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Abstract
In this note we study multiple-ratio fractional 0–1 programs, a broad class ofNP-hard com-
binatorial optimization problems. In particular, under some relatively mild assumptions we
provide a complete characterization of the conditions, which ensure that a single-ratio func-
tion is submodular. Thenwe illustrate our theoretical results with the assortment optimization
and facility location problems, and discuss practical situations that guarantee submodularity
in the considered application settings. In such cases, near-optimal solutions for multiple-ratio
fractional 0–1 programs can be found via simple greedy algorithms.

Keywords Fractional 0–1 programming · Hyperbolic 0–1 programming · Multiple ratios ·
Single ratio · Submodularity · Assortment optimization · Facility location · Greedy
algorithm

1 Introduction

We consider a multiple-ratio fractional 0–1 program given by:

max
x∈F

∑

k∈M

∑
i∈N aki xi

bk0 + ∑
i∈N bki xi

, (1)

where M = {1, . . . ,m}, N = {1, . . . , n} and F := {x ∈ {0, 1}n : Dx ≤ d} for given
D ∈ R

q×n and d ∈ R
q . Problem (1) is often referred to as a multiple-ratio hyperbolic 0–1

program. Problems of the form (1) can also be viewed as a class of set-function optimization
problems that seek a subset S of N with its indicator variable 1S ∈ R

n , where the i-th element
of 1S is 1 if and only if i ∈ S.

Throughout the note, we make the following assumptions:
A1: bk0 + ∑

i∈N bki xi > 0 for all k ∈ M and all x ∈ F\{0}.
A2: aki ≥ 0, bk0 ≥ 0 and bki > 0 for all k ∈ M and i ∈ N .
A3: F is downward closed, i.e., if S ∈ F then T ∈ F for all T ⊆ S.
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AssumptionA1 is standard in fractional optimization [16, 17, 42]. In particular, if bk0 > 0,
then it ensures that the denominator is strictly positive for each ratio and the objective function
in (1) is well defined. Our main result (see Theorem 1 in Sect. 3) requires bk0 > 0 to hold.
We provide additional discussions on (1) with bk0 = 0 in Sects. 3.4 and 4.2.

Assumption A2 is not too restrictive as it naturally holds in many application settings, see
examples in [17], including those considered in this note, see Sect. 4. For our results developed
in this note we also require an additional relatively mild assumption A3 on the structure
of the feasible region, F , in (1). We note that many types of feasible regions considered
in the literature, such as F = 2N (unconstrained problem), F = {S ⊆ N : |S| ≤ p} for
some positive integer p (cardinality constraint) and F = {

S ⊆ N : ∑
i∈S wi ≤ c

}
for some

weights w ≥ 0 and c ≥ 0 (capacity constraint) all satisfy assumption A3.
Applications of single- andmultiple-ratio fractional 0–1 programs as in (1) appear inmany

diverse areas. For example, Méndez-Díaz et al. [43] discuss an assortment optimization
problem under mixed multinomial logit choice models (MMNL). Tawarmalani et al. [58]
consider a facility location problem, where a fixed number of facilities need to be located
to service customers locations with the objective of maximizing a market share. Arora et
al. [4] study a class of set covering problems in the context of airline crew scheduling that
aim at covering all flights operated by an airline company. Furthermore, many combinatorial
optimization problems can be formulated in the form (1) including the minimum fractional
spanning tree problem [19, 59], the maximum mean-cut problem [32, 50] and the maximum
clique ratio problem [54]. More application examples can be found in the studies by [14, 24,
37], the recent survey by Borrero et al. [17] and the references therein.

While in general problem (1) is NP-hard even in the case of a single ratio [30, 48],
single-ratio problems can be solved in polynomial time under A1 and A2 and additional
assumptions, e.g., unconstrained problems [30], or problems where the convex hull of F is
known [41, 52]. Furthermore, Rusmevichientong et al. [53] show that for the unconstrained
multi-ratio problem, there is no approximation algorithm with polynomial running time that
has an approximation factor better than O(1/m1−δ) for any δ > 0. Other related theoretical
computational results are discussed in [48, 49].

Exact solution methods for (1) encompass mixed-integer programming reformulations
[16, 24, 42], branch and bound algorithms [58], and other enumerative methods [17, 28, 29].
However, due to NP-hardness of (1), these methods do not scale well when the size of the
problem increases. Motivated by these computational complexity considerations, a number
of studies rely on approximation schemes and heuristics for solving (1). Rusmevichientong et
al. [51], Mittal and Schulz [44] and Désir et al. [22] all propose approximation algorithms for
assortment optimization under theMMNLmodel when the number of customer segments,m,
is fixed. Amiri et al. [3] develop a heuristic algorithm based on Lagrangian relaxation in the
context of stochastic service systems. Prokopyev et al. [49] present a GRASP-based (Greedy
Randomized Adaptive Search) heuristic for solving the cardinality constrained problems.
Finally, simple greedy algorithms are also used in the literature [25, 34]. However, it is often
not well understood when such algorithms perform well.

Contributions and outline The remainder of the note is organized as follows. In Sect. 2, we
overview some necessary preliminaries and formulate our model (1) in terms of set functions.

In Sect. 3, we provide the main result of the note that characterizes the submodularity of a
single ratio. Submodularity is often a key property for devising approximation algorithms [26,
46]. If the objective function can be identified as a submodular function, then simple greedy
algorithms are capable of delivering high-quality solutions. In fact, it is possible to obtain

123



Journal of Global Optimization

(1− e−1)-approximations under a variety of feasible regions—independently of the number
of the ratios, m, involved–, thus improving over existing approximation methods for (1).
We also discuss the connections between submodularity and monotonicity in the context of
fractional 0–1 optimization.

In Sect. 4, we consider our theoretical results in the context of two applications—the
assortment optimization and the p-choice facility location problems. For the assortment opti-
mization problem, our results suggest that submodularity is linked to a phenomenon known
as cannibalization [45], and naturally arises in several important scenarios. The results can
also be applied in the case when there is a fixed cost associated with offering a product in
the assortment [6, 35], which arises, for example, in online advertisement with costs-per-
impression. For the p-choice facility location problem [58], we show how to reformulate the
original problem in a desirable form that can be then exploited to benefit from the submod-
ularity property. Finally, we conclude the note in Sect. 5.

2 Preliminaries

Next, we provide relevant background on submodular optimization, and discuss how our
theoretical results can be used in practice; see also our brief discussion on applications in
Sect. 4.

2.1 Notation

Let ak = (aki )i∈N and bk = (bki )i∈N∪{0} for all k ∈ M , and for given ak ∈ R
n and

bk ∈ R
n+1, define

h(x; ak, bk) :=
∑

i∈N aki xi
bk0 + ∑

i∈N bki xi
.

Then equation (1) can be rewritten as

max
x∈F

∑

k∈M
h(x; ak, bk). (2)

This form appears in many applications such as the retail assortment and the p-choice facility
location problems. Note that for each x ∈ {0, 1}n , there is a unique set S = {i ∈ N : xi =
1} ⊆ N , and conversely, each S ⊆ N corresponds to an indicator vector 1S ∈ {0, 1}n . Thus,
we can rewrite h(x; ak, bk) as a set function

h(S; ak, bk) := h(1S; ak, bk),
and regard F as the domain of sets, i.e., F ⊆ 2N . Thereafter, we may use the vector form
and the set form of (2) interchangeably for convenience. The main result of this note is a
necessary and sufficient condition for the submodularity of each function h(·; ak, bk).

2.2 Submodularity and approximation algorithms

A set function f : 2N → R from the subsets of N to the real numbers is submodular over
F if it exhibits diminishing returns, i.e., f (S ∪ {i}) − f (S) ≥ f (T ∪ {i}) − f (T ) for all
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S ⊆ T ⊆ N \ {i} such that T ∪ {i} ∈ F . Equivalently, function f is submodular over F if

f (S ∪ {i, j}) − f (S ∪ { j}) ≤ f (S ∪ {i}) − f (S) (3)

for all S ⊆ N and i, j /∈ S such that S ∪ {i, j} ∈ F .
The greedy algorithm, see its pseudo-code in Algorithm 1, is a popular choice for tackling

monotone submodular maximization problems because it is easy to implement and gives
a constant-factor approximation in many cases. When the feasible region is a matroid, the
greedy algorithm produces a solution with 1/2 approximation factor; see [26]. When the
feasible region is given by a cardinality constraint, the approximation ratio can be improved
to (1− e−1); see [46]. Other (1− e−1)-approximation algorithms or near-optimal algorithms
have also been provided for other classes of feasible regions over the years [18, 33, 55], for
example, when F is defined with a single or multiple capacity constraints.

Algorithm 1 Greedy Algorithm for Submodular Function Maximization
Step 1. Set S := ∅.
Step 2. Set A := {� ∈ N \ S : S ∪ {�} ∈ F}.
Step 3. If A 	= ∅, set �∗ ∈ argmax�∈A f (S ∪ {�}) and S := S ∪ {�∗}. Go to Step 2.
Step 4. Return S.

We now discuss three settings in which the results of this note can be directly used to
obtain approximation algorithms for fractional problems.

2.2.1 Constrained single-ratio problems

Consider a single-ratio instance of (1), i.e., |M | = 1, but the convex hull of F is
not known, for example, when F is defined by multiple knapsack constraints, F ={
S ⊆ N : ∑

i∈S w�i ≤ c�, � = 1, . . . ,m
}
. Clearly, this class of problems is N P-hard (recall

our discussion in Sect. 1). Nonetheless, if function h(·; ak , bk) is monotone and submodular
(see Proposition 1 in Sect. 3.2), then existing approximation algorithms can be used; see,
e.g., [33].

2.2.2 Single ratio plus a linear function

Consider the special case of a two-ratio problem (1) where one of the ratios is a linear
function, i.e.,

max
x∈F

∑

i∈N
ci xi +

∑
i∈N ai xi

b0 + ∑
i∈N bi xi

. (4)

Problem (4) is N P-hard and arises, for example, in assortment optimization problems with
fixed costs of including an item into the assortment; see, e.g., [6, 35]. It can be easily checked

[6] that if all ai/bi = a j/b j for all i 	= j , in which case
∑

i∈N ai xi
b0+∑

i∈N bi xi
= λ

∑
i∈N bi xi

b0+∑
i∈N bi xi

for some λ > 0, then problem (4) is a submodular optimization problem. In this note we
provide more general conditions for verifying whether (4) is submodular; see, for example,
Proposition 4 in Sect. 4.1.
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2.2.3 Multiple ratios

The objective of the multiple-ratio problem (1) is submodular if all functions h(·; ak , bk) are
submodular. While such conditions may appear to be quite restrictive, we show that several
existing results concerning the tractability of assortment optimization problems correspond
to submodularity of each ratio; for example, see Propositions 5 and 6 in Sect. 4.1.

2.3 Submodularity and cutting-planemethods

The submodularity results presented in this note can be systematically exploited to efficiently
solve problems via mixed-integer programming solvers, even if the ratios in (1) are not
submodular. Indeed, the convex envelope of a submodular function is described by its Lovász
extension [39], which can be incorporated into branch-and-bound solvers via facet-defining
valid inequalities; see [7, 8]. The concave envelope of a submodular function cannot be, in
general, described efficiently, but valid inequalities to approximate it have been proposed
nonetheless [1, 46].

Specifically, in the context of fractional optimization, given an arbitrary (and possibly non-
submodular) ratio, Atamtürk and Narayanan [9] use the characterization of submodularity
presented in this note to express it as a difference of submodular functions of the form

∑
i∈N ai xi

b0 + ∑
i∈N bi xi

=
∑

i∈N (ai + ci )xi
b0 + ∑

i∈N bi xi
−

∑
i∈N ci xi

b0 + ∑
i∈N bi xi

, (5)

where both ratios are submodular. Then they use the aforementioned results to generate
cutting planes corresponding to the convex and concave envelopes of each ratio, thus strength-
ening the mixed-integer programming formulations. We refer the reader to [9] for further
details on the implementation of their method and corresponding computational results.

3 Submodularity of a single ratio and its implications

3.1 A necessary and sufficient condition

In this section, we give a necessary and sufficient condition for the submodularity of the
function h(·), see Theorem 1. As a direct consequence, if h(·; ak, bk) satisfies the condition
of Theorem 1 for every k ∈ M , then it follows that the fractional 0–1 program (2) admits a
constant-factor approximation algorithm. For convenience, we drop the superscript k in ak

and bk and use the notation h(·; a, b) throughout this section.
We first consider the case where b0 > 0. The key result of this note is as follows:

Theorem 1 If b0 > 0, then function h(·; a, b) is submodular over F if and only if

h(S ∪ {i}; a, b) + h(S ∪ { j}; a, b) ≤ ai
bi

+ a j

b j
(6)

for all S ⊆ N, and i, j /∈ S with i 	= j such that S ∪ {i} ∪ { j} ∈ F .

Proof Recall that assumption A2 holds. Thus, the right-hand side of (6) is well-defined. Let
S ⊆ N , let i, j /∈ S with i 	= j satisfying S ∪ {i} ∪ { j} ∈ F , and define AS = ∑

j∈S a j and
BS = b0 + ∑

j∈S b j . Observe that h(S; a, b) = AS/BS . From (3) we find that h(·; a, b) is
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submodular if and only if

AS + ai + a j

BS + bi + b j
− AS + a j

BS + b j
≤ AS + ai

BS + bi
− AS

BS
.

Multiplying both sides by BS(BS + bi + b j ), we get the equivalent condition

BS
(
AS + ai + a j

) − BS

(
1 + bi

BS + b j

)
(AS + a j )

≤ BS

(
1 + b j

BS + bi

)
(AS + ai ) − (BS + bi + b j )AS

⇔ ai BS − bi BS
(AS + a j )

BS + b j
≤ ai BS − bi AS − b j AS + b j

BS + bi
BS(AS + ai )

⇔ ai BS − bi BS
(AS + a j )

BS + b j
≤ ai BS − bi AS + b j

BS + bi

(
BS AS + BSai − (BS + bi )AS

)

⇔ ai BS − bi BS
(AS + a j )

BS + b j
≤ ai BS − bi AS + b j

BS + bi
(ai BS − bi AS).

Adding bi AS + bi BS
AS+a j
BS+b j

− ai BS to both sides, we find

bi AS ≤ bi BS
(AS + a j )

BS + b j
+ b j

BS + bi
(ai BS − bi AS)

⇔ bi AS (BS + bi )
(
BS + b j

) ≤ bi BS(AS + a j )(BS + bi ) + b j (BS + b j )(ai BS − bi AS)

⇔ bi AS B
2
S + bi AS BS(bi + b j ) + b2i b j AS

≤ bi AS B
2
S + bia j B

2
S + BS ASb

2
i + a jb

2
i BS + aib j B

2
S + aib

2
j BS − bib j AS BS − bib

2
j AS .

After rearranging and canceling out some terms in the above expression, we obtain:

2bib j AS BS + b2i b j AS + bib
2
j AS ≤ B2

S(aib j + a jbi ) + a jb
2
i BS + aib

2
j BS

⇔ bib j AS(bi + b j + 2BS) ≤ bib j
(
a j/b j B

2
S + a j/b jbi BS + ai/bi B

2
S + ai/bib j BS

)

⇔ AS(bi + b j + 2BS) ≤ a j/b j B
2
S + a j/b jbi BS + ai/bi B

2
S + ai/bib j BS

⇔ (BS + bi )(AS − a j/b j BS) + (BS + b j )(AS − ai/bi BS) ≤ 0.

Finally, dividing by (BS + bi )(BS + b j ) and then adding ai/bi + a j/b j on both sides, we
get

⇔
(
AS − a j/b j BS

BS + b j
+ a j/b j

)
+

(
AS − ai/bi BS

BS + bi
+ ai/bi

)
≤ ai/bi + a j/b j

⇔ AS + a j

BS + b j
+ AS + ai

BS + bi
≤ ai/bi + a j/b j ,

which is precisely inequality (6). �

As we discuss next, submodularity is closely linked to monotonicity.

3.2 Monotonicity implies submodularity

The function h(·; a, b) is monotone nondecreasing if

h(S; a, b) ≤ h(S ∪ { j}; a, b) (7)
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for every set S and j /∈ S such that S ∪ { j} ∈ F . Monotonicity is often a prerequisite for
greedy algorithms, see, e.g., [46], to guarantee a constant approximation factor. Also, it arises
naturally in many applications; see Sect. 4.1.1 for details. As we show next, monotonicity is
a sufficient condition for submodularity.

Proposition 1 If function h(·; a, b) ismonotone nondecreasing, then h(·; a, b) is submodular.

Proof Condition (7) is equivalent to
∑

i∈S ai
b0 + ∑

i∈S bi
≤

∑
i∈S ai + a j

b0 + ∑
i∈S bi + b j

⇔
(
1 + b j

b0 + ∑
i∈S bi

) ∑

i∈S
ai ≤

∑

i∈S
ai + a j

⇔
∑

i∈S ai
b0 + ∑

i∈S bi
≤ a j

b j

⇔h(S; a, b) ≤ a j

b j
(8)

for all S and j /∈ S. Therefore, if i, j /∈ S, then h(S∪{i}; a, b) ≤ ai/bi and h(S∪{ j}; a, b) ≤
a j/b j , and inequality (6) follows. �

Inequality (8) needs to hold for every combination of set S and element i for the function
to be monotone. Note that h(S ∪ { j}; a, b) is the weighted average of h(S; a, b) and a j/b j

given by

h(S ∪ { j}; a, b) =
(

b0 + ∑
i∈S bi

b0 + ∑
i∈S bi + b j

) ∑
i∈S ai

b0 + ∑
i∈S bi

+
(

b j

b0 + ∑
i∈S bi + b j

)
a j

b j
,

and hence, (8) is equivalent to h(S ∪ { j}; a, b) ≤ a j/b j . Therefore, checking monotonicity
can be done by verifying that

a j

b j
≥ max

S∪{ j}∈F h(S ∪ { j}; a, b) ∀ j ∈ N , (9)

and the optimization problem on the right-hand side of (9) can be solved using existing
algorithms for single-ratio fractional optimization; see [41, 50]. In fact, in some cases mono-
tonicity can be verified without solving an optimization problem.

Corollary 1 Function h(·; a, b) is monotone nondecreasing (and submodular) over 2N if and
only if

min
i∈N

ai
bi

≥ h(N ; a, b).

Proof The forward direction follows directly from (9). For the backward direction, let
a∗/b∗ = mini∈N {ai/bi }, and then we find that

h(N ; a, b) ≤ a∗

b∗ ⇔
∑

i∈N ai
b0 + ∑

i∈N bi
≤ a∗

b∗ ⇔
∑

i∈N

(
ai
bi

− a∗

b∗

)
bi ≤ a∗

b∗ b0.

Since ai/bi ≥ a∗/b∗, we find that
∑

i∈S(ai/bi − a∗/b∗)bi ≤ (a∗/b∗) b0 for any S ⊆ N ,
i.e., h(S; a, b) ≤ a∗/b∗ for any S ⊆ N . �
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3.3 On non-monotone submodular functions

From Proposition 1, we know that monotonicity implies submodularity. In general, as Exam-
ple 1 below shows, the converse does not hold.

Example 1 Assumewehave three variables, i.e., N = {1, 2, 3}, with the setting (a1, a2, a3) =
(3, 2, 1) and (b0, b1, b2, b3) = (2, 1, 1, 1). Then fromTheorem 1we can verify that h(·; a, b)
is submodular over 2N : since ai/bi + a j/b j ≥ 3 for any i 	= j and, for any S ⊆ N ,
h(S; a, b) ≤ h({1, 2}; a, b) = 5/4 ≤ 3/2, we find that inequality (6) holds. However,
h({3}; a, b) = 1/3 < h({1, 2, 3}; a, b) = 6/5 < h({1, 2}; a, b) = 5/4, and monotonicity
does not hold. �

Nonetheless, if h(·; a, b) is submodular, then it is in fact very close to a nondecreasing
function as shown in Proposition 2 below. In particular, if the decision variable with the
smallest value ai/bi is fixed, then the resulting function is monotone.

Assume for the remainder of this section, without loss of generality, that a1/b1 ≥ a2/b2 ≥
· · · ≥ an/bn . Define F1 := {S ∈ F : n ∈ S} and F2 := {S ∈ F : n /∈ S}.
Proposition 2 If h(·; a, b) is submodular over F , then the following holds:

(i) function h(·; a, b) is monotone nondecreasing over F1;
(ii) for any S ∈ F2 and any j 	= n such that S ∪ { j} ∈ F and S ∪ {n} ∈ F , we have

h(S ∪ { j}; a, b) ≥ h(S; a, b).

Proof Wefirst prove h(·; a, b) is monotone nondecreasing overF1 by contradiction. Assume
there exists S and j 	= n such that n /∈ S and h(S ∪ { j, n}; a, b) < h(S ∪ {n}; a, b).
Because h(S ∪ { j, n}; a, b) is a convex combination of h(S ∪ {n}; a, b) and a j/b j , we have
a j/b j < h(S∪{n}; a, b). Since an/bn ≤ a j/b j , we find that an/bn < h(S∪{n}; a, b). Note
that

h(S ∪ {n}; a, b) =
(

b0 + ∑
i∈S bi

b0 + bn + ∑
i∈S bi

)
h(S; a, b) + bn

b0 + bn + ∑
i∈S bi

an
bn

(10)

is a convex combination ofh(S; a, b) andan/bn , and sincean/bn < h(S∪{n}; a, b), it follows
that h(S∪{n}; a, b) < h(S; a, b). By submodularity, h(S∪{ j, n}; a, b)−h(S∪{ j}; a, b) ≤
h(S∪{n}; a, b)−h(S; a, b) < 0, which indicates that h(S∪{ j, n}; a, b) < h(S∪{ j}; a, b).
Thus, an/bn < h(S ∪ { j}; a, b). However, this implies h(S ∪ { j}; a, b) + h(S ∪ {n}; a, b) >

a j/b j + an/bn , which is a contradiction based on Theorem 1. Thus, (i) holds.
Next, we prove (ii) by contradiction. Assume there exists S and j 	= n such that n /∈ S

and h(S∪{ j}; a, b) < h(S; a, b). Because h(S∪{ j}; a, b) is the weighted average of a j/b j

and h(S; a, b), we have that a j/b j < h(S ∪ { j}; a, b) < h(S; a, b). Recall that an/bn ≤
a j/b j . Hence, an/bn < h(S; a, b), which implies an/bn < h(S ∪ {n}; a, b)—using similar
arguments as in the proof of (i). Hence, h(S∪{ j}; a, b)+h(S∪{n}; a, b) > a j/b j +an/bn ,
which contradicts the submodularity of h(·; a, b). �

Corollary 2 If either F = 2N or F = {S ⊆ N : |S| ≤ p} for any p ∈ {1, . . . , n − 1}, then
submodularity of h(·; a, b) over F implies that h(·; a, b) is monotone nondecreasing over
F1 and F2.

Example 1 [Continued]Observe that h(·; a, b) is indeedmonotone overF1, since h({3}; a, b)
= 1/3, h({1, 3}; a, b) = 1, h({2, 3}; a, b) = 3/4 and h({1, 2, 3}; a, b) = 6/5. Similarly,
we can verify that h(·; a, b) is monotone over F2 since h(∅; a, b) = 0, h({1}; a, b) = 1,
h({2}; a, b) = 2/3 and h({1, 2}; a, b) = 5/4. �
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3.4 On homogeneous fractional functions

In this section, we show that the assumption b0 > 0 is indeed necessary in Theorem 1,
as otherwise submodularity does not hold in most practical situations. Proposition 3 below
formalizes this statement.

Proposition 3 Assume b0 = 0. If there exists a feasible set S such that there are at least three
distinct values for ai/bi , i ∈ S, then h(·; a, b) is not submodular.

Proof Assume without loss of generality that a1/b1 < a2/b2 < a3/b3. Then the following
inequality

b1
b1 + b3

(
a3
b3

− a1
b1

)
+ b2

b2 + b3

(
a3
b3

− a2
b2

)

≥ b1
b1 + b2 + b3

(
a3
b3

− a1
b1

)
+ b2

b1 + b2 + b3

(
a3
b3

− a2
b2

)
.

holds since denominators are greater on the right-hand side. Subtracting 2 · (a3/b3) on both
sides, we find that

−a1 + a3
b1 + b3

− a2 + a3
b2 + b3

≥ −a1 + a2 + a3
b1 + b2 + b3

− a3
b3

,

which is equivalent to h({1, 3}; a, b) + h({2, 3}; a, b) ≤ h({1, 2, 3}; a, b) + h({3}; a, b),
violating the definition of submodularity. �


3.5 Submodularity testing

In this section, we discuss how to verify whether h(·; a, b) is submodular over F . By Theo-
rem 1, to test for the submodularity, it suffices to compute

ti j := max
S∪{i}∪{ j}∈F

i, j /∈S
h(S ∪ {i}; a, b) + h(S ∪ { j}; a, b) (11)

for each pair {i, j}, i 	= j , and check whether ti j ≤ ai/bi + a j/b j .
The maximization problem (11) involves an exponential number of candidates to be con-

sidered; hence, this problem is not trivial for a general feasible regionF . Nevertheless, for the
unconstrained problems, i.e., F = 2N , using Algorithm 2 discussed below, submodularity
testing can be achieved in polynomial time due to the connection between submodularity and
monotonicity as outlined in Sects. 3.2 and 3.3.

Algorithm 2 Algorithm for submodularity testing with F = 2N

Step 1. Sort {ai /bi }ni=1 in the non-increasing order, i.e. a1/b1 ≥ a2/b2 ≥ · · · ≥ an/bn .
Step 2. Compute and compare h([n−1]; a, b)with an−1/bn−1. If h([n−1]; a, b) > an−1/bn−1, submod-

ularity fails to hold and stop; otherwise, set i := 1 and go to Step 3.
Step 3. Set tin := h([n − 1]; a, b) + h([n]\{i}; a, b). If tin > ai /bi + an/bn , submodularity fails to hold

and stop; otherwise, set i := i + 1. Next, if i = n, then go to Step 4; otherwise, go to Step 3.
Step 4. Return that submodularity holds.

Define [k] := {1, . . . , k} for any k ∈ N and assume F = 2N . Recall that F1 = {S ∈
F : n ∈ S} and F2 = {S ∈ F : n /∈ S}. By Corollary 2, submodularity of h(·; a, b) must
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imply its monotonicity overF1 andF2. By Corollary 1 monotonicity overF2 is equivalent to
h([n − 1]; a, b) ≤ an−1/bn−1. Therefore, submodularity does not hold if h([n − 1]; a, b) >

an−1/bn−1; see Step 2 of Algorithm 2.
Now assume h([n − 1]; a, b) ≤ an−1/bn−1, and we need to verify monotonicity of

h(·; a, b) over F1. Note that h([n]; a, b) is the weighted average of h([n − 1]; a, b) and
an/bn ; see equation (10) with S = [n − 1]. Then it follows that h([n]; a, b) ≤ max{h([n −
1]; a, b), an/bn} ≤ an−1/bn−1, where the second inequality results from Step 1. Hence, we
conclude that h(·; a, b) is monotone over F1 by Corollary 1.

From monotonicity of h(·; a, b) over F1 and F2, we find that

h(S ∪ {i}; a, b) ≤ max{h([n − 1]; a, b), h([n]; a, b)}

for all S ⊆ N and i ∈ N . In view of (11), if i 	= n and j 	= n,

ti j ≤ 2max
{
h([n − 1]; a, b), h([n]; a, b)

}
≤ 2

an−1

bn−1
≤ ai

bi
+ a j

b j
.

If j = n, the optimal value of (11) is attained at S = N\{i, n} by monotonicity, which
implies tin = h([n − 1]; a, b) + h([n]\{i}; a, b). This observation justifies Steps 3 and 4 of
Algorithm 2 and concludes our discussion of the proposed approach.

4 Applications

In this section, we discuss the implications of our theoretical results in the context of the
assortment optimization and the p-choice facility location problems.

4.1 Assortment optimization problem

In the assortment optimization problem, a firm offers a set of products to utility-maximizing
customers. The goal of the firm is to choose an assortment of products that maximizes
its expected revenue. It is a core revenue management problem pervasive in practice [56].
In this subsection, we mainly consider this problem under the mixed multinomial logit
model (MMNL); see, e.g., [15, 40].

Formally, let N be the set of products that can be offered to customers. Denote by ri
the revenue perceived by the firm if a customer chooses product i ∈ N . Under the MMNL
model, each product i ∈ N is associated with a random weight vki > 0, and the no-purchase
option is associated with weight vk0 > 0; these weights encode the relative preferences for
the products by a customer of type k ∈ M , i.e., set M describes market segments.

Given the preference weights vk , if assortment S ⊆ N is offered, then the probability that
a customer in k ∈ M chooses product i ∈ S is given by

q(i, S; vk) = vki

vk0 + ∑
i∈S vki

.

The conditional expected revenue from offering assortment S ⊆ N is

r(S; vk) =
∑

i∈S
ri q(i, S; vk).
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Taking the expectation over the random vector vk , we formulate the assortment optimization
problem under the MMNL model as

max
S∈F Ev [r(S; v)] =

∑

k∈M
pkr(S; vk), (12)

where pk is the probability of a customer to be in segment k and each realization of v can
be interpreted as the preferences associated with a given customer of customer segment. We
assume that the support of v is finite. Hence, (12) can be posed in the form of (1), where
aki = pkrivki , bki = vki and bk0 = vk0 for all k ∈ M and i ∈ N . Thus, aki/bki = pkri .

Finally, we note that pk ≥ 0 for each k ∈ M . Hence, for submodularity of the objective
function in (12) it is sufficient to consider the single-ratio functions r(·; vk), k ∈ M . Therefore,
in our discussion below when applying the results of Theorem 1 and Corollary 1 (with ratio
ai/bi ), the multiplier pk can be dropped from consideration.

4.1.1 Cannibalization and submodularity

Intuitively, in retail assortment problems, monotonicity of the revenue function implies that
there is limited cannibalization, i.e., the introduction of a newproduct i (when feasible) always
increases the expected revenue perceived by the firm—despite that the revenue obtained from
previously offered products in S might decrease slightly. To be more specific, this limited
cannibalization phenomenon arises in online advertising: the probability that a given customer
clicks on an ad is often quite low, and the advertiser usually profits from offering more ads
within the limited number of spots on the webpage.

Let rmin = mini∈N ri and rmax = maxi∈N ri . By Proposition 1 and Corollary 1, we obtain
the following results in terms of revenue functions immediately.

Corollary 3 If function r(·; v) is monotone nondecreasing, then r(·; v) is submodular.

Corollary 4 Function r(·; v) is monotone nondecreasing (and submodular) over 2N if and
only if rmin ≥ r(N ; v).

4.1.2 Revenue spread, no-purchase probability and submodularity

When the revenues r of all products are identical, assortment optimization problems are
known to be submodular maximization problems [6, 21]. Intuitively, one would expect that
if the revenues are sufficiently close (but not identical), then submodularity should be pre-
served. Proposition 4 formalizes this intuition: if the gap between the largest and the smallest
revenues is bounded above by the odds of no-purchase, then the function is nondecreasing
and submodular.

Proposition 4 If
rmax − rmin

rmin
≤ min

S∈F
1 − q(S; v)

q(S; v)
, (13)

then r(·; v) is nondecreasing and submodular, where rmax and rmin are the largest and
smallest revenues, respectively, and q(S; v) = ∑

i∈S q(i, S; v) is the probability that an
item is purchased.

Proof Equation (13) can be rewritten as rmaxq(S; v) ≤ rmin for all S ∈ F . Since for any S
and i /∈ S it follows that r(S; v) ≤ rmaxq(S; v) ≤ rmin ≤ ri , we find that (8) is satisfied and
the function r(·; v) is monotone submodular. �
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Proposition 4 provides us with additional intuition on the industries in which the expected
revenues are submodular functions of the assortment offered. In the online advertisement,
where the revenues obtained from clicks are usually similar and the odds of no-purchase
are high, we would expect to obtain submodular revenue functions. In a monopoly, the firm
offering the assortment would have a large flexibility in setting prices (resulting in a large
revenue spread) and the odds of no-purchase would be low (due to the lack of competing
alternatives), resulting in a revenue function that is not submodular. In contrast, in a compet-
itive market, the odds of no-purchase would be larger and firms have little or no control over
prices (and if the values ri are interpreted as profits instead of revenues, the spread would
typically be low), resulting in submodular revenue functions.

From Proposition 4 we also gain insights on the differences between revenue management
in the airline and hospitality industries, two industries that are often treated as equivalent in
the literature [57]. In the hospitality industries, no-purchase odds can be high as shown by
the relatively low occupancy rates—66.1% in the US [31] in 2018; in addition, revenue dif-
ferences between products are often due to ancillary charges (e.g., breakfast, non-refundable,
long stay), which account for a small portion of the baseline price for a room. In such circum-
stances we would expect revenue functions to be submodular and simple greedy heuristics
to perform well. In contrast, in the airline industries no-purchase odds are often smaller—
the load factor was 86.1% in the US in 2018 [27]—, and air fares can change dramatically
depending on the conditions. Thus, in the airline industry we would expect to encounter
non-submodular revenue functions, and simple heuristics may be inadequate.

4.1.3 On the greedy algorithm and revenue-ordered assortments

Revenue-ordered assortments are optimal for unconstrained assortment optimization under
the MNLmodel, and tend to perform well in practice [56]. Berbeglia and Joret [13] study the
revenue-ordered assortments under the general discrete choice model and prove performance
guarantees.

Proposition 5 (Berbeglia and Joret [13]) Revenue-ordered assortments are a 1

1+log
(
rmax
rmin

) -

approximation for the unconstrained assortment optimization problem under the MMNL
choice model, where rmax and rmin are the largest and smallest revenues, respectively.

Thus, the quality of revenue-ordered assortments depend on the ratio rmax/rmin ; in particular,
if rmax/rmin = 1, then the revenue-ordered assortments strategy delivers an optimal solution,
and the guarantee degrades as the value of the ratio increases.

From Proposition 4, we can also obtain guarantees depending on the ratio rmax/rmin .
Define:

α(S) = max
k∈M q(S; vk) = max

k∈M
∑

i∈S
q(i, S; vk) (14)

as the maximum probability that a customer from any segment purchases an item when
assortment S is offered.

Proposition 6 IfF = {S : |S| ≤ p} for some positive integer p and rmax/rmin ≤ 1+ 1−α(S)
α(S)

for all S ∈ F , then Algorithm 1 delivers a (1 − 1/e)-optimal solution for the assortment
optimization problem under the MMNL choice model.

Unlike Proposition 5, we impose a condition on the ratio rmax/rmin in Proposition 6;
however, if such condition is satisfied, then we obtain an approximation guarantee of (1 −
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1/e) ≈ 0.63 for the more general assortment optimization problem under a cardinality
constraint.

Finally, we also point out that Rusmevichientong et al. [53] prove that if customers are
value conscious, i.e., v1 ≤ v2 ≤ . . . ≤ vn and r1v1 ≥ r2v2 ≥ . . . ≥ rnvn for all realizations
of v, then the revenue ordered assortments are optimal for the unconstrained and cardinality
constrained cases. It is easy to check that in this case the solutions obtained from the greedy
algorithm correspond precisely with the revenue ordered assortments. Thus, Algorithm 1
delivers optimal solutions as well.

Remark 1 We comment that our results so far are only applicable to those logit models
with linear fractional objectives. When the revenue function involves a ratio of nonlinear
functions, e.g., the nested logit models in assortment optimization [2], how to test and
exploit the submodularity is still an open problem and needs more work to be done in the
future.

4.2 p-choice facility location problem

Facility location problems deal with deciding where to locate facilities across a finite set of
feasible points, taking into account the needs of customers to be served in such a way that
a given economic index is optimized [10]. Submodularity often arises in facility location
problems. For example, Benati [11] considers the maximum facility location problem with
random utilities (MCFLRU); see also [12, 38]. Since in the MCFLRU all ratios ai/bi are
identical, submodularity follows directly from Proposition 4. Dam et al. [20] study the max-
imum capture problem in facility location under random utility models, where the objective
function is a sum of the multiplicative inverses of a nonlinear choice probability generating
function (CPGF). The authors [20] show that if the CPGF is increasing and submodular, the
resulting problem is a submodular maximization problem. We also refer the reader to [5,
23, 36, 47] for additional studies on the applications of submodularity to facility location
problems.

In this subsection, we consider a particular class of facility location problems with a
fractional 0–1 objective function, referred to as the p-choice facility location problem, which
is considered in [58]. In the p-choice facility location problem, a decision-maker has to
decide where to locate p facilities in n possible locations to service m demand points, in
order to maximize the market share.

Formally, let dk > 0 be the demand at customer location k ∈ M = {1, . . . ,m}, and
vki > 0 be the utility of location i to customers at k. Let S ⊆ N := {1, . . . , n}, |S| = p, be
the set of facilities chosen by the decision-maker. It is assumed that the market share provided
by facility j ∈ S with respect to demand point k is given by:

dk
vk j∑
i∈S vki

.

Let wi > 0 be some weight parameter that represents the importance of locating facility in
location i ∈ N . Then the problem of determining the set of facility locations S that maximizes
the weighted market share can be formulated as:

max|S|=p

∑

i∈S
wi

∑

k∈M
dk

vki∑
j∈S vk j

,

123



Journal of Global Optimization

which can be reorganized as

max|S|=p

∑

k∈M
dk

∑
i∈S vkiwi∑
i∈S vki

. (15)

Clearly, the model in (15) can be formulated as a fractional 0–1 program given by (1).
Note that from Proposition 3, the objective function in (15) is, in general, not submodular

since it is homogeneous. Nonetheless, exploiting the equality constraint, we can convert the

objective function to a non-homogeneous one. Define vkmin = δ ·mini∈N {vki } for some fixed
δ ∈ (0, 1). For any feasible solution S, where |S| = p, we also have that:

∑

i∈S
vki =

∑

i∈S
vkmin +

∑

i∈S
(vki − vkmin) = pvkmin +

∑

i∈S
(vki − vkmin).

As a result, (15) can be equivalently stated as:

max|S|=p

∑

k∈M
dk

∑
i∈S vkiwi

pvkmin + ∑
i∈S(vki − vkmin)

, (16)

where vki − vkmin > 0 and vkmin > 0 for all i ∈ N and k ∈ M by our construction procedure.
Recall our discussion on the links between monotonicity and submodularity in Sect. 3.2.

Applying inequality (9), we find that a given ratio k in the objective function of (16) is
monotone nondecreasing over set F := {S ⊆ N : |S| ≤ p} if

min
i∈N

vkiwi

vki − vkmin

≥ max|S|≤p

∑
i∈S vkiwi

pvkmin + ∑
i∈S(vki − vkmin)

. (17)

Hence, if (17) holds for all ratios k ∈ M , then the feasibility set in (16) can be relaxed to
|S| ≤ p. Consequently, assumption A3 is satisfied and (16) reduces to the maximization
problem of a submodular function by Proposition 1.

The right-hand side of (17) can be interpreted as the best average revenue weighted by
market share, or simply the best total revenue that can be obtained from customer segment k.
The intuition for (17) to hold in the p-choice facility location problem is rather similar to our
observations in the assortment optimization problem. Indeed, it is easy to verify, for example,
that if all locations have the same utilities and weights, i.e., vki = vk and wi = w for all
i ∈ N and some vk and w, then (17) holds. Moreover, from (17) we obtain the following
sufficient condition.

Proposition 7 Let wmax and wmin be the maximum and minimum weights, and let vkmax be
the maximum utility associated with customer segment k. If

wmin

wmax
+ 1 ≥ vkmax

vkmin

, (18)

then the revenue of customer segment k is submodular.

Proof Observe that since wi ≥ wmin and
vki

vki−vkmin
≥ vkmax

vkmax−vkmin
, we find that

vkiwi

vki − vkmin

≥ vkmax

vkmax − vkmin

wmin.

Moreover, we also find that

max|S|≤p

∑
i∈S vkiwi

pvkmin + ∑
i∈S(vki − vkmin)

≤ max|S|≤p

wmax
∑

i∈S vki

pvkmin

≤ wmaxv
k
max

vkmin

.
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After rearranging terms corresponding to the sufficient condition

vkmax

vkmax − vkmin

wmin ≥ wmaxv
k
max

vkmin

,

we obtain precisely (18). �

Simply speaking, if the considered facility locations are sufficiently similar with respect

to their utilities, i.e., vkmax
vkmin

≈ 1, then ratios in (16) are submodular. Submodularity may

be preserved for larger spread of utilities, provided that the weights are sufficiently close.
If all the considered facility locations are sufficiently similar with respect to their utilities
and weights, then (15) can be reduced to maximizing a submodular function; consequently,
high-quality solutions can be obtained by a greedy approach, e.g., Algorithm 1.

4.3 Onminimization problems

In this note we focus on identifying submodularity in maximization problems, in which case
greedy algorithms can be used to obtain near optimal solutions. However, submodularity can
be exploited in minimization problems as well. Indeed, the epigraph of a submodular set
function is described by its Lovász extension [39], which can be used to improve mixed-
integer programming formulations via cutting planes. Moreover, even if a given ratio is not
submodular, the results presented in this note can be used to decompose any ratio into two
components such that one of which is submodular (and strengthening can be done using the
submodular component); see, e.g., [9].

5 Conclusion

In this note we explore submodularity of the objective function for a broad class of fractional
0–1 programs with multiple-ratios. Under some mild assumptions, we derive the necessary
and sufficient condition for a single ratio of two linear functions to be submodular. Therefore,
if the derived condition holds for every considered single-ratio function, then simple greedy
algorithms can be used to deliver good quality solutions for multiple-ratio fractional 0–1
programs. Finally,we also illustrate applicability of our results in the context of the assortment
optimization and facility location problems.
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