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Abstract

Motivated by modern regression applications, in this paper, we study the convex-
ification of a class of convex optimization problems with indicator variables and
combinatorial constraints on the indicators. Unlike most of the previous work on con-
vexification of sparse regression problems, we simultaneously consider the nonlinear
non-separable objective, indicator variables, and combinatorial constraints. Specifi-
cally, we give the convex hull description of the epigraph of the composition of a one-
dimensional convex function and an affine function under arbitrary combinatorial con-
straints. As special cases of this result, we derive ideal convexifications for problems
with hierarchy, multi-collinearity, and sparsity constraints. Moreover, we also give
a short proof that for a separable objective function, the perspective reformulation is
ideal independent from the constraints of the problem. Our computational experiments
with sparse regression problems demonstrate the potential of the proposed approach
in improving the relaxation quality without significant computational overhead.
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1 Introduction

Given a set Q < {0,1}”, a vector h € RP such that h; # O, for all i €
[pl:={1,..., p}, and a convex function f : R — R, we study the set

Zo={@ B0 e QxR xR [ (hTB) <. fi(1 —2) =0,Vi € [p]].

In set Z above, z is a vector of indicator variables with z; = 1 if 8; # 0, and the set
Q encodes combinatorial constraints on the indicator variables. We assume without
loss of generality that f(0) = 0, since this assumption can always be satisfied after
subtracting the constant term f (0).

The motivation to study Zo stems from sparse regression problem: Given a set of
observations (x;, y;)7_, where x; € R? are the features corresponding to observation
i and y; € R is its associated response variable, inference with a sparse linear model
can be modeled as the optimization problem

min 3= f (357 8) + 20(B) (1a)
=1

s.t. Bi(1 —z;) =0, i €[p] (1b)

BEeR’, €0 C0,1)7, (10

where B is a vector of regression coefficients, f is a loss function, A > 0 is a regu-

larization parameter and p is regularization function. Often, f(8) = (y,- - xl.T ﬂ)z, in
which case (1) is referred to as sparse least squares regression, and typical choices of
p include £y, £1, or £, regularizations.

If Q is defined via a g-sparsity constraint, Q = {z € {0, 1} | 3/, zi < ¢}, then
problem (1) reduces to the best subset selection problem [48], a fundamental problem
in statistics. Nonetheless, constraints other than the cardinality constraint arise in
several statistical problems. Bertsimas and King [10] suggest imposing constraints of
the form Zie szi < 1forsome S C [p] to prevent multicollinearity; Carrizosa et al.
[18] use similar constraints to capture nested categorical variables. Constraints of the
form z; < z; can be used to impose strong hierarchy relationships, and constraints
of the form z; < > jeHC[p] Zj can be used for weak hierarchy relationships [14]. In
group variable selection, indicator variables of regression coefficients of variables in
the same group are linked, see [43]. Manzour et al. [47] and Kiiclikyavuz et al. [46]
impose that the indicator variables, which correspond to edges in an underlying graph,
do not define cycles—a necessary constraint for inference problems with causal graphs.
Cozad et al. [21] suggest imposing a variety of constraints in both the continuous and
discrete variables to enforce priors from human experts.

Problem (1) is A/P-hard even for a g-sparsity constraint [50], and is often approx-
imated with a convex surrogate such as lasso [39,55]. Solutions with better statistical
properties than lasso can be obtained from non-convex continuous approximations
[29,63]. Alternatively, it is possible to solve (1) to optimality via branch-and-bound
methods [11,20]. In all cases, most of the approaches for (1) have focused on the g-
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Constrained convex optimization with indicator variables

sparsity constraint (or its Lagrangian relaxation). For example, a standard technique to
improve the relaxations of (1) revolves around the use of the perspective reformulation
[1,19,26,27,30-32,34,36,42,54,61,64], an ideal formulation of a separable quadratic
function with indicators (but no additional constraints). Recent work on obtaining
ideal formulations for non-separable quadratic functions [4-6,27,35,44] also ignores
additional constraints in Q.

There is a recent research thrust on studying constrained versions of (1). Dong et al.
[25] study problem (1) from a continuous optimization perspective (after projecting out
the discrete variables), see also [24]. Hazimeh and Mazumder [40] give specialized
algorithms for the natural convex relaxation of (1) where Q is defined via strong
hierarchy constraints. Several results exist concerning the convexification of nonlinear
optimization problems with constraints [3,8,15-17,45,49,52,56-59], but such methods
in general do not deliver ideal, compact or closed-form formulations for the specific
case of problem (1) with structured feasible regions. In a recent work closely related to
the setting considered here, Xie and Deng [62] prove that the perspective formulation
is ideal if the objective is quadratic and separable, and Q is defined by a g-sparsity
constraint. In a similar vein, Bacci et al. [7] show that the perspective reformulations
for convex differentiable functions are tight for 1-sum compositions, and they use
this result to show that they are ideal under unit commitment constraints. However,
similar results for more general (non-separable) objective functions or constraints are
currently not known.

Our contributions. In this paper, we provide a first study (from a convexification
perspective) of the interplay between non-separable convex objectives and combina-
torial constraints on the indicator variables. Specifically, we derive the convex hull
description of Zg: the result is stated in terms of the convexification of the combina-
torial set Q, but places no assumptions on its form. Using this result, we develop ideal
formulations for settings in which the logical constraints on the indicator variables
encode sparsity constraints or the so-called strong and weak hierarchy relations. In
addition, we generalize the result in [62] and [7] to arbitrary constraints on z for sep-
arable convex functions f, in our setting. We show the computational benefit of the
proposed approach on constrained regression problems with hierarchical relations.

An earlier version of this work appeared in [60], where we only considered sep-
arable and rank-one convex quadratic functions, and sparsity and strong hierarchy
constraints. Furthermore, in [60], our proofs of the convexification results use the
structure of each of the sets considered, whereas in the present paper, we give a
unifying technique that generalizes to any combinatorial set for functions that are
not necessarily quadratic. Finally, here, we expand on our preliminary computational
experiments in [60] with additional datasets, conduct a further analysis on the choices
of the regularization parameters, and perform computations with sparse logistic regres-
sion.

Notation. Given a one-dimensional convex function f : R — R, we adopt the
convention that 0f(8/0) = lim,_, o+ zf (B8/z). Using this convention, the function
zf(B/z) for z > 0 is the closure of the perspective function of f, and is convex. Let 0
and 1 be vectors of conformable dimension with all zeros and ones, respectively, and let
e; denote the ith unit vector of appropriate dimension with 1 in the ith component and
zeros elsewhere. For a set O, we denote by conv(Q) its convex hull and by cl conv(Q)

@ Springer



L. Wei et al.

the closure of its convex hull. Given two vectors u, v of same dimensions, we let o v
denote the Hadamard product of u and v, i.e., (4 o v); = u;v;.

2 Convexification of Zg

Observe that in set Z g, the coefficients of B can be scaled and negated if necessary to
ensure ; = 1 foralli € [p]. Therefore, in the derivation of ideal formulations in this
section, we assume, without loss of generality, that

Zog={GB0e QxR xR|f(17) <1, 51— 2) =0V € [pl}.

We also assume, without loss of generality, that for every i € [p] there exists z € Q
such that z; = 1, as otherwise z; = B; = 0 can be fixed and the corresponding
variables can be removed.

For a given set Q, let 0" = 0\{0} or, equivalently, 0'={z€ Q] Zf:] zi > 1}

As we show in the subsequent discussion, the convexification of the set Z relies on
the characterization of conv(QO). To this end, we first establish such a characterization.

Proposition 1 The convex hull of Q° admits a description as
conv(QO) = conv(Q) ﬂ{z | 7'z>1, Vo e Fl, 2)

where F is a finite subset of RP.

Proof Let "z > 1o be an arbitrary valid inequality for conv(Q°). If 79 > 0, then
nion—rz > 1 is an equivalent inequality satisfying the conditions in (2). Otherwise, if
o < 0, then the inequality does not cut off 0 and is thus valid for Q and conv(Q).
Therefore, it follows that conv(Q) C {z | 7 'z > np}, and inequality 7'z > mo
is either already a facet of conv(Q), or is implied by the facets conv(Q). Finally,

finiteness of F follows since conv(Q°) is a polyhedron. O

Note that if 0 ¢ Q, then F = (. In practice, a set F of minimal cardinality is
preferred. Since conv(Q) and conv(Qo) may have an exponential number of facets,
set F may be exponentially large as well. In such cases, inequalities from JF can be
generated if violated in an iterative fashion, as is standard in a cutting plane algorithm.
Note that even if conv(Q) is simple, conv(Q() may contain an exponential number of
facets. Nonetheless, in such cases, conv(Q¢) admits a compact extended formulation
[2], which in turn implies that separation of the inequalities in F can be done in
polynomial time.

Intuitively, one may think of F as the set of “new" facets of conv(QO) that are not
facets of conv(Q). If conv(Q) and conv( QO) have the same dimension, this intuition is
correct. However, if the dimension of conv( QO) is less than the dimension of conv(Q),
it may be the case that conv(Q% C {z : w'z = 1} for some 7 € F, and thus
this inequality is not a facet. For example, if Q = {0, 1}, then conv(Q) = [0, 1],
0% = conv(Q%) = {1} and F = {1}, but the inequality z > 1 is not a facet of the
0-dimensional polyhedron conv(Q?).
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Constrained convex optimization with indicator variables

The description of cl conv(Zp) depends on the structure of Q, and is critically
dependent on whether the variables can be partitioned into multiple mutually exclusive
components. We formalize this characteristic next.

Definition 1 For i, j € [p],i # j, definei ~ j if there exists some z € Q such that
zi = zj = 1. Define the graph Gp = (V, E) where V = [p] and {i, j} € E if and
only ifi ~ j.

2.1 The connected case

In this section, we provide ideal formulations in the original space of variables when

graph G in Definition 1 is connected. This assumption is satisfied in most of the

practical applications we consider, see §3. Later, in §2.2, we build upon the results of

this section to derive ideal formulations when G ¢ is not necessarily connected.
Before we propose a class of valid inequalities for Zp, we give a lemma.

Lemma 1 For a one-dimensional proper convex function f : R — R with effective
domain dom(f) = R, f(0) = 0 and its perspective g(x,t) = tf(’l—‘) ‘R > R, if
0<t <t then g(x,t)) > g(x, 1) forall x € R.

Proof It suffices to show that the function ¢ (x) = g(x, 1) —g(x, t2) is non-decreasing
in [0, +00] and non-increasing in [—o00, 0]. Since dom( f) = R, f is continuous over
R so is ¢ (x). Also, by convexity, we know that the right-derivative of f(x) exists
and is non-decreasing. Thus, ¢, (x) = f;(ﬁ) - f;(%) > 0 for all x € [0, +o0].
A continuous function with non-negative right-derivative is non-decreasing [38]. For
x € [—00, 0], the left-derivative of ¢ is ¢_ (x) = fL(g) - fi(%) < 0, and similarly,
¢ (x) is non-increasing in [—o0, 0]. O

Proposition 2 The inequalities
IT
t> (') f <—Tﬁ> , VmeF (€)
T Z
are valid for Z g for any finite set F C RP satisfying (2).

Proof First, observe that if 0 ¢ Q, then 7 = { and the statement is superfluous.
Suppose, F # ). We consider two cases. If z # 0, then we have 7 'z > 1 form € F.

Then, from Lemma 1, (7 ' z) f (%) <f (1—r ,3) < t. Hence the inequality is valid.
Finally, if z = 0, then 8 = 0 in Z. Therefore,

IT
t>f <1Tﬂ> =f(0)=0= 4% cf0/)=@"2)f (Té) ,

and the inequality is valid. O

We now describe the closure of the convex hull of Zp under the assumption that
graph G ¢ described in Definition 1 is connected.
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Theorem 1 If the graph G g given in Definition 1 is connected, then

clconv(Zg) = {(z, B, 1) €[0,11” x R? x R |z € conv(Q), t > f(ITﬂ),
1T
t> ( z)f( ﬁ), Vne}"} @)

for any finite set F < R? satisfying (2).

Note that if 0 ¢ Q, i.e., F = @, then Theorem 1 states that the description of
cl conv(Zp) is obtained simply by dropping the complementarity constraints S; (1 —
zi) = 0,Vi € [p] and independently taking the convex hull of Q. Otherwise, since
the description of cl conv(Z) requires a new inequality for every element of F, a
minimal description of F is certainly preferred from a computational standpoint. If
conv(QY) is full-dimensional, the strongest nonlinear inequalities (3) are obtained
from facets of conv(Q?). Moreover, in many situations, it may not be possible to have
a full description of conv(Q) or conv(QO); nonetheless, in those cases, it may be
possible to obtain a facet 7Tx > 1of COHV(QO), and Theorem 1 ascertains that the

valid inequality
T
(> (@ z)f( ﬁ) 5)

is not dominated by any other inequality of a similar form, and that inequalities of this
form are sufficient to describe cl conv(Zg). In Appendix 1 we focus on the special
case where conv(Q) admits a compact representation but conv(Qg) has exponentially
many inequalities: We show how to use a compact extended formulation of conv(Qy)
to derive the description of cl conv(Z ) in a higher dimensional space.

Before proving Theorem 1, we give a lemma used in the proof.

Lemma2 z € conv(Q) if and only if there exists some o € [0, 1] and z° € conv(Q°)

such that 7 = az°.

Proof Note that if 0 ¢ (, then the result holds trivially by letting « = 1. Therefore,
we will assume that 0 € Q.

(=) Let z € conv(Q). So we can write z as a convex combination of the extreme
points of Q. Specifically, we distinguish between the feasible points z' € Q¥ fori € T
and the origin. In particular, there exists y > 0 with ZieIU oY= 1, such that

=0+ vz = (Zm)ZZ o

i€l i€l i€l

Letting o = Ziez yi, the result follows.

(<) Let z = az” for some « € [0, 1] and z° € conv(QP); by definition, we can
expand z” as 70 = DieT ¥;z', a convex combination of z' € Q°. By adding the term
(1 —a)0, wehavez = (1 — )0+ Y ; .y ayiz". u]
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Constrained convex optimization with indicator variables

We are now ready to prove Theorem 1.

Proof of Theorem 1 Define Y as the set described by (4). Let a, b € R?, ¢ € R, and
consider the two optimization problems

mﬂin a'z4+b"B+ct subjectto (z,B,1) € Zg, and (6)
Z,p,t

mﬁin a'z+b"B+ct subjectto (z,B,1) €Y. @)
z,p,t

We show that there exists a solution (z, g, ¢) optimal for both problems, and that the
corresponding objective values of both problems coincide.
e Simple cases :

If ¢ < 0, then both (6) and (7) are unbounded. To see this, let z = 8 = 0, and
t = k, where ¥ > 0. This solution is feasible for both (6) and (7). Letting x — oo,
the objective goes to minus infinity.

Ifc =0andb # 0,thenletz; = 1 forsome j € [p]suchthath; # 0, and let 8; go
to plus or minus infinity depending on whether b; is negative or positive, respectively,
while keeping B; = 0 for i # j. Again, the objective goes to minus infinity.

If c = 0 and b = 0, then these two problems reduce to minimizing a'z over
conv(Q) and thus (6) and (7) are equivalent.

If ¢ > 0, then we assume, without loss of generality, that c = 1 by scaling. If there
exists ig # jo such that b;; # bj,, then there exist some i/ and j in a path from i
and jo in G such thati ~ j and b; # b, and without loss of generality, we assume
b; < b;. Furthermore, there exists some z € Q such that z; = z; = 1. Then we take
such a vector z, we let 8 be a vector of zeros except for 8; = —f; = k forsome x > 0,
and we let r = f(178) = 0. Such a triplet (z, B, 1) is in Zp and Y, and by letting
k — 00, the objective goes to minus infinity. Therefore, we assume in the sequel that
bi =bforalli € [p].

e Casec=1and b =bl: B
We now show that for b = b1 problem (7) either has a finite optimal solution that
isin set Z or is unbounded. Note that (7) is equivalent to:

Igiﬂn a'z+b <1T,8) + max {f (IT/S) ,ﬂmea}(_ { (nTz) f (%) ”
s.t. z € conv(Q),

and, from Lemma 1, it further simplifies to

,
min aTz+b (1T5) + 7lrnei;1__{nTz, 1} f (1—’3> (82)

minne]—"{”TZ, 1}

s.t. z € conv(Q). (8b)

Let f* : R — R be the convex conjugate of function f,i.e., f*(y) = sup,cg yx —
f(x),andletT’ = {y € R: f*(y) < oo} be the domain of f*. Note thatif —b ¢ T,
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it follows that both (6) and (7) are unbounded. Thus, we assume in the sequel that
—bel.

Observe that, given w > 0, the convex conjugate of the function wf (x/w) is
wf*(y). Hence, from Fenchel inequality, we find that, for any 8, z such that 71z7>0,
and y €T,

178
ming 7 {7 "z, 1}

min{r 'z, 1} f < ) >yATg) —min{w "z, 1} f*(¥). (9
reF TeF

Furthermore, for 7 T z = 0 for some = € F, if the left hand side of (9) is infinity, then
the inequality holds trivially; otherwise, if the left hand side of (9) is 0 f ((lTﬂ )/0) =
lim, o+ zf (a7p) /z) = d with |d| < oo, then by continuity of the functions at both
sides of the inequality, (9) is satisfied.

Using (9) withy = —b to lower bound the last term in (8a), we obtain the relaxation

mgg a'z+b <1T/3> + (-15(1T,3) — 7rTnei;1__{7rTz, 1}f*(—15)>

2,

s.t. z € conv(Q),

or, equivalently,

min a'z+ rna])_g{l — 7'z, 0} f*(=b) — f*(=b) (10a)
Z e
s.t. z € conv(Q). (10b)

We will first prove that relaxation (10) admits an optimal solution integral in z, and
then we will show that the lower bound from the relaxation is in fact tight.

Note thatif 0 ¢ Q, then F = @ and there exists an optimal integer solution z* € Q
to the relaxation (10) with objective value a ' z* — f*(—b).

Now consider the case that 0 € Q. Let z* be an optimal solution of (10), and
consider two subcases.

e Subcase (i) : First, suppose that 1 — 7 Tz* <0forall w € F.In this case, (10) is
equivalent to

min a'z— f*(=b) (11a)
st. wlz>1 V1 eF (11b)
z € conv(Q). (11c)

From Proposition 1, the feasible region of (11) is precisely conv(QY), thus problem
(11) admits an optimal integer solution z* € Q° with objective value a ' z* — f*(—b).
e Subcase (ii) :Letw € arg minnd_—n—rz*, and suppose that 1 — 7 " z* > 0. In this
case, problem (10) is equivalent to
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¢=min a'z— (7 '2)f*(=b) (12a)
st. mlz>7'z Vi e F (12b)
z € conv(Q). (12¢)

Note that f*(—b) = SUP,cR —bx — f(x) > 0, because x = Oisa possible solution
to the supremum problem and f(0) = 0. Since z = 0 is feasible for (12), we find
that the objective value £ < 0. If £ = 0, then z* = 0 is optimal and the proof is
complete. Suppose now that £ < 0. Observe from Lemma 2 that z* = az( for some
z0 € conv(Q®) and & € (0, 1)—the case « = 1 is excluded, since 1 — 7 "z9 < 0
for any zo € conv(Q?). Consequently, the point 7 = zo = %, with objective value
L= Ja < £ is feasible for (12) with better objective value than z*, resulting in a
contradiction.

From subcases (i) and (ii), we see that either z* = 0 is feasible and optimal for
relaxation (10) (with objective value 0), or that there exists an optimal integer solution
z* with objective value a T z* — f*(—b), regardless of whether 0 € Q or not. We now
prove that the lower bound provided by the relaxation (10) is tight, by finding §* € R”
such that (z*, g*, f(17 *)) is feasible for (6) with the same objective value as (10).
If z* = 0, then clearly (0, 0, 0) is optimal for (6) with objective value 0, and we now
focus on the case z* # 0. Let X € argsup, g — bx — f(x) and suppose that ¥ exists,
i.e., sup can be changed to max, and observe that f*(—E) = —bx — f(x), or in other
words

a'z— f*(=b)=a 'z 4+ bx + f(X).

Since z* # 0, there exists i such that z7 = 1. Setting g = x, g} = 0 for j # i,
we find that the point (z*, 8%, f(8*)) is feasible for both (6) and (7), and since its
objective value is the same as the lower bound obtained from (10), it is optimal for both
problems. Now suppose that X above does not exist, but (x!, ¥2, ...) is a sequence of
points such that —bx’ — f(x') — f*(—b). In this case, using identical arguments
as above, we find a sequence of feasible points with objective value converging to
a'z* — f*(—b): thus, the latter corresponds to the infimum of (7) and the relaxation

is tight. =

2.2 The general case

In this section, we give ideal formulations for Zy when graph G o in Definition 1 has
several connected components. Given the graph Gp = (V, E), let Vi, V2, ..., Vi be
the vertex partition of connected components of G . Let By, represent the subvector
of B corresponding to indices V;. Then

k
Yz, B.1) € Zo, FATR) =) fAT By,

=1
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because we cannot have two indices i, j from different connected components such
that z; = z; = 1. In other words, if B; # 0 for some i € V, £ € [k], then 8; = O for

all j € [pI\Ve.
Forany ¢ =1, ..., k, define the projection of the binary set Q onto V; as

Qe={ze{0,1}/ |z€ 0,2, =0, Vi ¢ Vi},

let Q(g = Q¢\{0} and note that, using arguments identical to those of Proposition 1,
each COIIV(QB) admits a description as

conv(Q9) = conv(@) [ |(z | 'z = 1, Vr € Fy)

for some finite sets 7y € R”. Note that k > 1 and 0 ¢ Qy for some ¢ € [k] implies
that for all z € Q, z; = 0 whenever i ¢ V. Therefore, we assume that 0 € Q, and
F¢ # ¥ for all £ € [k]. Furthermore, note that conv(Qy) can be described as a system
of linear inequalities, i.e., A®z* < 8¢ for all £ € [k].

We now give the main result of this section, namely a tight extended formulation
for cl conv(Zp) when G o has several connected components.

Theorem 2

clconv(Zg) = proj; g, ,){ B2 Ba i ) €10, 117 x RP x [0, 11PF x RPF x Rﬁ_ xRE xR |
k k
D= t—Zt Z—Z ﬁ:Zﬁ‘,A“ﬁ‘-’ga@a@, Ve € [k],

Tl
i‘fza@f< ﬂ),z > s l)f( ﬂ) Vi e Fy, vze[k]}
Z

o

Proof Observe that Zg = U’gzl Zg, and by Theorem 1, (f, B¢, %) € cl conv(Zy,)
if and only if

fartph —it <o,
T At

( Tz")f<1fe>—f‘fso,v71efz
Z

2t € conv(Qy).
Now we see that cl conv(Z,) has a representation in the form
cleonv(Zg,) = {(*. .2 | G*(". p*.2%) < 0},

where each component function of G* is closed and convex. Then using Theorem 1 in
[19], we obtain a description of cl conv(Z) in a higher-dimensional space by taking
the perspective of G:
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k

=) 2 (13a)
=1
k A

B=> B (13b)

k
;:Zf‘ (13¢)

=1
k
1= o (13d)
=1
.y lTlé\l
r>af Ve e [k] (13e)
ag
R lTIéZ
=@ Of | =5 Ve e [k], 7 € Fo (13f)
Tz
ALz < 5ty Ve € [k]. (13g)
Hence, the result follows. O

3 Special cases
In this section, we use Theorems 1 and 2 to derive ideal formulations for Zy under
various constraints defining Q. Direct proofs of Propositions 4, 5 and 6 were given

in the preliminary version of this paper [60] for the special case of convex quadratic
functions.

3.1 Unconstrained case

Consider the unconstrained case where Q, = {0, 1}” and

Zg, =@ B0 0. 1) xR f(TB) <1 pi(1 —2) =0, Vi € [pl}.

Proposition 3
i
clconv(Zg,) = {(z B.1)€[0,11” x RP | F(hTB) <1, (sz)f< ) < t}.

Proof In this case set QO = {0, 1}”\{0} and conv(Q%) = {z € [0, 117 | 1Tz > 1}.
Thus F = {1} in Theorem I, corresponding to the valid inequality 17z > 1 defining
conv(Qg), and the result follows. O
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Note that Proposition 3 generalizes existing results in the literature: if p = 1
and function f is one-dimensional, then Proposition 3 reduces to the perspective
reformulation [19]; if p > 2 and f is quadratic, then Proposition 3 reduces to the
rank-one strengthening derived in [5].

3.2 Cardinality constraint

Consider sets defined by the cardinality constraint,
Oc=1]ze(0. 1117z 24},

Clearly, conv(Q.) = {z ef0, 117|117z < q} for any positive integer g. We now prove
that, under mild conditions, ideal formulations are achieved by strengthening only the
nonlinear objective.

Proposition 4 If g > 2 and integer; then

cleonv(Zg,) = {(z. B.1) € 10,117 x R |17z < q, fhTP) <1,
h'p
.
(7 (5) =1}

Proof Note that if ¢ > 2, then G, is a complete graph, hence i ~ j foralli, j €
[pl.i # j. Furthermore, conv(Q?) = {z € [0,1]” : 1 <17z < g}. Hence F = {1}.
Then the result follows from Theorem 1. O

The assumption that g > 2 in Proposition 4 is necessary. As we show next,ifg = 1,
then it is possible to strengthen the formulation with a valid inequality that uses the
information from the cardinality constraint, which was not possible for ¢ > 1. Note
that the case ¢ = 1 is also of practical interest, as set Q. with g = 1 arises for example
when preventing multi-collinearity [10] or when handling nested categorical variables
[18].

Proposition5 Ifqg = 1, then

h. .
cleonv(Zg,) = { (z, B,1) € [0, 117 x RPT! | 1Tz < ¢, Z uif (’Z—ﬂ’) <t
ielp] !

Proof First, observe that if ¢ = 1, then G, is fully disconnected and it decomposes
into p nodes, one for each variable z;, i € [p]: thus, in Theorem 2, we find that 2f #0
and ﬁf # 0 if and only if £ = i. In addition, because each component £ € [p] has
a single variable 2; for ¢ =i, Az% < 8% is given by 2; < 1. Moreover, we find that
Fi = {1} for all i € [p]in Theorem 2. Thus, from Theorem 2, we find that
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n n
cleonv(Zg,) = proj(z’ﬂ,,)I(z, B2 Bty D ai=11=) 1,
i=l1 i=l1

zi =2, Bi=p, Z <, Vielp],

i'>af (’—ﬂ’> 1=z f (l—ﬂ’) Vi e [p]}.
o Z

i

Constraints Z! < o; imply that z! f <’j—l") >a f (ﬁ-f) Finally, variables z! and

,31’ can be substituted with z; and §;, variables «; can be projected out (resulting in the
inequality 177 < 1), and the result follows. O

3.3 Strong hierarchy constraints

We now consider the hierarchy constraints. Hierarchy constraints arise from regression
problems under the model (1), where the random variables include individual features
as well as variables representing the interaction (usually pairwise) between a subset of
these features given by a collection P of subsets of [ p]. More formally, let the random
variable 6 (S) represent the (multiplicative) interaction of the features i € S for some
subset S € [p]. Under this setting, the strong hierarchy constraints

0(S) #0 = B #0, Vie S (14)

have been shown to improve statistical performance [14,40] by ensuring that interac-
tion terms are considered only if all corresponding features are present in the regression
model. Strong hierarchy constraints can be enforced via the constraints z(S) < z; for
alli € S, where z(S) € {0, 1} is an indicator variable such that 6(S)(1 — z(S)) = 0.
Thus, in order to devise strong convex relaxations of problems with hierarchy con-
straints, we study the set

O =1{z€(0. 1} |z, <z, Vielp—11}.

Note that in Qg, we identify S with [p — 1], z(S) with z,, and 6(S) with 8,; since p
is arbitrary, this identification is without loss of generality.

To establish the convex hull of Z ., we give alemma that characterizes conv ( Qgh).
First, observe that

Y oa—(p-2z =1 (15)

ielp—1]
is a valid inequality for Qgh. To see this, note that for z # 0, if z,, = 0, then we must

have Zie[p_l] z; > 1,and if z;, = 1, then we must have Zie[p_l] zi = p—1,s0the
validity follows.
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Lemma 3

Conv(Qy) =12€l0, 117 > zi—(p=2zp =1, 2, <z, Yielp—1]
i€[p—1]

Proof Let

Qr=1z€l0.117| Y z—(p-2zp=1, 2 <z, Vielp—1]
ie[p-1]

We will first show that the extreme points of Q, are integral. Then we will prove that
conv(Qsm\0) = Q.

Suppose z* is an extreme point of Q. Observe that if z), is equal to 1, then z; = 1
foralli € [p —1].If z}, is equal to 0, then the constraint matrix defining Qy is totally
unimodular, thus all extreme points of Q, with z; = 0 are integral. If constraint (15)
is not tight at an extreme point, then because the remaining constraint matrix defining
O, is totally unimodular, the corresponding extreme point of O, is integral. Therefore,
it suffices to consider extrerne points where (15) holds at equality and 0 < z;‘, < 1.

Now suppose Zle[p 1z —(p =2z, =land | > z;, > 0. We first show that

= 1 for at most one coordmatel elp—11.1fzf = zjf = 1fori # j, then

Z = (p=2z, =z + Z (zp =) 275+ @ -2 >z =1,
telp—1] telp—11,6i
(16)

where the first inequality follows from dropping terms zj — z; > 0 with £ # j, and
the second inequality follows from the assumption zj =1 and z; < 1. Since (16)
contradicts } ¢,z — (p — 2)z), = L, it follows that zj = 1 for at most one
coordinate i € [p — 1].

Next, observe that if z} = z; for all i € [p — 1], then Zié[p—l] = (p—
2)z}", = z*[‘, < 1. Therefore, the largest element in z}',i € [p — 1] has to be strictly
greater than z7,. Finally, we now show that we can perturb z}, and the p — 2 smallest
elements in z7,i € [p — 1] by a small quantity € and remain in Q,. The equality
> elp—11%i — (p 2)zp = 1 clearly holds after the perturbatlon And, adding a small
quantity € to z and the p —2 smallest elements in z}', i € [p — 1] does not violate the
hierarchy constraint since the largest element in z, i € [p — 1] s strictly greater than
z;. Finally, since z;“ > z’,‘; > 0,Vi € [p — 1], subtracting a small quantity € does not
violate the non-negativity constraint. Thus, we can write z* as a convex combination
of two points in Q,, which is a contradiction.

To see that O, = conV(Q 1), first, observe that 0 ¢ Q. Also, (15) is a valid
inequality for Q0 Furthermore we just showed that the extreme points of Q, are
integral, hence Q, = conV(Q - O

Now we are ready to give an ideal formulation for Zg, .
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Proposition 6 The closure of the convex hull of Z ¢, is given by

cleconv(Zg,,) = {(z, B, 1) €0, 117 xRPL | f(hTB) <1, 2, <z, ¥ielp—1],

.
Y u—(p-2zp f(Zie[ kP >§t}.

ielp—1] p—1] i — (P - 2)Z[7

Proof First, observe that the constraint matrix defining Qg is totally unimodular,
so conv(Qgn) = {z €[0,117 |z, <z, Vi € [p—1]}. Note that G, is a com-
plete graph, hence i ~ j for all i,j € [pl,i # j. Hence, from Lemma 3,
F={{,...,1,—(p — 2))}. Then the result follows from Theorem 1. m]

3.4 Weak hierarchy

Consider the strong hierarchy relation (14), which requires all variables in the set S
to have non-zero coefficients to capture a multiplicative effect, 8(S) on the response
variable y. The weak hierarchy relation [14] is a relaxation of the strong hierarchy
relation to address the interaction between random variables in the same subset S by
requiring

0(S) #0 = B; #0, forsomei € S.

Using similar arguments as before, we formulate the weak hierarchy relation as z,, <
Zie[p—l] zi, in other words, z1, 22, ...,2p—1 =0 = z, = 0. The corresponding
constrained indicator variable set is thus defined by

Qwn=142€{0, 1} |z, < Y z

i€[p—1]

Note that 1 € Qn, thus the graph G, is connected and Theorem 1 can be used to
derive the convex hull.

Proposition 7

cleonv(Zg,) = [ B0 € 10. 17 x R | fUTB <1252 Y
i€[p-1]

h'B )
il fle=——]) =1}
ie[pz—l]Z (Zie[p—l] <i }

Proof First, observe that the constraint matrix defining Qv is totally unimodular,
hence conv(Qwh) = {Z €[0,1]7 |z, < Zie[p—l] Zi} . Clearly, Zie[p—l] zi = lis
valid for Q% sincezj =--- =z,_1 =0 = z, = 0. It suffices to show that
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conv(Q%) =1z €l0.117] Y z=1p. (17)
i€[p—1]

All extreme points of the polyhedron on the right-hand side of (17) are integral, because
the associated constraint matrix is an interval matrix with integral right-hand side. The
result follows from Theorem 1. O

4 A note on separable functions

In this section, we demonstrate that the proof technique used in §2 can be extended to
separable functions with constraints, resulting in relatively simple proofs generalizing
existing results in the literature.

Given a partition of [p] = Ule V; and convex functions f; : RY/ — R such that
fj(0) = 0, consider the epigraph of a separable function of the form:

4
W={zng{0,1}f,ﬂeRP,teR| 3 fiBv) <1,

j=1
Bi(l—zj) =0, Vjeltlic v,}.
As Theorem 3 below shows, ideal formulations of W can be obtained by applying

the perspective reformulation on the separable nonlinear terms and, independently,
strengthening the continuous relaxation of Q. Let

¢
Ys =1 (z, B, 1) e REFPTL Zijj (i—‘:’) <t, z € conv(Q)

J=1

Theorem 3 Y; is the closure of the convex hull of W: cl conv(W) = Y.

Proof Validity of the corresponding inequality in Yy follows directly from the validity
of the perspective reformulation. For any (a, b, ¢) € R‘TP*! consider the following
two problems

min a'z+b'B+ct  subjectto(z,B,1) € W, (18)
and

min a'z+b'f+ct  subjectto (z, B, 1) € Y. (19)
It suffices to show that (18) and (19) are equivalent, i.e., there exists an optimal solution
of (19) that is optimal for (18) with the same objective value. As before, we may assume

that ¢ = 1 without loss of generality. For j € [£], let f}fk : RYi — R be the convex
conjugate of function f;,i.e., '
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fi) = sup y'B— fi(B).

ﬁeRVJ

andletI'; = {y eRYi: f f()’) < oo] . From Fenchel’s inequality corresponding to

the perspective function, we find that for any 8 € RYi ,zj>0andy €T,
(B T o
Gfi\;)zv B2 (20)
J

Observe that both (18) and (19) are unbounded if —bvj ¢ I'; for some j € [£].
Otherwise, if —bvj € I'j forall j € [£], we use (20) with y = —bvj for each j € [¢]
to lower bound the objective of (19), resulting in the relaxation

¢

min " (a5 = £ (=bv))z; (21a)
j=1

s.t. z € conv(Q), (21b)

which admits an optimal solution z* € Q. Letting ,3{‘,}, € argsupy pv; — b%ﬂ -
fj(Bv;) whenever zjf =1l and ﬂ;k,j = 0 otherwise, we find a feasible solution for (18)
with the same objective value. O

Theorem 3 generalizes the result of Xie and Deng [62] for QO =
{ze {0,137 | X0 zi <q}.V; ={j}.and f;(B)) = ﬁf. for j € [p]. Theorem 3 also
generalizes the result of Bacci et al. [7] for the case that f; is convex, differentiable
and certain constraint qualification conditions hold, applied to our setting. However,
Bacci et al. [7] consider more general settings where multiple polyhedra are connected
by a single binary variable, and under linear constraints on the continuous variables.

5 Quadratic case: implementation via semidefinite optimization

In this section we review how to implement the convexifications derived in §2 for the
special case of quadratic optimization. Given observations (x;, y,-):.’zl with x; € R?
and y; € R, let X, defined as X;; = (x;); be the model matrix, and consider least
square regression problems

min ||y - XBI3 + AIBI3 + wlizll (22a)
s.t. Bi(1 —z;) =0 Vi € [p] (22b)
BeRP, ze€QC{0,1}7, (22¢)

where the regularization terms A || 8 ||% and u||z]|1 penalize the £2-norm and £p-norm of
B, respectively. A natural convexification of (22) based on the £;-regularization term
MB ||% is to directly use the perspective relaxation [13,62]
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14
min |y = Xl +2 3t + izl (23a)
’ i=1
st B <tz Vi € [p] (23b)
B € RP, 7z € conv(Q). (23c¢)

Formulation (23) can either be directly implemented with conic quadratic solvers [1],
implemented via cutting plane methods [33] or via tailored methods specific to linear
regression [41]. However, (23) is weak if X is small.

In this paper we focus on relaxations that do not assume the presence of the £;-
regularization term (but require solving an SDP). In particular, letting B ~ 88", Dong
et al. [26] propose the semidefinite relaxation of (22) given by

p
n}}ir}g IvlI3 =2y "XB + (XX +Al, B) —i—uZzi (24a)
o i=1
zi Bi :
L. >0 Vi e 24b
s (ﬁ,» B,-,,-> = ielpl  (24b)
1 BT
(ﬁ B ) >0 (24c)
B eR?, B eRP*P, 7z e conv(Q), (24d)

which dominates the perspective relaxation (23), as well as any perspective relaxation
obtained from extracting a diagonal matrix from X ' X + A/, e.g., using the method
in [32]. We now discuss how (24) can be further strengthened.

Givenany T C [p], let B7, zr and B the subvectors of 8 and z and submatrix of B
induced by T, respectively. Moreover, let Q7 be the projection of Q onto the subspace
of variables in 7. First, observe that in order to apply our theoretical developments
to this setting, we need to extract a convex function of the form f(hT A7) for some
h € RIT! In particular, we consider quadratic f. Note that for any 4, from Theorem 1,
we can obtain valid inequalities of the form

_ Ty

= alzp

, Vm e Fr (25)

for some set Fr < R!T! describing Q(}. Inequalities (25) can then be included in
formulation (24) by using the methodology given in [37], as discussed next.
For any h € RI7! we find that for z € Ot and By = ,BT,B; satisfying (22b),

(hTBr)?

(hh", Br) = (h"B)* = —=
T 2T

(26)

Observe that inequality (26) is valid for any vector /. Therefore, by optimizing over
h to find the strongest inequality, we obtain
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0 > max
heRITI

hT 2

{& — (hh', BT)} . (27)
T'zr

Inequality (27) is satisfied if and only if AT (BrB;} /7 "zr — Br)h < 0 for all

h e R or, equivalently, if By — Br ,3}— /nTzT > 0. Using Schur complement,

we conclude that constraint (27) is equivalent to

nlzr ﬁ;)
( o) =0 (28)

Observe that inequalities (24b) are in fact special cases of (28) with T = {i}, i € [p].

6 Numerical results

In this section, we provide numerical results to compare relaxations of regression
problems. Specifically, in §6.1 we present computations with sparse least squares
regression problems with all pairwise (second-order) interactions and strong hierarchy
constraints [40]; in §6.2 we present computations with logistic regression. The conic
optimization problems are solved with MOSEK 8.1 solver on a laptop with a 2.0 GHz
intel(R)Core(TM)i7-8550H CPU with 16 GB main memory.

6.1 Least squares regression with hierarchy constraints

In this section we focus on least squares regression problems with hierarchy con-
straints. A usual approach to compute estimators to statistical inference problems is
either to use the relaxation of a suitable convex relaxation directly, or to round the
solution obtained from such convex relaxations, see for example [5,6,9,12,26,51,62].
Thus, as a proxy to evaluate the quality of the estimators obtained, we focus on the
optimality gap provided by such approaches. In §6.1.1 we discuss the relaxations
used, and in §6.1.2 we discuss a simple rounding heuristic, which guarantees that the
produced solutions satisfy the hierarchy constraints.

6.1.1 Formulations

Given observations (xg, yg)?zl, we consider relaxations of the problem

2

n P p P
min D\ ve= 2oxabi = Do) xaxeiBy | + MBI+ w29

=1 i=1 i=1 j=i
st.Bi(l—z)=0 Vielp) (29b)
Bij(1 —zij)=0 Vi, jelpl, i<} (29¢)
zii <z Vielp] (294d)
Zij <z, zij<z; VNi,jelpl,i=<j (29¢)
B e RPPHI2 oo, 1)PPH3/2, (29f)

@ Springer



L. Wei et al.

We standardize the data so that all columns have 0 mean and norm 1, i.e., ||y]l2 = 1,
IXilI3 = 1 foralli € [p],and || X; o X;|I3 = 1 foralli < j (where X; € R" and
(Xi)e = x¢i). Note that constraints (29d)-(29e) are totally unimodular, hence conv(Q)
in (24d) can be obtained simply by relaxing integrality constraints to 0 < z < 1.

In addition to the optimal perspective reformulation (24), we consider the follow-
ing strengthenings.

Rank1 Inequalities (28) for all sets 7 of cardinality 2 using the “unconstrained”
convexification given in Proposition 3. This formulation was originally proposed in
[5]. The resulting semidefinite constraints are of the form

zit+zj Bi Bj zi+zjk Bi Bjk
Bi Bii Bij| >0, Bi  Bii Bijk | >0,
Bj Bij Bj, Bk Bijk Bjk.jk
Zitia + Zj1jn Biria Bji j»
or Biriy Biji,ivia Biyin,jij» | = 0.

Bijijx  Birir,jijo Biijoiiin

Hier Inequalities (28) for all sets T" linked by hierarchy constraints. Specifically, from
constraints (29d) we add constraints with |7'| = 2 of the form

zi Bi B
Bi Bii Biii | =0.
Bii Bi.ii Biiii

Moreover, from constraints (29¢), linking the three variables g;, 8; and B;;, we add
constraints involving pairs of variables 8; and B;; of the form

zi B Bij
Bi Bii Biij | =0.
Bij Biij Bij,ij

Constraints involving pairs of variables 8; and §;; are identical and added as well.
Finally, constraints considering the three variables simultaneously are added, resulting
in constraints with |7'| = 3 of the form

zi +2j —zij Pi
Bi B;
> 0.

Bj Bij Bjj Bjij |~
Bij B;ij Bjij Bij.ij

i Bij
i Bij Biij

Rank1+hier All inequalities of both Rank1 and Hier.
6.1.2 Upper bounds and gaps

Given the solution of the convex relaxation, we use a simple rounding heuristic to
recover a feasible solution to problem (29): we round z; and fix it to the nearest
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Table 1 Datasets

Dataset n p p(p+3)/2
Crime 51 5 20
Diabetes 442 10 65
Wine_quality (red) 1599 11 77
Forecasting_orders 60 12 90
Housing 507 13 104
Bias_correction 7,590 18 189

integer—observe that a rounded solution always satisfies hierarchy constraints (29d)-
(29e)—, and solve the resulting convex optimization problem in terms of 8. Given the
objective value vy of the convex relaxation and v, of the heuristic, we can bound the
optimality gap as gap = ”"V—_u"( x 100%.

6.1.3 Instances and parameters

We test the formulations on six datasets: Crime (from [39]), Diabetes (from [28]),
Housing, Wine_quality (red), Forecasting_orders and Bias_correction (latter four from
[23]). Table 1 shows the number of observations n and number of original regression
variables p, as well as the total number of variables p(p + 3)/2 after adding all second
order interactions. Finally we use regularization values (A, u) = (0.017, 0.01;) for
all0 <i,j <30withi, j € Z4 for all datasets but Bias_correction, for which we
use for 1 <i <20and 1 < j <30 withi, j € Z, due to its larger size and longer
relaxation solution times.

6.1.4 Results

Figure 1 shows the distribution of times needed to solve the regression problems for
each dataset. As expected, the optimal perspective formulation (24) is the fastest,
as it is the simplest relaxation. We also see that formulations involving the rank-
one constraints (with or without hierarchical strengthening) are more computationally
demanding, taking four times longer to solve than the perspective formulation in
Crime, and twice as long in the remaining five instances. In contrast, the formulation
Hier, which includes hierarchical constraints but not the rank-one constraints, is much
faster, requiring 70% more time than perspective in the Crime dataset, and only 10-
20% more in the other instances. Indeed, there are only O( p?) hierarchical constraints
to be added, while there are O((p(p + 3)/ 2)?) rank-one constraints.

Figure 2 shows, for each dataset, the average optimality gaps as a function of the
regularization parameter A. Each point in the graph represents, for a given value of A
the average across all 31 values of . Similarly, Fig. 3 shows, for each dataset, the aver-
age optimality gap as a function of the regularization parameter . As expected, the
optimality gaps obtained from the optimal perspective reformulation are the largest,
as the relaxation (24) is dominated by all the other relaxations used. Moreover, the
relaxation rank1+hier results in the smallest gaps, as it dominates every other relax-
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Fig.1 Computational times in seconds

ation used. Finally, neither relaxation rank1 nor hier consistently outperforms the
other, although hier results in lower gaps overall in all datasets except Diabetes.

The relative performance of the formulations tested in terms of gap largely depends
on the dataset and parameters used. In the Diabetes and Wine_quality datasets, the
perspective reformulation is by far the worst, and all other formulations significantly
improve upon it. Specifically, rank1+hier is slightly better than rank1 and hier (which
have similar strengths), but the differences are marginal—observe that hier achieves
an almost ideal strengthening with half the computational cost of the other formula-
tions. In contrast, in the Crime, Housing and Bias_correction datasets, rank1 achieves
only a marginal improvement over the perspective relaxation, while hier achieves a
significant improvement over rankl, and rankl+hier results in a even more sub-
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Fig. 2 Optimality gaps as a function of A. Each point in the graph represents the average across all values
of

stantial improvement. For example, for the Housing dataset, for A = 0.3 the average
optimality gap of perspective is 29%, whereas that of rankl+hier is 3%. Finally,
in Forecasting_orders, all formulations perform similarly for A < 0.23; however, for
A > 0.24, rankl+hier results in a significant improvement over the other formula-
tions. Note that Forecasting_orders is a “fat" dataset with n < p(p + 3)/2, which is
more difficult for convexifications of the form (24) for low values of A. Our conclusions
from Fig. 3 are similar. Of particular note is the marked improvement in the optimality
gaps for rankl+hier over other formulations (especially perspective) for small .
For example, for i = 0.05, the average optimality gap of rankl+hier in the Crime
dataset is slightly over 5%, whereas hier achieves over 10% gap, and perspective and
rank1 result in 25% gap.

Since hier has a similar computational cost as perspective, and rank1+hier has a
virtually identical cost as rank1, we see that the hierarchical strengthening may lead
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Fig.3 Optimality gaps as a function of w. Each point in the graph represents the average across all values
of A

to large improvements without drawbacks (whereas rank1 requires 2—4 times more
computational overhead). Indeed, the hierarchical strengthening is tailored to problem
(29), while rankl1 is more general but does not exploit any structural information from
the constraints.

Remark 1 (On rounding vs mixed-integer optimization) An alternative to the rounding
approach used here is to use mixed-integer optimization (MIO) to solve (29) exactly.
An extensive comparison between MIO and the rank1 approach was performed in
[5] in a variety of real datasets, including the Diabetes dataset used here. In summary,
while MIO (using the perspective reformulation) was found to be more effective for
large values of the parameter A, simple rounding of the rank1 relaxation was already
sufficient to prove smaller optimality gaps than MIO if X is small. We refer to reader
to [5] for additional details.
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6.2 Sparse logistic regression

To illustrate the convexification of non-quadratic functions derived in §2, we consider
£o-regularized logistic regression problems. Specifically, given a classification prob-
lem with data (x;, y;)?_, where x; € R” and y; € {—1, 1}, sparse logistic regression

calls for solving the problem [22,53]

n 14
min (1 2) ) log (1 + exp(—y,-xl-Tﬂ)) +2 z (30a)
© i=1 i=l

st. Bi(l—z)=0, Vielpl (30b)

where 0 < A < 1 is a regularization coefficient that controls the balance between the
error and the £p-penalty. Note that the natural convex relaxation of (30), obtained by
dropping the indicator variables z (or, equivalently, adding big M constraints |8;| <
Mz; with M — 00), is convex.

To date, there are limited results concerning convexifications of (30), especially
when compared with the sparse least squares regression problem (22), due to: (i)
non-existence of separable terms amenable to the perspective relaxation; (ii) lack
of convexifications for non-separable non-quadratic terms with indicators; and (iii)
non-decomposability of the objective function into simpler terms, resulting in similar
convexifications as those discussed in §5. In this paper we provided the first convexifi-
cations for non-quadratic non-separable functions, addressing issue (). In this section
we illustrate that if the observations x; are sufficiently sparse, then a direct applica-
tion of Theorem 1 results in substantial improvements over the natural relaxation,
circumventing issues (i) and (iii).

6.2.1 Formulations
A direct application of Theorem 1, corresponding to strengthening each error term

log (1 + exp(— y,'xl.T /3)) < t; individually, yields the following “rank-one" relaxation
of the sparse logistic regression problem (30):

n 14
mﬂin (1—=2) (Z f +nlog(2)> + AZzi (31a)
z,p,t

i=1 i=1

st. 1 > log(1 +exp(—yix;' B)) —log(2), i € [n] (31b)

X7
(log-rko) t > Z z; | log <1+exp (_M»

Jjixij #0 Jixij#0 Zj
| > 2 |10g). ieln (3lc)

Jxij#0
zi €[0,1], ie€(n]. Gld)
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We can write (31) as a conic optimization problem using the exponential cone
Kexp={(w1, w2, w3) | wy > wpe/"2, w2>0}U{(w1,0, w3) | wy >0, wz <0},

i.e., the closure of the set of points satisfying w; > woeW3/W2 and wy, wy > 0.
Constraint (31b) is equivalent to Ju}, v} such that :

uh +vj <2,
(uip I, _YixiT,B — 1) € Kexp,
(Ull’ L, —1;) € Keyp.

Similarly, constraint (31c) is equivalent to Eué, vé such that:

uh + vy < 2( Z Zj),

Jxij#0
i T
(”lzﬁ Z Tjs —YiX; B—1t) € Kexp»
Jixij#0
(Ulz’ Z Zj, —t;) € Kexp-

Jxij 70

We refer to formulation (31) as log-rko in the sequel. We compare it with the natural
convex relaxation (30) log-nat, corresponding to dropping contraints (31c) from the
formulation. Observe that for relaxation log-nat, z = 0 in an optimal solution, thus
resulting in the same objective value for all values of X.

6.2.2 Lower bounds

We report lower bounds found from solving convex relaxations of (30). The optimal
values of the relaxations considered are divided by (1 — A)n log(2). Thus the feasible
solution of (30) obtained by setting z = 8 = 0 has objective value 1 (this solution
may be optimal for large values of 1). The objective value of (30) also have a trivial
lower bound of 0, attained if the data can be perfectly classified (observe thatifn < p
and A — 0, this lower bound may in fact be attained).

6.2.3 Instances and parameters

For the synthetic datasets, we consider the case where both the input data and the true
model are sparse. Let a be a parameter that controls the sparsity of features (x;)!"_;.
For each entry x;; we either independently assign a value of zero with probability 1 —«
or we sample from a standard normal distribution A/ (0, 1) with probability a. We gen-
erate a “true" sparse coefficient vector 8* with s uniformly sampled non-zero indices
such that 8 = 1. The responses y; € {—1, 1} are then generated independently from
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Table2 Scaled lower bounds for varying n, 1, and . Each entry in the table represents the average across
ten random instances

a=0.01 a=0.02 a =0.05 a=0.1
n =50
log-nat 0.430 0.136 0.008 0
log-rko A = 0.1 0.502 0.214 0.059 0.027
A=03 0.703 0.434 0.203 0.103
A=05 0.92 0.726 0.441 0.239
A=07 1 0.965 0.798 0.524
n =100
log-nat 0.392 0.164 0.003 0
log-rko A = 0.1 0.454 0.221 0.036 0.017
A=03 0.626 0.383 0.133 0.066
Ar=05 0.834 0.615 0.296 0.153
Ar=07 0.985 0.893 0.588 0.340
n =200
log-nat 0.519 0.328 0.220 0.232
log-rko A = 0.1 0.564 0.370 0.243 0.242
A=03 0.685 0.483 0.308 0.272
A=0.5 0.837 0.644 0.414 0.323
A=0.7 0.974 0.859 0.598 0.434

a Bernoulli distribution with: P (y; = 1|x;) = (1 +exp (—x,” *))~!. We use regular-
ization values A € {0.1, 0.3, 0.5, 0.7} and sparsity levels « € {0.01, 0.02, 0.05, 0.1}.
Moreover, we set p = 100, s = 1 and test varying sample sizes n = 50, 100, 200.

6.2.4 Results

Table 2 shows the scaled lower bounds obtained via convex relaxations log-nat and
log-rko. Each entry in the table corresponds to the average (over ten replications) lower
bound obtained from a given relaxation for a particular combination of sparsity level
o, A, and number of observations n. Recall that log-nat results in the same objective
regardless of the value of A.

Compared with the natural relaxation of sparse logistic regression, the lower bound
attained by (31) increases significantly when n < p. Moreover, as expected, larger
improvements of log-rko over log-nat are obtained for larger values of A, where
sparsity plays a more prominent role in the objective value. The lower bounds of
log-rko are at least 16% more than those of log-nat in all test cases, and sometimes
substantially larger (e.g., in cases log-nat results in the trivial lower bound of 0).
When the input data is very sparse, i.e., « = 0.01 and A > 0.5, log-rko results in
lower bounds close to 1 or equal to 1, suggesting (and in some cases proving) that
true optimal solution in those cases is z = B = 0. When n > p, log-rko still results
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in better lower bounds than log-nat, although improvements are less pronounced in
these cases.

7 Conclusions

In this paper, we propose a unifying convexification technique for the epigraphs of a
class of convex functions with indicator variables constrained to certain polyhedral
sets. We illustrate the utility of our approaches on constrained regression problems of
recent interest. Our results generalize the existing results that consider only quadratic,
separable or differentiable convex functions, and certain structural constraints such as
cardinality or unit commitment. As future research, we plan to consider convexifica-
tions for more general functions.

Acknowledgements We thank the AE and two referees whose comments expanded and improved our
computational study, and also led to the result in Appendix 1.

A The special case when conv(Q) is compact

In this section, we give an extended formulation of cl conv(Z ) based on an extended
formulation of conv(Qy). In particular, this alternative formulation is more favorable in
cases when the number of facets of conv(Q) is polynomially bounded while conv(Qy)
has an exponential number of facets. We denote the facets of conv(Q) which do not
contain zero by {F¢}1<¢<k, and we write each Fy as Fy := {z | A¢z < b,}. Angulo et
al. [2] prove that conv(Qq) = conv (U <<k Fg), and a natural extended formulation
of conv(Qy) is as follows:

2= % (32a)

telk]
AgZy < Aeby 0 e [k] (32b)
ZM:L x> 0. (32¢)
telk]
Theorem 4
clconv(Zg)
= projc g {2 o) e RETVPE X RY X R | (320) = 326). Y] e < 1.

telk]

1T
t>fA'P), t=dANf (%) }
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Proof Let

Z:{(z, 2a B eRETVPE X RPXR | 32a) — (326), Y he<l.1=fATp),
Lelk]

lT
t>aTnf (%) }

First we show that proj(z’ﬂ,,)(Z) C clconv(Zp). Given any (z,z, A, B,1) € Z,
note that constraints z € conv(Q) and ¢t > f a’ B) defining cl conv(Z) are trivially
satisfied. It remains to show thatf > (7 ' z) f (%) , Vo € F.Foreachw € F, we
have

where the inequality follows from the fact that we must have either Ay = 0 and z; = 0
or Ay > 0 and f\—i € F; since each Fy is a polytope contained in the half-space

defined by inequality 17 > 1. Thus, from Lemma 1, we have ¢ > (ITA)f (E—f) >

=T f (%) , Vm € F, hence proj, g 1(Z) < clconv(Zp).

Now, it remains to prove that cl conv(Zg) C proj(zyﬁ,,)(z). For any (z, 8,1) €
clconv(Zp) if z € conv(Qy), then there exist Z, and A, that satisfy (32) and 1"h=1.
Since r > f(17p) for all (z, B, 1) € cl conv(Zgp), (z, B, 1) € proj(z’ﬁ’,)(Z). Ifz e
conv(Q)\ conv(Qy), then, from Lemma 2, we can write z as z = Xpz0, 0 < Ao < 1,

and we may assume zg is on one of the facets of conv(Qo) defined by Alz0 = 1

for some 7 € F. By definition, V7 € F m'zp > #'zo = 1 which implies

r = A’z = minger 7'z Since zo € conv(Qp), there exists Z¢, A¢ such that

20 = Zze[k] Z¢ and (32b)—(32c¢) hold. Then

7= Z (XoZe)
Celk]

A¢(hoZe) < hoheby, t e [k]

D hoke 1, =0,
Lelk]

and we have Zée[k] Aore = Ao = mingcr 7 'z. Using Lemma 1, we find that
T lTﬁ . . lTﬁ
t> ') f (n_Tz)’ Vr € F implies that t > (Zze[k] Aore) f (m >
17 .
(Ceea o) f (L7 )- Henee, (2. B.1) € proj. 5. (2). D
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