + C*u? + a,C*?),
which in particular yields that va | B*v* + C%dg(u,v). From this, we see that

Bv?\? C3N\ [ (Bv*\®  Cdg(u,v) va
2( 2 = (= - Z BT = -
M(92> +dE(u’U)_<92) (( 92) A >_O <m0d9>'

Using this lemma, we can define our map @,,,, : £(Q) — CL(—Dg(u,v)) for appropriate (u, v).

O

Theorem 2.3. Let the notation and hypotheses be as in Lemma 2.2. Then

(1) The class of @,.,(P, i) in CL(—Dg(u,v)) depends only on P and not on the choice of p,
hence defines a map ®,, : E(Q) — CL(—Dg(u,v)), where by convention ®,,(0) is set
to be the identity of CL(—Dg(u,v)).

(2) If ®,,u(P) is the identity of CL(—Dg(u,v)), then we have either v | C or &3 > dg(u,v).

Remark. Although the statement of Theorem 2.3 does mot assign special significance to the
parameters u and v, in analogy to ideal class pairings, one may view them as specifying a point
Q = (=%, %) on the quadratic twist E_p .. (Q).

v 2
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Proof. (1) To see that (2.1) represents a single equivalence class under the action of SLy(Z),
simply note that if u; and ps satisfy i—j,ul = 5_23#2 = 1 (mod Z—‘;), then py = po (mod ;—‘;),
so the corresponding forms are properly equivalent under the SLy(Z) transformation = +— = +

(HQ—Zl)BUy7 Yy,
(2) If P = (%, %) maps to the identity, then by comparing the first coefficient of the cor-

responding form to that of the identity form acted upon by a general element of SLy(Z), one

can verify that we must have g—‘; = a? + dg(u,v)y? for some coprime a,y € Z. If v = 0, then

a? = 1 and so ;—g = 1, from which it easily follows that v | C. Otherwise, we easily obtain

% > dp(u, v)y? > dp(u,v) as required. 0

To prove Theorem 1.1, we use Bhargava’s formulation of the various composition laws for
binary quadratic forms [1, Section 2|. For the remainder of this section, fix an elliptic curve
E : 23+a4x+ag and a pair (u,v) € Z? that is map-suitable for F such that —Dg(u, v) is a negative
fundamental discriminant. Consider three finite points P; = (%, %) € E(Q), with ged(A4;,C;) =
ged(B;, C;) = 1 and C; > 0, that satisfy P, + P, + P; = O. Let lly =max+n with [,m,n €Z
be the line whose intersections with E are precisely the points P;, counting multiplicities. For
convenience, we will let ¢, j, and k denote three distinct indices. Set d := dg(u,v), C := C; Cy Cs,
M:=C-2 N:=C-% b:=Nv—Mu, a; :== A;v+C? u, and g; := ged(C;,v). Moreover, choose

i, Ui € Z such that C? p; + va; {; = g7, and set ¢; == % Lastly, define the values

- c . G UG Qe — A g 9k
p=1uv- ) i = U ) ¢2 = )
9192 93 95 9k Cyi

and

1
0= @(UQ1Q2Q3—G1Q2Q3Q1—a29193Q2—039192Q3+25919293)-

Then we have the following lemma.®

Lemma 2.4. The Bhargava cube

U1 b2
/1 /
p ‘ V3
‘ o3 —|— 0
/ /
() o1
is integral of discriminant —Dg(u,v) with associated primitive quadratic forms
9 B2y?
v a; Bz ’02 My 1—4 + d
Qi(z,y) = —5 2" +2u —5— - ay + ——— -y
9i 9; e

By direct computation, one verifies that the given cube has the desired discriminant and
associated forms. The associated forms are primitive because the discriminant —Dpg(u,v) is
assumed to be fundamental. It remains only to show that the cube is integral. To do so, we will
use the following identities.

5The proof that ¢;, 0 are integral was communicated to us by Zhang.
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Lemma 2.5. We have the identities

(2.2) ayagazv = b*v* + C*d,

(2.3) Ay Ay Ay = N? — a C,

(2.4) agaz C; + ayaz C; + ay ay O3 = —2Mbv + C? (3u® + a4 v?),
(2.5) Ay A3 CF + AL A3 C 4+ Ay Ay C3 = —2MN + ay C?,

(2.6) a, C302 +ayC?C2 + a3 C3 C3 = M? v + 3C% u,

(2.7) A C3C3+ Ay CF O+ A3 C3 CF = M.

Furthermore, we have the divisibility conditions

(2.8) C;Cj | MN + A; A; CF,

(2.9) CiC; | AiAj M + A;C; N + A; CF N.

Proof. Because P, + P, + P; = O by hypothesis, we have

Ay Ay Az m n\ 2
(ZI}'—C—%) <LU—C—22) <ZI}'—C—32) :x3+a4$+a6—<7$+7) y

or equivalently,

(&) () () - (= w2 - (=)

Expanding these equations, cross-multiplying, and comparing coefficients yields the first six
identities. To obtain the divisibility condition (2.8), we will show that CFC? | (MN + A;A;CF)>.
Using identities (2.3), (2.5), and (2.7) to expand the product (MN + A;A;C?)?, we find that
all terms vanish modulo C’Z?C’JZ. Similarly, condition (2.9) follows by squaring and applying
identities (2.3), (2.5), and (2.7). O
Proof of Lemma 2.4. First, we note that p = v- —%— € Z since g; | C; for i € {1,2,3}. Second,

9192 93
we prove that ¢, = v - ﬁ € 7 for each i. By the expressions for ¢; and b, we have
J

U3 uvz&-—i—vC’iui

v = -NU; — - M.
9i 95 9k 9i 95 9k
Since g¢; | v, we have that g_;?gk - N{; € Z. Furthermore, by identity (2.7) we have
i 9j
0+ Cip\° C? C2o? C2 02 2 C2 C? 2
(Mvu> :<A2 ]2 2k2 +Aj 22 2kv2 —|—Ak 3 2] 2)(uv€i+C’i,ui)2,
9i 95 9k 9; 95 9k 9; 95 9k 9i 95 9k

which is clearly an integer.

Third, we prove that ¢; = %Z;gjgk € 7Z. By the definitions of ¢;, yi;, and ¢;, we have
(Cgig; gr) ¢ = v (bvl; — MCj ;) (bv by — MCy pue) — a; (C3 i + aj v ;) (CF e + ar v £y,
We expand this expression as a linear combination of ¢; (i, pt; i, €; pi, Uk 15, and we prove that
each term is divisible by Cyg; gj gv. The first term in the expansion is given by v {; ¢y (b* v* —

a; a;j a,v). Note that by (2.2), we have that

’Ugj gk(b2 ’02 — Q; a; ag U) = vﬁj £k . (_02 d),



ON CLASS NUMBERS, TORSION SUBGROUPS, AND QUADRATIC TWISTS OF ELLIPTIC CURVES 9

and since Cyg; g; gr. | C?, this term is divisible by Cg; g; gx. The next term in the expansion is
given by C; Cy i pu, (M? v — a; C3 C). By (2.6), we see that
Cj Ck,uj M (M2U — Q; 0]2 CI%) = Cj Ck,uj M (CLj 022 C,? + ag 022 Cf — 3C2u),
which is divisible by C' g; g; gx. Next, consider the term —(bvM + a; a; C%) v {; Cy . Note that
—(buM + a; a; C)vl; Cy pe = —((Nv — Mu) oM + (A;v + CFu)(Aj v+ CFu)CR)v ; Cp puy,.
Using identity (2.7), we see that the right hand side of the above equation is equivalent modulo
C'gigj gk to —(MN + AZ Aj C',f)v?’ gj Ck M- Since 9: 95 9k ‘ ’03 and Cz Cj | MN + AZ Aj C]% by
condition (2.8), we have that (Cg; g; gx)¢; = 0 (mod Cy, gj gr). The same argument can be
applied to the remaining term, —(bv M + a; ay, CJZ)U U C; pvj. Thus, we conclude that ¢; € Z.
Finally, we use a similar strategy to show that 6 is an integer. In particular, we show that
(C? g1 g2 g3)0 is divisible by C? g; g2 g3. We again make the substitutions g; ¢; = bvl; —mC; u; and
g? = C? u;+a; vl;, and we see that C? gy g2 g3 0 is a linear combination of u; pu; gy, €; €; pug, Ci € Cr,

i p; p; and their symmetric counterparts. We show that the coefficients of all such terms are
divisible by C? g g5 g3. First, we consider the 1 po 3 term, which by identity (2.6) has coefficient

20C3 + OM (a1 C2 C2 + ay C2 C2 4 a3 C? C2) — CoM? = 20C® 4 3C° uM.

Since C? g1 9293 | C?, this coefficient is divisible by C?g;gs g3. Next, the ¢; ¢; u term has
coefficient MCy v(—b*v? + va; aj i) = MCyv(C*d), which is also divisible by C? g1 g2 g3. The
coefficient of ¢ 5 (3 can be addressed similarly. Finally, for the ¢; j1; py, coefficient, we expand
the coefficient using the definitions of b and a;. It is easy to see that C? g; g, g3 divides the u?v
and the uv? terms using identity (2.7). We now address the v® term using (2.5) and (2.7):

v? Cy C3(A1 C3 C5N + Ay Ay CIM + C3 Ay AsM + MPN)
=0?Cy C5 ((M? N — Ay C} C5N — A3 CF C5N) + M(—2MN + aq C* — Ay A3 CT) + MPN)
=02 Cy C3 (—C7 (A2 C5 N + A3 C3 N + Ay AsM) + ay C° M) .
Because A; CF N + A; CF N + A; A; M is divisible by C; C; by identity (2.9), we see that this
term is indeed divisible by C? g; g2 g3. This concludes the proof that 6 is integral. O

Using Lemma 2.4, we are now in a position to prove that @, , is a homomorphism.

Proof of Theorem 1.1. Given any three finite points P; € E(Q) that add to O, we have exhibited
an integral, primitive Bhargava cube associated to the forms &, ,(F;), implying that &, ,(P;) +
D, () + P, (Ps) is the identity form. It is easily seen from the definition of ®,,, that it respects
inverses, and so ®,,, is a homomorphism whenever (u,v) is map-suitable for E: indeed, for any
Py, P, € E(Q) such that Py, Py, P+ P, # O, the Bhargava cube shows that @, ,,(P;)+®,,(P)+
(I)u,v(_(Pl + PQ)) = O, so that (I)u,v(Pl + Pg) = (I)u,v(P1> + (bu’U(P2>. O

We conclude this section by giving conditions on v and v under which ®,,, is injective on the
torsion subgroup, which allow us to identify subgroups of CL(—Dg(u,v)) isomorphic to Ei,(Q).

Definition 2.6. Let Ay := max{A : (A, B) € E;,,(Q)}; we call a pair (u,v) € Z* kernel-
suitable for E if v>1 and dE(“;# > Ag.

Corollary 2.7. Let (u,v) be kernel-suitable for E. Then ®,,, restricted to Ei,(Q) is injective.
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Proof. It P = (A,B) € Eix(Q) is in the kernel of ®,,, then by Theorem 2.3, we have that
Av +u > & (:’v), so & (“;JZ)_"U < A, a contradiction. O

3. LOWER BOUND FOR h(—Dg(u,v))

We now use the map @, ,, to obtain an effective lower bound for the class number A(—Dg(u,v)).
We will use Propositions 3.2 and 3.3 from [15], which combine to give the following result.

Proposition 3.1 (Griffin-Ono). Let P be a set of r linearly independent points in E(Q), and
let G be a subgroup of Eio(Q). Then for T > d(P), we have
#{P € E(Q): (P) < T} > cg(P) - (T —r\/d(P) -

1

T2).
Recall the definition of Tg(u,v,e) from (1.4). To prove our lower bound, we also require a
third notion of suitability.

Definition 3.2. We say that a pair (u,v) € Z* is e-bound-suitable for P if u,v > 0 and

1 1+El ! !
(Z(UU +U2)> 62(1+€ )(6(E)+d(P)) < dE(u,v) < (02(1“) +U2))1+a :

! . £
where €' := .

Note that the first inequality in the above definition is equivalent to T (u,v,e) > d(P)/4.

By showing that distinct points in E(Q) with canonical height bounded by Tg(u,v, ) map
to distinct elements of the class group under @, ,, we obtain the following lower bound for
h(—Dg(u,v)).

Theorem 3.3. Assume the hypotheses from Proposition 3.1. Fiz 0 < ¢ < 1 5, and let €' == 7=

If —Dg(u,v) is a negative fundamental discriminant for which (u,v) € Z* is map-suitable for E
and e-bound-suitable for P, then

h(—=Dg(u,v)) > cq(P) - (TE w,v,€)2 —r\/d(P) - Te(u,v,e) 51).

Proof. Suppose that (u,v) is map-suitable for F and e-bound-suitable for P, and consider two

points Py, P, € E(Q) with canonical height bounded by Tg(u,v,e) and @, ,(P1) = ®,,(F2). We

show that P := P, — P, is the point of infinity.
Suppose that P # O, so in particular P = (&, &%) with ged(A,C) = ged(B,C) = 1 and

A
\C?>
h(P) < 4Tg(u,v,€). By a theorem of Silverman

C > 0. Note that the triangle inequality implies
[27, Theorem 1.1],

uv + v2

. d 1—e
hw(P) <2 (h(P)+d(F) —log2) <2 (4Tr(u,v,e) + §(E) —log2) < log (M)
In particular, this means that

dp(u,v)=°
3.1 H(P)=ew®) < 22/
(3.1) (P)=e T uv +0?
Since (u,v) is map-suitable for £, we have ®,,,(P) = 0, so by Theorem 2.3 either %5 > dp(u,v)

or v | C. However, by the definition of heights and equation (3.1), we have
%gma:mmw4ﬁmgﬂuwmww%<dﬂ%m.
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Thus, we only need to consider the case v | C, which implies that
1

v < C < max(|A|,C?)2 = H(P)?.
By (3.1), together with the above, we get v? < dp(w0) ™ o that we have

uv+v?

€
1—¢
However, since (u,v) is e-bound-suitable for P, we have dg(u,v) < (v?(uv + v?))1*<". It follows
that P = O, and hence that any two rational points P; # P, with height bounded by Tg(u, v, ¢)

map to distinct forms.

From here, it suffices to count the number of points whose height is bounded by Tg(u,v,¢).
aPr)
4

h—=D) > #{P € E(Q) : h(P) < Tg(u,v,e)} > ca(P) - (Te(u,v,e)? —r\/d(P) - TE(u,v,e)%).
U

dp(u,v) > (v} (uwv +v?))*¥,  where &' =

Since (u,v) is e-bound-suitable for P, we have Tg(u,v, &) > so Proposition 3.1 implies that

4. THE SQUARE-FREE SIEVE

In this section, we will show that for any 5, > 0, the number of negative fundamental dis-
criminants of the form —X < —Dpg(u,v) < 0 that satisfy the conditions of Theorem 1.2 is
asymptotically greater than X 272 We study discriminants —X < —Dg(z + ny,y) < 0, where
n € Z*, such that 0 < 2,y < AM(n)X1 for some constant A(n) > 0 that depends on the coefficients
of the polynomial —Dg(u,v). We use the following theorem, which is a special case of Theorem 3
and Proposition 5 of Gouvéa and Mazur [11].

Theorem 4.1 (Gouvéa-Mazur). Let F(u,v) =v - f(u,v), where f(u,v) is a homogeneous poly-
nomial of degree 3 with coefficients in Z. Suppose that F(u,v) has no square factors over Z[u,v],
and that the greatest common divisor of all coefficients of F(u,v) is 1. For integers M, ag, by,
suppose one of the two following conditions holds:

(1) We have M = 2F for k > 2, and ag, by are odd integers such that F(ag,by) # 0 (mod 4).
(2) The integers ag and by are relatively prime to M and F(ag,bo) is a unit modulo M.

Finally, let N(Y) denote the number of pairs of integers (a,b) such that 0 < a,b <Y, a = ag
(mod M) and b = by (mod M), and F(a,b) is square-free. Then there exists an A > 0 such that

Y2
log(Y)?

N(Y):AY2+O< ) as Y — oo.

Let E : y? = 234+ a4z + ag be an elliptic curve, and let P be a set of linearly independent points
in F(Q). We recall our three suitability conditions for a pair (u,v) € Z?. First, we say that (u,v)
is map-suitable for E if u,v, Dg(u,v), 3u*+a4v* > 0 (cf. Theorem 2.3). Second, we say that (u,v)

is kernel-suitable for E if v > 1 and M > Aov + u, where Ay := max{A : (4, B) € Ei(Q)}
(cf. Corollary 2.7). Third, we say that (u,v) is e-bound-suitable for P if

K(uv +v*)" < dg(u,v) < (v*(uv +v?)) e,

where K := (i)Ha/ez(l*a/)(‘;(E)*d(P)) (cf. Theorem 3.3). We show that for large enough n asymp-
totically one hundred percent of pairs (x4 ny,y) with 0 < z,y < Y satisfy all of these suitability
conditions as Y — oc.
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Lemma 4.2. Fiz 0 < e < % Let A,,(Y') denote the number of pairs of integers 0 < x,y <Y such

that (x+ny,y) is not simultaneously map-suitable and kernel-suitable for E, and e-bound-suitable
for P. Then there exists an N > 0 such that for alln > N, we have A,(Y) = O.(Y*79).

Proof. Let G, (x,y) = dp(x + ny,y) = y(z* + 3nz®y + (3n® + as)zy® + (n® + aun — ag)y?).
There exists a constant N > 0 such that for n > N, each coefficient of G, (z,y) is positive. In
particular, for n > N and z,y > 0, we have 3(%)2 +ay > 3n®+ a4 > 0 and dg(x +ny,y) > 0,
so (z + ny,y) is map-suitable for all z,y > 0. For brevity, we write
Gu(z,y) = y(a® + ki(n) 2%y + ka(n) 2y® + ks(n) y°).
The remaining suitability conditions are

(1) Gu(z,y) > y(z+ (n+ Ag)y) and y > 1,

(2) Gu(z,y) > K(y(z + (n+1)y))"**, and

(3) Gul(z,y) < (¥’(z + (n+1)y))+e.
First, consider integer pairs (z,y) which do not satisfy property (1), i.e., y =1 or

23+ ki(n) 2%y + ka(n) 2y® 4+ ks(n) y® < x4+ (n + Ag) y.

Dividing the inequality by y? yields

)= () (s =35) - () (10 =255 <o

n—i—A()
ks(n)

so the suitability condition fails only if y < max {1, ks(n)~2, ( )%} Hence, the number of
integer pairs (z,y) which do not satisfy property (1) is O(Y).

Second, suppose that G,,(z,y) < K(y(z+(n+1)y))'**". Because 2+ (n+1)y > 1and & < 1,
we see that

Gulz,y) < Ky (z + (n+1)y)*
Dividing both sides of the inequality by y* and simplifying, we get
3 2 2
() (nm—5) - () (st = 25052) - (5) + (st = 50570 <0
Y Y Yy Y Y Yy

Thus y is similarly bounded and the number of pairs of integers (z,y) which do not satisfy
property (2) is O(Y).

Finally, suppose that G,,(z,y) > (y*(z + (n+1) y))'**". Dividing through by 3*+*" and setting
t:= %, we see that

(4.1) e <t3 + ki (n) #? + ko(n)t + ]fg(n)) —(t+n+1)"* >0.

First consider the case t < 1, and let C(n) := 1+ k1(n) + ka(n) + k3(n). Then (4.1) implies that
C
yfl") —(n+1)>0.

Cln )45/ , so the number of integer pairs (z,y) with z < y which do

n+l
not satisfy property (3) is O(Y'). Now consider the case ¢ > 1. Then (4.1) implies that

C(n) <i)3 (1) >0,

"

In particular, we have y < (

v
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1—¢

1
so that y < (%) RS e (%) ® Y=< Hence, the number of integer pairs (z,y) with

x >y that do not satisfy property (3) is O.(Y?7%). d

We now apply Theorem 4.1 to count the number of negative fundamental discriminants sat-
isfying the suitability conditions in Lemma 4.2. Let E have conductor N(E). Furthermore, for
0<e< % and o > 0, let Ny (e, a,n) denote the set of pairs (z,y) € Z? with 0 < z,y < Y such
that the following are true.

(1) The pair (x 4+ ny,y) is map-suitable and kernel-suitable for F.

(2) The pair (z + ny,y) is e-bound-suitable and (¢ + a)-bound-suitable for P.
(3) The point (=% —n, y_12> € E_py(atnyy) (Q) has infinite order.

(4) The value —Dg(x + ny,y) is a negative fundamental discriminant.

Finally, for ¢ € {£1}, let My (€,e,a,n) denote the set of elements (z,y) of Ny (e, a,n) such
that dg(x +ny,y) is coprime to 4N(E) and X _ay (z4nyy) (—N(E)) = €, where xp is the quadratic
Dirichlet character belonging to the field Q(+v/D).

Theorem 4.3. There exists a constant A > 0 and an n € Z* such that as Y — oo, we have

Y2
_ 2
# Ny(c":‘, Q, n) =AY*+0 (10g(Y)1/2) .
Moreover, if N(FE) is not a perfect square and 4N (F) | ay, ag, then for e € {+1}, there exists a
constant B > 0 and an n € Z* such that as Y — oo, we have

Y2

# My (e,e,a,n) = BY?*+ 0O (W) )
Proof. By applying Lemma 4.2 twice, we find that there exists an N € Z* such that for all
n > N, there are o(Y?) pairs (x,y) with 0 < z,y < Y such that (x +ny,y) is not simultaneously
(i) map-suitable for F, (ii) kernel-suitable for F, and (iii) e-bound-suitable and (¢ + «)-bound-
suitable for P. Moreover, by Proposition 1 of [11], only finitely many E_p, (z4ny,y) can have a
torsion point of order greater than 2. Thus, to prove the first assertion, it suffices to show that
the number of integer pairs (z,y) with 0 < z,y <Y such that —Dg(x 4+ ny, y) is a fundamental
discriminant is > Y?2.

We show that we can choose n > N so that the result for Ny (e, a,n) follows by applying
Theorem 4.1 to G, (z,y) with M = 4. Observe that # is a homogeneous cubic polynomial
with coefficients in Z, and since u — = +ny, v — y is an SLy(Z)-transformation, G, (z, y) has no
square factors as a polynomial in z, y if and only if dg(u, v) has no square factors as a polynomial
in u,v. Note that dg(u,v) = v(u*+asuv® —agv®) = —v*((—%)*+as(—%)+ag) has a square factor
only if f(z) = 2® + a4z + a¢ has a double root, which cannot occur since E: y? = 23 + asx + ag
is non-singular. The greatest common divisor of the coefficients of G, (z,y) is 1, and one easily
checks that regardless of the values of a4 and ag, there is a choice of ag, by, n (mod 4) such that
ag and by are odd and G(ap,bp) = 1 or 2 (mod 4). This choice of ap and by ensures that
—4G,(z,y) = —Dg(x + ny,y) is a fundamental discriminant, and hence applying Theorem 4.1
proves the first assertion.

To prove the second assertion, observe that in this case, we may choose n = 0 (mod 4N (E)) so
that dg(z+ny,y) = 2%y (mod 4N (F)). Note that —Dg(xz+ny,y) will be a fundamental discrim-
inant if we choose ap = by = 1 (mod 4). Consequently, if we can choose dy coprime to 4N (E) such
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that x_q,(=N(£)) = €, then dg(x + ny,y) is coprime to 4N(E) with X_q, (z+nyy) (—N(E)) = €
for all x and y in the congruence classes x =1 (mod 4N (F)), y = dy (mod 4N (E)). If N(E) is
odd, then x_g,(—N(FE)) is uniquely determined by the value of dy (mod N(F)) and achieves both
signs for N(E) not a square, so we can always choose dy = 1 (mod 4) such that y_4,(—N(E)) = e.
Otherwise, write N(E) = 2*Ny. The case where k is even reduces to the former case. The case
where £ is odd can be addressed by choosing dj to be in the correct residue class modulo 8 such
that x_q,(—No) = —1 and dy = 1 (mod 4), so unless N(F) is a perfect square, we can always
apply Theorem 4.1 with ag := 1 and by := dy (mod 4N (E)). O

Proof of Theorem 1.2. We give an argument similar to one used by Gouvéa and Mazur in [11].
By Theorem 4.3, there exists an n € Z* such that # N, xi/4(e1, o, n) = BX: + O(X%), where
A(n) is chosen so that every —D € {—Dg(x +ny,y) : 0 < 2,y < AM(n)XY4} =: Dx(n) satisfies
—X < —D < 0. To show that for any €5 > 0, the number of discriminants represented by
elements of N, A(n)X1/4 (e1,a,n) is also asymptotically at least X %_52, we consider the map

v NA(H)X%(El,a,n) — Dx(n)
(u,v) = —Dg(u,v).

We show that the cardinality of the fibers of v is 0o(X*®?). Let —D be a negative fundamental
discriminant and (u,v) € y~1(—D), and observe that D = 4v(u3+ aquv? — agv?®) implies v | D. In
addition, note that for each fixed v, since Dg(u,v) is cubic in u, there are at most three choices
for u that give Dg(u,v) = D. Because the number of positive divisors v of D is o(X*?) for any
g2 > 0, we see that the cardinality of the fibers of v is o(X*?). For each (z,y) € Ny,x1/4(e1, @, n),
the pair (z + ny,y) is map-suitable and kernel-suitable for E as well as £;-bound-suitable and
(1 + a)-bound-suitable for P. In particular, e;-bound-suitability ensures that the lower bound
for the class number given in Theorem 1.2 is satisfied, and (¢; + a)-bound-suitability ensures
that Tp(u,v,e1) = §log(de(u,v)) + Te(u,v,e1 + a) > §log(de(u,v)) + @. Consequently, we
see that every discriminant in the image of N Am)x1/4 (€1, @, n) satisfies the necessary conditions.

To prove the second part of the theorem, let € denote the sign of the functional equation for
the L-function associated to E, and consider the map

o /\/l/\(n)X%(e,el,a,n) — Dx(n)
(u,v) —= —Dg(u,v).

Then for each —D € Im(7'), the sign of the functional equation for the L-function associated to

E_p is equal to X_%(—N(E)) e = €2 = 1. Since E_p has a point of infinite order, assuming the

Parity Conjecture, we may conclude that E_p has even rank at least 2. O
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APPENDIX A. DISCUSSION OF THEOREM 1.3 AND EXPLICIT FORMULAS FOR THE INFINITE
FaMIiLIES OF ELLiPTIC CURVES

In this section, we outline how to compute

Cmin(P> = |G|

0 .Q,
Ro(P)

for each of the torsion groups listed in Table 1, where ry;,(Eg) > 0 is a lower bound for the
rank of a given infinite family of elliptic curves. For simplicity, we consider the case in which the
family of interest is parametrized by only one variable.

For a given infinite family of elliptic curves, we begin by computing® the short integral Weier-
strass form E' : y? = 2% + a4(t) @ + ae(t), along with the z-coordinates 283 of the linearly
independent points P; of infinite order on E!. Since the Néron-Tate height pairing is an inner
product, the matrix ((P;, P;))1<i j<r is positive definite and symmetric. Hence, by Hadamard’s
inequality, the product of the diagonal entries (P;, P,) = h(P,) is an upper bound for Rg(P).
Thus, we have

(A1) Ro(P) = det({(F;, Pj))<ij<r < H(PZ-,PZ-) = Hﬁ(Pi)-

To bound this product, we give an upper bound for each naive height H(FP;). Denote the
coefficient of #* in the polynomial ¢(t) by ¢[t¥], and set

where n; := max{deg(r;),deg(s;)}, ¢ = max{|r;[t"]|,|s;[t"]|}, and m; := min{b € ZT :
¢ (") o > max{|r;[t"], ]s:[t"]|}, forall 1 < n < n;}. Thus we obtain the upper bound
H(P;) < p;(t). Likewise, we obtain the bounds

H(j(E")) < ¢ ([tl+my)"™  and  H(A(E")) < ca ([t]+ma)".

We now use these upper bounds to derive an upper bound for il(PZ) using a theorem of Silverman
[27, Theorem 1.1] that relates the Weil heights to the canonical heights.

Theorem A.1 (Silverman). If P € E(Q), then

—%hw(j(E)) - 1—12hW(A(E)) —0.973 < h(P) — %hW(P) < 11—2hw(j(E)) + 11—2hW(A(E)) +1.07.

Let m := max({m;}{_, U {m;,ma}). Then we have

12 12 12 2

Hence, we obtain an upper bound for Rg(P). Finally, we choose p so that (log(|t|+m) + p)"
is an upper bound for the product in (A.1). We then take the square root of this monomial to
obtain ¢y (P), as listed in Table 1.
To see explicit formulas for each of the infinite families and the x-coefficients of their linearly
independent points of infinite order, as well as the code created to find these polynomials and the
values listed in Table 1, please visit https://github.com/team-class-numbers/elliptic-curve-families.

N 1 1 1 1 1 1
h(P) < <— log(c;) + D log(ea) + 5 log(¢;) + 1.07) + (—nj + —na + —ni) log(|t|[4+m).

6All computations were performed using Sagemath [25].
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