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Abstract
Motivated by modern regression applications, in this paper, we study the convex-
ification of a class of convex optimization problems with indicator variables and
combinatorial constraints on the indicators. Unlike most of the previous work on con-
vexification of sparse regression problems, we simultaneously consider the nonlinear
non-separable objective, indicator variables, and combinatorial constraints. Specifi-
cally, we give the convex hull description of the epigraph of the composition of a one-
dimensional convex function and an affine function under arbitrary combinatorial con-
straints. As special cases of this result, we derive ideal convexifications for problems
with hierarchy, multi-collinearity, and sparsity constraints. Moreover, we also give
a short proof that for a separable objective function, the perspective reformulation is
ideal independent from the constraints of the problem. Our computational experiments
with sparse regression problems demonstrate the potential of the proposed approach
in improving the relaxation quality without significant computational overhead.
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1 Introduction

Given a set Q ⊆ {0, 1}p, a vector h ∈ R
p such that hi �= 0, for all i ∈

[p]:= {1, . . . , p}, and a convex function f : R → R, we study the set

ZQ =
{
(z, β, t) ∈ Q × R

p × R | f
(
h�β

)
≤ t, βi (1 − zi ) = 0,∀i ∈ [p]

}
.

In set ZQ above, z is a vector of indicator variables with zi = 1 if βi �= 0, and the set
Q encodes combinatorial constraints on the indicator variables. We assume without
loss of generality that f (0) = 0, since this assumption can always be satisfied after
subtracting the constant term f (0).

The motivation to study ZQ stems from sparse regression problem: Given a set of
observations (xi , yi )ni=1 where xi ∈ R

p are the features corresponding to observation
i and yi ∈ R is its associated response variable, inference with a sparse linear model
can be modeled as the optimization problem

min
z,β

n∑
i=1

f
(
yi , x

�
i β
)

+ λρ(β) (1a)

s.t. βi (1 − zi ) = 0, i ∈ [p] (1b)

β ∈ R
p, z ∈ Q ⊆ {0, 1}p, (1c)

where β is a vector of regression coefficients, f is a loss function, λ ≥ 0 is a regu-

larization parameter and ρ is regularization function. Often, f (β) = (yi − x�
i β
)2
, in

which case (1) is referred to as sparse least squares regression, and typical choices of
ρ include �0, �1, or �2 regularizations.

If Q is defined via a q-sparsity constraint, Q = {z ∈ {0, 1}p | ∑p
i=1 zi ≤ q

}
, then

problem (1) reduces to the best subset selection problem [48], a fundamental problem
in statistics. Nonetheless, constraints other than the cardinality constraint arise in
several statistical problems. Bertsimas and King [10] suggest imposing constraints of
the form

∑
i∈S zi ≤ 1 for some S ⊆ [p] to prevent multicollinearity; Carrizosa et al.

[18] use similar constraints to capture nested categorical variables. Constraints of the
form zi ≤ z j can be used to impose strong hierarchy relationships, and constraints
of the form zi ≤ ∑ j∈H⊆[p] z j can be used for weak hierarchy relationships [14]. In
group variable selection, indicator variables of regression coefficients of variables in
the same group are linked, see [43]. Manzour et al. [47] and Küçükyavuz et al. [46]
impose that the indicator variables, which correspond to edges in an underlying graph,
donot define cycles—anecessary constraint for inference problemswith causal graphs.
Cozad et al. [21] suggest imposing a variety of constraints in both the continuous and
discrete variables to enforce priors from human experts.

Problem (1) isNP-hard even for a q-sparsity constraint [50], and is often approx-
imated with a convex surrogate such as lasso [39,55]. Solutions with better statistical
properties than lasso can be obtained from non-convex continuous approximations
[29,63]. Alternatively, it is possible to solve (1) to optimality via branch-and-bound
methods [11,20]. In all cases, most of the approaches for (1) have focused on the q-
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Constrained convex optimization with indicator variables

sparsity constraint (or its Lagrangian relaxation). For example, a standard technique to
improve the relaxations of (1) revolves around the use of the perspective reformulation
[1,19,26,27,30–32,34,36,42,54,61,64], an ideal formulation of a separable quadratic
function with indicators (but no additional constraints). Recent work on obtaining
ideal formulations for non-separable quadratic functions [4–6,27,35,44] also ignores
additional constraints in Q.

There is a recent research thrust on studying constrained versions of (1). Dong et al.
[25] study problem (1) froma continuous optimization perspective (after projecting out
the discrete variables), see also [24]. Hazimeh and Mazumder [40] give specialized
algorithms for the natural convex relaxation of (1) where Q is defined via strong
hierarchy constraints. Several results exist concerning the convexification of nonlinear
optimization problemswith constraints [3,8,15–17,45,49,52,56–59], but suchmethods
in general do not deliver ideal, compact or closed-form formulations for the specific
case of problem (1) with structured feasible regions. In a recent work closely related to
the setting considered here, Xie and Deng [62] prove that the perspective formulation
is ideal if the objective is quadratic and separable, and Q is defined by a q-sparsity
constraint. In a similar vein, Bacci et al. [7] show that the perspective reformulations
for convex differentiable functions are tight for 1-sum compositions, and they use
this result to show that they are ideal under unit commitment constraints. However,
similar results for more general (non-separable) objective functions or constraints are
currently not known.

Our contributions. In this paper, we provide a first study (from a convexification
perspective) of the interplay between non-separable convex objectives and combina-
torial constraints on the indicator variables. Specifically, we derive the convex hull
description of ZQ : the result is stated in terms of the convexification of the combina-
torial set Q, but places no assumptions on its form. Using this result, we develop ideal
formulations for settings in which the logical constraints on the indicator variables
encode sparsity constraints or the so-called strong and weak hierarchy relations. In
addition, we generalize the result in [62] and [7] to arbitrary constraints on z for sep-
arable convex functions f , in our setting. We show the computational benefit of the
proposed approach on constrained regression problems with hierarchical relations.

An earlier version of this work appeared in [60], where we only considered sep-
arable and rank-one convex quadratic functions, and sparsity and strong hierarchy
constraints. Furthermore, in [60], our proofs of the convexification results use the
structure of each of the sets considered, whereas in the present paper, we give a
unifying technique that generalizes to any combinatorial set for functions that are
not necessarily quadratic. Finally, here, we expand on our preliminary computational
experiments in [60] with additional datasets, conduct a further analysis on the choices
of the regularization parameters, and perform computationswith sparse logistic regres-
sion.

Notation. Given a one-dimensional convex function f : R → R, we adopt the
convention that 0 f (β/0) = limz→0+ z f (β/z). Using this convention, the function
z f (β/z) for z ≥ 0 is the closure of the perspective function of f , and is convex. Let 0
and 1 be vectors of conformable dimensionwith all zeros and ones, respectively, and let
ei denote the i th unit vector of appropriate dimension with 1 in the i th component and
zeros elsewhere. For a set Q, we denote by conv(Q) its convex hull and by cl conv(Q)
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the closure of its convex hull. Given two vectors u, v of same dimensions, we let u ◦ v

denote the Hadamard product of u and v, i.e., (u ◦ v)i = uivi .

2 Convexification of ZQ

Observe that in set ZQ , the coefficients of β can be scaled and negated if necessary to
ensure hi = 1 for all i ∈ [p]. Therefore, in the derivation of ideal formulations in this
section, we assume, without loss of generality, that

ZQ =
{
(z, β, t) ∈ Q × R

p × R | f
(
1�β

)
≤ t, βi (1 − zi ) = 0,∀i ∈ [p]

}
.

We also assume, without loss of generality, that for every i ∈ [p] there exists z ∈ Q
such that zi = 1, as otherwise zi = βi = 0 can be fixed and the corresponding
variables can be removed.

For a given set Q, let Q0 = Q\{0} or, equivalently, Q0 = {z ∈ Q | ∑p
i=1 zi ≥ 1}.

As we show in the subsequent discussion, the convexification of the set ZQ relies on
the characterization of conv(Q0). To this end,we first establish such a characterization.

Proposition 1 The convex hull of Q0 admits a description as

conv(Q0) = conv(Q)
⋂

{z | π�z ≥ 1, ∀π ∈ F}, (2)

where F is a finite subset of Rp.

Proof Let π�z ≥ π0 be an arbitrary valid inequality for conv(Q0). If π0 > 0, then
1
π0

π�z ≥ 1 is an equivalent inequality satisfying the conditions in (2). Otherwise, if
π0 ≤ 0, then the inequality does not cut off 0 and is thus valid for Q and conv(Q).
Therefore, it follows that conv(Q) ⊆ {z | π�z ≥ π0}, and inequality π�z ≥ π0
is either already a facet of conv(Q), or is implied by the facets conv(Q). Finally,
finiteness of F follows since conv(Q0) is a polyhedron. ��
Note that if 0 /∈ Q, then F = ∅. In practice, a set F of minimal cardinality is
preferred. Since conv(Q) and conv(Q0) may have an exponential number of facets,
set F may be exponentially large as well. In such cases, inequalities from F can be
generated if violated in an iterative fashion, as is standard in a cutting plane algorithm.
Note that even if conv(Q) is simple, conv(Q0) may contain an exponential number of
facets. Nonetheless, in such cases, conv(Q0) admits a compact extended formulation
[2], which in turn implies that separation of the inequalities in F can be done in
polynomial time.

Intuitively, one may think of F as the set of “new" facets of conv(Q0) that are not
facets of conv(Q). If conv(Q) and conv(Q0) have the same dimension, this intuition is
correct. However, if the dimension of conv(Q0) is less than the dimension of conv(Q),
it may be the case that conv(Q0) ⊆ {z : π�z = 1} for some π ∈ F , and thus
this inequality is not a facet. For example, if Q = {0, 1}, then conv(Q) = [0, 1],
Q0 = conv(Q0) = {1} and F = {1}, but the inequality z ≥ 1 is not a facet of the
0-dimensional polyhedron conv(Q0).
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The description of cl conv(ZQ) depends on the structure of Q, and is critically
dependent onwhether the variables can be partitioned intomultiplemutually exclusive
components. We formalize this characteristic next.

Definition 1 For i, j ∈ [p], i �= j , define i ∼ j if there exists some z ∈ Q such that
zi = z j = 1. Define the graph GQ = (V , E) where V = [p] and {i, j} ∈ E if and
only if i ∼ j .

2.1 The connected case

In this section, we provide ideal formulations in the original space of variables when
graph GQ in Definition 1 is connected. This assumption is satisfied in most of the
practical applications we consider, see §3. Later, in §2.2, we build upon the results of
this section to derive ideal formulations when GQ is not necessarily connected.

Before we propose a class of valid inequalities for ZQ , we give a lemma.

Lemma 1 For a one-dimensional proper convex function f : R → R with effective
domain dom( f ) = R, f (0) = 0 and its perspective g(x, t) = t f ( xt ) : R2 → R, if
0 < t1 ≤ t2, then g(x, t1) ≥ g(x, t2) for all x ∈ R.

Proof It suffices to show that the functionφ(x) = g(x, t1)−g(x, t2) is non-decreasing
in [0,+∞] and non-increasing in [−∞, 0]. Since dom( f ) = R, f is continuous over
R so is φ(x). Also, by convexity, we know that the right-derivative of f (x) exists
and is non-decreasing. Thus, φ

′
+(x) = f

′
+( x

t1
) − f

′
+( x

t2
) ≥ 0 for all x ∈ [0,+∞].

A continuous function with non-negative right-derivative is non-decreasing [38]. For
x ∈ [−∞, 0], the left-derivative of φ is φ

′
−(x) = f

′
−( x

t1
) − f

′
−( x

t2
) ≤ 0, and similarly,

φ(x) is non-increasing in [−∞, 0]. ��
Proposition 2 The inequalities

t ≥ (π�z) f
(
1�β

π�z

)
, ∀π ∈ F (3)

are valid for ZQ for any finite set F ⊆ R
p satisfying (2).

Proof First, observe that if 0 /∈ Q, then F = ∅ and the statement is superfluous.
Suppose, F �= ∅. We consider two cases. If z �= 0, then we have π�z ≥ 1 for π ∈ F .

Then, from Lemma 1, (π�z) f
(
1�β

π�z

)
≤ f

(
1�β

) ≤ t . Hence the inequality is valid.

Finally, if z = 0, then β = 0 in ZQ . Therefore,

t ≥ f
(
1�β

)
= f (0) = 0 = lim

ζ→0+ ζ f (0/ζ ) = (π�z) f
(
1�β

π�z

)
,

and the inequality is valid. ��
We now describe the closure of the convex hull of ZQ under the assumption that

graph GQ described in Definition 1 is connected.
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Theorem 1 If the graph GQ given in Definition 1 is connected, then

cl conv(ZQ) =
{
(z, β, t) ∈ [0, 1]p × R

p × R | z ∈ conv(Q), t ≥ f (1�β),

t ≥ (π�z) f
(
1�β

π�z

)
, ∀π ∈ F

}
(4)

for any finite set F ⊆ R
p satisfying (2).

Note that if 0 /∈ Q, i.e., F = ∅, then Theorem 1 states that the description of
cl conv(ZQ) is obtained simply by dropping the complementarity constraints βi (1 −
zi ) = 0,∀i ∈ [p] and independently taking the convex hull of Q. Otherwise, since
the description of cl conv(ZQ) requires a new inequality for every element of F , a
minimal description of F is certainly preferred from a computational standpoint. If
conv(Q0) is full-dimensional, the strongest nonlinear inequalities (3) are obtained
from facets of conv(Q0). Moreover, in many situations, it may not be possible to have
a full description of conv(Q) or conv(Q0); nonetheless, in those cases, it may be
possible to obtain a facet π̄�x ≥ 1 of conv(Q0), and Theorem 1 ascertains that the
valid inequality

t ≥ (π̄�z) f
(
1�β

π̄�z

)
(5)

is not dominated by any other inequality of a similar form, and that inequalities of this
form are sufficient to describe cl conv(ZQ). In Appendix 1 we focus on the special
case where conv(Q) admits a compact representation but conv(Q0) has exponentially
many inequalities: We show how to use a compact extended formulation of conv(Q0)

to derive the description of cl conv(ZQ) in a higher dimensional space.
Before proving Theorem 1, we give a lemma used in the proof.

Lemma 2 z ∈ conv(Q) if and only if there exists some α ∈ [0, 1] and z0 ∈ conv(Q0)

such that z = αz0.

Proof Note that if 0 /∈ Q, then the result holds trivially by letting α = 1. Therefore,
we will assume that 0 ∈ Q.

(⇒) Let z ∈ conv(Q). So we can write z as a convex combination of the extreme
points of Q. Specifically, we distinguish between the feasible points zi ∈ Q0 for i ∈ I
and the origin. In particular, there exists γ ≥ 0 with

∑
i∈I∪{0} γi = 1, such that

z = γ00 +
∑
i∈I

γi z
i =

(∑
i∈I

γi

)∑
i∈I

γi∑
i∈I γi

zi .

Letting α =∑i∈I γi , the result follows.
(⇐) Let z = αz0 for some α ∈ [0, 1] and z0 ∈ conv(Q0); by definition, we can

expand z0 as z0 = ∑i∈I γi zi , a convex combination of zi ∈ Q0. By adding the term
(1 − α)0, we have z = (1 − α)0 +∑i∈I αγi zi . ��
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We are now ready to prove Theorem 1.

Proof of Theorem 1 Define Y as the set described by (4). Let a, b ∈ R
p, c ∈ R, and

consider the two optimization problems

min
z,β,t

a�z + b�β + ct subject to (z, β, t) ∈ ZQ, and (6)

min
z,β,t

a�z + b�β + ct subject to (z, β, t) ∈ Y . (7)

We show that there exists a solution (z, β, t) optimal for both problems, and that the
corresponding objective values of both problems coincide.
• Simple cases :

If c < 0, then both (6) and (7) are unbounded. To see this, let z = β = 0, and
t = κ , where κ ≥ 0. This solution is feasible for both (6) and (7). Letting κ → ∞,
the objective goes to minus infinity.

If c = 0 and b �= 0, then let z j = 1 for some j ∈ [p] such that b j �= 0, and let β j go
to plus or minus infinity depending on whether b j is negative or positive, respectively,
while keeping βi = 0 for i �= j . Again, the objective goes to minus infinity.

If c = 0 and b = 0, then these two problems reduce to minimizing a�z over
conv(Q) and thus (6) and (7) are equivalent.

If c > 0, then we assume, without loss of generality, that c = 1 by scaling. If there
exists i0 �= j0 such that bi0 �= b j0 , then there exist some i and j in a path from i0
and j0 in GQ such that i ∼ j and bi �= b j , and without loss of generality, we assume
bi < b j . Furthermore, there exists some z ∈ Q such that zi = z j = 1. Then we take
such a vector z, we let β be a vector of zeros except for βi = −β j = κ for some κ > 0,
and we let t = f (1�β) = 0. Such a triplet (z, β, t) is in ZQ and Y , and by letting
κ → ∞, the objective goes to minus infinity. Therefore, we assume in the sequel that
bi = b̄ for all i ∈ [p].
• Case c = 1 and b = b̄1 :

We now show that for b = b̄1 problem (7) either has a finite optimal solution that
is in set ZQ or is unbounded. Note that (7) is equivalent to:

min
z,β

a�z + b̄
(
1�β

)
+ max

{
f
(
1�β

)
,max

π∈F

{(
π�z

)
f

(
1�β

π�z

)}}

s.t. z ∈ conv(Q),

and, from Lemma 1, it further simplifies to

min
z,β

a�z + b̄
(
1�β

)
+ min

π∈F
{π�z, 1} f

(
1�β

minπ∈F {π�z, 1}

)
(8a)

s.t. z ∈ conv(Q). (8b)

Let f ∗ : R → R be the convex conjugate of function f , i.e., f ∗(γ ) = supx∈R γ x−
f (x), and let � = {γ ∈ R : f ∗(γ ) < ∞} be the domain of f ∗. Note that if −b̄ /∈ �,
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it follows that both (6) and (7) are unbounded. Thus, we assume in the sequel that
−b̄ ∈ �.

Observe that, given w > 0, the convex conjugate of the function w f (x/w) is
w f ∗(γ ). Hence, from Fenchel inequality, we find that, for any β, z such that π�z > 0,
and γ ∈ �,

min
π∈F

{π�z, 1} f
(

1�β

minπ∈F {π�z, 1}

)
≥ γ (1�β) − min

π∈F
{π�z, 1} f ∗(γ ). (9)

Furthermore, for π�z = 0 for some π ∈ F , if the left hand side of (9) is infinity, then
the inequality holds trivially; otherwise, if the left hand side of (9) is 0 f ((1�β)/0) =
limz→0+ z f ((1�β)/z) = d with |d| < ∞, then by continuity of the functions at both
sides of the inequality, (9) is satisfied.

Using (9) with γ = −b̄ to lower bound the last term in (8a), we obtain the relaxation

min
z,β,t

a�z + b̄
(
1�β

)
+
(

−b̄(1�β) − min
π∈F

{π�z, 1} f ∗(−b̄)

)

s.t. z ∈ conv(Q),

or, equivalently,

min
z

a�z + max
π∈F

{1 − π�z, 0} f ∗(−b̄) − f ∗(−b̄) (10a)

s.t. z ∈ conv(Q). (10b)

We will first prove that relaxation (10) admits an optimal solution integral in z, and
then we will show that the lower bound from the relaxation is in fact tight.

Note that if 0 /∈ Q, then F = ∅ and there exists an optimal integer solution z∗ ∈ Q
to the relaxation (10) with objective value a�z∗ − f ∗(−b̄).

Now consider the case that 0 ∈ Q. Let z∗ be an optimal solution of (10), and
consider two subcases.

• Subcase (i) : First, suppose that 1 − π�z∗ ≤ 0 for all π ∈ F . In this case, (10) is
equivalent to

min
z

a�z − f ∗(−b̄) (11a)

s.t. π�z ≥ 1 ∀π ∈ F (11b)

z ∈ conv(Q). (11c)

From Proposition 1, the feasible region of (11) is precisely conv(Q0), thus problem
(11) admits an optimal integer solution z∗ ∈ Q0 with objective value a�z∗ − f ∗(−b̄).
• Subcase (i i) : Let π̄ ∈ argminπ∈Fπ�z∗, and suppose that 1 − π̄�z∗ > 0. In this
case, problem (10) is equivalent to
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� = min
z

a�z − (π̄�z) f ∗(−b̄) (12a)

s.t. π�z ≥ π̄�z ∀π ∈ F (12b)

z ∈ conv(Q). (12c)

Note that f ∗(−b̄) = supx∈R −b̄x − f (x) ≥ 0, because x = 0 is a possible solution
to the supremum problem and f (0) = 0. Since z = 0 is feasible for (12), we find
that the objective value � ≤ 0. If � = 0, then z∗ = 0 is optimal and the proof is
complete. Suppose now that � < 0. Observe from Lemma 2 that z∗ = αz0 for some
z0 ∈ conv(Q0) and α ∈ (0, 1)—the case α = 1 is excluded, since 1 − π̄�z0 ≤ 0
for any z0 ∈ conv(Q0). Consequently, the point z̄ = z0 = z∗

α
, with objective value

�̄ = �/α < � is feasible for (12) with better objective value than z∗, resulting in a
contradiction.

From subcases (i) and (ii), we see that either z∗ = 0 is feasible and optimal for
relaxation (10) (with objective value 0), or that there exists an optimal integer solution
z∗ with objective value a�z∗ − f ∗(−b̄), regardless of whether 0 ∈ Q or not. We now
prove that the lower bound provided by the relaxation (10) is tight, by finding β∗ ∈ R

p

such that (z∗, β∗, f (1�β∗)) is feasible for (6) with the same objective value as (10).
If z∗ = 0, then clearly (0, 0, 0) is optimal for (6) with objective value 0, and we now
focus on the case z∗ �= 0. Let x̄ ∈ arg supx∈R − b̄x − f (x) and suppose that x̄ exists,
i.e., sup can be changed to max, and observe that f ∗(−b̄) = −b̄x̄ − f (x̄), or in other
words

a�z − f ∗(−b̄) = a�z + b̄x̄ + f (x̄).

Since z∗ �= 0, there exists i such that z∗i = 1. Setting β∗
i = x̄ , β∗

j = 0 for j �= i ,
we find that the point (z∗, β∗, f (β∗)) is feasible for both (6) and (7), and since its
objective value is the same as the lower bound obtained from (10), it is optimal for both
problems. Now suppose that x̄ above does not exist, but (x̄1, x̄2, . . .) is a sequence of
points such that −b̄x̄ i − f (x̄ i ) → f ∗(−b̄). In this case, using identical arguments
as above, we find a sequence of feasible points with objective value converging to
a�z∗ − f ∗(−b̄): thus, the latter corresponds to the infimum of (7) and the relaxation
is tight. ��

2.2 The general case

In this section, we give ideal formulations for ZQ when graph GQ in Definition 1 has
several connected components. Given the graph GQ = (V , E), let V1, V2, . . . , Vk be
the vertex partition of connected components of GQ . Let βV�

represent the subvector
of β corresponding to indices V�. Then

∀(z, β, t) ∈ ZQ, f (1�β) =
k∑

�=1

f (1�βV�
),
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because we cannot have two indices i, j from different connected components such
that zi = z j = 1. In other words, if βi �= 0 for some i ∈ V�, � ∈ [k], then β j = 0 for
all j ∈ [p]\V�.

For any � = 1, . . . , k, define the projection of the binary set Q onto V� as

Q� = {z ∈ {0, 1}p | z ∈ Q, zi = 0, ∀i /∈ V�},

let Q0
� = Q�\{0} and note that, using arguments identical to those of Proposition 1,

each conv(Q0
�) admits a description as

conv(Q0
�) = conv(Q�)

⋂
{z | π�z ≥ 1, ∀π ∈ F�}

for some finite sets F� ⊆ R
p. Note that k > 1 and 0 /∈ Q� for some � ∈ [k] implies

that for all z ∈ Q, zi = 0 whenever i /∈ V�. Therefore, we assume that 0 ∈ Q� and
F� �= ∅ for all � ∈ [k]. Furthermore, note that conv(Q�) can be described as a system
of linear inequalities, i.e., A�z� ≤ δ� for all � ∈ [k].

We now give the main result of this section, namely a tight extended formulation
for cl conv(ZQ) when GQ has several connected components.

Theorem 2

cl conv(ZQ) = proj(z,β,t)

{
(z, β, ẑ, β̂, α, t̂, t) ∈ [0, 1]p × R

p × [0, 1]pk × R
pk × R

k+ × R
k × R |

k∑
�=1

α� = 1, t =
k∑

�=1

t̂�, z =
k∑

�=1

ẑ�, β =
k∑

�=1

β̂�, A� ẑ� ≤ δ�α�, ∀� ∈ [k],

t̂� ≥ α� f

(
1�β̂�

α�

)
, t̂� ≥ (π� ẑ�) f

(
1�β̂�

π� ẑ�

)
, ∀π ∈ F�, ∀� ∈ [k]

}
.

Proof Observe that ZQ =⋃k
�=1 ZQ�

and by Theorem 1, (t̂�, β̂�, ẑ�) ∈ cl conv(ZQ�
)

if and only if

f (1�β̂�) − t̂� ≤ 0,

(π� ẑ�) f
(
1�β̂�

π� ẑ�

)
− t̂� ≤ 0,∀π ∈ F�

ẑ� ∈ conv(Q�).

Now we see that cl conv(ZQ�
) has a representation in the form

cl conv(ZQ�
) = {(t̂�, β̂�, ẑ�) | G�(t̂�, β̂�, ẑ�) ≤ 0},

where each component function of G� is closed and convex. Then using Theorem 1 in
[19], we obtain a description of cl conv(ZQ) in a higher-dimensional space by taking
the perspective of G�:
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z =
k∑

�=1

ẑ� (13a)

β =
k∑

�=1

β̂� (13b)

t =
k∑

�=1

t̂� (13c)

1 =
k∑

�=1

α� (13d)

t̂� ≥ α� f

(
1�β̂�

α�

)
∀� ∈ [k] (13e)

t̂� ≥ (π� ẑ�) f
(
1�β̂�

π� ẑ�

)
∀� ∈ [k], π ∈ F� (13f)

A� ẑ� ≤ δ�α� ∀� ∈ [k]. (13g)

Hence, the result follows. ��

3 Special cases

In this section, we use Theorems 1 and 2 to derive ideal formulations for ZQ under
various constraints defining Q. Direct proofs of Propositions 4, 5 and 6 were given
in the preliminary version of this paper [60] for the special case of convex quadratic
functions.

3.1 Unconstrained case

Consider the unconstrained case where Qu = {0, 1}p and

ZQu =
{
(z, β, t) ∈ {0, 1}p × R

p+1 | f (h�β) ≤ t, βi (1 − zi ) = 0, ∀i ∈ [p]
}

.

Proposition 3

cl conv(ZQu) =
{
(z, β, t) ∈ [0, 1]p × R

p+1 | f (h�β) ≤ t, (1�z) f
(
h�β

1�z

)
≤ t

}
.

Proof In this case set Q0
u = {0, 1}p\{0} and conv(Q0

u) = {z ∈ [0, 1]p | 1�z ≥ 1}.
Thus F = {1} in Theorem 1, corresponding to the valid inequality 1�z ≥ 1 defining
conv(Q0

u), and the result follows. ��
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Note that Proposition 3 generalizes existing results in the literature: if p = 1
and function f is one-dimensional, then Proposition 3 reduces to the perspective
reformulation [19]; if p ≥ 2 and f is quadratic, then Proposition 3 reduces to the
rank-one strengthening derived in [5].

3.2 Cardinality constraint

Consider sets defined by the cardinality constraint,

Qc =
{
z ∈ {0, 1}p | 1�z ≤ q

}
.

Clearly, conv(Qc) = {z ∈ [0, 1]p | 1�z ≤ q
}
for any positive integerq.We nowprove

that, under mild conditions, ideal formulations are achieved by strengthening only the
nonlinear objective.

Proposition 4 If q ≥ 2 and integer, then

cl conv(ZQc) =
{
(z, β, t) ∈ [0, 1]p × R

p+1 | 1�z ≤ q, f (h�β) ≤ t,

(
1�z

)
f

(
h�β

1�z

)
≤ t
}
.

Proof Note that if q ≥ 2, then GQc is a complete graph, hence i ∼ j for all i, j ∈
[p], i �= j . Furthermore, conv(Q0

c) = {z ∈ [0, 1]p : 1 ≤ 1�z ≤ q}. Hence F = {1}.
Then the result follows from Theorem 1. ��

The assumption that q ≥ 2 in Proposition 4 is necessary. As we show next, if q = 1,
then it is possible to strengthen the formulation with a valid inequality that uses the
information from the cardinality constraint, which was not possible for q > 1. Note
that the case q = 1 is also of practical interest, as set Qc with q = 1 arises for example
when preventing multi-collinearity [10] or when handling nested categorical variables
[18].

Proposition 5 If q = 1, then

cl conv(ZQc) =
⎧⎨
⎩(z, β, t) ∈ [0, 1]p × R

p+1 | 1�z ≤ q,
∑
i∈[p]

zi f

(
hiβi

zi

)
≤ t

⎫⎬
⎭ .

Proof First, observe that if q = 1, then GQc is fully disconnected and it decomposes
into p nodes, one for each variable zi , i ∈ [p]: thus, in Theorem 2, we find that ẑ�i �= 0
and β̂�

i �= 0 if and only if � = i . In addition, because each component � ∈ [p] has
a single variable ẑii for � = i , A� ẑ� ≤ δ� is given by ẑii ≤ 1. Moreover, we find that
Fi = {1} for all i ∈ [p] in Theorem 2. Thus, from Theorem 2, we find that
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cl conv(ZQc) = proj(z,β,t)

{
(z, β, ẑ, β̂, α, t̂, t) |

n∑
i=1

αi = 1, t =
n∑

i=1

t̂ i ,

zi = ẑii , βi = β̂ i
i , ẑii ≤ αi , ∀i ∈ [p],

t̂ i ≥ αi f

(
ĥiβ i

i

αi

)
, t̂ i ≥ ẑii f

(
hi β̂ i

i

ẑii

)
, ∀i ∈ [p]

}
.

Constraints ẑii ≤ αi imply that ẑii f

(
β̂i
i

ẑii

)
≥ αi f

(
β̂i
i

αi

)
. Finally, variables ẑii and

β̂ i
i can be substituted with zi and βi , variables αi can be projected out (resulting in the

inequality 1�z ≤ 1), and the result follows. ��

3.3 Strong hierarchy constraints

Wenow consider the hierarchy constraints. Hierarchy constraints arise from regression
problems under the model (1), where the random variables include individual features
as well as variables representing the interaction (usually pairwise) between a subset of
these features given by a collectionP of subsets of [p]. More formally, let the random
variable θ(S) represent the (multiplicative) interaction of the features i ∈ S for some
subset S ⊆ [p]. Under this setting, the strong hierarchy constraints

θ(S) �= 0 �⇒ βi �= 0, ∀i ∈ S (14)

have been shown to improve statistical performance [14,40] by ensuring that interac-
tion terms are considered only if all corresponding features are present in the regression
model. Strong hierarchy constraints can be enforced via the constraints z(S) ≤ zi for
all i ∈ S, where z(S) ∈ {0, 1} is an indicator variable such that θ(S)(1 − z(S)) = 0.
Thus, in order to devise strong convex relaxations of problems with hierarchy con-
straints, we study the set

Qsh = {z ∈ {0, 1}p | z p ≤ zi , ∀i ∈ [p − 1]} .

Note that in Qsh we identify S with [p − 1], z(S) with z p and θ(S) with βp; since p
is arbitrary, this identification is without loss of generality.

To establish the convex hull of ZQsh , we give a lemma that characterizes conv(Q0
sh).

First, observe that

∑
i∈[p−1]

zi − (p − 2)z p ≥ 1 (15)

is a valid inequality for Q0
sh. To see this, note that for z �= 0, if z p = 0, then we must

have
∑

i∈[p−1] zi ≥ 1, and if z p = 1, then we must have
∑

i∈[p−1] zi = p − 1, so the
validity follows.
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Lemma 3

Conv(Q0
sh) =

⎧⎨
⎩z ∈ [0, 1]p |

∑
i∈[p−1]

zi − (p − 2)z p ≥ 1, z p ≤ zi , ∀i ∈ [p − 1]
⎫⎬
⎭ .

Proof Let

Qg =
⎧
⎨
⎩z ∈ [0, 1]p |

∑
i∈[p−1]

zi − (p − 2)z p ≥ 1, z p ≤ zi , ∀i ∈ [p − 1]
⎫
⎬
⎭ .

We will first show that the extreme points of Qg are integral. Then we will prove that
conv(Qsh\0) = Qg.

Suppose z∗ is an extreme point of Qg . Observe that if z∗p is equal to 1, then z∗i = 1
for all i ∈ [p− 1]. If z∗p is equal to 0, then the constraint matrix defining Qg is totally
unimodular, thus all extreme points of Qg with z∗p = 0 are integral. If constraint (15)
is not tight at an extreme point, then because the remaining constraint matrix defining
Qg is totally unimodular, the corresponding extreme point of Qg is integral. Therefore,
it suffices to consider extreme points where (15) holds at equality and 0 < z∗p < 1.

Now suppose
∑

i∈[p−1] z∗i − (p − 2)z∗p = 1 and 1 > z∗p > 0. We first show that
z∗i = 1 for at most one coordinate i ∈ [p − 1]. If z∗i = z∗j = 1 for i �= j , then

∑
�∈[p−1]

z∗� − (p − 2)z∗p = z∗i +
∑

�∈[p−1],� �=i

(z∗� − z∗p) ≥ z∗i + (z∗j − z∗p) > z∗i = 1,

(16)

where the first inequality follows from dropping terms z∗� − z∗p ≥ 0 with � �= j , and
the second inequality follows from the assumption z∗j = 1 and z∗p < 1. Since (16)
contradicts

∑
i∈[p−1] z∗i − (p − 2)z∗p = 1, it follows that z∗i = 1 for at most one

coordinate i ∈ [p − 1].
Next, observe that if z∗i = z∗p for all i ∈ [p − 1], then ∑i∈[p−1] z∗i − (p −

2)z∗p = z∗p < 1. Therefore, the largest element in z∗i , i ∈ [p − 1] has to be strictly
greater than z∗p. Finally, we now show that we can perturb z∗p and the p − 2 smallest
elements in z∗i , i ∈ [p − 1] by a small quantity ε and remain in Qg . The equality∑

i∈[p−1] zi − (p−2)z p = 1 clearly holds after the perturbation. And, adding a small
quantity ε to z∗p and the p−2 smallest elements in z∗i , i ∈ [p−1] does not violate the
hierarchy constraint since the largest element in z∗i , i ∈ [p− 1] is strictly greater than
z∗p. Finally, since z∗i ≥ z∗p > 0,∀i ∈ [p − 1], subtracting a small quantity ε does not
violate the non-negativity constraint. Thus, we can write z∗ as a convex combination
of two points in Qg , which is a contradiction.

To see that Qg = conv(Q0
sh), first, observe that 0 /∈ Qg . Also, (15) is a valid

inequality for Q0
sh. Furthermore, we just showed that the extreme points of Qg are

integral, hence Qg = conv(Q0
sh). ��

Now we are ready to give an ideal formulation for ZQsh .
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Proposition 6 The closure of the convex hull of ZQsh is given by

cl conv(ZQsh) =
{
(z, β, t) ∈ [0, 1]p × R

p+1 | f (h�β) ≤ t, z p ≤ zi ,∀i ∈ [p − 1],
⎛
⎝ ∑

i∈[p−1]
zi − (p − 2)z p

⎞
⎠ f

(
h�β∑

i∈[p−1] zi − (p − 2)z p

)
≤ t
}
.

Proof First, observe that the constraint matrix defining Qsh is totally unimodular,
so conv(Qsh) = {

z ∈ [0, 1]p | z p ≤ zi , ∀i ∈ [p − 1]} . Note that GQsh is a com-
plete graph, hence i ∼ j for all i, j ∈ [p], i �= j . Hence, from Lemma 3,
F = {(1, . . . , 1,−(p − 2))}. Then the result follows from Theorem 1. ��

3.4 Weak hierarchy

Consider the strong hierarchy relation (14), which requires all variables in the set S
to have non-zero coefficients to capture a multiplicative effect, θ(S) on the response
variable y. The weak hierarchy relation [14] is a relaxation of the strong hierarchy
relation to address the interaction between random variables in the same subset S by
requiring

θ(S) �= 0 �⇒ βi �= 0, for some i ∈ S.

Using similar arguments as before, we formulate the weak hierarchy relation as z p ≤∑
i∈[p−1] zi , in other words, z1, z2, . . . , z p−1 = 0 �⇒ z p = 0. The corresponding

constrained indicator variable set is thus defined by

Qwh =
⎧⎨
⎩z ∈ {0, 1}p | z p ≤

∑
i∈[p−1]

zi

⎫⎬
⎭ .

Note that 1 ∈ Qwh, thus the graph GQwh is connected and Theorem 1 can be used to
derive the convex hull.

Proposition 7

cl conv(ZQwh) =
{
(z, β, t) ∈ [0, 1]p × R

p+1 | f (h�β) ≤ t, z p ≤
∑

i∈[p−1]
zi ,

⎛
⎝ ∑

i∈[p−1]
zi

⎞
⎠ f

(
h�β∑

i∈[p−1] zi

)
≤ t
}
.

Proof First, observe that the constraint matrix defining Qwh is totally unimodular,

hence conv(Qwh) =
{
z ∈ [0, 1]p | z p ≤∑i∈[p−1] zi

}
. Clearly,

∑
i∈[p−1] zi ≥ 1 is

valid for Q0
wh since z1 = · · · = z p−1 = 0 �⇒ z p = 0. It suffices to show that
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conv(Q0
wh) =

⎧⎨
⎩z ∈ [0, 1]p|

∑
i∈[p−1]

zi ≥ 1

⎫⎬
⎭ . (17)

All extreme points of the polyhedron on the right-hand side of (17) are integral, because
the associated constraint matrix is an interval matrix with integral right-hand side. The
result follows from Theorem 1. ��

4 A note on separable functions

In this section, we demonstrate that the proof technique used in §2 can be extended to
separable functions with constraints, resulting in relatively simple proofs generalizing
existing results in the literature.

Given a partition of [p] =⋃�
j=1 Vj and convex functions f j : RVj → R such that

f j (0) = 0, consider the epigraph of a separable function of the form:

W =
{
z ∈ Q ⊆ {0, 1}�, β ∈ R

p, t ∈ R |
�∑

j=1

f j (βVj ) ≤ t,

βi (1 − z j ) = 0, ∀ j ∈ [�], i ∈ Vj

}
.

As Theorem 3 below shows, ideal formulations of W can be obtained by applying
the perspective reformulation on the separable nonlinear terms and, independently,
strengthening the continuous relaxation of Q. Let

Ys =
⎧
⎨
⎩(z, β, t) ∈ R

�+p+1 |
�∑

j=1

z j f j

(
βVj

z j

)
≤ t, z ∈ conv(Q)

⎫
⎬
⎭ .

Theorem 3 Ys is the closure of the convex hull of W: cl conv(W ) = Ys .

Proof Validity of the corresponding inequality in Ys follows directly from the validity
of the perspective reformulation. For any (a, b, c) ∈ R

�+p+1 consider the following
two problems

min a�z + b�β + ct subject to (z, β, t) ∈ W , (18)

and

min a�z + b�β + ct subject to (z, β, t) ∈ Ys . (19)

It suffices to show that (18) and (19) are equivalent, i.e., there exists an optimal solution
of (19) that is optimal for (18)with the same objective value.As before,wemay assume
that c = 1 without loss of generality. For j ∈ [�], let f ∗

j : RVj → R be the convex
conjugate of function f j , i.e.,
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f ∗
j (γ ) = sup

β∈RV j

γ �β − f j (β),

and let � j =
{
γ ∈ R

Vj : f ∗
j (γ ) < ∞

}
. From Fenchel’s inequality corresponding to

the perspective function, we find that for any β ∈ R
Vj , z j ≥ 0 and γ ∈ � j ,

z j f j

(
β

z j

)
≥ γ �β − z j f

∗
j (γ ). (20)

Observe that both (18) and (19) are unbounded if −bVj /∈ � j for some j ∈ [�].
Otherwise, if −bVj ∈ � j for all j ∈ [�], we use (20) with γ = −bVj for each j ∈ [�]
to lower bound the objective of (19), resulting in the relaxation

min
�∑

j=1

(
a j − f ∗

j (−bVj )
)
z j (21a)

s.t. z ∈ conv(Q), (21b)

which admits an optimal solution z∗ ∈ Q. Letting β∗
Vj

∈ arg sup
β∈RV j − b�

Vj
β −

f j (βVj ) whenever z
∗
j = 1 and β∗

Vj
= 0 otherwise, we find a feasible solution for (18)

with the same objective value. ��
Theorem 3 generalizes the result of Xie and Deng [62] for Q ={

z ∈ {0, 1}p | ∑p
i=1 zi ≤ q

}
, Vj = { j}, and f j (β j ) = β2

j for j ∈ [p]. Theorem 3 also
generalizes the result of Bacci et al. [7] for the case that f j is convex, differentiable
and certain constraint qualification conditions hold, applied to our setting. However,
Bacci et al. [7] consider more general settings where multiple polyhedra are connected
by a single binary variable, and under linear constraints on the continuous variables.

5 Quadratic case: implementation via semidefinite optimization

In this section we review how to implement the convexifications derived in §2 for the
special case of quadratic optimization. Given observations (xi , yi )ni=1 with xi ∈ R

p

and yi ∈ R, let Xn×p defined as Xi j = (xi ) j be the model matrix, and consider least
square regression problems

min
z,β

‖y − Xβ‖22 + λ‖β‖22 + μ‖z‖1 (22a)

s.t. βi (1 − zi ) = 0 ∀i ∈ [p] (22b)

β ∈ R
p, z ∈ Q ⊆ {0, 1}p, (22c)

where the regularization terms λ‖β‖22 andμ‖z‖1 penalize the �2-norm and �0-norm of
β, respectively. A natural convexification of (22) based on the �2-regularization term
λ‖β‖22 is to directly use the perspective relaxation [13,62]
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min
z,β

‖y − Xβ‖22 + λ

p∑
i=1

ti + μ‖z‖1 (23a)

s.t. β2
i ≤ ti zi ∀i ∈ [p] (23b)

β ∈ R
p, z ∈ conv(Q). (23c)

Formulation (23) can either be directly implemented with conic quadratic solvers [1],
implemented via cutting plane methods [33] or via tailored methods specific to linear
regression [41]. However, (23) is weak if λ is small.

In this paper we focus on relaxations that do not assume the presence of the �2-
regularization term (but require solving an SDP). In particular, letting B ≈ ββ�, Dong
et al. [26] propose the semidefinite relaxation of (22) given by

min
z,β,B

‖y‖22 − 2y�Xβ + 〈X�X + λI , B〉 + μ

p∑
i=1

zi (24a)

s.t.

(
zi βi

βi Bi,i

)
� 0 ∀i ∈ [p] (24b)

(
1 β�
β B

)
� 0 (24c)

β ∈ R
p, B ∈ R

p×p, z ∈ conv(Q), (24d)

which dominates the perspective relaxation (23), as well as any perspective relaxation
obtained from extracting a diagonal matrix from X�X + λI , e.g., using the method
in [32]. We now discuss how (24) can be further strengthened.

Given any T ⊆ [p], let βT , zT and BT the subvectors of β and z and submatrix of B
induced by T , respectively. Moreover, let QT be the projection of Q onto the subspace
of variables in T . First, observe that in order to apply our theoretical developments
to this setting, we need to extract a convex function of the form f (h�βT ) for some
h ∈ R

|T |. In particular, we consider quadratic f . Note that for any h, from Theorem 1,
we can obtain valid inequalities of the form

t ≥ (h�βT )2

π�zT
, ∀π ∈ FT (25)

for some set FT ⊆ R
|T | describing Q0

T . Inequalities (25) can then be included in
formulation (24) by using the methodology given in [37], as discussed next.

For any h ∈ R
|T |, we find that for z ∈ QT and BT = βTβ�

T satisfying (22b),

〈hh�, BT 〉 = (h�β)2 ≥ (h�βT )2

π�zT
. (26)

Observe that inequality (26) is valid for any vector h. Therefore, by optimizing over
h to find the strongest inequality, we obtain
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0 ≥ max
h∈R|T |

{
(h�βT )2

π�zT
− 〈hh�, BT 〉

}
. (27)

Inequality (27) is satisfied if and only if h� (βTβ�
T /π�zT − BT

)
h ≤ 0 for all

h ∈ R
|T |, or, equivalently, if BT − βTβ�

T /π�zT � 0. Using Schur complement,
we conclude that constraint (27) is equivalent to

(
π�zT β�

T
βT BT

)
� 0. (28)

Observe that inequalities (24b) are in fact special cases of (28) with T = {i}, i ∈ [p].

6 Numerical results

In this section, we provide numerical results to compare relaxations of regression
problems. Specifically, in §6.1 we present computations with sparse least squares
regression problemswith all pairwise (second-order) interactions and strong hierarchy
constraints [40]; in §6.2 we present computations with logistic regression. The conic
optimization problems are solved with MOSEK 8.1 solver on a laptop with a 2.0 GHz
intel(R)Core(TM)i7-8550H CPU with 16 GB main memory.

6.1 Least squares regression with hierarchy constraints

In this section we focus on least squares regression problems with hierarchy con-
straints. A usual approach to compute estimators to statistical inference problems is
either to use the relaxation of a suitable convex relaxation directly, or to round the
solution obtained from such convex relaxations, see for example [5,6,9,12,26,51,62].
Thus, as a proxy to evaluate the quality of the estimators obtained, we focus on the
optimality gap provided by such approaches. In §6.1.1 we discuss the relaxations
used, and in §6.1.2 we discuss a simple rounding heuristic, which guarantees that the
produced solutions satisfy the hierarchy constraints.

6.1.1 Formulations

Given observations (x�, y�)n�=1, we consider relaxations of the problem

min
z,β

n∑
�=1

⎛
⎝y� −

p∑
i=1

x�iβi −
p∑

i=1

p∑
j=i

x�i x� jβi j

⎞
⎠

2

+ λ‖β‖22 + μ‖z‖1 (29a)

s.t. βi (1 − zi ) = 0 ∀i ∈ [p] (29b)

βi j (1 − zi j ) = 0 ∀i, j ∈ [p], i ≤ j (29c)

zii ≤ zi ∀i ∈ [p] (29d)

zi j ≤ zi , zi j ≤ z j ∀i, j ∈ [p], i ≤ j (29e)

β ∈ R
p(p+3)/2, z ∈ {0, 1}p(p+3)/2. (29f)
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We standardize the data so that all columns have 0 mean and norm 1, i.e., ‖y‖2 = 1,
‖Xi‖22 = 1 for all i ∈ [p], and ‖Xi ◦ X j‖22 = 1 for all i ≤ j (where Xi ∈ R

n and
(Xi )� = x�i ). Note that constraints (29d)-(29e) are totally unimodular, hence conv(Q)

in (24d) can be obtained simply by relaxing integrality constraints to 0 ≤ z ≤ 1.
In addition to the optimal perspective reformulation (24), we consider the follow-

ing strengthenings.

Rank1 Inequalities (28) for all sets T of cardinality 2 using the “unconstrained"
convexification given in Proposition 3. This formulation was originally proposed in
[5]. The resulting semidefinite constraints are of the form

⎛
⎝
zi + z j βi β j

βi Bi,i Bi, j
β j Bi, j B j, j

⎞
⎠ � 0,

⎛
⎝
zi + z jk βi β jk

βi Bi,i Bi, jk
β jk Bi, jk B jk, jk

⎞
⎠ � 0,

or

⎛
⎝
zi1i2 + z j1 j2 βi1i2 β j1 j2

βi1i2 Bi1i2,i1i2 Bi1i2, j1 j2
β j1 j2 Bi1i2, j1 j2 Bj1 j2, j1 j2

⎞
⎠ � 0.

Hier Inequalities (28) for all sets T linked by hierarchy constraints. Specifically, from
constraints (29d) we add constraints with |T | = 2 of the form

⎛
⎝

zi βi βi i

βi Bi,i Bi,i i
βi i Bi,i i Bii,i i

⎞
⎠ � 0.

Moreover, from constraints (29e), linking the three variables βi , β j and βi j , we add
constraints involving pairs of variables βi and βi j of the form

⎛
⎝

zi βi βi j

βi Bi,i Bi,i j
βi j Bi,i j Bi j,i j

⎞
⎠ � 0.

Constraints involving pairs of variables β j and βi j are identical and added as well.
Finally, constraints considering the three variables simultaneously are added, resulting
in constraints with |T | = 3 of the form

⎛
⎜⎜⎝
zi + z j − zi j βi βi βi j

βi Bi,i Bi, j Bi,i j
β j Bi, j B j, j B j,i j

βi j Bi,i j B j,i j Bi j,i j

⎞
⎟⎟⎠ � 0.

Rank1+hier All inequalities of both Rank1 and Hier.

6.1.2 Upper bounds and gaps

Given the solution of the convex relaxation, we use a simple rounding heuristic to
recover a feasible solution to problem (29): we round zi and fix it to the nearest
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Table 1 Datasets Dataset n p p(p + 3)/2

Crime 51 5 20

Diabetes 442 10 65

Wine_quality (red) 1599 11 77

Forecasting_orders 60 12 90

Housing 507 13 104

Bias_correction 7,590 18 189

integer—observe that a rounded solution always satisfies hierarchy constraints (29d)-
(29e)—, and solve the resulting convex optimization problem in terms of β. Given the
objective value ν� of the convex relaxation and νu of the heuristic, we can bound the
optimality gap as gap = νu−ν�

νu
× 100%.

6.1.3 Instances and parameters

We test the formulations on six datasets: Crime (from [39]), Diabetes (from [28]),
Housing,Wine_quality (red), Forecasting_orders andBias_correction (latter four from
[23]). Table 1 shows the number of observations n and number of original regression
variables p, as well as the total number of variables p(p+3)/2 after adding all second
order interactions. Finally we use regularization values (λ, μ) = (0.01i, 0.01 j) for
all 0 ≤ i, j ≤ 30 with i, j ∈ Z+ for all datasets but Bias_correction, for which we
use for 1 ≤ i ≤ 20 and 1 ≤ j ≤ 30 with i, j ∈ Z+, due to its larger size and longer
relaxation solution times.

6.1.4 Results

Figure 1 shows the distribution of times needed to solve the regression problems for
each dataset. As expected, the optimal perspective formulation (24) is the fastest,
as it is the simplest relaxation. We also see that formulations involving the rank-
one constraints (with or without hierarchical strengthening) are more computationally
demanding, taking four times longer to solve than the perspective formulation in
Crime, and twice as long in the remaining five instances. In contrast, the formulation
Hier, which includes hierarchical constraints but not the rank-one constraints, is much
faster, requiring 70% more time than perspective in the Crime dataset, and only 10-
20%more in the other instances. Indeed, there are onlyO(p2) hierarchical constraints
to be added, while there are O((p(p + 3)/2)2) rank-one constraints.

Figure 2 shows, for each dataset, the average optimality gaps as a function of the
regularization parameter λ. Each point in the graph represents, for a given value of λ

the average across all 31 values ofμ. Similarly, Fig. 3 shows, for each dataset, the aver-
age optimality gap as a function of the regularization parameter μ. As expected, the
optimality gaps obtained from the optimal perspective reformulation are the largest,
as the relaxation (24) is dominated by all the other relaxations used. Moreover, the
relaxation rank1+hier results in the smallest gaps, as it dominates every other relax-
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Fig. 1 Computational times in seconds

ation used. Finally, neither relaxation rank1 nor hier consistently outperforms the
other, although hier results in lower gaps overall in all datasets except Diabetes.

The relative performance of the formulations tested in terms of gap largely depends
on the dataset and parameters used. In the Diabetes and Wine_quality datasets, the
perspective reformulation is by far the worst, and all other formulations significantly
improve upon it. Specifically, rank1+hier is slightly better than rank1 and hier (which
have similar strengths), but the differences are marginal—observe that hier achieves
an almost ideal strengthening with half the computational cost of the other formula-
tions. In contrast, in the Crime, Housing and Bias_correction datasets, rank1 achieves
only a marginal improvement over the perspective relaxation, while hier achieves a
significant improvement over rank1, and rank1+hier results in a even more sub-
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Fig. 2 Optimality gaps as a function of λ. Each point in the graph represents the average across all values
of μ

stantial improvement. For example, for the Housing dataset, for λ = 0.3 the average
optimality gap of perspective is 29%, whereas that of rank1+hier is 3%. Finally,
in Forecasting_orders, all formulations perform similarly for λ ≤ 0.23; however, for
λ ≥ 0.24, rank1+hier results in a significant improvement over the other formula-
tions. Note that Forecasting_orders is a “fat" dataset with n < p(p + 3)/2, which is
more difficult for convexifications of the form (24) for low values ofλ. Our conclusions
from Fig. 3 are similar. Of particular note is the marked improvement in the optimality
gaps for rank1+hier over other formulations (especially perspective) for small μ.
For example, for μ = 0.05, the average optimality gap of rank1+hier in the Crime
dataset is slightly over 5%, whereas hier achieves over 10% gap, and perspective and
rank1 result in 25% gap.

Since hier has a similar computational cost as perspective, and rank1+hier has a
virtually identical cost as rank1, we see that the hierarchical strengthening may lead
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Fig. 3 Optimality gaps as a function of μ. Each point in the graph represents the average across all values
of λ

to large improvements without drawbacks (whereas rank1 requires 2–4 times more
computational overhead). Indeed, the hierarchical strengthening is tailored to problem
(29), while rank1 is more general but does not exploit any structural information from
the constraints.

Remark 1 (On rounding vs mixed-integer optimization) An alternative to the rounding
approach used here is to use mixed-integer optimization (MIO) to solve (29) exactly.
An extensive comparison between MIO and the rank1 approach was performed in
[5] in a variety of real datasets, including the Diabetes dataset used here. In summary,
while MIO (using the perspective reformulation) was found to be more effective for
large values of the parameter λ, simple rounding of the rank1 relaxation was already
sufficient to prove smaller optimality gaps than MIO if λ is small. We refer to reader
to [5] for additional details.
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6.2 Sparse logistic regression

To illustrate the convexification of non-quadratic functions derived in §2, we consider
�0-regularized logistic regression problems. Specifically, given a classification prob-
lem with data (xi , yi )ni=1 where xi ∈ R

p and yi ∈ {−1, 1}, sparse logistic regression
calls for solving the problem [22,53]

min
z,β

(1 − λ)

n∑
i=1

log
(
1 + exp(−yi x

�
i β)

)
+ λ

p∑
i=1

zi (30a)

s.t. βi (1 − zi ) = 0, ∀i ∈ [p], (30b)

where 0 ≤ λ ≤ 1 is a regularization coefficient that controls the balance between the
error and the �0-penalty. Note that the natural convex relaxation of (30), obtained by
dropping the indicator variables z (or, equivalently, adding big M constraints |βi | ≤
Mzi with M → ∞), is convex.

To date, there are limited results concerning convexifications of (30), especially
when compared with the sparse least squares regression problem (22), due to: (i)
non-existence of separable terms amenable to the perspective relaxation; (ii) lack
of convexifications for non-separable non-quadratic terms with indicators; and (iii)
non-decomposability of the objective function into simpler terms, resulting in similar
convexifications as those discussed in §5. In this paper we provided the first convexifi-
cations for non-quadratic non-separable functions, addressing issue (ii). In this section
we illustrate that if the observations xi are sufficiently sparse, then a direct applica-
tion of Theorem 1 results in substantial improvements over the natural relaxation,
circumventing issues (i) and (iii).

6.2.1 Formulations

A direct application of Theorem 1, corresponding to strengthening each error term
log
(
1 + exp(−yi x�

i β)
) ≤ ti individually, yields the following “rank-one" relaxation

of the sparse logistic regression problem (30):

min
z,β,t

(1 − λ)

(
n∑

i=1

ti + n log(2)

)
+ λ

p∑
i=1

zi (31a)

s.t. ti ≥ log(1 + exp(−yi x
�
i β)) − log(2), i ∈ [n] (31b)

(log-rko) ti ≥
⎛
⎝ ∑

j :xi j �=0

z j

⎞
⎠ log

(
1 + exp

(
− yi x�

i β∑
j :xi j �=0 z j

))

−
⎛
⎝ ∑

j :xi j �=0

z j

⎞
⎠ log(2), i ∈ [n] (31c)

zi ∈ [0, 1], i ∈ [n]. (31d)
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We can write (31) as a conic optimization problem using the exponential cone

Kexp ={(w1, w2, w3) | w1 ≥ w2e
w3/w2 , w2>0}

⋃
{(w1, 0, w3) | w1 ≥ 0, w3 ≤ 0},

i.e., the closure of the set of points satisfying w1 ≥ w2ew3/w2 and w1, w2 ≥ 0.
Constraint (31b) is equivalent to ∃ui1, vi1 such that :

ui1 + vi1 ≤ 2,

(ui1, 1,−yi x
�
i β − ti ) ∈ Kexp,

(vi1, 1,−ti ) ∈ Kexp.

Similarly, constraint (31c) is equivalent to ∃ui2, vi2 such that:

ui2 + vi2 ≤ 2(
∑

j :xi j �=0

z j ),

(ui2,
∑

j :xi j �=0

z j ,−yi x
�
i β − ti ) ∈ Kexp,

(vi2,
∑

j :xi j �=0

z j ,−ti ) ∈ Kexp.

We refer to formulation (31) as log-rko in the sequel.We compare it with the natural
convex relaxation (30) log-nat, corresponding to dropping contraints (31c) from the
formulation. Observe that for relaxation log-nat, z = 0 in an optimal solution, thus
resulting in the same objective value for all values of λ.

6.2.2 Lower bounds

We report lower bounds found from solving convex relaxations of (30). The optimal
values of the relaxations considered are divided by (1− λ)n log(2). Thus the feasible
solution of (30) obtained by setting z = β = 0 has objective value 1 (this solution
may be optimal for large values of λ). The objective value of (30) also have a trivial
lower bound of 0, attained if the data can be perfectly classified (observe that if n < p
and λ → 0, this lower bound may in fact be attained).

6.2.3 Instances and parameters

For the synthetic datasets, we consider the case where both the input data and the true
model are sparse. Let α be a parameter that controls the sparsity of features (xi )ni=1.
For each entry xi j we either independently assign a value of zero with probability 1−α

or we sample from a standard normal distributionN (0, 1)with probability α. We gen-
erate a “true" sparse coefficient vector β∗ with s uniformly sampled non-zero indices
such that β∗

i = 1. The responses yi ∈ {−1, 1} are then generated independently from
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Table 2 Scaled lower bounds for varying n, λ, and α. Each entry in the table represents the average across
ten random instances

α = 0.01 α = 0.02 α = 0.05 α = 0.1

n = 50

log-nat 0.430 0.136 0.008 0

log-rko λ = 0.1 0.502 0.214 0.059 0.027

λ = 0.3 0.703 0.434 0.203 0.103

λ = 0.5 0.92 0.726 0.441 0.239

λ = 0.7 1 0.965 0.798 0.524

n = 100

log-nat 0.392 0.164 0.003 0

log-rko λ = 0.1 0.454 0.221 0.036 0.017

λ = 0.3 0.626 0.383 0.133 0.066

λ = 0.5 0.834 0.615 0.296 0.153

λ = 0.7 0.985 0.893 0.588 0.340

n = 200

log-nat 0.519 0.328 0.220 0.232

log-rko λ = 0.1 0.564 0.370 0.243 0.242

λ = 0.3 0.685 0.483 0.308 0.272

λ = 0.5 0.837 0.644 0.414 0.323

λ = 0.7 0.974 0.859 0.598 0.434

a Bernoulli distribution with: P(yi = 1|xi ) = (1+ exp (−x�
i β∗))−1. We use regular-

ization values λ ∈ {0.1, 0.3, 0.5, 0.7} and sparsity levels α ∈ {0.01, 0.02, 0.05, 0.1}.
Moreover, we set p = 100, s = 1 and test varying sample sizes n = 50, 100, 200.

6.2.4 Results

Table 2 shows the scaled lower bounds obtained via convex relaxations log-nat and
log-rko. Each entry in the table corresponds to the average (over ten replications) lower
bound obtained from a given relaxation for a particular combination of sparsity level
α, λ, and number of observations n. Recall that log-nat results in the same objective
regardless of the value of λ.
Compared with the natural relaxation of sparse logistic regression, the lower bound
attained by (31) increases significantly when n ≤ p. Moreover, as expected, larger
improvements of log-rko over log-nat are obtained for larger values of λ, where
sparsity plays a more prominent role in the objective value. The lower bounds of
log-rko are at least 16% more than those of log-nat in all test cases, and sometimes
substantially larger (e.g., in cases log-nat results in the trivial lower bound of 0).
When the input data is very sparse, i.e., α = 0.01 and λ ≥ 0.5, log-rko results in
lower bounds close to 1 or equal to 1, suggesting (and in some cases proving) that
true optimal solution in those cases is z = β = 0. When n > p, log-rko still results
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in better lower bounds than log-nat, although improvements are less pronounced in
these cases.

7 Conclusions

In this paper, we propose a unifying convexification technique for the epigraphs of a
class of convex functions with indicator variables constrained to certain polyhedral
sets. We illustrate the utility of our approaches on constrained regression problems of
recent interest. Our results generalize the existing results that consider only quadratic,
separable or differentiable convex functions, and certain structural constraints such as
cardinality or unit commitment. As future research, we plan to consider convexifica-
tions for more general functions.

Acknowledgements We thank the AE and two referees whose comments expanded and improved our
computational study, and also led to the result in Appendix 1.

A The special case when conv(Q) is compact

In this section, we give an extended formulation of cl conv(ZQ) based on an extended
formulation of conv(Q0). In particular, this alternative formulation ismore favorable in
cases when the number of facets of conv(Q) is polynomially bounded while conv(Q0)

has an exponential number of facets. We denote the facets of conv(Q) which do not
contain zero by {F�}1≤�≤k , and we write each F� as F� := {z | A�z ≤ b�}. Angulo et
al. [2] prove that conv(Q0) = conv

(⋃
1≤�≤k F�

)
, and a natural extended formulation

of conv(Q0) is as follows:

z =
∑
�∈[k]

ẑ� (32a)

A� ẑ� ≤ λ�b� � ∈ [k] (32b)∑
�∈[k]

λ� = 1, λ ≥ 0. (32c)

Theorem 4

cl conv(ZQ)

= proj(z,β,t)

{
(z, ẑ, λ, β, t) ∈ R

(k+1)p+k
+ × R

p × R | (32a) − (32b),
∑
�∈[k]

λ� ≤ 1,

t ≥ f (1�β), t ≥ (1�λ) f

(
1�β

1�λ

)}
.
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Proof Let

Z =
{
(z, ẑ, λ, β, t)∈R

(k+1)p+k
+ × R

p×R | (32a) − (32b),
∑
�∈[k]

λ� ≤1, t≥ f (1�β),

t ≥ (1�λ) f

(
1�β

1�λ

)}
.

First we show that proj(z,β,t)(Z) ⊆ cl conv(ZQ). Given any (z, ẑ, λ, β, t) ∈ Z ,

note that constraints z ∈ conv(Q) and t ≥ f (1�β) defining cl conv(ZQ) are trivially

satisfied. It remains to show that t ≥ (π�z) f
(
1�β

π�z

)
, ∀π ∈ F . For each π ∈ F , we

have

π�z =
∑
�∈[k]

π� ẑ� =
∑
�∈[k]

λ�π
�
(
ẑ�
λ�

)
≥
∑
�∈[k]

λ�,

where the inequality follows from the fact that we must have either λ� = 0 and ẑ� = 0
or λ� > 0 and ẑ�

λ�
∈ F� since each F� is a polytope contained in the half-space

defined by inequality 1�z ≥ 1. Thus, from Lemma 1, we have t ≥ (1�λ) f
(
1�β

1�λ

)
≥

(π�z) f
(
1�β

π�z

)
, ∀π ∈ F , hence proj(z,β,t)(Z) ⊆ cl conv(ZQ).

Now, it remains to prove that cl conv(ZQ) ⊆ proj(z,β,t)(Z). For any (z, β, t) ∈
cl conv(ZQ) if z ∈ conv(Q0), then there exist ẑ� and λ� that satisfy (32) and 1�λ = 1.
Since t ≥ f (1�β) for all (z, β, t) ∈ cl conv(ZQ), (z, β, t) ∈ proj(z,β,t)(Z). If z ∈
conv(Q)\ conv(Q0), then, from Lemma 2, we can write z as z = λ0z0, 0 ≤ λ0 < 1,
and we may assume z0 is on one of the facets of conv(Q0) defined by π̂�z0 = 1
for some π̂ ∈ F . By definition, ∀π ∈ F π�z0 ≥ π̂�z0 = 1 which implies
λ0 = π̂�z = minπ∈F π�z. Since z0 ∈ conv(Q0), there exists ẑ�, λ� such that
z0 =∑�∈[k] ẑ� and (32b)–(32c) hold. Then

z =
∑
�∈[k]

(λ0 ẑ�)

A�(λ0 ẑ�) ≤ λ0λ�b�, � ∈ [k]∑
�∈[k]

λ0λ� ≤ 1, λ ≥ 0,

and we have
∑

�∈[k] λ0λ� = λ0 = minπ∈F π�z. Using Lemma 1, we find that

t ≥ (π�z) f
(
1�β

π�z

)
, ∀π ∈ F implies that t ≥ (

∑
�∈[k] λ0λ�) f

(
1�β∑

�∈[k] λ0λ�

)
≥

(
∑

�∈[k] λ�) f
(

1�β∑
�∈[k] λ�

)
. Hence, (z, β, t) ∈ proj(z,β,t)(Z). ��
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