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A BOMBIERI-VINOGRADOV THEOREM FOR PRIMES IN SHORT
INTERVALS AND SMALL SECTORS

TANMAY KHALE, COOPER O’KUHN, APOORVA PANIDAPU, ALEC SUN, AND SHENGTONG ZHANG

ABSTRACT. Let K be a finite Galois extension of Q. We count primes in short intervals represented
by the norm of a prime ideal of K satisfying a small sector condition determined by Hecke charac-
ters. We also show that such primes are well-distributed in arithmetic progressions in the sense of
Bombieri-Vinogradov. This extends previous work of Duke and Coleman.

1. INTRODUCTION

A famous open problem is whether or not there exist infinitely many primes of the form p = n2+1.
A natural approximation to this problem is to count primes of the form p = a? +b? with |a| < p%_‘s
for some § > 0. The set of such primes has zero density in the set of all primes. Counting these
primes is equivalent to counting Gaussian primes a + bi that lie in a small sector of the complex

plane. Kubilius [16] proved the existence of a constant dy > 0 such that for all 0 < § < dp, we have

cx1_5

# {p prime: p < z,p = a® + b7, |a| < p%_‘s} ~
log x

for some constant c¢. By partial summation, we have the equivalent asymptotic
Z logp ~ cz'~°.

p<w
p:a2+b2
L_s

la|<pZ

The best &y that has been obtained to date is 2 by Maknys [15].

More generally, one can consider primes represented by norm forms for an imaginary quadratic
extension K = Q(v/—m). For example, when m = 1,2 mod 4 is square-free, a prime p is of the form
224+ my? if and only if p = Np for some principal ideal p C O . Fix a nonzero ideal f C O, and let
g be the number of units ¢ = 1 mod § in Q(v/—m). Let X\ denote a generator for the infinite-order
Hecke characters mod § for an imaginary quadratic extension Q(y/—m) such that

M@ = (&)

for principal ideals () with o = 1 mod f. Denote by Z; the ideal class group mod f, and consider
the distribution of prime ideals within a particular ideal class mod f, which we denote by 1.
Refining the result of Kubilius, Coleman [3] showed that for imaginary quadratic extensions
K = Q(v/—m), prime ideals with argument in a specified range exhibit regularity in short intervals
[,z + h) with h = 2!~ for some & > 0. To be precise, Coleman [3] proved that for small ¢ > 0,
we have
S gy B2
2| L]
pel
Np=p prime
r<p<z+h
d1<arg A(p)<¢2
for 0 < ¢1 < dp < 27,2 — $1 > &2+, and w3+ < h < w.
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In the case of an imaginary quadratic extension, a prime ideal p C Ok lying over an unramified
prime p satisfies the conditions in Coleman’s result [3] except the one related to the argument if
and only if its conjugate prime ideal p, does, and we have arg A(p) = —arg A(p). Hence Coleman’s
result [3] also produces an asymptotic for the count of rational primes represented by norms of these
prime ideals, with the caveat that for intervals (¢1, ¢2) symmetric about 7, each rational prime is
counted twice.

Coleman claimed a generalization of this prime counting result for all number fields K in the
proof of [4, Theorem 2] using a purported one-to-one correspondence between rational primes and
prime ideals. However, we observe from a close inspection of [4] that this claim is not sufficiently
justified because the number of prime ideals p lying over a prime p that satisfy a certain argument
condition may not be constant.

In this paper, we extend Coleman’s count of primes represented by norms of prime ideals in
the case of imaginary quadratic extensions. We produce an asymptotic count of rational primes
in the more general setting of Galois extensions K/Q. To state our results, we first require some
definitions of Hecke characters.

1.1. Hecke characters. Let K be a number field of degree n = rq + 2ry with real embeddings
01,...,0r, and complex embeddings o,,+1,...,0p 4+r,, Where we denote the image of o € K by
oj(a) = a9, Let f C Ok be a fixed nonzero ideal. Let I; denote the group of fractional ideals
relatively prime to f, and define a group of principal ideals

PB={(a)e;: o€ K*,a =1mod f,a>0}.

Here the notation « > 0 means that « is totally positive. An infinite-order Hecke character A is a
character on I; with the property that there exist suitable v; € R and u; € Z such that on principal
ideals (o) € F;, we have

14712 — r1+712 Oé(l) uy
(@) = H ‘04(])‘ ! H (W) :
j=1 l=r1+1

For this to be well-defined, we need A(¢) = 1 for all units ¢ = 1 mod f satisfying € = 0. We also
require A(a) = 1 for all a € Q, implying the condition

r1+7r2

Z v; = 0.
j=1

The group of characters A has a multiplicative basis of d = n — 1 elements. Fixing such a multi-
plicative basis A1, ..., Aq, each Hecke character mod § can be written as

d
(@) = p(@) [[ A (@), aet;,
j=1

for some m = (my,...,my) € Z¢ and for some character ;1 on I;/ P}, which we refer to as a narrow
class character mod §. Define the argument ¢(a) = (¢1(a), ..., ¢q(a)) € R?/Z% = T for a € I; by
Aj(a) = ™5 Tet | - || denote the sup-norm on T

1.2. Main results. We now state the two main results of this paper. The first main theorem
counts primes p in short intervals represented by norms of prime ideals with argument lying in a
narrow sector of the form ||¢(p) — ¢o|| < p~°. We also impose the condition that these prime ideals
lie in a fixed narrow ideal class, which is motivated by counting primes represented by norm forms.
Let a € I be an ideal with a special basis {c;} satisfying the following conditions in [7, Section
3.2]:
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o det (a?) = Ak - Na, where ag»i) denotes the matrix whose (i, j)-th entry is ay) and Ag

denotes the discriminant of K.
e «,, = 0 for some m.

A prime p can be represented as

p=N (ijaj) N(a)_l, Za:jaj =0

if and only if p = Np for some prime ideal p € I~'. Duke [7, Theorem 3.2] notes that counting
primes in a given narrow ideal class whose associated prime ideals lie in small sectors is related to
counting primes represented by norm forms of a number field K with all but one component small
via the geometric interpretation of q? The first main theorem of this paper is:

Theorem 1.1. Let K/Q be a finite Galois extension of degree n. Let 0 < 6,8 < 5% and <;_§o c Tt
be fized. Denote by I the narrow ideal class group mod (1), and let I € T be a fized narrow ideal
class mod (1). Define

Prs(d0) = {p € P: 3p € I with Np = p and |5(p) — doll <~}

Then there are constants ¢ and ¢y > 0 depending on ¢ and &' such that for any constant 0 < cg < %
we have

Z logp = w <1 +0 <e_01(1°gx)c2)) . h=a"7,

< |I|
7p<:c—th
pEP1 5(d0)

The second main theorem shows that the primes counted in Theorem 1.1 are well-distributed in
the sense of Bombieri-Vinogradov. The classical Bombieri-Vinogradov Theorem [6] states that for
anyO<9<%andA>0,wehave

X X 0
max logp — <A , Q=ua".
2 x| 2 5| <4 Togor®
p=a mod q

A short interval generalization of the Bombieri-Vinogradov Theorem has been established by Jutila
[14] using ideas by Huxley and Jutila [11].

For imaginary quadratic extensions K = Q(y/—m), Coleman and Swallow [5] have proven a
Bombieri-Vinogradov theorem for prime ideals with norm in short intervals satisfying the conditions
in Theorem 1.1. We prove an analogous result for rational primes represented by norms of such
ideals that in addition holds for any Galois extension K/Q.

Theorem 1.2. Let K/Q be a finite Galois extension of degree n. Let §,6',0 > 0 be constants with

260 4+ max (6,8") < 5%, and let (50 € T" ! be fizred. Denote by I the narrow ideal class group mod
(1), and let I € T be a fized narrow ideal class mod (1). Define

77175(50) = {p prime: 3p € I with Np = p and \\5(]3) — 50\\ < p_‘s} .
Then there is a constant ¢ such that for A > 0 we have

hx—(n—1)5 hx—(n—1)5

‘ 0 16
max logp — <4 Q=2 h==x
‘;2 gcd(a,q):l x§p§<;:p+h @(Q)‘I‘ (lOg .Z')A
H#ENQ(¢g)=Q p=amod q
PEPr,5(¢0)

where H;; denotes the narrow Hilbert class field of K.
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Using partial summation, both theorems can be modified to count the number of primes without
a logp weighting satisfying the given Hecke character conditions. Although Theorem 1.2 holds
only for Galois extensions K/Q, we remark that the proof of Theorem 1.2 starting from Section
3.1 yields a Bombieri-Vinogradov inequality for all number fields K, not necessarily Galois over
Q, at the cost of counting prime ideals that satisfy the given Hecke character conditions rather
than rational primes. This extends the localized Bombieri-Vinogradov theorem for prime ideals in
imaginary quadratic extensions proven by Coleman and Swallow in [5].
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20-1-0012), the Templeton World Charity Foundation, and the Thomas Jefferson Fund at the
University of Virginia. The authors thank Ken Ono, Jesse Thorner and Wei-Lun Tsai for advising
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NOTATION

e p denotes a rational prime.

e a denotes an ideal of O.

e p denotes a prime ideal of Ok.

7 denotes the narrow ideal class group of K.

H;g denotes the narrow Hilbert class field of K.

A denotes the discriminant of K.

I € 7 denotes a narrow ideal class.

A™ denotes an infinite-order Hecke character when m # 0.

1 denotes an arbitrary finite-order Hecke character.

71 denotes a narrow ideal class character with conductor (1).

x denotes a Dirichlet character.

1 denotes the indicator function.

A sum over the variable a denotes a sum over all ideals a C Ok.

A sum over the variable p denotes a sum over all prime ideals p C O
>~* denotes a sum over only primitive characters.

° Z; denotes a sum over positive integers g such that H;g NQ(¢) =Q.
e || - || denotes the sup-norm.

e The implied constants in the notation O(-), <, and > depend on the number field K.

2. PROOF OF THEOREM 1.1

In this section, we prove that

(1) Y logp= % (1 +0 (e—ﬂﬂogm)”)) :

r<p<z+h
dpel s.t.
Nyp=p

6 (p)—oll<z—°

for some constants ¢ and ¢; > 0 depending on § and ¢’, and any constant 0 < ¢o < % Once we prove

this result, we will show that we can replace the condition ||¢(p) — go|| < 2% by [|¢(p) — dol| < p~?,

thus proving Theorem 1.1.

To show (1), we adapt the principle of inclusion-exclusion to express the count of rational primes
in terms of counts of certain prime ideals associated with a set of automorphisms oq,...,0; €
Gal(K/Q). We then show an explicit formula for the count of prime ideals and use a zero-density



A BOMBIERI-VINOGRADOV THEOREM FOR PRIMES IN SHORT INTERVALS AND SMALL SECTORS 5

estimate to bound the sum over zeros of Hecke L-functions. Fix d = n — 1 to be the dimension of
the space of infinite-order Hecke characters, and write ¢g = (¢o1, ..., od)-

2.1. Principle of inclusion-exclusion. We introduce a key lemma motivated by the principle
of inclusion-exclusion that lets us reduce the problem of counting rational primes that satisfy the
given conditions above to counting prime ideals.

Lemma 2.1. Suppose that p does not ramify in K. Fiz an arbitrary ordering on the n elements
of Gal(K/Q). Then we have

Jpel st 1 V1<j<k
o k—1 N(oj(p))=p
A S EE) D LD DRI DREY N §
1é(p)=doll<= h=1 01,0k €Gal(K/Q) B overp  \|1d(o; () —doll<z?
01<--<0k

where 1(-) denotes the indicator function of an event.

Proof. Since K/Q is Galois, all primes lying over p have the same inertia degree. If p does not
split completely in K, then all primes p lying over p have Np # p and N(o;(p)) # p because the
inertia degrees are greater than 1. Assume now that p splits completely. Suppose that m > 0
primes p lying over p satisfy p € I, Np = p, and H(E(p) - (50” < 7% Then the left hand side is
1,,~0 by definition of m. To compute the right hand side, fix 1 < k < n. For each prime p lying
over p, there are (7};) tuples of k£ automorphisms oy < --- < gy such that for all 1 < j < k, we have
oj(p) € I, N(oj(p)) = p, and H(E(aj(p)) — ¢o|| < 7%, We use the convention (") =0 for m < k.
Since there are n primes lying over p, we conclude that the right hand side is

1 < _ m
EZ(_l)k 1n<k’> = 1m>0
k=1
as desired. O

By Lemma 2.1, it suffices to estimate

> logp=% > =yt > log(Np).

r<p<z+h 01<---<0k < Np<z+h
dpel s.t. V1<j<k
_ Np=p oj(p)el
l¢(p)—doll<z=° N(oj(p))=p

6(a; (p))—oll<z—°

Since the number of k-tuples of automorphisms o; < --- < op is at most 2", which is constant
given the number field K, it suffices to produce an asymptotic, in the form of Theorem 1.1, for

> log(Np)
< Np<z+h
Vi<j<k
leg] (p)EI
_ N(ojp)=p
l6(aj(p))—doll<z—°

given a fixed set of automorphisms o1 < -+ < 0.
Define A(a) to be the generalized von Mangoldt function

Aa) = log(Np) a=pk .for some prime p
0 otherwise.
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Because there are < 22 ideals a satisfying Na = p¥ with k& > 2 in the interval z < Na < = + h, we
have

2) 3 log(Np) = O (x% log x) + 3 A(a).

< Np<z+h z<Na<z+h
V1<j<k V1<j<k
oj(p)el oj(a)el

N(oj(p))=p l[6(oj(a))—=o <z ~°

6(c; (p))—oll<z=°

The error term is negligible to the main term in Theorem 1.1 for 0 < ¢, < 5% and hence can be
ignored.

One important observation is that the condition oj(a) € I is equivalent to the condition a €
aj_l(l). Here we use the fact that if a = 0 then o(a) > 0 for all o € Gal(K/Q), which implies that
the Galois action is well-defined on the narrow ideal class group. The conditions a € O'j_l([ ) for
1 < j < k can be simultaneously satisfied if and only if the narrow ideal class O'j_l([ ) is constant
for 1 < j < k. In the case that aj_l(l ) is constant, we denote the narrow ideal class by I’. Hence
we have

( Z A(a) iij_l(I):]’, V1<j<k
acl’
r<Na<z+h
_ Vi<j<k
¥ Z AMa) = |6(cj (a))—doll<z—?
z<Na<z+h
V1<j<k
oj(a)el .
||<5(0j(a;)—¢7o||<:c*5 (0 otherwise.

We restrict to the non-trivial former case for the rest of the proof of Theorem 1.1. Another important
observation from class field theory is that for each j and each infinite-order Hecke character \;,

>\i 00 :at— )\i(aj(a))

is also an infinite-order Hecke character and hence can be written as )\m(ij) for some
m() = (mgw) (u)) c 74,

Recalling the definition of ¢(a) as \j(a) = e?™%3 () we see that the condition ||$(0j(a)) — ol < z7°
is equivalent to ¢(a) lying inside a polytope in T? cut out by the hyperplanes

¢Oz Z m(”

for 1 < ¢ < d. The intersection of such polytopes across all 1 < j < k is a union A of polytopes
A. If A is empty, then the sum in (3) equals 0 and hence we are done. We restrict to the case in
which A is non-empty for the rest of the proof, and we can consider each individual polytope AC A
independently. For sufficiently large x, the individual polytopes AC A corresponding to different
values of = are all homothetic. In particular, A is a dilation by =% of a fixed polytope AoC T¢
depending only on the choice of automorphisms o1 < -+ < 0.

Rather than estimate the von Mangoldt sum

(4) > er )1 ) (Na)1s ($(a)Aa)

rz<Na<z+h
V1<j<k
gj (a)e[

l6(cj (a))—oll<z—?

x—é

d -
(i5)
doi —arg [TN" (a)
=1
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in (2), it is more convenient to estimate a smoothed von Mangoldt sum, replacing indicator functions

for z < Na < x4+ h and 5(1:1) €A with smooth counterparts. It is a standard technique to compute
a smooth minorant and a smooth majorant and prove that both satisfy the asymptotic on the right
hand side of (1).

2.2. Smoothing functions. For a short interval [z, z + h) with h = 2!~ define

9u V) < Vg oiny(¥) < guf (1),

for u < h to be chosen later, to be smooth functions supported on [x — u,x + h + u] such that
gily)y =1forz+u <y <z+h—wandg/(y) =1forz <y < z+h In the intervals
[, 2 +u]U[z+h—u,z+h] for g; (y) and [z —u,z]U [z + h,z + h +u] for g} (y), we set g (y) to
be a translation and horizontal dilation by u of a fixed smooth transition function go(y) from 0 to
1 and its reflection from 1 to O respectively. More precisely, define

for y € (0,1) and define

90 (“7°) if y € (x, 2 +u)
B 1 ifyez+ux+h—u
9u (y) - z+h—y : o
g0 (75— ifye(x+h—u,x+h)
0 otherwise
90 (W) ifye(z—u,x)
1 ify € [x,z+ h)

ifye(x+hz+h+u)

0 otherwise.

We remark that the /-th derivative of g (y) satisfies gat(é)(
+(6)

the functions g (y) for £ > 0 have compact support. The Mellin transform of g (y) is given by
the entire function

y)‘ <y ut by the chain rule because

Gi(s) = /0 g (y)y*tdy

of the complex variable s = o +it. For any ¢ € Z>o and s = o + it with 0 < 2, we have the
following estimate on G (s):

(5) |GE(s)| <o u™ (1 + |s]) Cha” L,
By the Mellin inversion formula, we have
1 241400
g0 = o [T G e ds,
211 Jo oo
where the integral is absolutely convergent because of the rapid decay property of G (s) on o = 2.
As discussed previously, we will show that both a smooth minorant and a smooth majorant for

(4) are of the correct asymptotic. For a minorant and majorant of 1,(¢(a)), we use a d-dimensional
version of the Selberg minorizing and majorizing function for boxes [1]:



8 TANMAY KHALE, COOPER O’KUHN, APOORVA PANIDAPU, ALEC SUN, AND SHENGTONG ZHANG

Theorem 2.2. For any positive integer M and any cube
d
B:H[aj,bj]g’lfd, bj—aj:/i
j=1

with vol(B) < 1, there exist trigonometric polynomials

fM 5 Z fM 27ri<m,$>

[m <M

such that:

* fule )<X (0) < far(@) for ¢ € T

- 2 )¢ 1\
e vol(B) — fM(O) = </{+ M—+1) - (/44— M—+1)
— d

e f1,(0) —vol(B) = </{ + ﬁ) — K4

Proof. This follows immediately from [1, Theorem 1]. O
We prove a bound on the size of the Fourier coefficients of f]\j;:

Lemma 2.3. For all m = (my,...,my) € Z¢, we have

(fM ‘<<dmax<ﬂd1 >+Hml ( 7%,)

—. —,

Proof. We apply the inequality ‘f(m)‘ < || f]lz1 to the function f(¢) = f]\i/[( )—XB(Qg)- We compute

d d—1
- 2 K
+ — + d —d
f”(m)—XB(m)‘§||f”—XB||L1§ || </{—|—M 1>—/{ <<dmax<—M .M >

7j=1
and
d 27rimjaj o 27rzm] d 7Tm d
ST K)
X5 (m H 2mim; H H < W‘”‘J‘)
: ]:1 :
The result follows by the triangle inequality. O

The key idea to smooth 1 A((E(a)) is to tile the polytope A using disjoint cubes. In particular,
since A is a dilation by 79 of Ag, we will set kK = Koz ° for some kg > 0 depending on Ag to be
chosen later, where the asymptotic is with respect to x — co. Consider an arbitrary tessellation of
T? by a grid of disjoint cubes of side length xg. Such a tessellation can be translated, so without
loss of generality fix 50 € T¢ as a vertex of a cube in the grid for all kg. As kg — 0, the combined
volume of cubes that intersect Ag will approach vol(Ay).

Lemma 2.4. For a grid of disjoint cubes of side length ko and an arbitrary solz’d polytope AgC TY,
denote by L. the union of cubes that lie completely inside Ao and denote by [] the union of cubes
that have non empty intersection with Ag. Note that L. CAgC D+0 by deﬁmtzon. Then we have

|V01(Dfo) —vol(29)| = O (kg - vol(D Ag)),
where vol(0 Ag) denotes the surface area of Ag.

Proof. This is a well-known fact from geometry using the fact that Ag is a polytope. O
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In Lemma 2.4, scale the polytope Ao and the grid by a factor of =% so that A becomes A.
Denote the scaled Di by [IF, which consists of cubes of side length x. Then we have

6)  |vol(EE) —vol(a)| = ((x—é)d (vol(TT) — vol(Ao)) ‘ ~0 ((x—é)d kg - vol(d Ao)) .

—,

We majorize the indicator function for each cube C C Dfo of side length x by a translation f]\i/fc( )
of the Selberg majorizing function fﬁ(q;) and define
_C e
Ji= > (6 S 1a(B@) < D0 F5(0) = Fii(9).
ceny, cert

2.3. Zero-free region and zero-density estimate for Hecke L-functions. Each Hecke char-
acter pA™ mod f has an associated L-function defined by

S M)\m Zlu)\m s7

with logarithmic derivative
/

(s, pA™) ZA (a)pA™(a)(Na)~™*®

If p is not primitive then it is induced by a primitive character p mod f; where f; | f, and g A™ is
a primitive Hecke character mod f;. Furthermore, we have the L-function factorization

L(s, uA™) = L(s, mA™) [T (1 = i A™ () (Np) ™) -
pIf
The L-function for the primitive Hecke character pj A™ satisfies the functional equation [12, The-
orem 12.3] given by
(7) L(s, mA™) = w(pA™) A2~ Log(1 = s,m, i) L(1 = 5, i A™)
for some |w| = 1, where the following notation is used:

o A= ‘AK‘ . (Nfl) S 272,
e /i is the sign character induced by p;, and

Loo(sm.fin) ﬁ I (3(s+aj —ib;)) Tﬁz T (s+ 3|aj| —ibj)

oo\, M, 1) = 1 : 1 - )
j:1P(§(1—3+aj+ij)) j:T1+1F(1_3+§’aj’+ij)

where the values a1, ..., a,, € {0,1} are determined by fi; and the values a,,41,...,ar +r, €

Z and by, ...,by +r, € R are determined by m.
The trivial zeros of pA™ occur at the poles of the I' factor and include zeros contributed by the

factors
I @ = mA™ ) (@vp)~*)
plf
for non-primitive p on Re s = 0. The first kind are at negative-integer or even-integer translates of
a fixed set of complex numbers with non-positive real parts.
In order to get an asymptotic for the smooth minorant and majorant

Zl]! gu NaF <le’ xw+h (Na)lA(qg( )) ( )
8 o
) < 3 100 (V)P )@

in terms of z, we will use a suitable zero-free region and a zero-density estimate for the Hecke
L-functions L(s, uA\™). The zero-free region is due to Coleman:
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Theorem 2.5 ([2, Theorem 2|). Let uA\™ mod § be a Hecke character and L(oc + it,uA\™) the
associated Hecke L-function. Denote V' = max (|ml|,t). For a constant A > 0 depending only on
K and sufficiently large V', we have

A

L(o +it, uA™) #0 foro > 1 — 5 -
max <log N, (log V)5 (loglog V) 5)

apart from a possible exceptional zero when m = 0 and p is a real character mod §.

Recall that since §f = (1) in the statement of Theorem 1.1, the dependence on Nf in Theorem
2.5 can be ignored. We now state a zero-density estimate for Hecke L-functions due to Coleman
[2]. Define N (o, T, uA™) for o € [0,1] to be the number of zeros of L(s, uA™) with Res > ¢ and
Ims| < T.

Theorem 2.6 ([4, Lemma 1]). Fiz a finite-order Hecke character p mod §f. There is a constant B
depending only on K such that

3" N(o, T, u\™) <, TF (-9 (log T)P
][ <T

for0 <o <1.

2.4. Explicit formula. We return now to estimating the smooth minorant and majorant (8). We
rewrite each of the terms that appears in the left hand side of (8) as follows. Using the orthogonality
relations for narrow ideal class characters, we have

1@):% > aln(a),

n mod (1)

where Z denotes the narrow ideal class group and n mod (1) runs over all |Z| narrow ideal class
characters. Using the Mellin inversion formula for g (y), we have

gE(Na) = ! / 2+iooGi(8)(Na)_sds.
2

= — u
211 —ioo

Finally, expand F' J\i/[ in its Fourier series

. d
Fy(d@) = > FumA™(@), I =]]\"(a).
meZ4 Jj=1
lm|| <A1

Hence we have

S 1 (@)gE (Na) Fif (3(a) Ala)

a
1 - o 1 2-‘1—200 s
- X X Fimgs [ M@ e ds
a 1 mod (1) meZzZ? oo
lm||<
O = XA Y Eemgk [ e (Hem) as
i MR Sy T LT |
n mod (1) mcZz?
lm||<M

We now express the integral in (9) as a sum over the zeros and poles of the Hecke characters
nA™ for |ml|| < M. We use the following classical result on the vertical distribution of zeros of
L(s, pA™):
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Lemma 2.7. For any |T| sufficiently large, there are < log(|T| + M) + log(Nf) non-trivial zeros
p of L(s,uA™) for |ml < M such that |T —Imp| < 1. In particular, there is a gap in the vertical
distribution of zeros of length > (log(|T| + M) + log(Nf)) ™.

Proof. This follows from [13, Proposition 5.7]. O

A standard argument using contour integration analogous to the proof of [20, Lemma 3.3] yields
the smoothed explicit formula

> 1r(a)gs (Na)Fy;(6(a))Ala)

(10)
L ) -
=& FaGim) — S 1) Y Fim) Y GEp)
n mod (1) ”mﬁ?L L(pnAm)=0

Here we have used the fact that L(s,nA™) has a pole at s =1 if and only if n =1 and m = 0. We
split (10) into the main term Fj;(0)G:(1) and the sum over zeros

Sy Y Fhm) S GE).

n mod (1) meZ4 L(pnAm)=0
[|lm||<M

2.5. Estimating the main term. First we estimate the main term Fﬁ(O)G:ut(l) Recall the
definitions of Ag, &, and kg from Section 2.1 and Section 2.2. We use Theorem 2.2, noting that
there are vol(lX)s~? cubes C in . By (6), we compute

FE(0) = vol(II) <1 +0 ("*_d max (% M_d>>>

= (27°)* (vol(19) + O (g - vol(d A))) (1 +0 ("*_d . (7 M_d>>>

— (z7%)%vol(Ao) (1 + Oy, </—@o + k% max (’fj\; ’ M—d>>>

using the fact that vol(Ag) and vol(0 Ag) are constants that only depend on the choice of automor-
phisms o1 < -+ < 0. From the definition of the Mellin transform Gf we have

GE(1) = /0 gt y) dy = h+ Ou).

Combining yields

(11) F3 (0)GE (1) = h(z™?)vol(a) <1 +Ono <% o ﬁ))

so long as u = o(h), ko = o(1), and (kM)~! = o(1), where the asymptotics are with respect to
T — 00.

2.6. Estimating the sum over zeros. Now we estimate the sum over zero. Using Lemma 2.3
with M > k! and kg < 1, along with the fact that there are vol(¥)s~? cubes C in [y, we
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compute
1 _
7 d>ooah) > Fym) > Grlp)
n mod (1) mez? (pnA™)
[m|[<m
1 —
<@ XX [FEm)| Y |6
nmod (1) mez? L(p,n\™)=0
[m[|<M
< max Z (vol(l]ff)/f_d) K4 Z ‘G:ut(p)‘
(12) n mod (1)
meZ? L(p,nA™)=0
[[ml[|<M
< max 3 () vol(a0) 1+ On(k) Y |GE)
IO mezd L(pAm)=0
[m[|<M

<y (2797 max Z Z |G (p)].

mod (1)
K W meZ? L(p,nA™)=0
[m| <1

Fix a narrow class character 7 mod (1). We will split the sum over zeros p in those with |Im p| < M
and those with |Im p| > M.
We first bound the sum over zeros with [Im p| > M. By (5) we have

GE(p) <o v |Im p|*ha.

Since the trivial zeros on Imp = 0 of 7 are evenly spaced, the rapid decay of Gi-(p) guarantees
that both sets of trivial zeros contribute negligibly to the sum in (12) compared to our eventual
bound for the sum over the non-trivial zeros. For the rest of the argument, we restrict to a sum
over non-trivial zeros p of L(s,nA\™). Using Lemma 2.7 for the vertical distribution of non-trivial
zeros, we have

Z Z |Gf(p)| <y /MOO u i hat M log(|t| + M) dt

(13) meZ? L(pnA™)=
[[ml|<M IImP\>M

<y (x—5)du—fM—f+l+dhxé log M

Next, we bound the sum over zeros with |Im p| < M. Taking £ = 0 in (5), we have G (p) <
haReP=1 Hence we obtain

S GEwl< D> DD haterh

meZd L(p,ﬁ)\m)zo mEZd L(Pﬂ?)\m)zo
[m[|<M - |Im p|<M [m[|<M [Im p|<M

Lemma 2.8. I[f M =27 with0 <1 < 5%, then

Z Z xRop—l < e—cl(logm)CQ

mezZd  L(pnA™)=0
[m[ <M [Imp|<M

for some constants c1,co > 0 that depend on T.

Proof. We compute using partial summation that
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Z Z LRep—1

meZ? L(pnA™)=0
[m| <M [Imp|<M

1
= > 27"V dN (o, M, n\™)

meZ4 0
[[ml[| <M
(14) 1
= Z (N(O,M,n)\m)x_llogx+/ N(o, M,n)\m)xa_llogazda>
d 0
meZ
[[ml[|<M
< sup Z N (o, M,n\™)z" ! log x.
c€l0,1] mezd
[[ml|<M

By Theorem 2.5 and Theorem 2.6, the right hand side of (14) is

)B+1 ) sup <x0—1M%(1—a)) 2P logx

o€ [%,1—A(log M)~ 3 (log log M)*%]

< max | (logz

_ A(l*?‘r)
< (log:z:)BH o (log M) 3 To(1)

< e—A77% (1—57”7)(10gm)%7°(1)

where 5 < 1 denotes the possible exceptional zero for m = 0 if 7 is real. We thus deduce Lemma
2
2.8 with ¢ = A773 ( — 57”7') and 0 < ¢ < % O

2.7. Combining the error estimates. It is now time to collect all of the error terms. The error
from the main term is computed in (11). The error from the zeros with |Im p| > M is computed in
(13). The error from the zeros with [Im p| < M is computed in Lemma 2.8. The sum of the error
terms is bounded by

1 C
<y, h(x_5)d . <E + Ko + —) + (.’L’_(S)d . U—ZM—E—H—Fdth log M + (x—é)d . he—cl(logg;) 2

h M

main term error

sum over [Im p| > M sum over [Imp| < M

1)
u €T .
Kpy0 M) (E R0+t u ot M~ og M 4 e~ log) 2> :

Recall that the parameter § corresponds to the sector width and ¢’ corresponds to the short

interval h = 2179 in the statement of Theorem 1.1. Given 8,8 < 2, we now choose values for the

5n?
parameters u, M, and kq:

e 2
wu=z"T, M=2a", ky=e 0o82)2 5,5'<7"<7’<5—.
n
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Note that the choice of 7 determines the value ¢; in the proof of Lemma 2.8, and ¢y can be chosen
to be any constant in the range 0 < ¢y < % The sum of the error terms is bounded by

6 .
<e,n0 h(x“;)d + Ko + o 4+l prttitd log M + e~ c1(log )2

’ h KoM
<0 h(z70)" <<E_(T/_6’) + e—crllogz)2 | pei(loga)  p—(r—0) x—é(l—f’)+z+f(—e+1+d)+o(1))

<eng h(x—é)d <e—01(10gx)c2 I x_z(T_T’)+T(d+1)+o(1)> '

Finally, choose ¢ large enough so that

d+1
/> 7-(7—’_,)7
T—T
in which case —0(7 — 7') + 7(d + 1) + o(1) is negative and uniformly bounded away from 0 for all
sufficiently large x. We conclude that the sum of the error terms is bounded by

< haby! - emerlo5)

In conclusion, we have

5 L@ (NG = P (14 0 (atern))

_ hVOl(AT;T_(n_m (140 (e-artes2)),

from which we deduce

5 0@ (N1 (G0 <>=V°1(A°)|’;_("_”6 (1+0 (ceteea?)).

By summing at most 2" such asymptotics with different polytopes Ag, as discussed in Section 2.1,
(1) follows.

Finally, to deduce Theorem 1.1 from (1), it suffices to slightly change the smoothing functions
I*:Ai/[ The majorant F}; should be defined with respect to the original sector condition ||¢(p) —
(250” < x_‘;
condition ||¢(p) — ol < < (x4 h)” =0, The only difference in the proof is a change in the non-error
part of the main term F3;(0) from (z%)?vol(Ag) to ((z+h)™ ) vol(Ap). The error incurred is
Ly (270)de1082)2 gince h = 219" for & > 0, and hence the error term in (1) is preserved.

as usual. However, the minorant F), should be defined with respect to the sector

3. PROOF OF THEOREM 1.2

As in the proof of Theorem 1.1, we will instead show the inequality

cha=(=1) g~ (n—1)3
(15) ) max ) log p — <4
q<Q god(a,q)=1 e<p<z-+h ©(q)|Z] (log )4
+ . = d
HinQ(¢q)=0Q paptzer;l:t'q
Np=p

16 (p)—oll <z

noting that Theorem 1.2 can be deduced from (15) the same way as in the last paragraph of Section
2. The proof will be analogous to that of the original Bombieri-Vinogradov inequality using a zero-
density estimate for the relevant L-functions. By the principle of inclusion-exclusion in Section 2.1,
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it suffices to show that for all automorphisms o1 < --- < 03 € Gal(K/Q) we have

vol(Ag)ha— (=19 < ha—(n=1)9
P(a)[Z] 4 (log )

/
max Z log(Np) —
ng([I,q):l
q<Q < Np<z+h
Np=a mod ¢
Vi<j<k
oj(p)el
_ N(oj(p)=p
(0 (#)) ol <z—°
as Theorem 1.2 will follow by summing at most 2" such asymptotics with different polytopes Ag
and using the triangle inequality.
1 1
Because there are at most < x2¢~ 2 ideals a satisfying Na = p* with & > 2 and Na = a mod ¢

in the interval x < Na < z + h, we have

(16) Z log(Np) = 0O <x%q_% log a:) + Z A(a).

z<Np<z+h z<Na<z+h
Np=a mod q Na=a mod ¢
V1<j<k V1<j<k
o; (el o;(@)el
N(aj(p))=p 6o (a))—doll<z—°

[ ¢(cs (p))— ol <z~

Summing over all ¢ < Q = 2%, the accumulated error is < x%Q% log x, which is negligible to the
right hand side of Theorem 1.2 for our range of §, ¢, and 6. It thus suffices to show

1 —(n—1)6 —(n—1)6
s Z Aa) — vol(Ag)hx <, hax =
o eedlea)=1] L= (q)/Z] (log z)
Na=a mod ¢
V1<j<k
O’j(Cl)EI

160 (a))—ol| <z~

3.1. Explicit formula. We first derive a refinement to (10) that imposes an additional constraint
that the prime p lies in a fixed residue class a mod ¢ with ged(a, g) = 1 for some modulus q relatively
prime to Ag. We remark that the condition ged(q, Ag) = 1 is necessary to achieve equidistribution
among the ¢(q) relatively prime residue classes mod ¢. As an example, let K = Q(i), Ax = —4
and let I denote the trivial ideal class. Every prime p represented by the norm of a principal ideal
is of the form a® + b? for a,b € Z. When p is odd, it must be the case that p = 1 mod 4, so
equidistribution mod ¢ for any ¢ = 0 mod 4 is not achieved. The condition ged(q, Ax) = 1 rules
out these q.

We have the following refined explicit formula, with the same definitions of the smoothing func-
tions g:F and Fj; as in Section 2.2 and the additional notation xn\™ = x(Na)n(a)\™ (a):

Z ]-I’(a)]-a mod q(Na)gz:i: (Na)FJ\:l/:[(qg(a))A(a)

(17) . -
:w(ql)lll FROG = > xa) > ad) 3 Fym) > Gl
x mod ¢ 1 mod (1) ||$ﬁSZ;/[ L(p,xnA\™)=0

Using the orthogonality relations for Dirichlet characters, we have written

i) S x@)x(Na),

1, mod q(Na) = 4,0((]

x mod ¢

where the sum runs over all ¢(gq) Dirichlet characters modulo g. Hence the only change from (10)
to (17) is the addition of the twist of the Hecke character nA™ by the finite-order Hecke character
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X(Na). The last fact needed to justify (17) is that L(s, xnA™) has a pole at s = 1 if and only if
x = 1 is the trivial Dirichlet character mod ¢, n = 1 is the trivial narrow ideal class character mod
(1), and m = 0. This is guaranteed by the condition H;; N Q(¢,) = Q, as shown in [19].

3.2. Reduction to a sum over zeros. The next step is to use the explicit formula from (17). As
in Section 2.7, we choose

/ 2
w=a'"T, M=2T, §§ <7 <7, 2047< -
n
By (5) and the error estimates in Section 2.5 and Section 2.6, it follows that for kg <4 (logz)~ 471,
we have

/ 1(Ag)ha— (=190
max Z Ala) — vol(40) a:I
=0 ged(a,q)=1 w<Nazzth e(q)|Z|
Na=a mod ¢
V1<j<k
O'j(a)el

I 6(c;(a)—doll<z =0

(n—1)8

/ hf]}' /st
—(r'=98") —A-1 A+1,. —(1=9)
<A Z "I < + (log z) + (logz)" ™z - x >

D “];, )N SIS SIS I it

q<Q x mod ¢ n mod (1) ”mﬁZd L(p,xnA™)=0

(18)

/ ha: B —A-1 ‘Gf(P)‘
x mod gnmod (1) mezd L(p,xn\™)=
[m|<r

Using the well-known inequalities

1 log1
<<Og0gq

and

1
Zw < log Q,

we deduce that (18) is

—(n—1)d +
<<A% (log )~ +z:/loglogq Z Z Z Z @

q<Q x mod g mod (1) meZ? L(p,xn\™)=0
[l <A1

Hence to prove Theorem 1.2, it suffices to show that

/ +
(19) Z 1 Z Z Z Z ’Guh(ﬂ)\ < (loga) A1,

q<Q Xmodqnmod(l) meZ4 L(p,xn\™)=0
[lm| <M

where we absorb the factor of logloggq < loglog @ into the right hand side and treat |Z| as a
constant since the narrow ideal class group is fixed by the number field K.
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3.3. Reduction to non-trivial zeros of primitive characters. The goal of this section will
be to reduce the sum in (19) to a sum over primitive Hecke characters. Since xn = 1 is principal
if and only if x = 1 and n = 1 simultaneously, for a fixed ¢ the finite-order Hecke characters xn
are induced by pairwise distinct primitive Hecke characters. The conductor of y divides (¢) and
the conductor of 7 is (1), so the conductor a of p = xn divides (¢) and hence Na < ¢". Since
the trivial zeros on Ims = 0 of n are evenly spaced for 1 and the trivial zeros on Res = 0 of
non-primitive 7 are evenly spaced as well, the rapid decay of G (s) guarantees that both sets of
trivial zeros contribute negligibly to the sum in (19) compared to our eventual bound of the sum
over the non-trivial zeros. We thus have

mI;E L% % Gl sl oy oy y el

q<@Q xmodqnmod (1) mez? L(p,xn\™)= q<Q ,umod q) meZd L(p,uA™)=0
[ml <M [m|<M

where the inner sum is over non-trivial zeros p of L(s, uA™).
A primitive Hecke character pq mod a; induces some number of Hecke characters with modulus
(¢), ¢ < Q. Each such g must satisfy N(q) = ¢" | Naj, hence we can bound

1 _1
E - < (logQ)(Nay) "
q=Q ¢
a1|(q)

Using > " to denote a sum over only primitive characters, (20) is

+
cogQ) Y Y v Y% |Guh(P)|

Na<@Q" pmod a meZd L(p,uA™)=0
[|[m[|<At

+
< (log Q)? s R Z Z 3 3 \Guh(p)\7

Na<R pmoda mez? L(p,ur\™)=0
|lm[|<Ar

(21)

where the last step uses a standard dyadic decomposition technique that decomposes the interval
[1,Q] into sub-intervals of the form [2F, 2¥+1) &k =0,1,..., [log, Q].

3.4. Zero-density estimates. We prove that for 1 < R < Q™ we have

+
— R Z Z Z Z 7|G“h(p)| <4 (logz)™A.

Na<R pmoda mez? L(p,pA™)=0
lm||<M
This will conclude the proof of Theorem 1.2 by (19) and (21). We need the following results
concerning the zeros of Hecke L-functions.

Lemma 3.1 ([8]). For any € > 0, there is a constant c1(g) > 0 such that for any real finite-order
Hecke character p mod §f we have L(o, ) # 0 for o > 1 — c1(e)(Nf) ¢

Lemma 3.2 ([10, Theorem A]). There is a constant ca > 0 such that there is at most one character
uA™ among the primitive characters with conductor norm at most R whose L-function L(s, uA™)
has at a real zero in the region Res > 1 — Jﬁ’ known as an exceptional zero. For this character,
one must have m = 0 and p real. Furthermore, there can be at most one exceptional zero for this
character, and it must be simple.
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Lemma 3.3. There is a constant B > 0 such that for all o € [%, 1), R>1and M > 2,

ST Y N M) < (RPM) e 3) 07 (log RM)®
Na<R pmoda mezd
jmff<n

Proof. The zero-density estimate

S 3T Y N M) < (R2M™) 77 ) (log RM)P
Na<R pmod a mezd
<

follows from work of Duke, who proved the corresponding result when R = 1 is bounded [7, Theorem
2.1]. The only notable difference is that instead of applying the large sieve in [7, Theorem 1.1 (i)],
we apply the large sieve in [7, Theorem 1.1 (ii)]. The fourth-moment bound in [7, Section 2.1] and
the zero detection process in [7, Section 2.2] carry over completely analogously.

Duke’s proof extends Montgomery’s zero detection method for Dirichlet L-functions [18] to L-
functions of the form L(s, pA™). As detailed in [18], the method can be refined using results on the
frequency with which certain Dirichlet polynomials attain large values [17]. Montgomery’s work on
large values of Dirichlet polynomials was extended to averages of L-functions of the form L(s, u)
by Hinz [9]. Coleman [4] outlined how Montgomery’s work extends to averages of L-functions of
the form L(s, uA™). This results in the claimed improvement in the exponent. U

Let (3 denote the exceptional zero for each puA™, if such a zero exists. Then U(R) can be split
into the three terms

1 * +
nw-rs Y Yy

Na<R pmoda mezd L(p,uA™)=0
Imi<M  p=p

1 * +
nw-rry Yy Yy

Na<R pmoda mezd L(p,ur™)=0
[ <M [Tm p|>M
p#B

1 * +
Us(R) = R™» Z Z Z Z \Guh(P)\.

Na<R pmod a mezd L(p,ur™)=0
[m|[ <M [Im p|<M
p#p

We first bound Uy (R). By Lemma 3.2, U;(R) contains at most one summand corresponding to
the exceptional zero. If § exists, then by Lemma 3.1 with ¢ = ﬁ and (5) with £ =0 we have

1 cle)

Ui(R) < RwaP L < Rnawe <4 (logz) ™,

1 1
where the last step follows by splitting into the two cases R > e¢(108%)2 and R < e(log)?
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Next, we bound Us(R). Applying partial summation, Lemma 3.3, and (5), we have

UR) < R+ > S % u”/ tde< t;N‘) dt

Na<R pmoda mezd
lm||<ps

1 © 71
<R n Z Z > oula 5< <§,M,u>\m> M‘€+/ N<§,t,u>\m> &‘Hdt>
Na<R pmod a mezd M
[[m]|| <M

< Rz <R2M” ‘log QM)B + / Rzét"_g_l(loth)Bdt>
M

<y Rz_%M"u_ZM_ZxZ(log z)B.
Since 7 > 7/, we conclude that for ¢ sufficiently large we have
Uz(R) < Q* M2~ (log 2)B < 4 (log z) ™.

Finally, we bound Us(R). By Theorem 2.5 noting that M = 27, all non-trivial zeros p #  with

[Im p| < M satisfy
C3

max (log R, (log m)% (log log ) %)

Rep<1—

for some c3 > 0. Denoting

Cc3
cf=1-

max (log R, (log x)% (loglog x)%) 7

we conclude that

UsR)< R7w 30 30 3 > et

Na<R pmoda mezd L(p,u\™)=0
[[m]| <M \Imp\<M

<<R_5 max Z Z Z N (o, M, uX™)z" " log =

2’0 Na<R pmod a mezd
[|[m[|<At

<RE max (M) 007000 g )
o 570'*

< Rw I)Flax ](R2M")%(1_")xa_l(log z)BrL
%S 5,0*

Recalling that M = 27 and R < Q" = 2", we have
Us(R) <R max (x 29"azm)%(l_")x("_l(log z)BH

o€ 5,0
<R™% max :E_(l_57”(%JFT))(:[_“)(logm)BJrl
welba

1 1
If R > el°8%)? then R~/ <« 4 (logz)~4~572, so we are done. If R < e(°8%)2 then
1—0"> (log x)_%(log log:z:)_%,

SO
x—(l—%@@—lﬂ'))(l—o) <4 (loga;)_A_B_z.

We conclude the uniform estimate Uz(R) <4 (logz)~4~! and thus Theorem 1.2.
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