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A BOMBIERI-VINOGRADOV THEOREM FOR PRIMES IN SHORT

INTERVALS AND SMALL SECTORS

TANMAY KHALE, COOPER O’KUHN, APOORVA PANIDAPU, ALEC SUN, AND SHENGTONG ZHANG

Abstract. Let K be a finite Galois extension of Q. We count primes in short intervals represented
by the norm of a prime ideal of K satisfying a small sector condition determined by Hecke charac-
ters. We also show that such primes are well-distributed in arithmetic progressions in the sense of
Bombieri-Vinogradov. This extends previous work of Duke and Coleman.

1. Introduction

A famous open problem is whether or not there exist infinitely many primes of the form p = n2+1.

A natural approximation to this problem is to count primes of the form p = a2+ b2 with |a| < p
1
2
−δ

for some δ > 0. The set of such primes has zero density in the set of all primes. Counting these
primes is equivalent to counting Gaussian primes a + bi that lie in a small sector of the complex
plane. Kubilius [16] proved the existence of a constant δ0 > 0 such that for all 0 < δ < δ0, we have

#
{
p prime: p ≤ x, p = a2 + b2, |a| < p

1
2
−δ
}
∼ cx1−δ

log x

for some constant c. By partial summation, we have the equivalent asymptotic
∑

p≤x
p=a2+b2

|a|<p
1
2−δ

log p ∼ cx1−δ.

The best δ0 that has been obtained to date is 12
37 by Maknys [15].

More generally, one can consider primes represented by norm forms for an imaginary quadratic
extension K = Q(

√−m). For example, when m ≡ 1, 2 mod 4 is square-free, a prime p is of the form
x2+my2 if and only if p = Np for some principal ideal p ⊆ OK . Fix a nonzero ideal f ⊆ OK , and let
g be the number of units ε ≡ 1 mod f in Q(

√−m). Let λ denote a generator for the infinite-order
Hecke characters mod f for an imaginary quadratic extension Q(

√
−m) such that

λ((α)) =

(
α

|α|

)g

for principal ideals (α) with α ≡ 1 mod f. Denote by If the ideal class group mod f, and consider
the distribution of prime ideals within a particular ideal class mod f, which we denote by I.

Refining the result of Kubilius, Coleman [3] showed that for imaginary quadratic extensions
K = Q(

√
−m), prime ideals with argument in a specified range exhibit regularity in short intervals

[x, x+ h) with h = x1−δ′ for some δ′ > 0. To be precise, Coleman [3] proved that for small ε > 0,
we have ∑

p∈I
Np=p prime
x≤p<x+h

φ1≤arg λ(p)≤φ2

log p ∼ (φ2 − φ1)h

2π|If|

for 0 ≤ φ1 ≤ φ2 ≤ 2π, φ2 − φ1 > x−
5
24

+ε, and x
19
24

+ε ≤ h ≤ x.
1
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In the case of an imaginary quadratic extension, a prime ideal p ⊆ OK lying over an unramified
prime p satisfies the conditions in Coleman’s result [3] except the one related to the argument if
and only if its conjugate prime ideal p̄, does, and we have arg λ(p) = − argλ(p̄). Hence Coleman’s
result [3] also produces an asymptotic for the count of rational primes represented by norms of these
prime ideals, with the caveat that for intervals (φ1, φ2) symmetric about π, each rational prime is
counted twice.

Coleman claimed a generalization of this prime counting result for all number fields K in the
proof of [4, Theorem 2] using a purported one-to-one correspondence between rational primes and
prime ideals. However, we observe from a close inspection of [4] that this claim is not sufficiently
justified because the number of prime ideals p lying over a prime p that satisfy a certain argument
condition may not be constant.

In this paper, we extend Coleman’s count of primes represented by norms of prime ideals in
the case of imaginary quadratic extensions. We produce an asymptotic count of rational primes
in the more general setting of Galois extensions K/Q. To state our results, we first require some
definitions of Hecke characters.

1.1. Hecke characters. Let K be a number field of degree n = r1 + 2r2 with real embeddings
σ1, . . . , σr1 and complex embeddings σr1+1, . . . , σr1+r2 , where we denote the image of α ∈ K by

σj(α) = α(j). Let f ⊆ OK be a fixed nonzero ideal. Let If denote the group of fractional ideals
relatively prime to f, and define a group of principal ideals

Pf =
{
(α) ∈ If : α ∈ K×, α ≡ 1 mod f, α ≻ 0

}
.

Here the notation α ≻ 0 means that α is totally positive. An infinite-order Hecke character λ is a
character on If with the property that there exist suitable vj ∈ R and ul ∈ Z such that on principal
ideals (α) ∈ Pf, we have

λ((α)) =

r1+r2∏

j=1

∣∣α(j)
∣∣ivj

r1+r2∏

l=r1+1

(
α(l)

∣∣α(l)
∣∣

)ul

.

For this to be well-defined, we need λ(ε) = 1 for all units ε ≡ 1 mod f satisfying ε ≻ 0. We also
require λ(α) = 1 for all α ∈ Q, implying the condition

r1+r2∑

j=1

vj = 0.

The group of characters λ has a multiplicative basis of d = n − 1 elements. Fixing such a multi-
plicative basis λ1, . . . , λd, each Hecke character mod f can be written as

µλm(a) = µ(a)

d∏

j=1

λ
mj

j (a), a ∈ If,

for some m = (m1, . . . ,md) ∈ Zd and for some character µ on If/Pf, which we refer to as a narrow

class character mod f. Define the argument ~φ(a) = (φ1(a), . . . , φd(a)) ∈ Rd/Zd = Td for a ∈ If by

λj(a) = e2πiφj(a). Let ‖ · ‖ denote the sup-norm on Td.

1.2. Main results. We now state the two main results of this paper. The first main theorem
counts primes p in short intervals represented by norms of prime ideals with argument lying in a

narrow sector of the form ‖~φ(p)− ~φ0‖ < p−δ. We also impose the condition that these prime ideals
lie in a fixed narrow ideal class, which is motivated by counting primes represented by norm forms.
Let a ∈ I be an ideal with a special basis {αj} satisfying the following conditions in [7, Section
3.2]:
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• det
(
α
(i)
j

)
=

√
∆K ·Na, where α

(i)
j denotes the matrix whose (i, j)-th entry is α

(i)
j and ∆K

denotes the discriminant of K.
• αm ≻ 0 for some m.

A prime p can be represented as

p = N
(∑

xjαj

)
N(a)−1,

∑
xjαj ≻ 0

if and only if p = Np for some prime ideal p ∈ I−1. Duke [7, Theorem 3.2] notes that counting
primes in a given narrow ideal class whose associated prime ideals lie in small sectors is related to
counting primes represented by norm forms of a number field K with all but one component small

via the geometric interpretation of ~φ. The first main theorem of this paper is:

Theorem 1.1. Let K/Q be a finite Galois extension of degree n. Let 0 < δ, δ′ < 2
5n and ~φ0 ∈ Tn−1

be fixed. Denote by I the narrow ideal class group mod (1), and let I ∈ I be a fixed narrow ideal

class mod (1). Define

PI,δ(~φ0) =
{
p ∈ P : ∃p ∈ I with Np = p and ‖~φ(p)− ~φ0‖ < p−δ

}
.

Then there are constants c and c1 > 0 depending on δ and δ′ such that for any constant 0 < c2 <
1
3

we have
∑

x≤p<x+h

p∈PI,δ(~φ0)

log p =
cx−(n−1)δh

|I|
(
1 +O

(
e−c1(log x)c2

))
, h = x1−δ′ .

The second main theorem shows that the primes counted in Theorem 1.1 are well-distributed in
the sense of Bombieri-Vinogradov. The classical Bombieri-Vinogradov Theorem [6] states that for
any 0 < θ < 1

2 and A > 0, we have

∑

q≤Q

max
(a,q)=1

∣∣∣∣∣
∑

p≤x
p≡a mod q

log p− x

φ(q)

∣∣∣∣∣≪A
x

(log x)A
, Q = xθ.

A short interval generalization of the Bombieri-Vinogradov Theorem has been established by Jutila
[14] using ideas by Huxley and Jutila [11].

For imaginary quadratic extensions K = Q(
√
−m), Coleman and Swallow [5] have proven a

Bombieri-Vinogradov theorem for prime ideals with norm in short intervals satisfying the conditions
in Theorem 1.1. We prove an analogous result for rational primes represented by norms of such
ideals that in addition holds for any Galois extension K/Q.

Theorem 1.2. Let K/Q be a finite Galois extension of degree n. Let δ, δ′, θ > 0 be constants with

2θ + max (δ, δ′) < 2
5n , and let ~φ0 ∈ Tn−1 be fixed. Denote by I the narrow ideal class group mod

(1), and let I ∈ I be a fixed narrow ideal class mod (1). Define

PI,δ(~φ0) =
{
p prime : ∃p ∈ I with Np = p and ‖~φ(p) − ~φ0‖ < p−δ

}
.

Then there is a constant c such that for A > 0 we have

∑

q≤Q
H+

K
∩Q(ζq)=Q

max
gcd(a,q)=1

∣∣∣∣∣
∑

x≤p<x+h
p≡a mod q

p∈PI,δ(~φ0)

log p− chx−(n−1)δ

ϕ(q)|I|

∣∣∣∣∣≪A
hx−(n−1)δ

(log x)A
, Q = xθ, h = x1−δ′

where H+
K denotes the narrow Hilbert class field of K.
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Using partial summation, both theorems can be modified to count the number of primes without
a log p weighting satisfying the given Hecke character conditions. Although Theorem 1.2 holds
only for Galois extensions K/Q, we remark that the proof of Theorem 1.2 starting from Section
3.1 yields a Bombieri-Vinogradov inequality for all number fields K, not necessarily Galois over
Q, at the cost of counting prime ideals that satisfy the given Hecke character conditions rather
than rational primes. This extends the localized Bombieri-Vinogradov theorem for prime ideals in
imaginary quadratic extensions proven by Coleman and Swallow in [5].

Acknowledgements. This research was funded by the NSF (DMS-2002265), the NSA (H98230-
20-1-0012), the Templeton World Charity Foundation, and the Thomas Jefferson Fund at the
University of Virginia. The authors thank Ken Ono, Jesse Thorner and Wei-Lun Tsai for advising
this research and for many helpful conversations, as well as Fabian Gundlach for pointing out a
minor error. Finally, the authors are grateful to the anonymous reviewer for many suggestions that
improved the presentation of this article.

Notation

• p denotes a rational prime.
• a denotes an ideal of OK .
• p denotes a prime ideal of OK .
• I denotes the narrow ideal class group of K.
• H+

K denotes the narrow Hilbert class field of K.
• ∆K denotes the discriminant of K.
• I ∈ I denotes a narrow ideal class.
• λm denotes an infinite-order Hecke character when m 6= 0.
• µ denotes an arbitrary finite-order Hecke character.
• η denotes a narrow ideal class character with conductor (1).
• χ denotes a Dirichlet character.
• 1 denotes the indicator function.
• A sum over the variable a denotes a sum over all ideals a ⊆ OK .
• A sum over the variable p denotes a sum over all prime ideals p ⊆ OK .
•
∑∗ denotes a sum over only primitive characters.

• ∑′
q denotes a sum over positive integers q such that H+

K ∩Q(ζq) = Q.

• ‖ · ‖ denotes the sup-norm.
• The implied constants in the notation O(·), ≪, and ≫ depend on the number field K.

2. Proof of Theorem 1.1

In this section, we prove that

(1)
∑

x≤p<x+h
∃p∈I s.t.
Np=p

‖~φ(p)−~φ0‖<x−δ

log p =
cx−(n−1)δh

|I|
(
1 +O

(
e−c1(log x)c2

))
.

for some constants c and c1 > 0 depending on δ and δ′, and any constant 0 < c2 <
1
3 . Once we prove

this result, we will show that we can replace the condition ‖~φ(p)− ~φ0‖ < x−δ by ‖~φ(p)− ~φ0‖ < p−δ,
thus proving Theorem 1.1.

To show (1), we adapt the principle of inclusion-exclusion to express the count of rational primes
in terms of counts of certain prime ideals associated with a set of automorphisms σ1, . . . , σk ∈
Gal(K/Q). We then show an explicit formula for the count of prime ideals and use a zero-density
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estimate to bound the sum over zeros of Hecke L-functions. Fix d = n− 1 to be the dimension of
the space of infinite-order Hecke characters, and write ~φ0 = (φ01, . . . , φ0d).

2.1. Principle of inclusion-exclusion. We introduce a key lemma motivated by the principle
of inclusion-exclusion that lets us reduce the problem of counting rational primes that satisfy the
given conditions above to counting prime ideals.

Lemma 2.1. Suppose that p does not ramify in K. Fix an arbitrary ordering on the n elements

of Gal(K/Q). Then we have

1

(
∃p∈I s.t.

Np=p

‖~φ(p)−~φ0‖<x−δ

)
=

1

n

n∑

k=1

(−1)k−1
∑

σ1,...,σk∈Gal(K/Q)
σ1<···<σk

∑

p over p

1




∀1≤j≤k
N(σj (p))=p
σj(p)∈I

‖~φ(σj(p))−~φ0‖<x−δ


 ,

where 1(·) denotes the indicator function of an event.

Proof. Since K/Q is Galois, all primes lying over p have the same inertia degree. If p does not
split completely in K, then all primes p lying over p have Np 6= p and N(σj(p)) 6= p because the
inertia degrees are greater than 1. Assume now that p splits completely. Suppose that m ≥ 0

primes p lying over p satisfy p ∈ I,Np = p, and ‖~φ(p) − ~φ0‖ < x−δ. Then the left hand side is
1m>0 by definition of m. To compute the right hand side, fix 1 ≤ k ≤ n. For each prime p lying
over p, there are

(m
k

)
tuples of k automorphisms σ1 < · · · < σk such that for all 1 ≤ j ≤ k, we have

σj(p) ∈ I,N(σj(p)) = p, and ‖~φ(σj(p)) − ~φ0‖ < x−δ. We use the convention
(m
k

)
= 0 for m < k.

Since there are n primes lying over p, we conclude that the right hand side is

1

n

n∑

k=1

(−1)k−1n

(
m

k

)
= 1m>0

as desired. �

By Lemma 2.1, it suffices to estimate

∑

x≤p<x+h
∃p∈I s.t.
Np=p

‖~φ(p)−~φ0‖<x−δ

log p =
1

n

∑

σ1<···<σk

(−1)k−1
∑

x≤Np<x+h
∀1≤j≤k
σj(p)∈I

N(σj(p))=p

‖~φ(σj (p))−~φ0‖<x−δ

log(Np).

Since the number of k-tuples of automorphisms σ1 < · · · < σk is at most 2n, which is constant
given the number field K, it suffices to produce an asymptotic, in the form of Theorem 1.1, for

∑

x≤Np<x+h
∀1≤j≤k
σj(p)∈I

N(σj (p))=p

‖~φ(σj(p))−~φ0‖<x−δ

log(Np)

given a fixed set of automorphisms σ1 < · · · < σk.
Define Λ(a) to be the generalized von Mangoldt function

Λ(a) =

{
log(Np) a = pk for some prime p

0 otherwise.
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Because there are ≪ x
1
2 ideals a satisfying Na = pk with k ≥ 2 in the interval x ≤ Na < x+ h, we

have

(2)
∑

x≤Np<x+h
∀1≤j≤k
σj(p)∈I

N(σj(p))=p

‖~φ(σj(p))−~φ0‖<x−δ

log(Np) = O
(
x

1
2 log x

)
+

∑

x≤Na<x+h
∀1≤j≤k
σj(a)∈I

‖~φ(σj(a))−~φ0‖<x−δ

Λ(a).

The error term is negligible to the main term in Theorem 1.1 for 0 < δ, δ′ < 2
5n and hence can be

ignored.
One important observation is that the condition σj(a) ∈ I is equivalent to the condition a ∈

σ−1
j (I). Here we use the fact that if a ≻ 0 then σ(a) ≻ 0 for all σ ∈ Gal(K/Q), which implies that

the Galois action is well-defined on the narrow ideal class group. The conditions a ∈ σ−1
j (I) for

1 ≤ j ≤ k can be simultaneously satisfied if and only if the narrow ideal class σ−1
j (I) is constant

for 1 ≤ j ≤ k. In the case that σ−1
j (I) is constant, we denote the narrow ideal class by I ′. Hence

we have

(3)
∑

x≤Na<x+h
∀1≤j≤k
σj(a)∈I

‖~φ(σj(a))−~φ0‖<x−δ

Λ(a) =





∑

a∈I′
x≤Na<x+h
∀1≤j≤k

‖~φ(σj(a))−~φ0‖<x−δ

Λ(a) if σ−1
j (I) = I ′, ∀1 ≤ j ≤ k

0 otherwise.

We restrict to the non-trivial former case for the rest of the proof of Theorem 1.1. Another important
observation from class field theory is that for each j and each infinite-order Hecke character λi,

λi ◦ σj : a 7→ λi(σj(a))

is also an infinite-order Hecke character and hence can be written as λm
(ij)

for some

m(ij) =
(
m

(ij)
1 , . . . ,m

(ij)
d

)
∈ Zd.

Recalling the definition of ~φ(a) as λj(a) = e2πiφj(a), we see that the condition ‖~φ(σj(a))− ~φ0‖ < x−δ

is equivalent to ~φ(a) lying inside a polytope in Td cut out by the hyperplanes
∣∣∣∣∣φ0i − arg

d∏

l=1

λ
m

(ij)
l

l (a)

∣∣∣∣∣ =
∣∣∣∣∣φ0i −

d∑

l=1

m
(ij)
l φl(a)

∣∣∣∣∣ < x−δ

for 1 ≤ i ≤ d. The intersection of such polytopes across all 1 ≤ j ≤ k is a union N of polytopes
△. If N is empty, then the sum in (3) equals 0 and hence we are done. We restrict to the case in
which N is non-empty for the rest of the proof, and we can consider each individual polytope △⊆ N

independently. For sufficiently large x, the individual polytopes △⊆ N corresponding to different
values of x are all homothetic. In particular, △ is a dilation by x−δ of a fixed polytope △0⊆ Td

depending only on the choice of automorphisms σ1 < · · · < σk.
Rather than estimate the von Mangoldt sum

(4)
∑

x≤Na<x+h
∀1≤j≤k
σj(a)∈I

‖~φ(σj(a))−~φ0‖<x−δ

Λ(a) =
∑

a

1I′(a)1[x,x+h)(Na)1△(~φ(a))Λ(a)



A BOMBIERI-VINOGRADOV THEOREM FOR PRIMES IN SHORT INTERVALS AND SMALL SECTORS 7

in (2), it is more convenient to estimate a smoothed von Mangoldt sum, replacing indicator functions

for x ≤ Na < x+ h and ~φ(a) ∈△ with smooth counterparts. It is a standard technique to compute
a smooth minorant and a smooth majorant and prove that both satisfy the asymptotic on the right
hand side of (1).

2.2. Smoothing functions. For a short interval [x, x+ h) with h = x1−δ′ , define

g−u (y) ≤ 1[x,x+h)(y) ≤ g+u (y),

for u ≪ h to be chosen later, to be smooth functions supported on [x − u, x + h + u] such that
g−u (y) = 1 for x + u ≤ y ≤ x + h − u and g+u (y) = 1 for x ≤ y ≤ x + h. In the intervals
[x, x+ u]∪ [x+ h− u, x+ h] for g−u (y) and [x− u, x]∪ [x+ h, x+ h+ u] for g+u (y), we set g±u (y) to
be a translation and horizontal dilation by u of a fixed smooth transition function g0(y) from 0 to
1 and its reflection from 1 to 0 respectively. More precisely, define

g0(y) =
e
− 1

y

e−
1
y + e−

1
1−y

for y ∈ (0, 1) and define

g−u (y) =





g0
(y−x

u

)
if y ∈ (x, x+ u)

1 if y ∈ [x+ u, x+ h− u]

g0

(
x+h−y

u

)
if y ∈ (x+ h− u, x+ h)

0 otherwise

g+u (y) =





g0
(y−x+u

u

)
if y ∈ (x− u, x)

1 if y ∈ [x, x+ h]

g0

(
x+h+u−y

u

)
if y ∈ (x+ h, x+ h+ u)

0 otherwise.

We remark that the ℓ-th derivative of g±u (y) satisfies
∣∣∣g±u (ℓ)

(y)
∣∣∣ ≪ℓ u

−ℓ by the chain rule because

the functions g±u
(ℓ)
(y) for ℓ > 0 have compact support. The Mellin transform of g±u (y) is given by

the entire function

G±
u (s) =

∫ ∞

0
g±u (y)y

s−1 dy

of the complex variable s = σ + it. For any ℓ ∈ Z≥0 and s = σ + it with σ ≤ 2, we have the
following estimate on G±

u (s):

(5)
∣∣G±

u (s)
∣∣≪ℓ u

−ℓ(1 + |s|)−ℓhxσ+ℓ−1.

By the Mellin inversion formula, we have

g±u (Na) =
1

2πi

∫ 2+i∞

2−i∞
G±

u (s)(Na)−s ds,

where the integral is absolutely convergent because of the rapid decay property of G±
u (s) on σ = 2.

As discussed previously, we will show that both a smooth minorant and a smooth majorant for

(4) are of the correct asymptotic. For a minorant and majorant of 1△(~φ(a)), we use a d-dimensional
version of the Selberg minorizing and majorizing function for boxes [1]:
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Theorem 2.2. For any positive integer M and any cube

B =
d∏

j=1

[aj , bj ] ⊆ Td, bj − aj = κ

with vol(B) < 1, there exist trigonometric polynomials

f±
M(~φ) =

∑

‖m‖≤M

f̂±
M (m)e2πi〈m,~φ〉

such that:

• f−
M(~φ) ≤ χB(~φ) ≤ f+

M(~φ) for ~φ ∈ Td.

• vol(B)− f̂−
M (0) =

(
κ+ 2

M+1

)d
−
(
κ+ 1

M+1

)d

• f̂+
M(0)− vol(B) =

(
κ+ 1

M+1

)d
− κd

Proof. This follows immediately from [1, Theorem 1]. �

We prove a bound on the size of the Fourier coefficients of f±
M :

Lemma 2.3. For all m = (m1, . . . ,md) ∈ Zd, we have

∣∣∣f̂±
M (m)

∣∣∣≪d max

(
κd−1

M
,M−d

)
+

d∏

j=1

min

(
κ,

1

|mj|

)
.

Proof. We apply the inequality
∣∣∣f̂(m)

∣∣∣ ≤ ‖f‖L1 to the function f(~φ) = f±
M(~φ)−χB(~φ). We compute

∣∣∣f̂±
M(m)− χ̂B(m)

∣∣∣ ≤ ‖f±
M − χB‖L1 ≤

d∏

j=1

(
κ+

2

M + 1

)
− κd ≪d max

(
κd−1

M
,M−d

)

and

|χ̂B(m)| =
d∏

j=1

∣∣∣∣
e2πimjaj − e2πimjbj

2πimj

∣∣∣∣ =
d∏

j=1

∣∣∣∣
sin(πmjκ)

πmj

∣∣∣∣ ≤
d∏

j=1

min

(
κ,

1

π|mj |

)
.

The result follows by the triangle inequality. �

The key idea to smooth 1△(~φ(a)) is to tile the polytope △ using disjoint cubes. In particular,
since △ is a dilation by x−δ of △0, we will set κ = κ0x

−δ for some κ0 > 0 depending on △0 to be
chosen later, where the asymptotic is with respect to x → ∞. Consider an arbitrary tessellation of
Td by a grid of disjoint cubes of side length κ0. Such a tessellation can be translated, so without

loss of generality fix ~φ0 ∈ Td as a vertex of a cube in the grid for all κ0. As κ0 → 0, the combined
volume of cubes that intersect △0 will approach vol(△0).

Lemma 2.4. For a grid of disjoint cubes of side length κ0 and an arbitrary solid polytope △0⊆ Td,

denote by ⊡
−
κ0

the union of cubes that lie completely inside △0 and denote by ⊡
+
κ0

the union of cubes

that have non-empty intersection with △0. Note that ⊡−
κ0

⊆△0⊆ ⊡
+
κ0

by definition. Then we have
∣∣vol(⊡±

κ0
)− vol(△0)

∣∣ = O (κ0 · vol(∂ △0)) ,

where vol(∂ △0) denotes the surface area of △0.

Proof. This is a well-known fact from geometry using the fact that △0 is a polytope. �
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In Lemma 2.4, scale the polytope △0 and the grid by a factor of x−δ so that △0 becomes △.
Denote the scaled ⊡

±
κ0

by ⊡
±
κ , which consists of cubes of side length κ. Then we have

∣∣vol(⊡±
κ )− vol(△)

∣∣ =
∣∣∣(x−δ)d

(
vol(⊡±

κ0
)− vol(△0)

)∣∣∣ = O
(
(x−δ)d · κ0 · vol(∂ △0)

)
.(6)

We majorize the indicator function for each cube C ⊆ ⊡
±
κ0

of side length κ by a translation f±
M

C
(~φ)

of the Selberg majorizing function f±
M (~φ), and define

F−
M (~φ) :=

∑

C∈⊡−

κ

f−
M

C
(~φ) ≤ 1△(~φ(a)) ≤

∑

C∈⊡+
κ

f+
M

C
(~φ) =: F+

M (~φ).

2.3. Zero-free region and zero-density estimate for Hecke L-functions. Each Hecke char-
acter µλm mod f has an associated L-function defined by

L(s, µλm) =
∑

a

µλm(a)(Na)−s,

with logarithmic derivative

−L′

L
(s, µλm) =

∑

a

Λ(a)µλm(a)(Na)−s.

If µ is not primitive then it is induced by a primitive character µ1 mod f1 where f1 | f, and µ1λ
m is

a primitive Hecke character mod f1. Furthermore, we have the L-function factorization

L(s, µλm) = L(s, µ1λ
m)
∏

p|f

(
1− µ1λ

m(p)(Np)−s
)
.

The L-function for the primitive Hecke character µ1λ
m satisfies the functional equation [12, The-

orem 12.3] given by

(7) L(s, µ1λ
m) = w(µ1λ

m)A
1
2
−sL∞(1− s,m, µ̂1)L(1− s, µ1λ

m)

for some |w| = 1, where the following notation is used:

• A = |∆K | · (N f1) · π−n2−r2 .
• µ̂1 is the sign character induced by µ1, and

L∞(s,m, µ̂1) =




r1∏

j=1

Γ
(
1
2(s+ aj − ibj)

)

Γ
(
1
2 (1− s+ aj + ibj)

)






r1+r2∏

j=r1+1

Γ
(
s+ 1

2 |aj | − ibj
)

Γ
(
1− s+ 1

2 |aj |+ ibj
)


 ,

where the values a1, . . . , ar1 ∈ {0, 1} are determined by µ̂1 and the values ar1+1, . . . , ar1+r2 ∈
Z and b1, . . . , br1+r2 ∈ R are determined by m.

The trivial zeros of µλm occur at the poles of the Γ factor and include zeros contributed by the
factors ∏

p|f

(
1− µ1λ

m(p)(Np)−s
)

for non-primitive µ on Re s = 0. The first kind are at negative-integer or even-integer translates of
a fixed set of complex numbers with non-positive real parts.

In order to get an asymptotic for the smooth minorant and majorant
∑

a

1I′(a)g
−
u (Na)F−

M (~φ(a))Λ(a) ≤
∑

a

1I′(a)1[x,x+h)(Na)1△(~φ(a))Λ(a)

≤
∑

a

1I′(a)g
+
u (Na)F+

M (~φ(a))Λ(a)
(8)

in terms of x, we will use a suitable zero-free region and a zero-density estimate for the Hecke
L-functions L(s, µλm). The zero-free region is due to Coleman:
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Theorem 2.5 ([2, Theorem 2]). Let µλm mod f be a Hecke character and L(σ + it, µλm) the

associated Hecke L-function. Denote V = max (‖m‖, t). For a constant A > 0 depending only on

K and sufficiently large V , we have

L(σ + it, µλm) 6= 0 for σ ≥ 1− A

max
(
logN f, (log V )

2
3 (log log V )

1
3

)

apart from a possible exceptional zero when m = 0 and µ is a real character mod f.

Recall that since f = (1) in the statement of Theorem 1.1, the dependence on N f in Theorem
2.5 can be ignored. We now state a zero-density estimate for Hecke L-functions due to Coleman
[2]. Define N(σ, T, µλm) for σ ∈ [0, 1] to be the number of zeros of L(s, µλm) with Re s ≥ σ and
|Im s| ≤ T .

Theorem 2.6 ([4, Lemma 1]). Fix a finite-order Hecke character µ mod f. There is a constant B
depending only on K such that

∑

‖m‖≤T

N(σ, T, µλm) ≪µ T
5n
2
(1−σ)(log T )B

for 0 ≤ σ ≤ 1.

2.4. Explicit formula. We return now to estimating the smooth minorant and majorant (8). We
rewrite each of the terms that appears in the left hand side of (8) as follows. Using the orthogonality
relations for narrow ideal class characters, we have

1I′(a) =
1

|I|
∑

η mod (1)

η̄(I ′)η(a),

where I denotes the narrow ideal class group and η mod (1) runs over all |I| narrow ideal class
characters. Using the Mellin inversion formula for g±u (y), we have

g±u (Na) =
1

2πi

∫ 2+i∞

2−i∞
G±

u (s)(Na)−s ds.

Finally, expand F±
M in its Fourier series

F±
M (~φ(a)) =

∑

m∈Zd

‖m‖≤M

F̂±
M (m)λm(a), λm(a) =

d∏

j=1

λ
mj

j (a).

Hence we have
∑

a

1I′(a)g
±
u (Na)F±

M (~φ(a))Λ(a)

=
∑

a

1

|I|
∑

η mod (1)

η̄(I ′)
∑

m∈Zd

‖m‖≤M

F̂±
M (m)

1

2πi

∫ 2+i∞

2−i∞
G±

u (s)Λ(a)ηλ
m(a)(Na)−s ds

=
1

|I|
∑

η mod (1)

η̄(I ′)
∑

m∈Zd

‖m‖≤M

F̂±
M (m)

1

2πi

∫ 2+i∞

2−i∞
G±

u (s)

(
−L′

L
(s, ηλm)

)
ds.(9)

We now express the integral in (9) as a sum over the zeros and poles of the Hecke characters
ηλm for ‖m‖ ≤ M . We use the following classical result on the vertical distribution of zeros of
L(s, µλm):
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Lemma 2.7. For any |T | sufficiently large, there are ≪ log(|T |+M) + log(N f) non-trivial zeros

ρ of L(s, µλm) for ‖m‖ ≤ M such that |T − Im ρ| < 1. In particular, there is a gap in the vertical

distribution of zeros of length ≫ (log(|T |+M) + log(N f))−1
.

Proof. This follows from [13, Proposition 5.7]. �

A standard argument using contour integration analogous to the proof of [20, Lemma 3.3] yields
the smoothed explicit formula

∑

a

1I′(a)g
±
u (Na)F±

M (~φ(a))Λ(a)

=
1

|I|


F̂±

M (0)G±
u (1)−

∑

η mod (1)

η̄(I ′)
∑

m∈Zd

‖m‖≤M

F̂±
M (m)

∑

L(ρ,ηλm)=0

G±
u (ρ)


 .

(10)

Here we have used the fact that L(s, ηλm) has a pole at s = 1 if and only if η = 1 and m = 0. We

split (10) into the main term F̂±
M (0)G±

u (1) and the sum over zeros

∑

η mod (1)

η̄(I ′)
∑

m∈Zd

‖m‖≤M

F̂±
M (m)

∑

L(ρ,ηλm)=0

G±
u (ρ).

2.5. Estimating the main term. First we estimate the main term F̂±
M (0)G±

u (1). Recall the
definitions of △0, κ, and κ0 from Section 2.1 and Section 2.2. We use Theorem 2.2, noting that
there are vol(⊡±

κ )κ
−d cubes C in ⊡

±
κ . By (6), we compute

F̂±
M (0) = vol(⊡±

κ )

(
1 +O

(
κ−d max

(
κd−1

M
,M−d

)))

= (x−δ)d (vol(△0) +O (κ0 · vol(∂ △0)))

(
1 +O

(
κ−d max

(
κd−1

M
,M−d

)))

= (x−δ)d vol(△0)

(
1 +O△0

(
κ0 + κ−d max

(
κd−1

M
,M−d

)))

using the fact that vol(△0) and vol(∂ △0) are constants that only depend on the choice of automor-
phisms σ1 < · · · < σk. From the definition of the Mellin transform G±

u we have

G±
u (1) =

∫ ∞

0
g±u (y) dy = h+O(u).

Combining yields

(11) F̂±
M (0)G±

u (1) = h(x−δ)d vol(△0)

(
1 +O△0

(
u

h
+ κ0 +

1

κM

))

so long as u = o(h), κ0 = o(1), and (κM)−1 = o(1), where the asymptotics are with respect to
x → ∞.

2.6. Estimating the sum over zeros. Now we estimate the sum over zero. Using Lemma 2.3
with M ≫ κ−1 and κ0 ≪ 1, along with the fact that there are vol(⊡±

κ )κ
−d cubes C in ⊡κ, we
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compute

1

|I|
∑

η mod (1)

η̄(I ′)
∑

m∈Zd

‖m‖≤M

F̂±
M (m)

∑

L(ρ,ηλm)=0

G±
u (ρ)

≪ 1

|I|
∑

η mod (1)

∑

m∈Zd

‖m‖≤M

∣∣∣F̂±
M (m)

∣∣∣
∑

L(ρ,ηλm)=0

∣∣G±
u (ρ)

∣∣

≪ max
η mod (1)

∑

m∈Zd

‖m‖≤M

(
vol(⊡±

κ )κ
−d
)
κd

∑

L(ρ,ηλm)=0

∣∣G±
u (ρ)

∣∣

≪ max
η mod (1)

∑

m∈Zd

‖m‖≤M

(x−δ)d vol(△0) (1 +O△0(κ0))
∑

L(ρ,ηλm)=0

∣∣G±
u (ρ)

∣∣

≪△0 (x−δ)d max
η mod (1)

∑

m∈Zd

‖m‖≤M

∑

L(ρ,ηλm)=0

∣∣G±
u (ρ)

∣∣.

(12)

Fix a narrow class character η mod (1). We will split the sum over zeros ρ in those with |Im ρ| ≤ M
and those with |Im ρ| > M .

We first bound the sum over zeros with |Im ρ| > M . By (5) we have

G±
u (ρ) ≪ℓ u

−ℓ|Im ρ|−ℓhxℓ.

Since the trivial zeros on Im ρ = 0 of η are evenly spaced, the rapid decay of G±
u (ρ) guarantees

that both sets of trivial zeros contribute negligibly to the sum in (12) compared to our eventual
bound for the sum over the non-trivial zeros. For the rest of the argument, we restrict to a sum
over non-trivial zeros ρ of L(s, ηλm). Using Lemma 2.7 for the vertical distribution of non-trivial
zeros, we have

∑

m∈Zd

‖m‖≤M

∑

L(ρ,ηλm)=0
|Im ρ|>M

∣∣G±
u (ρ)

∣∣≪ℓ

∫ ∞

M
u−ℓt−ℓhxℓMd log(|t|+M) dt

≪ℓ (x
−δ)du−ℓM−ℓ+1+dhxℓ logM

(13)

Next, we bound the sum over zeros with |Im ρ| ≤ M . Taking ℓ = 0 in (5), we have G±
u (ρ) ≪

hxRe ρ−1. Hence we obtain
∑

m∈Zd

‖m‖≤M

∑

L(ρ,ηλm)=0
|Im ρ|≤M

∣∣G±
u (ρ)

∣∣≪
∑

m∈Zd

‖m‖≤M

∑

L(ρ,ηλm)=0
|Im ρ|≤M

hxRe ρ−1.

Lemma 2.8. If M = xτ with 0 < τ < 2
5n , then

∑

m∈Zd

‖m‖≤M

∑

L(ρ,ηλm)=0
|Im ρ|≤M

xRe ρ−1 ≪ e−c1(log x)c2 .

for some constants c1, c2 > 0 that depend on τ .

Proof. We compute using partial summation that
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∑

m∈Zd

‖m‖≤M

∑

L(ρ,ηλm)=0
|Im ρ|≤M

xRe ρ−1

=
∑

m∈Zd

‖m‖≤M

∫ 1

0
xσ−1 dN(σ,M, ηλm)

=
∑

m∈Zd

‖m‖≤M

(
N(0,M, ηλm)x−1 log x+

∫ 1

0
N(σ,M, ηλm)xσ−1 log x dσ

)

≪ sup
σ∈[0,1]

∑

m∈Zd

‖m‖≤M

N(σ,M, ηλm)xσ−1 log x.

(14)

By Theorem 2.5 and Theorem 2.6, the right hand side of (14) is

≪ max


(log x)B+1 · sup

σ∈
[

1
2
,1−A(logM)−

2
3 (log logM)−

1
3

]

(
xσ−1M

5n
2
(1−σ)

)
, xβ−1 log x




≪ (log x)B+1 · x
−

A(1− 5n
2 τ)

(logM)
2
3+o(1)

≪ e−Aτ−
2
3 (1− 5n

2
τ)(log x)

1
3−o(1)

where β < 1 denotes the possible exceptional zero for m = 0 if η is real. We thus deduce Lemma

2.8 with c1 = Aτ−
2
3

(
1− 5n

2 τ
)
and 0 < c2 <

1
3 . �

2.7. Combining the error estimates. It is now time to collect all of the error terms. The error
from the main term is computed in (11). The error from the zeros with |Im ρ| > M is computed in
(13). The error from the zeros with |Im ρ| ≤ M is computed in Lemma 2.8. The sum of the error
terms is bounded by

≪ℓ,△0 h(x−δ)d ·
(
u

h
+ κ0 +

1

κM

)

︸ ︷︷ ︸
main term error

+(x−δ)d · u−ℓM−ℓ+1+dhxℓ logM︸ ︷︷ ︸
sum over |Im ρ| > M

+(x−δ)d · he−c1(log x)c2

︸ ︷︷ ︸
sum over |Im ρ| ≤ M

≪ℓ,△0 h(x−δ)d
(
u

h
+ κ0 +

xδ

κ0M
+ u−ℓxℓM−ℓ+1+d logM + e−c1(log x)c2

)
.

Recall that the parameter δ corresponds to the sector width and δ′ corresponds to the short
interval h = x1−δ′ in the statement of Theorem 1.1. Given δ, δ′ < 2

5n , we now choose values for the
parameters u, M , and κ0:

u = x1−τ ′ , M = xτ , κ0 = e−c1(log x)c2 , δ, δ′ < τ ′ < τ <
2

5n
.
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Note that the choice of τ determines the value c1 in the proof of Lemma 2.8, and c2 can be chosen
to be any constant in the range 0 < c2 <

1
3 . The sum of the error terms is bounded by

≪ℓ,△0 h(x
−δ)d

(
u

h
+ κ0 +

xδ

κ0M
+ u−ℓxℓM−ℓ+1+d logM + e−c1(log x)c2

)

≪ℓ,△0 h(x
−δ)d

(
x−(τ ′−δ′) + e−c1(log x)c2 + ec1(log x)

c2 · x−(τ−δ) + x−ℓ(1−τ ′)+ℓ+τ(−ℓ+1+d)+o(1)
)

≪ℓ,△0 h(x
−δ)d

(
e−c1(log x)c2 + x−ℓ(τ−τ ′)+τ(d+1)+o(1)

)
.

Finally, choose ℓ large enough so that

ℓ >
τ(d+ 1)

τ − τ ′
,

in which case −ℓ(τ − τ ′) + τ(d + 1) + o(1) is negative and uniformly bounded away from 0 for all
sufficiently large x. We conclude that the sum of the error terms is bounded by

≪ h(x−δ)d · e−c1(log x)c2 .

In conclusion, we have

∑

a

1I′(a)g
±
u (Na)f±

M (~φ(a))Λ(a) =
h vol(△)

|I|
(
1 +O

(
e−c1(log x)c2

))

=
h vol(△0)x

−(n−1)δ

|I|
(
1 +O

(
e−c1(log x)c2

))
,

from which we deduce

∑

a

1I′(a)1[x,x+h)(Na)1△(~φ(a))Λ(a) =
vol(△0)hx

−(n−1)δ

|I|
(
1 +O

(
e−c1(log x)c2

))
.

By summing at most 2n such asymptotics with different polytopes △0, as discussed in Section 2.1,
(1) follows.

Finally, to deduce Theorem 1.1 from (1), it suffices to slightly change the smoothing functions

F±
M . The majorant F+

M should be defined with respect to the original sector condition ‖~φ(p) −
~φ0‖ < x−δ as usual. However, the minorant F−

M should be defined with respect to the sector

condition ‖~φ(p) − ~φ0‖ < (x + h)−δ. The only difference in the proof is a change in the non-error

part of the main term F̂±
M (0) from (x−δ)d vol(△0) to

(
(x+ h)−δ

)d
vol(△0). The error incurred is

≪△0 (x−δ)de−c1(log x)c2 since h = x1−δ′ for δ′ > 0, and hence the error term in (1) is preserved.

3. Proof of Theorem 1.2

As in the proof of Theorem 1.1, we will instead show the inequality

(15)
∑

q≤Q
H+

K
∩Q(ζq)=Q

max
gcd(a,q)=1

∣∣∣∣∣
∑

x≤p<x+h
p≡a mod q
∃p∈I s.t.
Np=p

‖~φ(p)−~φ0‖<x−δ

log p− chx−(n−1)δ

ϕ(q)|I|

∣∣∣∣∣≪A
hx−(n−1)δ

(log x)A
,

noting that Theorem 1.2 can be deduced from (15) the same way as in the last paragraph of Section
2. The proof will be analogous to that of the original Bombieri-Vinogradov inequality using a zero-
density estimate for the relevant L-functions. By the principle of inclusion-exclusion in Section 2.1,
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it suffices to show that for all automorphisms σ1 < · · · < σk ∈ Gal(K/Q) we have

∑′

q≤Q

max
gcd(a,q)=1

∣∣∣∣∣
∑

x≤Np<x+h
Np≡a mod q

∀1≤j≤k
σj(p)∈I

N(σj(p))=p

‖~φ(σj (p))−~φ0‖<x−δ

log(Np)− vol(△0)hx
−(n−1)δ

ϕ(q)|I|

∣∣∣∣∣≪A
hx−(n−1)δ

(log x)A
,

as Theorem 1.2 will follow by summing at most 2n such asymptotics with different polytopes △0

and using the triangle inequality.

Because there are at most ≪ x
1
2 q−

1
2 ideals a satisfying Na = pk with k ≥ 2 and Na ≡ a mod q

in the interval x ≤ Na < x+ h, we have

(16)
∑

x≤Np<x+h
Np≡a mod q

∀1≤j≤k
σj(p)∈I

N(σj (p))=p

‖~φ(σj(p))−~φ0‖<x−δ

log(Np) = O
(
x

1
2 q−

1
2 log x

)
+

∑

x≤Na<x+h
Na≡a mod q

∀1≤j≤k
σj(a)∈I

‖~φ(σj (a))−~φ0‖<x−δ

Λ(a).

Summing over all q ≤ Q = xθ, the accumulated error is ≪ x
1
2Q

1
2 log x, which is negligible to the

right hand side of Theorem 1.2 for our range of δ, δ′, and θ. It thus suffices to show

∑′

q≤Q

max
gcd(a,q)=1

∣∣∣∣∣
∑

x≤Na<x+h
Na≡a mod q

∀1≤j≤k
σj(a)∈I

‖~φ(σj(a))−~φ0‖<x−δ

Λ(a) − vol(△0)hx
−(n−1)δ

ϕ(q)|I|

∣∣∣∣∣≪A
hx−(n−1)δ

(log x)A
.

3.1. Explicit formula. We first derive a refinement to (10) that imposes an additional constraint
that the prime p lies in a fixed residue class a mod q with gcd(a, q) = 1 for some modulus q relatively
prime to ∆K . We remark that the condition gcd(q,∆K) = 1 is necessary to achieve equidistribution
among the ϕ(q) relatively prime residue classes mod q. As an example, let K = Q(i),∆K = −4
and let I denote the trivial ideal class. Every prime p represented by the norm of a principal ideal
is of the form a2 + b2 for a, b ∈ Z. When p is odd, it must be the case that p ≡ 1 mod 4, so
equidistribution mod q for any q ≡ 0 mod 4 is not achieved. The condition gcd(q,∆K) = 1 rules
out these q.

We have the following refined explicit formula, with the same definitions of the smoothing func-
tions g±u and F±

M as in Section 2.2 and the additional notation χηλm = χ(Na)η(a)λm(a):
∑

a

1I′(a)1a mod q(Na)g±u (Na)F±
M (~φ(a))Λ(a)

=
1

ϕ(q)|I|


F̂±

M (0)G±
u (1)−

∑

χ mod q

χ̄(a)
∑

η mod (1)

η̄(I ′)
∑

m∈Zd

‖m‖≤M

F̂±
M (m)

∑

L(ρ,χηλm)=0

G±
u (ρ)


 .

(17)

Using the orthogonality relations for Dirichlet characters, we have written

1a mod q(Na) =
1

ϕ(q)

∑

χ mod q

χ̄(a)χ(Na),

where the sum runs over all ϕ(q) Dirichlet characters modulo q. Hence the only change from (10)
to (17) is the addition of the twist of the Hecke character ηλm by the finite-order Hecke character
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χ(Na). The last fact needed to justify (17) is that L(s, χηλm) has a pole at s = 1 if and only if
χ = 1 is the trivial Dirichlet character mod q, η = 1 is the trivial narrow ideal class character mod
(1), and m = 0. This is guaranteed by the condition H+

K ∩Q(ζq) = Q, as shown in [19].

3.2. Reduction to a sum over zeros. The next step is to use the explicit formula from (17). As
in Section 2.7, we choose

u = x1−τ ′ , M = xτ , δ, δ′ < τ ′ < τ, 2θ + τ <
2

5n
.

By (5) and the error estimates in Section 2.5 and Section 2.6, it follows that for κ0 ≪A (log x)−A−1,
we have

∑′

q≤Q

max
gcd(a,q)=1

∣∣∣∣∣
∑

x≤Na<x+h
Na≡a mod q

∀1≤j≤k
σj(a)∈I

‖~φ(σj(a))−~φ0‖<x−δ

Λ(a) − vol(△0)hx
−(n−1)δ

ϕ(q)|I|

∣∣∣∣∣

≪A

∑′

q≤Q

hx−(n−1)δ

ϕ(q)|I|
(
x−(τ ′−δ′) + (log x)−A−1 + (log x)A+1x · x−(τ−δ)

)

+
∑′

q≤Q

x−(n−1)δ

ϕ(q)|I|
∑

χ mod q

∑

η mod (1)

∑

m∈Zd

‖m‖≤M

∑

L(ρ,χηλm)=0

∣∣G±
u (ρ)

∣∣

≪A

∑′

q≤Q

hx−(n−1)δ

ϕ(q)|I|


(log x)−A−1 +

∑

χ mod q

∑

η mod (1)

∑

m∈Zd

‖m‖≤M

∑

L(ρ,χηλm)=0

|G±
u (ρ)|
h


 .

(18)

Using the well-known inequalities

1

φ(q)
≪ log log q

q

and ∑

q≤Q

1

φ(q)
≪ logQ,

we deduce that (18) is

≪A
hx−(n−1)δ

|I|


(log x)−A +

∑′

q≤Q

log log q

q

∑

χ mod q

∑

η mod (1)

∑

m∈Zd

‖m‖≤M

∑

L(ρ,χηλm)=0

|G±
u (ρ)|
h


 .

Hence to prove Theorem 1.2, it suffices to show that

(19)
∑′

q≤Q

1

q

∑

χ mod q

∑

η mod (1)

∑

m∈Zd

‖m‖≤M

∑

L(ρ,χηλm)=0

|G±
u (ρ)|
h

≪A (log x)−A−1,

where we absorb the factor of log log q ≤ log logQ into the right hand side and treat |I| as a
constant since the narrow ideal class group is fixed by the number field K.
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3.3. Reduction to non-trivial zeros of primitive characters. The goal of this section will
be to reduce the sum in (19) to a sum over primitive Hecke characters. Since χη = 1 is principal
if and only if χ = 1 and η = 1 simultaneously, for a fixed q the finite-order Hecke characters χη
are induced by pairwise distinct primitive Hecke characters. The conductor of χ divides (q) and
the conductor of η is (1), so the conductor a of µ = χη divides (q) and hence Na ≤ qn. Since
the trivial zeros on Im s = 0 of η are evenly spaced for η and the trivial zeros on Re s = 0 of
non-primitive η are evenly spaced as well, the rapid decay of G±

u (s) guarantees that both sets of
trivial zeros contribute negligibly to the sum in (19) compared to our eventual bound of the sum
over the non-trivial zeros. We thus have

∑′

q≤Q

1

q

∑

χ mod q

∑

η mod (1)

∑

m∈Zd

‖m‖≤M

∑

L(ρ,χηλm)=0

|G±
u (ρ)|
h

≤
∑′

q≤Q

1

q

∑

µ mod (q)

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0

|G±
u (ρ)|
h(20)

where the inner sum is over non-trivial zeros ρ of L(s, µλm).
A primitive Hecke character µ1 mod a1 induces some number of Hecke characters with modulus

(q), q ≤ Q. Each such q must satisfy N(q) = qn | Na1, hence we can bound

∑

q≤Q
a1|(q)

1

q
≪ (logQ)(Na1)

− 1
n .

Using
∑∗ to denote a sum over only primitive characters, (20) is

≪ (logQ)
∑

Na≤Qn

∑∗

µ mod a

(Na)−
1
n

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0

|G±
u (ρ)|
h

≪ (logQ)2 max
1≤R≤Qn

R− 1
n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0

|G±
u (ρ)|
h

,

(21)

where the last step uses a standard dyadic decomposition technique that decomposes the interval
[1, Q] into sub-intervals of the form [2k, 2k+1), k = 0, 1, . . . , ⌈log2 Q⌉.

3.4. Zero-density estimates. We prove that for 1 ≤ R ≤ Qn we have

U(R) = R− 1
n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0

|G±
u (ρ)|
h

≪A (log x)−A.

This will conclude the proof of Theorem 1.2 by (19) and (21). We need the following results
concerning the zeros of Hecke L-functions.

Lemma 3.1 ([8]). For any ε > 0, there is a constant c1(ε) > 0 such that for any real finite-order

Hecke character µ mod f we have L(σ, µ) 6= 0 for σ ≥ 1− c1(ε)(N f)−ε.

Lemma 3.2 ([10, Theorem A]). There is a constant c2 > 0 such that there is at most one character

µλm among the primitive characters with conductor norm at most R whose L-function L(s, µλm)
has at a real zero in the region Re s ≥ 1− c2

logR , known as an exceptional zero. For this character,

one must have m = 0 and µ real. Furthermore, there can be at most one exceptional zero for this

character, and it must be simple.
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Lemma 3.3. There is a constant B > 0 such that for all σ ∈
[
1
2 , 1
)
, R > 1 and M > 2,

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

N(σ,M,µλm) ≪ (R2Mn)min( 3
2−σ

, 2
σ )(1−σ)(logRM)B

Proof. The zero-density estimate

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

N(σ,M,µλm) ≪ (R2Mn)
3

2−σ
(1−σ)(logRM)B

follows from work of Duke, who proved the corresponding result whenR = 1 is bounded [7, Theorem
2.1]. The only notable difference is that instead of applying the large sieve in [7, Theorem 1.1 (i)],
we apply the large sieve in [7, Theorem 1.1 (ii)]. The fourth-moment bound in [7, Section 2.1] and
the zero detection process in [7, Section 2.2] carry over completely analogously.

Duke’s proof extends Montgomery’s zero detection method for Dirichlet L-functions [18] to L-
functions of the form L(s, µλm). As detailed in [18], the method can be refined using results on the
frequency with which certain Dirichlet polynomials attain large values [17]. Montgomery’s work on
large values of Dirichlet polynomials was extended to averages of L-functions of the form L(s, µ)
by Hinz [9]. Coleman [4] outlined how Montgomery’s work extends to averages of L-functions of
the form L(s, µλm). This results in the claimed improvement in the exponent. �

Let β denote the exceptional zero for each µλm, if such a zero exists. Then U(R) can be split
into the three terms

U1(R) = R− 1
n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0
ρ=β

|G±
u (ρ)|
h

U2(R) = R− 1
n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0
|Im ρ|>M

ρ6=β

|G±
u (ρ)|
h

U3(R) = R− 1
n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0
|Im ρ|≤M

ρ6=β

|G±
u (ρ)|
h

.

We first bound U1(R). By Lemma 3.2, U1(R) contains at most one summand corresponding to
the exceptional zero. If β exists, then by Lemma 3.1 with ε = 1

2nA and (5) with ℓ = 0 we have

U1(R) ≤ R− 1
nxβ−1 ≤ R− 1

nx
c1(ε)
Rε ≪A (log x)−A,

where the last step follows by splitting into the two cases R > e(log x)
1
2 and R ≤ e(log x)

1
2 .
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Next, we bound U2(R). Applying partial summation, Lemma 3.3, and (5), we have

U2(R) ≪ℓ R
− 1

n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

u−ℓxℓ
∫ ∞

M
t−ℓ dN

(
1

2
, t, µλm

)
dt

≪ℓ R
− 1

n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

u−ℓxℓ
(
N

(
1

2
,M, µλm

)
M−ℓ +

∫ ∞

M
N

(
1

2
, t, µλm

)
ℓt−ℓ−1 dt

)

≪ℓ R
− 1

nu−ℓxℓ
(
R2Mn−ℓ(logQM)B +

∫ ∞

M
R2ℓtn−ℓ−1(logQt)B dt

)

≪ℓ R
2− 1

nMnu−ℓM−ℓxℓ(log x)B .

Since τ > τ ′, we conclude that for ℓ sufficiently large we have

U2(R) ≪ Q2n−1Mnx−(τ−τ ′)ℓ(log x)B ≪A (log x)−A.

Finally, we bound U3(R). By Theorem 2.5 noting that M = xτ , all non-trivial zeros ρ 6= β with
|Im ρ| ≤ M satisfy

Re ρ ≤ 1− c3

max
(
logR, (log x)

2
3 (log log x)

1
3

)

for some c3 > 0. Denoting

σ∗ = 1− c3

max
(
logR, (log x)

2
3 (log log x)

1
3

) ,

we conclude that

U3(R) ≪ R− 1
n

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

∑

L(ρ,µλm)=0
|Im ρ|≤M

ρ6=β

xRe ρ−1

≪ R− 1
n max

σ∈[ 12 ,σ∗]

∑

Na≤R

∑∗

µ mod a

∑

m∈Zd

‖m‖≤M

N(σ,M,µλm)xσ−1 log x

≪ R− 1
n max

σ∈[ 12 ,σ∗]
(R2Mn)min( 3

2−σ
, 2
σ )(1−σ)xσ−1(log x)B+1

≪ R− 1
n max

σ∈[ 12 ,σ∗]
(R2Mn)

5
2
(1−σ)xσ−1(log x)B+1.

Recalling that M = xτ and R ≤ Qn = xθn, we have

U3(R) ≪R− 1
n max

σ∈[ 12 ,σ∗]
(x2θnxτn)

5
2
(1−σ)xσ−1(log x)B+1

≪R− 1
n max

σ∈[ 12 ,σ∗]
x−(1−

5n
2
(2θ+τ))(1−σ)(log x)B+1

If R > e(log x)
1
2 then R−1/n ≪A (log x)−A−B−2, so we are done. If R ≤ e(log x)

1
2 , then

1− σ∗ ≫ (log x)−
2
3 (log log x)−

1
3 ,

so
x−(1−

5n
2
(2θ+τ))(1−σ) ≪A (log x)−A−B−2.

We conclude the uniform estimate U3(R) ≪A (log x)−A−1 and thus Theorem 1.2.
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[8] Fogels, E., Über die Ausnahmenullstelle der Heckeschen L-Funktionen. (German) Acta Arith. 8 (1962/63),
307–309.
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