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With the acceleration of ICT technologies and the Internet of hings (IoT) paradigm, smart residential environments, also
known as smart homes are becoming increasingly common. hese environments have signiicant potential for the develop-
ment of intelligent energy management systems, and have therefore atracted signiicant atention from both academia and
industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level.
his information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a
problem known as appliance recognition. Several previous approaches for appliance recognition have proposed load disag-
gregation techniques for smart meter data. However, these approaches are oten very inaccurate for low consumption and
multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. hese
approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. his makes such approaches
unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home
seting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures
are collected. his type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly in-
vestigated assuming the presence of an expert, always available and willing to label the collected samples. Nevertheless, a
home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we
develop a SAL algorithm, called �-Active-Neighbors (KAN), for the problem of household appliance recognition. Diferently
from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the
querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures.
Such quality is deined as a combination of informativeness, representativeness, and conidence score of the signature com-
pared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a
low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model
user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and
collected at low frequency.
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Fig. 1. Signatures comparison between same appliances from diferent brands

1 INTRODUCTION
In the United States, the residential sector is responsible for more than 20% of the total energy consumption
[29], and this amount has been constantly increasing for several decades. As an example, in 2015, over 2.6 tril-
lion kilowat-hours were consumed [1], which are expected to increase by 13.5% by 2040 according to the U.S.
Department of Energy [3]. Some promising approaches introduced to manage energy consumption at the res-
idential level are obtained through ine-grained electricity billing, demand-response programs, and electrical
power load balancing [28, 32]. A well-recognized key enabler for such energy management techniques is the
knowledge about when each appliance is used and its consumption [5, 9, 17, 22, 27, 38, 39]. he problem of rec-
ognizing an appliance from its electric signature is known as appliance recognition. Several previous approaches
in this context rely on smart meters. hese meters measure the aggregated energy consumption of all home ap-
pliances and communicate such information to a utility company for billing [45]. To infer individual appliance
consumption, load disaggregation techniques are used [47]. However, these techniques lack the suicient accu-
racy to enable ine-grained energy management, and particularly inaccurate for low-consumption appliances
[47].
Smart outlets are a promising alternative for the appliance recognition problem. hese outlets look like tradi-

tional wall plugs, but are actually Internet of hings (IoT) devices [24], with the capability of monitoring and
controlling the power usage of a connected electric appliance. Previous studies on appliance recognition using
smart outlets adopt passive machine learning, in which a set of labeled data is given to train the model before it is
deployed, and then the ixed trained model is used for classiication [2]. his approach is not practical in a smart
home for several reasons [38]: (i) oline classiication is not lexible to new appliances subsequently available
on the market; (ii) similar appliances (e.g., diferent brands) may have very diferent consumption paterns, mak-
ing it hard to perform oline training. To illustrate this point, we collected the signatures (paterns of current
over time) of two computer monitors, Fig. 1(a), and two laptop chargers, Fig. 1(b). Clearly, training a machine
learning model on one monitor (or charger), and then using the trained model to recognize the other monitor
(or the other charger) at a later stage (e.g., once the new appliance is available on the market) may result in
misclassiication. his problem is exacerbated by the high rate of new appliances available on the market.
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In a home seting scenario, it is natural to consider the involvement of users in the labeling process, as ap-
pliance signatures are collected. his would allow to dynamically train a model tailored to the appliances in
each individual home, overcoming the limitations of oline machine learning. his type of learning falls into
the category of Stream-based Active Learning (SAL) [13]. Diferently from active learning, where it is assumed
that the entire dataset is available during training and an expert user labels a selected subset of instances, SAL
assumes that data is generated over time, when an appliance is plugged in, and the systemmust decide if manual
labeling from the user is needed. However, SAL learning has been previously considered only in highly special-
ized sectors (e.g., image and text recognition) where the user is an expert naturally incentivized to participate in
the labeling process [36]. We point out that this is not the case in most of the smart home applications, where
a user may have a diferent level of engagement and availability over time. In fact, a home user may present a
more erratic and user-dependent behavior, and the number of queries should be limited to prevent overwhelm-
ing them. As an example, a recent dataset of Mobile Phone Use (MPU) [25], that we use in this paper to model
real user behavior, shows that the users rarely interact with such systems. As a mater of fact, in most cases
users respond to the system notiications less than 50% of the time. To the best of our knowledge the problem
of user abstention for interactive querying has only been addressed in [35, 43]. hese works assume that user
responds to queries uniformly at random or that user abstention is primarily inluenced by proximity to the
decision boundary, which is not a realistic assumption for labeling tasks in a smart home.
In this paper, we propose an interactive and adaptive SAL approach, called �-Active-Neighbors (KAN). We

assume that a smart outlet generates a signature when an appliance is plugged in and turned ON. hrough a
smart phone app, a user may be requested to label such a signature. he main challenge addressed by KAN is
to jointly learn the user engagement and the appliance signatures. To this purpose, KAN provides an adaptive
querying strategy to determine whether to query the user or not. Such strategy takes into account the quality
of the signature over time and the user engagement with the system. KAN estimates the quality of a signature
through three metrics informativeness and representativeness, calculated on a �-Nearest-Neighbor graph, and
conidence score. Simultaneously, KAN keeps track of the user previous engagement over time (i.e., whether the
user responded to the labeling request), in order to infer the likelihood of the user labeling a sample at the current
time slot. Since, as the system learns, signatures of high quality tend to become more rare, KAN uses a statistical
approach to adaptively adjust its querying strategy. his strategy is based on a dynamic tradeof between quality
of a signature and likelihood of user response.
his paper signiicantly advances commercial solutions as well as state-of-the-art approaches. For instance,

Currant [7], a recent commercial smart outlet, is only able to track outlet usage over time, without performing
appliance recognition. Additionally, learning from non-expert users introduces speciic challenges such as the
need of learning quickly, with a small amount of sampled data, and with potential limited engagement of the user
in the labeling process. In this paper, we show that even a recently proposed approach based on convolutional
neural networks [44] fails in this challenging scenario.
We perform extensive experiments to test the performance of KAN versus a state-of-the-art approach. To this

purpose, we use two datasets of electric signatures.he irst dataset is obtained by an Arduino-based smart outlet
developed as a part of this paper. he second dataset is from the ECO project [41], which contains signatures
collected from a real world smart home. We also model the user behavior realistically by adopting the MPU
dataset [25]. Results show that KAN outperforms other approaches, and it is able to achieve high accuracy with
minimal data. his makes it particularly suitable to low-cost smart outlets and IoT applications, where resources
are limited. In addition, an analysis of the MPU dataset shows that users rarely interact with such systems.
herefore, it is of primary importance to propose an adaptive querying strategy in order to optimize the whole
learning process.
In summary, the main contributions of this paper are:
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• We propose an algorithm called KAN for appliance recognition in smart homes;
• KAN exploits a notion of quality of a signature based on informativeness, representativeness, and coni-
dence scores;

• KAN learns the user behavior over time to infer the likelihood of the user engaging in the labeling process;
• KAN combines the signature quality with the predicted user behavior to determine an adaptive querying
strategy;

• We test KAN on real appliance signatures collected from anArduino-based smart outlet alongwith a house
from the ECO dataset [41], and use the MPU dataset to realistically model user behaviour ;

• Results show that our approach outperforms state-of-the-art approaches. In addition, KAN is able to
achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency.

he rest of the paper is organized as follows. In Section 2, we describe the system model and then elaborate
on the problem statement. he proposed solution and the experimental results are detailed in Sections 3 and 4,
respectively. Section 5 investigates the related works. Finally, Section 6 concludes the paper.

2 SYSTEM MODEL AND PROBLEM STATEMENT
In this paper we consider a smart residential environment, also referred to as a smart home, equipped with smart
outlets with minimal hardware costs. Such outlets are characterized by a relatively low-frequency sampling rate
(1-28 Hz) and only collects electric current information. As part of this paper, we develop an Arduino-based
smart outlet with these characteristics. he details of the outlet are provided in Section 4.1.1. he outlets are
connected to the home energy management system through a wireless interface. he system is also interfaced
with a smart phone app, which is used to send notiications to the user and to request the user to label data.

When an appliance is plugged into the outlet and turned ON, the electric current data obtained by the outlet
results in a time series of RMS amperage values, for a speciic duration, e.g., 30 seconds. Such time series deines
a signature. he �-th collected signature is stored as a vector of current values, denoted by x� . Note that, two
signatures may be of diferent lengths, depending on the duration the device is used. We refer to � as the set of
signatures observed by the smart outlet. � grows over time as new signatures arrive.
We assume that time is divided into time slots, for example corresponding to the 24 hours per day, denoted

as ℎ = 0, . . . , 23. As a labeler, the user is assumed to follow a certain response distribution according to his
willingness/availability to interact with the system, i.e., respond to the app notiications. In order to model user
behavior, we use a Bernoulli distribution at each time slot [40]. As a result, we refer to � (ℎ) as the probability
that the user will successfully respond to a query at time slot ℎ. We validate this assumption using real data from
the MPU dataset in Section 4.3.1. We refer to � as the number of days during which the framework operates,
and to � as the maximum number of queries that can be asked in each day. Budget � and days � are system
parameters, and the impact of these values on classiication performance is explored in Section 4.3.2.
As commonly described in literature, home electric appliances may be classiied according to their working

style as follows. Appliances that only achieve an ON or OFF state are type I; multi-state appliances are known
as type II; and continuously variable appliances, for which the energy demand luctuates with the activity of
the machine are type III. Generally, type II and III appliances are considered the most challenging by NILM
algorithms, as an appliance that operates in multiple states (a hair dryer with a high/medium/low seting) may
posses many unique signatures, and thus have a higher chance of misclassiication [47]. In this paper, we explic-
itly consider the problem of signatures of diferent lengths, by exploiting the Dynamic Time Warping algorithm.
Moreover, unlike the NILM algorithms, our proposed model is able to classify appliances with low consumption
and multiple working states.

ProblemStatement:Without loss of generality, we assume that appliance signatures are generated sequentially
over time. hus, upon the arrival of a signature, x� , the system must decide whether to query the user for
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the corresponding class label. Intuitively, an upcoming signature should be queried if it represents (i) a new
appliance, i.e., it does not match any existing class label, or (ii) similar to an already observed signature but with
low conidence.
On the other hand, to avoid overwhelming the user with too many queries, the system is not allowed to

exceed the budget of � queries per day. herefore, the problem is to ind an efective querying strategy to (i)
maximize the accuracy of recognizing appliances by querying signatures that are most informative; (ii) learn
the user response distribution model, and use this distribution to optimize the querying strategy; and (iii) do not
exceed the maximum budget constraint.

3 PROPOSED SOLUTION
In this section, we describe the �-Active-Neighbors (KAN) algorithm. KAN adopts the Dynamic Time Warping
(DTW) metric to measure the distance between signatures, thus we irst introduce this technique.

3.1 Dynamic Time Warping
DTW is a distance measure between two diferent time series of potentially diferent length [16]. It has been used
in several ields including medicine, industry and inance. Unlike Euclidean distance, DTW exploits dynamic
programming to ind the optimal alignment between two temporal sequences. his approach minimizes the
alignment cost, and returns optimal distance between two sequences of varying length. DTW is an appropriate
choice in a smart home scenario because two signaturesmay likely have diferent lengths, depending on duration
of use. DTW has been used as a passive machine learning classiier in [23]. In this paper, we adopt DTW as a
means of constructing a distance matrix to guide the proposed stream-based active learning processes.
According to our experiments, DTW is beter able to exploit the natural grouping structure of signatures from

the same device. herefore, the remaining solutions described in this paper all use DTW as the distance between
two signatures, say x� and x� as ��� (x�, x�). We refer the reader to [34] for more details about DTW.

3.2 �-Active-Neighbors Approach
We propose a �-Nearest-Neighbors-based active learning algorithm, named �-Active-Neighbors (KAN), as the
querying strategy. KAN makes use of the informativeness, representativeness, and conidence score of incoming
signatures, paired with the observed distribution of user engagement, � (), to determine such strategy.

3.2.1 Informativeness and Representativeness. he informativeness of a new sample (i.e., signature) represents
the ability of that sample to reduce the amount of error in the classiier through the introduction of needed
information. Conversely, representativeness indicates how valuable a sample is in relecting the underlying
structure of the data [10].
Consider an incoming event signature, x� , and the set of instances already observed by the smart outlet,

� = {x1, . . . , x�−1}. We let KNN(x�) = {x
(�)
1 , . . . , x

(�)

�
} represent the� nearest neighbors of x� in� , where DTW

is used as the distance metric. he �-Nearest-Neighbors algorithm determines “who afects who” by deining
relationships between samples. his may be conceptualized as a directed graph, where an edge is drawn from
sample x� to sample x� only if x� ∈ KNN(x�). his concept is demonstrated by a simple example in Fig. 2,
where circles depict the already observed instances by the smart outlet, � , and x� is represented by the green
and blue rectangle in Figs. 2(a) and 2(b), respectively. Moreover, illed and hollow circles illustrate the labeled
and unlabeled samples, respectively. In these graphs, directed edges are drawn using the KNN deinition, i.e.,
each sample has exactly � outdegree toward its � nearest neighbors. Accordingly, afecting and non-afecting
neighboring relationships for the sample of interest are shown by solid and gray edges, respectively.
Hence, an instance x� is representative if it receives very few edges overall, meaning it explores a new part

of the feature space. We deine the number of instances a sample afects, or represents, as �� (x�). his number
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(a) Representative point in green (b) Informative point in blue

Fig. 2. Example of representative and informative samples

represents the total number of edges x� receives, which is also the total number of times x� ∈ KNN(x� ) for all
x� ∈ � . his is formally deined as

�� (x�) =

|� |∑

�=1

1(x� ∈ KNN(x� )), (1)

where, 1(·) represents the indicator function. Fig. 2(a) is an example of a representative sample in green which
receives only one edge, meaning�� (xgreen) = 1.his sample “neighbors” very few points, therefore representing
an unexplored area of the feature space.
Moreover, x� is considered informative if it has many incoming edges from unlabeled samples. he labeled

state of a sample x� ∈ � is denoted by the Boolean function �� (x� ). he number of unlabeled instances a sample
afects is denoted by

�� (x�) =

|� |∑

�=1

1(x� ∈ KNN(x� ) & ¬�� (x� )). (2)

he deinition �� considers how many of the received edges come from samples with unknown labels. hus
according to Fig. 2(b), we have �� (xblue) = 6.
Consider the set � . We can sort the signatures in � by their score �� (x� ) and deine the informativeness score

� (x�) ∈ [0, 1] of the new signature x� as the percentile rank (i.e., the normalized position) of �� (x�) in the
sorted set. his metric indicates how informative a signature is compared to all of the observed signatures. For
example, a new signature that is close to many unlabeled instances, and falls in the 90-th percentile in number of
unlabeled neighbors, may be considered very informative. In a similar way, we evaluate the representativeness
score �(x�). By deinition, a representative instance is one with few incoming edges. herefore, we desire the
percentile rank of �� (x�) with respect to the frequency distribution of the remaining {�� (x� ) : ∀x� ∈ � } to be
small, i.e., receive few edges.hemetric �(x�) is deined by the reverse percentile rank, which is the complement
of the percentile rank of �� (x�).
We use the above informativeness and representativeness scores to derive the quality of a signature. Never-

theless, such scores are not the only factor in determining the querying decision. In addition to the budget, we
consider a conidence score as well as the willingness of the user to answer that query at the current time slot,
as explained in the following sections.

3.2.2 Confidence Score. Although the informativeness and representativeness scores give insight about how
useful a signature is relative to the topology of the KNN graph, i.e., the feature space, they lack to determine the
likelihood of a signature belonging to a certain class label. In other words, the informativeness score � () and the
representativeness score �() deal with the relative position of the incoming signature in connection with the
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labeled and unlabeled samples, regardless of their class labels. To ill this gap, in this subsection we introduce
the conidence score which measures the chance of a signature being of a certain class label among its � nearest
neighbors.
Inspired by [4], in this work we deine the conidence score as follows. Let � (x� ) represent the class label of

signature x� ∈ � and recall that KNN(x�) = {x
(�)
1 , . . . , x

(�)

�
} is the set of � nearest neighbors of x� . We deine

Ax� = {� (x
(�)
�

) : ∀x
(�)
�

∈ KNN(x�)} as the set of class labels of the nodes inKNN(x�).he likelihood of signature
x� belonging to class label � is deined as

Lx� (�) =

�∑
�=1

1(� (x
(�)
�

) = �) · 1

��� (x�,x
(�)
�

)

�∑
�=1

1

��� (x�,x
(�)
�

)

, (3)

where 1(·) is the indicator function, as mentioned before. Finally, the conidence score of signature x� is given
by

� (x�) = max
�∈Ax�

Lx� (�) (4)

he conidence score is used in the KAN querying strategy detailed in Section 3.2.4. In the next section we
discuss how to learn the user response distribution, which is also integrated in such strategy.

3.2.3 Learning the user response distribution. he KAN algorithm considers the time to query the labeler by
learning the user response distribution. We recall that in this paper we assume that at each time slot ℎ the user
responds to a query with an independent probability � (ℎ). In this section we discuss how this probability is
inferred. When a query is sent to the user, there are two possible outcomes, a success (the user labels the data)
and a loss (the user ignores the system query). Let � (ℎ) represent the number of successes at time slot ℎ, and let
�(ℎ) represent the total number of queries submited at that time slot. hus, � (ℎ) is given by,

� (ℎ) =





�, if �(ℎ) ≤ �1
�, if � (ℎ) ≤ �2
� (ℎ)
� (ℎ)

, otherwise
(5)

where � , � , �1, and �2 are initial values introduced to ensure that the empirical probability � (ℎ)
� (ℎ)

is considered only
ater a time slot has been tested a suicient number of times. his ensures that time slots tested a low number
of times have a non negligible probability of being used. he parameters �1 and �2 may be derived using any
strategy for selecting a sample size to estimate a population mean [14].

3.2.4 uerying Strategy. An eicient querying strategy needs to determine the best time slots throughout the
day when (i) the incoming signature is potentially able to improve the accuracy of model and (ii) the user is
most likely to respond to the queries in those time slots. Note that, this is not a trivial task. In fact, the amount
of potentially good signatures decreases naturally as the system learns more. herefore, at the beginning most
signatures are relevant, and thus it is obviously best to query during time slots with high response probability.
Conversely, at later stages good signatures are rare, and thus it may be beter to query even if the chance of
geting a response is low. For these reasons, we design an adaptive strategy that changes as the system learns
over time.
According to our strategy, we irst obtain the quality of the signature using its informativeness, representa-

tiveness, and conidence scores described in Subsections 3.2.1 and 3.2.2, respectively.
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Formally, we deine the quality of signature x� , denoted by � (x�),as follows.
� (x�) = � (x�) ∗ �(x�) ∗� (x�) (6)

where � (x�), �(x�), and � (x�) are the informativeness, representativeness, and conidence scores of signature
x� , respectively.

Given the remaining budget �, and the quality of the signature x� , KAN adaptively decides whether to query
the user.his is achieved by predicting whether the incoming signature has beter quality and a higher chance of
being successfully labeled, compared to the remaining time slots of the day. In order to overcome the changing
quality of signatures as the system learns, we calculate the probability that x� has higher quality than a randomly
sampled signature y, that is �y (x�) = � (� (y) < � (x�)). his probability is calculated over a moving window of
few days, in order to keep it updated with the changing trends of quality scores.
Accordingly, by assuming that signature qualities are independent on each other, the probability that at least

one signature of beter quality than x� will arrive during a time slot with� signatures is given by
�(x�,�) = 1 −

(
�y (x�)

)� (7)
hus, we calculate the expected number � (x�, ℎ,�) of successfully labelled signatures, with beter quality than
x� , for the remaining time slots of the day ater the current time slot ℎ as follows.

� (x�, ℎ,�) = �(x�,�) ×

23∑

�=ℎ+1

� (�) (8)

Note that � (�) is the probability a user responds during the time slot � as described in Eq. (5). In the following,
Algorithm 1 summarizes the querying strategy used in KAN.

ALGORITHM 1: Adaptiveuerying Strategy Algorithm
Input : Incoming signature x� , informativeness score � (x�), representativeness score �(x�), conidence score

� (x�), time slot ℎ, remaining budget �, and the number of signatures expected at each time slot of the
day�.

1 Find � (x�) using Eq. (6)
2 Find � (x�, ℎ,�) using Eq. (8)
3 if � (x�, ℎ,�) < � then
4 uery the user
5 else
6 Don’t query the user
7 end

3.2.5 Pseudocode. he pseudocode of KAN is provided in Algorithm 2.
In the code, � refers to the remaining budget, or equivalent queries, for the current day. his value is reset to
� = � at the beginning of each day. Lines 2 and 3 of the pseudocode use the deinitions of ��, �� to respectively
derive the number of representative and informative edges for the signature x� . hen, the conidence score is
obtained in line 4. We initially set the labeled state of x� to false in line 5. In line 6, the adaptive querying strategy
described in Algorithm 1 is called. hus, as a result of Algorithm 1, whether the user responds, or not, the label
is assigned (line (8)), and, � (ℎ), �(ℎ), � and �� (x�) are updated accordingly (lines 7 − 17). Finally, x� is added to
the current set of signatures (line 18).

TheoRem 3.1. he complexity of KAN is� (�2�), where � = |� | is the number of already observed signatures by
the smart outlet, and � is the number of active neighbors.
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PRoof. he KAN algorithm is called upon the arrival of a new sample (i.e., signature) x� . KAN calculates the
pairwise DTW distances between x� and the � existing samples in � . he complexity of computing DTW is
� (�2

�
), where �� represents the average signature duration [34]. hus, the complexity of inding pairwise DTW

distances between � pairs is� (��2
�
). Furthermore, for each sample in� , we keep track of its� nearest neighbors

in the form of a data structure, e.g., a list or an array. hus, when x� arrives, the time complexity to update the
sets of the � nearest neighbors of all � samples is � (��).
To obtain the informativeness and representativeness scores, for each signature in� , we irst create (or update)

a list of labeled and unlabeled samples, such that x� falls into their � nearest neighbors. his can be completed
in � (�2�). Next, we need to calculate the 90-th percentile of the lengths of such lists, which requires to sort
them by length. his incurs in a complexity of � (� log�).
he complexity of computing the conidence score is the following. Given the pairwise DTW distances and

the lists of � nearest neighbors, calculating the likelihood of the new signature x� belonging to a speciic class
label (appliance) is � (�). his should be calculated for all the appliances in the dataset, denote by ��, to obtain
the maximum likelihood. herefore, the complexity of the conidence score is � (���) +� (��) = � (���).

Finally, in line 6 of KAN, Alg. 1 is called. Given � (x�), �(x�) and� (x�), the complexity of Alg. 1 is� (� ), where
� is the number of time slots in a day, which is usually a small constant (e.g., 24).

herefore, the total complexity of KAN is � (��2
�
) +� (�2�) +� (� log�) +� (���) +� (� ). Since the average

signature duration, �� , and number of time slots per day,� , are signiicantly smaller than the number of observed
signatures, � = |� |, the overall complexity is � (�2�). �

3.3 Classification
When a sample is not explicitly labeled by the user, either because the user was not queried or because the user
did not respond to a query, the label of that sample is estimated using a �-Nearest-Neighbour (KNN) graph

ALGORITHM 2: �-Active-Neighbors Algorithm
Input : Incoming signature x� , time slot ℎ, budget �, remaining budget �, KNN(x�).

1 if � = 0 then return;
2 Find �� (x�) to calculate �(x�).
3 Find �� (x�) to calculate � (x�).
4 Find � (x�) using Eq. (4).
5 �� (x�) = False
6 uery the user according to Algorithm 1
7 if user has been queried and query is successful then
8 Assign � (x�) according to the user response
9 � (ℎ)+ +

10 �(ℎ)+ +

11 �−−

12 �� (x�) = True // labeled sample

13 end
14 if user has been queried and query is not successful then
15 �(ℎ)+ +

16 �−−

17 end
18 � = � ∪ {x�}
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Fig. 3. Schematic of the Arduino-based Smart Outlet

extended with the conidence score and the DTW distance. We adopt the KNN classiier because it is a natural
extension of the KAN algorithm, which is designed to choose the most useful “neighbors” in determining a
sample’s class label. Like the original KNN algorithm, the conidence score-based DTW-KNN is a lazy algorithm
which requires no oicial training period. his approach is well suited for a dynamic household in which the
dataset is constantly evolving.
According to our approach, a signature is assigned the class label given by the label with the highest conidence

score among the class labels of its � nearest neighbors. In consistence with the notation introduced in the
previous section, signature x� is classiied as

� (x�) = argmax
�∈Ax�

Lx� (�). (9)

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup
In this section we provide a comprehensive experimental evaluation of our approach, in comparison with the
state-of-the-art solutions. Before showing the results, we describe the smart outlet developed as part of this
paper, the appliance electrical signature dataset collected with the outlet, the dataset used to model the user
behavior, and the comparison approaches.

4.1.1 Smart Outlet. We developed a low-cost Arduino-based smart outlet, which can be conigured to record
the current from 1Hz up to 28Hz, and saves this information on a remote server through a wireless interface.
An Arduino with a Yún Shield, ACS712 current sensor, and a 5V relay switch was integrated with a regular
electrical outlet, as shown in Fig. 3. his platform has been chosen since it is open-source, has a wide array of
“shields” that provide enhanced capabilities, has a large resource library, and is very lexible and easy to use. he
Yún Shield is the component that allows wireless communication to and from the Arduino, the ACS712 sensor
outputs an analog signal proportional to the RMS current of the circuit, and the relay switch simply allows the
outlet to be turned on or of autonomously.

4.1.2 Electric Signature Datasets . We use our smart outlet to collect a total of 1570 low-frequency signatures
sampled at 1 second intervals. his dataset includes 9 diferent appliances reported in Table 1. We choose these
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Table 1. Appliances in the smart outlet dataset

Appliance Number of Samples
Low Freq. (1Hz) High Freq. (10Hz)

Conair Hair Dryer 83 -
3Com Network Switch 93 108

180W Dell Laptop Charger 112 103

Dell Monitor 184 -
65W Dell Laptop Charger 192 79

Vornado 18W Fan 207 101

1500W Space Heater 211 111

LG Monitor 223 -
Lamp 265 149

Table 2. Appliances in the ECO dataset

Appliance Number of Samples
Refrigerator 400

Dryer 90
Cofee Machine 400

Ketle 400
Washing Machine 400

PC 112
Freezer 400

appliances because they are commonly available appliances, representative of most households. Besides, the se-
lected appliances test our solution’s stability, as they cover challenging characteristics such as low consumption,
multi-state, and continuously variable appliances. Additionally, we also collected a total of 651 high-frequency
signatures sampled at frequency of 10Hz. hese are used to conduct an experiment to evaluate the impact of the
signature resolution, i.e., sampling frequency, on the accuracy of our proposed approach.
During data acquisition, each appliance is plugged in the smart outlet and turned ON for roughly 30 seconds

before being turned OFF for 20 seconds to allow the current to stabilize. Subsequently, the next signature is
collected repeating the above process.
Given the set of appliances’ signatures, we generate a usage schedule, i.e., the sequence of signatures generated

in the smart home, as follows. Without loss of generality, we assume that one appliance signature is observed
by the system every time slot. Accordingly, there are �� = 24 signatures observed within a day. Each signature
is sampled with replacement from the entire set of signatures. We consider a period of � = 21 days.

We also test KAN using signatures from the irst house of the ECO dataset [41]. Speciically, the data includes
7 diferent appliances sampled at 1 Hz, which we list in Table 2, for a total of 2202 signatures. hese appliances
are found in nearly all homes, have unique usage paterns, and consist of low and high consumption devices
alike.

4.1.3 MPU Dataset. To obtain a realistic user behavior model for the user engagement with the querying sys-
tems, we use the Mobile Phone Use (MPU) [25] dataset. his dataset is intended to help study paterns of user
engagement. he dataset is collected in 4 weeks, on average, for 337 users. It adopts a mood questionnaire that
sends notiications to the user 10 to 15 times a day to see when users were most receptive to interacting with
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Fig. 4. Total number of queries vs. number of responded ones over all users in MPU

content. In addition to information about user interaction with the mood questionnaire, this dataset also con-
tains the users’ mobile phones’ information such as screen orientation, batery charge, system notiications, and
even the ambient noise level.
In this paper, we focused on the responses to the notiications. Speciically, we are interested in the hours when

a notiication is posted, and whether or not the user responds to it. We use “Esm_Posted” and “Esm_Timedout”
ields of the dataset for our purpose. Finally, we only focus on weekday data to train and test our user response
distribution model, since users usually have diferent response paterns on weekends1. he response paterns
are collected in a time slot by time slot basis and further grouped into days.
Fig. 4 shows the total number of queries and the successfully responded ones from the MPU dataset for all

users. Overall, only 30.8% of all queries are successful. his shows the importance of designing an adaptive
querying strategy that learns the user behavior and jointly the appliance signatures.

4.1.4 KAN parameters. We set the KAN parameter � , deined in Algorithm 2, equal to 3. We also set � =
1
2
,

� =
1
24

in Eq. (5). he chosen � value represents a completely random probability of success, � is the uniform
probability a user will respond in any of the time slots of the day, and �1, �2 = 0. We performed a sensitivity
analysis to the seting of the parameters, and observed similar performance trends.

4.2 Comparison Approaches
We compare KAN to three diferent SAL strategies proposed in [26], [38], and [44], respectively.

4.2.1 OBAL and SVMClassifier. We compare KANwith the solution proposed in [26], called Online Batch-based
Active Learning (OBAL) algorithm, paired with the Support Vector Machine (SVM) classiier. his algorithm is
designed for the identiication of relevant textual data from social media. We modiied OBAL in order to apply
it to the appliance recognition problem.
Similar to our proposed approach, OBAL has a labeling budget and interactively queries the user to obtain

labels. OBAL adopts a set of uncertainty strategies to identify items for labeling. To this aim, it exploits the
boundary instances, i.e., those that lie close to the classiication boundary, for which OBAL is highly uncertain
about their class labels. he algorithm decides which successfully labeled samples are boundary vectors through
1Our approach could be easilymodiied to learn two diferent user response distributions, representingweek days andweekends, respectively.
he querying strategy could use the appropriate distribution, depending on the day of the week.
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a series of computational rules. Using these, OBAL continuously updates the boundary information and shits
in the boundary region upon receiving responses from the user. For classiication purposes, it trains an SVM
classiier only on the boundary vectors recorded.
OBAL is trained on a feature dataset, rather than the raw data. Since OBAL was originally proposed for text

analysis, it does not have a speciic set of features designed for our context. herefore, we used the signature’s
mean, minimum, maximum, standard deviation, kurtosis, and skewness, to create the feature version of our
dataset. According to OBAL, if the number of stored vectors exceeds a certain number � (in our case, we use
� = 15), all non-boundary vectors are dropped to reduce the complexity. In addition, OBAL’s SVM classiier is
retrained at every labeled signature received.
Although OBAL is originally proposed to distinguish between two classes, it can be extended to multi-class

scenarios. However, the number of classes is ixed and should be deined at the beginning. We set this value to
the number of appliances in our dataset. However, this implies that introducing new appliances is problematic
for this approach.
It is important to note that OBAL requires a minimum number of boundary samples per class in the initial

phase, known as cold start. his requirement prevents the algorithm to work with a few number of samples
per class. In order to have a fair comparison, we provided OBAL with the cold start boundary samples before
starting our experiments. his is a clear advantage for OBAL, since our approach starts with zero knowledge of
the signatures. Nevertheless, as the experiments show, even with such great advantage, our approach is able to
outperform OBAL.

4.2.2 Convolutional Neural Networks (CNN) with an always available user. We implement a Convolutional Neu-
ral Network (CNN) classiication approach recently proposed in [44]. CNNs are generally designed for image
classiication. Nevertheless, in this work the authors convert the signatures into images, which are then used
to train the CNN. Speciically, signatures are trimmed of leading zeros to standardize them across devices. Sub-
sequently, each signature is converted into a 320 × 320 gray-scale image as detailed in [44]. he image and the
corresponding label are used to train the CNN.
Following the VGG-16 design, the model inputs the gray-scale image, then runs it through a series of 2D-

convolutional layers and max pool layers, using RELU as the activation function. At the end, there are 3 dense
layers and a sotmax layer of 1000 is used for the inal classiication. We train this with the ADAM optimizer
provided in Tensorlow.
Since this approach is not designed for learning the user availability, we assumed that the user is always

available. hat is, the user always provides the label when queried. At the beginning of each day with a budget
�, the model randomly selects � time slots at which it will query the user. he training occurs at the end of each
day for 1 epoch over the entire set of collected labels.

4.2.3 SMARTCOMP. We also compare KAN to the algorithm proposed in the conference version of this pa-
per, denoted as SMARTCOMP [38]. he SMARTCOMP querying strategy only adopts the � () score, deined as
� (x�) = max{� (x�), �(x�)}, (i.e., it does not use the conidence score) along with the user response distribution.
Additionally, this strategy is not adaptive. In fact, if the incoming signature at time slot ℎ has the � () score above
a threshold, and the budget � allows, the algorithm queries the user with probability� (ℎ). his may penalize the
performance at a later stage when high quality signatures are rare. In these cases, the user may not be queried
because � (ℎ) is low, even if there is residual budget available. his problem speciically accentuates while using
the realistic user behavior model. In this case, the users infrequently respond to the queries which results in low
� (ℎ) values.

Finally, SMARTCOMP applies a DTW-based KNN classiication method, which is a majority voting among
the � (= 3) nearest neighbors using DTW as the distance metric.
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Fig. 5. (a) Actual vs. Experimental number of responses for diferent budgets, and (b) Average KLDivergence between learned
and ground truth (perfect user response) distribution

4.3 Experimental Results
We outline four sets of experiments to test the performance of the proposed algorithm. We irst validate the
assumption on the binomial distribution to model the user behavior. Subsequently, we study the performance
with respect to the available budget, the sensitivity with respect to the signature length and sampling frequency,
and inally the impact of mislabeled appliances.

4.3.1 Learning of the user response distribution. In this section, we irst validate our assumption on the user
behavior and then show the ability of KAN to learn the user response distribution.
As detailed in Section 2, in this paper we assume that the user responds to a query at a time slot ℎ with an

independent probability � (ℎ). In order to validate this assumption we perform the following experiment. We
irst extract the empirical distribution from the MPU dataset for each user having at least 21 days of data (see
Fig. 4). Next, for each user, we pick � time slots at random over 10 days, and compare the actual number of
responses with the expected number of responses obtained from the empirical distribution. Fig. 5(a) shows the
results for diferent values of the budget �. Clearly, the empirical distribution allows us to closely predict the
number of responses provided by the user. It is also interesting to notice that even for a budget of 8, only about
2.2 responses were received on average. his shows the importance of customizing the querying strategy to the
user behavior in order to query when the user is more likely to respond.
Next, we study the ability of KAN to learn the user response distribution. To this purpose, we study the

Kullback–Leibler (KL) divergence between the empirical distribution up to a certain day � , and the empirical
distribution over the entire period of 21 days [21]. he later represents here the ground truth distribution that
we would like to learn. We calculate the divergence for each user and average the results. As Fig. 5(b) shows,
the learned distribution rapidly converges to the ground truth distribution. In fact, only 11 days are suicient
to learn the distribution with a negligible error. his experiment also supports the validity of our user modeling
with independent probabilities. Intuitively, if the empirical distribution in the irst � days would difer from the
ground truth distribution, the divergencewould increase rather than decrease.he igure represents amonotonic
and rapid decrease over time, supporting the consistency of the user behavior to our modeling assumption.
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Fig. 6. Comparison of learned and ground truth (perfect user response) distribution for two arbitrary users in the MPU
dataset

Finally, we provide an example of two speciic users in the MPU dataset, and compare the ground truth
distribution to the empirical distribution distribution learned ater 17 days. For each user in this experiment, we
randomly select 17 days and average it over 25 trials. Figs. 6 (a) and (b) illustrate the results. Clearly, the learned
distribution closely matches the true distribution for every hour. he higher error bars for probabilities in the
range [0.2, 0.6] are due to the higher standard deviation of the binomial distribution for probabilities in that
range.

4.3.2 Accuracy versus time and budget. In this section, we study the accuracy over time of KAN versus the
comparison algorithms under diferent setings of the budget with the smart outlet dataset. In these experiments,
the dataset is randomly split into training (80%) and testing (20%) sets. In testing, the accuracy is deined as the
proportion of instances in the test set for which the label is correctly predicted by the trained classiier.
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Fig. 7. Accuracy over 21 days of training for four diferent approaches and budget values of � ∈ {3, 5, 7} ploted with a 95%
confidence interval.
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Fig. 8. Accuracy ater 21 days of training under diferent budgets with the smart outlet dataset.
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Fig. 9. Accuracy of KAN ater 21 days of training under diferent budgets with the ECO dataset.

Figs. 7 (a)-(c) demonstrate the average accuracy of the four methods over time for three diferent budget values,
namely � ∈ {3, 5, 7}. We average the experiments over 20 trials and show the resulting standard deviation as
the error bars. As expected, all approaches achieve higher accuracy for higher budgets, since there are more
chances to query the user and obtain more labels. However, OBAL even with the required cold start signatures,
is not able to achieve high accuracy. his is due to two main reasons. First, OBAL does not explicitly consider
the user behavior. As a result, it may decide to query the user even when the user has a low likelihood to provide
a label. Consequently, it is only able to acquire few additional labels over time, and the impact of higher budget
is minimal. Secondly, the SVM classiier sufers in the domain of electrical signatures. In fact, it is challenging
to partition the hyperspace according to the identiied features, as they may not capture the complexity of the
appliance current signatures.heCNN approach signiicantly underperforms compared to the othermodels.his
is due to the limited amount of data available to train a machine learning model in the considered residential
seting. In fact, even over 21 days of training, with a high budget such as 9, and considering an always available
user, the model may collect less than 200 signatures. his is far below the amount needed for a deep neural
network to work well. Note that, even if over a very long time period the performance of the CNN model
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could improve, this would be at the cost of a prolonged extra burden to the user. As a result, this approach is
not apt for a stream based active learning residential scenario with non-expert users. Additionally, CNNs are
naturally computationally heavy algorithms which require considerably powerful hardware to be executed.his
further limits the applicability of these approaches in a residential scenario. As an example, to execute the CNN
algorithm we relied on the High Performance Computing platform of the University of Kentucky. Even though
we used such powerful infrastructure, it took several days to complete our experiments. Conversely, KAN could
be executed in a few minutes on a regular personal computer.
he SMARTCOMP approach shows an increasing accuracy, however it sufers from the lack of adaptability to

the availability of quality signatures over time, which results in less labels acquired from the user and ultimately
a lower accuracy. On the contrary, KAN is able to learn the user response distribution and adapt the querying
strategy to the diferent availability of high quality signatures over time. As a result, KAN outperforms both
approaches, showing superior performance under all setings of the budget.
Next, we indicate the impact of diferent budgets on accuracy. In these experiments, we consider the accuracy

ater 21 days of training and changed the budget � from 1 to 9 maximum number of queries a day. Results
are depicted in Fig. 8. OBAL achieves slightly higher accuracy when the budget is equal to one query a day.
his is due to the cold start signatures that this approach is provided, diferently from SMARTCOMP and KAN.
Nevertheless, as the budget increases OBAL provides signiicant lower accuracy than the other approaches,
especially in comparison to KAN.he CNN approach, consistent with the overall accuracy results, has the lowest
accuracy across all budgets. SMARTCOMP in this graph clearly shows its inability to eiciently use the budget. In
fact, provided that a signature is suiciently informative and/or representative, SMARTCOMP queries the users
at time slot ℎ with probability � (ℎ). When the budget is high the approach should query the user more oten,
even at time slots with low values of� (ℎ). However this rarely happens, resulting in a low number of queries and
labels, impacting the overall accuracy of SMARTCOMP. Conversely, KAN is able to adjust its querying strategy
to the budget value as well as the availability of the quality of signatures. As a result, it achieves a signiicantly
higher accuracy than the other approaches.
To further support the previous results, we now test KAN over the ECO dataset [41]. he results are shown in

Fig. 9. KAN performs even beter with this dataset due to the diferent types of appliances available. Speciically,
the ECO dataset contains several high consumption devices such as a refrigerator and a freezer in addition to
several lower powered devices like a PC and ketle.his means the average power consumption of each signature
is more diverse in ECO, making it easier for KAN to distinguish between signatures.

4.3.3 Sensitivity Analysis. As mentioned in Section 4.1.1, the smart outlet collects current signatures of the
plugged appliance and transmits it to a server. Clearly, the outlet could be conigured to collect the signatures
for diferent lengths of time and frequencies. In these experiments, we investigate the impact of these two design
parameters on the accuracy of KAN.
In Fig. 10(a), we increase the duration of the signature from 0.5 to 20 seconds and show the resulting accuracy

for diferent budget values, namely � = {3, 5, 7}. For all the three budgets, the accuracy increases initially and
then saturates. Intuitively, when the signature is too short (≤ 3sec) the available information is not suicient
to discern among diferent appliances. As the signature length increases, the accuracy rapidly increases, and it
plateaus at 12.5sec. his gives an important insight for the design of KAN. In fact, a shorter signature means less
data transmited and processed, and thus a reduced overall complexity of the approach.
Furthermore, the impact of sampling frequency on the performance of KAN is depicted in Fig. 10(b). We

collected signatures at diferent frequencies, namely from 0.5 to 10Hz. As observed, although the accuracy in-
creases initially, it plateaus quickly at about 3Hz. Pairing this result with the impact of signature duration, we
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Fig. 10. Impact of signature duration and sampling frequency on the accuracy over 21 days for KAN, ploted with 95%

confidence intervals.

Table 3. Impact of mislabeling percentage on accuracy for the three algorithms with � = 5, � = 21

Err. Labels KAN SMARTCOMP OBAL
0% 69.46 ± 4.9 50.07 ± 5.4 43.97 ± 7.3

10% 65.48 ± 4.6 40.78 ± 6.06 45.10 ± 7.3

20% 56.66 ± 5.1 40.16 ± 5.4 43.64 ± 6.0

can conclude that KAN is able to achieve good accuracy with a minimal amount of data. his makes it particu-
larly suitable for low cost smart outlets, as well as for Internet of hings (IoT) architectures, where storage and
computational resources are limited.

4.3.4 Impact of mislabeling on classification accuracy. Involving non-expert users in the labeling task does not
only imply a lack of availability, but also the occurrence of some erroneously labeled signatures. In the following
experiment, we study the robustness of the considered algorithms to low levels of mislabeling, i.e., 0%, 10% and
20%. Since the labeling task is not a diicult, we expect this range to be realistic, also considering that the user
can also simply abstain from labeling. he mislabeling percentage is the portion of the training labels that are
incorrect. It is worth mentioning that due to poor performance of the CNN approach and its extremely low
accuracy, i.e, below 20%, we skip the comparison with this algorithm in this experiment.

For this experiment, we set the strategy parameters to � = 5 and � = 21. Note that the performance of
all strategies within these design parameters and perfect labels, 0% of mislabeling, is equivalent to the point
at Day 21 in Fig. 7(b). Table 3 demonstrates results. OBAL shows an apparent higher robustness to mislabeling
compared to KAN and SMARTCOMP.his is however due to the cold start that gives this approach an advantage
with respect to the others. Nevertheless, KAN outperforms both SMARTCOMP and OBAL in terms of accuracy,
achieving 16% higher accuracy than SMARTCOMP, and 13% higher than OBAL, when 20% of data is mislabeled.
We expect that the robustness of KAN could be further improved by increasing the value of � for the �-Nearest-
Neighbors algorithm.
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5 RELATED WORKS
One of the irst studies focusing on appliance recognition, equivalently called device identiication, proposed
Non Intrusive Load Monitoring (NILM) to analyze the voltage and/or current of the total load to determine the
energy consumption of individual appliances [15]. he goal is to disaggregate and identify individual household
appliances from aggregated smart meter readings. Along the same lines, other approaches have been proposed
for load disaggregation [20, 42, 47]. In particular, the authors of [18] use deep learning neural networks as a
building block to design a NILM approach. Recently, to overcome low recognition accuracy of existing NILM
techniques, [44] studies a NILM method based on convolutional neural network (CNN). his method is used as
the comparison approach in this work and detailed in Section 4.2.2. Furthermore, [42] presents a passive Bayes
classiication model for recognition of household appliances using power consumption data from intelligent
power sockets. his paper incorporates the characteristics of occupant behavior in terms of time and frequency
of using the appliances throughout the day. However, the main disadvantage of all these techniques is that they
become computationally intensive as the number of devices grows. Moreover, unlike our proposed algorithm,
these models require pre-training.
To reduce computational burden, low frequency-sampling smart outlets have been proposed [32]. hese out-

lets have a limited number of devices connected to them, thus reducing the complexity and facilitating the recog-
nition of low consumption devices. In this work, the authors proposed the ANNOT system, which autonomously
annotates electricity data using wireless sensor nodes, such as temperature, light and sound sensors, places next
to appliances to identify the operating state of an appliance. his approach requires either a speciic code for
each single node or user involvement to label appliances. Very recently, a commercial smart outlet has been
released by Currant [7]. his tool, however, is only able to track outlet usage over time, but does not perform
appliance recognition.
A diferent approach involves understanding the particular electrical signature produced by home appliances

that is resultant of their individual circuit design. his signature may be used as a inger print to identify the
electric load [19, 33]. Speciically, [33] studies the feasibility of Independent Component Analysis (ICA) to disag-
gregate a load proile from its composite current signature. Other works consider diferent signatures based on
power consumption paterns, such as phase shit, active and reactive power [2, 30]. Speciically in [2], several
oline (pre-trained) machine learning approaches, both supervised and unsupervised, have been examined for
real time identiication of appliances using the power consumption patern of electrical devices. In this work we
use low frequency smart outlets and rely solely on the current draw to reduce hardware costs to the user.
In order to compare diferent signatures for classiication, the Dynamic TimeWarping (DTW) algorithm can be

used to obtain the distance between two time-series, or event signatures. In [23], the authors used a comparative
DTW learning algorithm to classify devices based on current data. Note that, unlike [23] which uses DTW as
the classiier, we adopt DTW only as a means of constructing a distance matrix to guide a KNN classiier.
he works mentioned above consider oline classiication. Such approach is not suitable for a smart home

context, since the user’s own appliances may have very diferent signatures than that of the oline training
data.
Active learning is a technique which trains a model with minimum cost by using data obtained from labeling

only the most informative instances [12]. An active learning scheme can be pool-based, i.e., all training samples
are available in a “pool,” and the system must decide which of these samples should be labeled by the expert
user for maximal information gain. his approach intelligently prevents the training from being overwhelmed
by uninformative samples by taking advantage of information available from past queries, i.e., already known
labels [36]. To determine informativeness of the instance, some works, such as [11, 37], consider Uncertainty
Sampling (US) as a selection criteria, in which instances with the highest uncertainty are chosen to be labeled
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[6, 8, 31]. Some other metrics to measure uncertainty include maximum entropy [8], smallest-margin [31] and
least conident [6].
Alternatively, [46] studied a new class of active learning from data streams. In such scenarios, the data volumes

increase continuously, and new information arrives in “batches.” hey proposed a classiier ensemble to decide
which portion of the incoming stream data should labeled. Accordingly, [13] studies budgeted stream-based
active learning, and investigates the possibility of converting existing active learning methods to stream-based
scenarios while also providing theoretical guarantees on their performances. In a recent work, [26] developed
an algorithm for crisis management applications using data streams from social media. Given a labeling budget,
this algorithm adopts a set of uncertainty strategies to determine the items for labeling.
All the above mentioned active learning papers assume the presence of an always available oracle (expert)

willing to label the most important samples. his is not the case in a smart home scenario, in which a user is
performing the labeling and may abstain from labeling or simply not be willing to respond at any time. he
problem of not only selecting the best instances, but also adapting to the user availability to respond in terms
of abstention rate, has been irst introduced in [43], who use the decision boundary as a guide to predicting
user abstention rates. However, their strategy is not applicable on labeling tasks which are more vulnerable
to abstention. In [35], the authors assume the presence of a uniformly random oracle, meaning that they will
always respond to queries with a ixed probability. Not surprisingly, the authors show that a random sampling
strategy is the best in this speciic (unrealistic) context.
In this work, we advance the state-of-the-art research by proposing an interactive and adaptive learning

approach which is a user-centered stream-based active learning method. Our approach not only picks the best
instances to improve the appliance recognition performance, but it also learns the user availability to interact
with the system and provide labels for the queried instances.

6 CONCLUSIONS
In this work, we address the problem of creating interactive and adaptive machine learning algorithms that
speciically take into account the user’s behavior in determining learning choices. To this aim, we introduce the
KAN algorithm, which takes as input the appliance signatures obtained from a low-cost and low-frequency smart
outlet. KAN is characterized as a stream-based active learning algorithm that incorporates signature quality and
user behavior, in terms of user response distribution.
We exploited the Mobile Phone Use (MPU) dataset to obtain a realistic user behavior model for user en-

gagement with the querying systems. his dataset shows that regular users rarely interact with such systems,
motivating the importance of designing machine learning algorithms that jointly learn user behavior through
the classiication task.
We compared the proposed algorithm with two state-of-the-art stream based active learning approaches,

called Online Batch-based Active Learning (OBAL), and Convolutional Neural Networks (CNN). In the experi-
ments, we used a dataset of electrical signatures of common household appliances collected using an Arduino-
based smart outlet along with signatures from the ECO dataset . Experiments show the superiority of KAN in
a variety of scenarios. Furthermore, our approach is able to work with appliance signatures of short length and
low frequency, making it particularly apt to Internet of hings applications.
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