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June 22, 2020. After a child is born, the examination of the placenta by a pathologist for abnormalities, such as

infection or maternal vascular malperfusion, can provide important information about the immediate
and long-term health of the infant. Detection of the pathologic placental blood vessel lesion decidual
vasculopathy (DV) has been shown to predict adverse pregnancy outcomes, such as preeclampsia, which
can lead to mother and neonatal morbidity in subsequent pregnancies. However, because of the high
volume of deliveries at large hospitals and limited resources, currently a large proportion of delivered
placentas are discarded without inspection. Furthermore, the correct diagnosis of DV often requires the
expertise of an experienced perinatal pathologist. We introduce a hierarchical machine learning
approach for the automated detection and classification of DV lesions in digitized placenta slides, along
with a method of coupling learned image features with patient metadata to predict the presence of DV.
Ultimately, the approach will allow many more placentas to be screened in a more standardized manner,
providing feedback about which cases would benefit most from more in-depth pathologic inspection.
Such computer-assisted examination of human placentas will enable real-time adjustment to infant and
maternal care and possible chemoprevention (eg, aspirin therapy) to prevent preeclampsia, a disease
that affects 2% to 8% of pregnancies worldwide, in women identified to be at risk with future preg-
nancies. (Am J Pathol 2020, 190: 2111—2122; https://doi.org/10.1016/j.ajpath.2020.06.014)
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Rendering a microscopic anatomic pathology diagnosis in-
volves either inspecting stained tissue sections of specimens on
a glass slide under the microscope or viewing a digitized
version of the slide on a computer monitor. This inspection is a
complicated process requiring a highly trained pathologist. It is
also time consuming, not only because of the relative
complexity of the histopathology but because of the need to
screen all the tissue on the slides at a microscopic level. Today,
commercial technology is available to digitize pathology glass
slides using whole slide scanners. Acquisition of such whole
slide images (WSIs) generates digital slides that are typically
on the scale of gigapixels. WSIs offer numerous applications
not possible with glass slides alone, such as the ability to
employ artificial intelligence to triage, screen, and provide
diagnostic assistance, as introduced in this work.

Recent advances have been made in the field of machine
learning (ML) for histopathologic imaging. Deep learning
has been used effectively in applications such as cancer
tumor detection' and segmentation.” The most common
type of task for ML in digital pathology is computer-assisted
diagnosis, a supervised learning task that attempts to assist
the pathologist in the diagnostic process of labeling a WSI
within some category of disease. Because of the large size of
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WSIs, typical ML pipelines sample smaller selected regions
from the WSI, performing analysis on each region, and then
employ some method of aggregating the predictions
generated. Often, each one of these regions, called image
patches, ranges from 128 x 128 to 512 x 512 pixels in size
to be computationally tractable. Because a typical WSI will
have thousands of patches, even highly accurate classifica-
tion algorithms will have many false positives per image.
Some of the most successful implementations of ML to
automate diagnosis using digital pathology images have
come from applications where relevant features exist in
many patches across the image, which can be aggregated to
minimize the impact of false predictions on a small number
of patches. For example, in problems such as cancer severity
classification from the Camelyon 2017 competition,” most
successful teams made a global disease probability estima-
tion based on the list of patch-level probabilities from the
entire image. In the field of placental histopathology, some
work has made use of deep learning,” although overall the
use of deep learning for noncancer histopathologic image
analysis has remained limited, partially because of the
limited availability of large data sets.

Microscopic analysis of the human placenta has been
advocated in certain clinical settings to determine the
anatomic basis of pregnancy-related complications.” When
correlated with clinical findings, the results of a placental
examination may provide actionable information to opti-
mize treatment of both the mother and newborn. This is
particularly important when an adverse pregnancy outcome
occurs, and in these cases, a major role of the placental
examination is to provide supporting histopathologic evi-
dence of the disease process. For example, preeclampsia is a
major pregnancy complication characterized by new-onset
maternal hypertension and is associated with many serious
acute and chronic adverse consequences for both the mother
and the newborn. Preeclampsia affects 2% to 8% of preg-
nancies and is the leading cause of preterm birth and
consequent neonatal morbidity in the developed world.%’
There are many known patterns of chorionic villous
morphology, vasculature, and lesions that pathologists look
for related to preeclampsia. In particular, the presence of a
placental lesion called decidual vasculopathy (DV) is often
found in cases of preeclampsia, and when detected in an
uncomplicated pregnancy, it has been correlated to the
occurrence of preeclampsia and other adverse outcomes in
subsequent pregnancies.”’ Microscopic detection of DV,
often characterized by hypertrophy of decidual arterioles, is
vital for providing physicians with the information they
need to move forward with treatment of the mother and
newborn, especially with recent research showing that reg-
ular doses of aspirin during the first trimester can help to
prevent preeclampsia in women who are determined to be at
risk for the disease.'”""’

In most hospitals, there are often so many deliveries being
performed that there are not enough resources to examine
every placenta microscopically. Furthermore, not all
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features may be reliably detected by general pathologists,'”
which justifies the need to employ perinatal pathologists to
examine these placentas. Most placentas from uncompli-
cated pregnancies are typically discarded, with no micro-
scopic inspection being performed.'” "> There has been
recent research working toward partial automation of some
of these analyses, including the use of image processing,
such as texture analysis'® or morphometry,'”'® to perform
tasks such as vessel detection or villi counting.'” The aim of
this current work is to provide a microscopic placental
analysis service to most mothers and infants who do not
currently have access to this service, through both the
automated detection and diagnosis of DV lesions, allowing
many more placentas to be efficiently inspected in a more
standardized manner and enabling diagnoses that could save
lives during future pregnancies and lower health care costs.

From an image analysis perspective, the DV lesion is
minute compared with the size of a WSI, and requires
viewing the image at high resolution to accurately detect
and diagnose. Moreover, the focal occurrence of even one
DV lesion in a placental image containing numerous unaf-
fected vascular segments could be indicative of possible
future health problems, meaning that any practical imple-
mentation of an automated placental lesion detection algo-
rithm requires stringent levels of both sensitivity and
specificity. In this work, to minimize false positives from a
WSI placental analysis while maintaining a high level of
diagnostic accuracy, we propose a multiresolution deep
learning framework in which high-resolution regions for
classification are informed by a broader low-resolution
examination for regions of interest.

Additionally, a method of aggregating local patch esti-
mations from the latent space, or the learned hidden feature
representation, of our classification framework is investi-
gated. These aggregated features are combined with patient
metadata for the purpose of learning a global classification
of disease for each patient, which can inform the pathologist
about which WSIs should be analyzed in more detail. This
method can help achieve effective results when training with
comparatively small data sets, as are often found in
biomedical applications as well as the current work. The
presented algorithm, shown at a high level (Figure 1), is
designed to be used as a low-cost early microscopic detec-
tion method for predicting which mothers are most at risk of
developing preeclampsia in future pregnancies, and can be
treated to prevent this from occurring.

Materials and Methods

The overall deep learning pipeline has three stages: object
detection, classification, and aggregation. The overall pro-
cess (Figure 1) is built with two separately trained neural
networks as well as a final aggregation step. In the object
detection stage, a WSI is fed into the pipeline, split into a
grid of patches, and analyzed for the detection of blood
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Overview of multiresolution machine learning framework used for whole slide placental image analysis of blood vessel lesions. The top level is an

object detection framework trained to detect blood vessels at a low resolution within a whole slide image. The middle level is a classification framework that
analyzes and detects disease inside a high-resolution patch of each blood vessel. The bottom level aggregates the latent space vectors of these patch-wise
predictions, along with patient delivery metadata, for the prediction of disease at the patient level. PCA, principal component analysis.

vessels. The output of this provides a list of bounding
boxes with expected probabilities for each patch. From
each bounding box location, a higher-resolution patch is
taken and used in the next stage of blood vessel classi-
fication, which outputs a binary classification for each
blood vessel, as either diseased or healthy. The latent
space vectors from these classifications are aggregated
and concatenated with patient delivery metadata (Table 1).
These patient-level data are classified with a random de-
cision forest model, which outputs a diseased/healthy
classification for the WSI.

Clinicopathologic and Image Data Sets

A total of 181 archival placenta cases from UPMC Magee-
Womens Hospital (Pittsburgh, PA), obtained between the years
2008 and 2012, were enrolled in this study. The whole slide
images used in this study are available from Univeristy of
Pittsburgh Medical Center (http://image.upmc.edu:8080/cmu%e
20placenta%20project/view.apml?, last accessed May 17,
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2020). Glass slides with hematoxylin and eosin stained tissue
sections, cut at 4 to 5 wm thickness, were scanned on an
Aperio AT whole slide scanner (Leica Biosystems, Wetzlar,

Table 1  Description of Patient Metadata Features Used in This
Study
Feature Description

Hypertensive disorder Including preeclampsia, eclampsia, and
of pregnancy HELLP (hemolysis, elevated liver
enzymes, and a low platelet count)
syndrome

Placental weight at delivery, in grams

Maternal diabetes status

Maternal lupus

Infant growth using Alexander Growth
Chart: 0 for average or large birth
weight, 1 for small birth weight for
gestational age

Preterm delivery, defined as <37 weeks
gestation

Placental weight
Diabetes

Lupus

Infant growth

Preterm birth
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Germany) at x20 magnification, acquiring digital slides with a
resolution of 0.50 pum/pixel, using bright-field microscopy.
Cases that were selected for review were analyzed by a blinded
perinatal pathologist (S.K.). There were 46 cases (25%) with
confirmed DV. DV lesions are characterized by abnormalities of
decidual arterioles that may include a combination of fibrinoid
necrosis of vessel walls, hypertrophy of the media, sub-
endothelial lipid-laden macrophages, and possible thrombi
within the lumen. Each slide contained many normal (nonle-
sional) microscopic blood vessels (approximately 30 per slide),
whereas in the cases with DV, approximately five of these blood
vessels per slide displayed signs of DV. All identifying infor-
mation was removed from the images through an honest broker
system, and the study was approved by the University of Pitts-
burgh Institutional Review Board (number STUDY 19050188).
The images were matched to clinical data through the Magee
Obstetric Maternal and Infant database. The clinical data fea-
tures used along with the images in this study were placental
weight, diabetes status, lupus status, hypertensive disorder of
pregnancy, infant growth, and preterm birth (Table 1).

Samples for histologic evaluation were taken from
several regions of the placenta, including the umbilical
cord, the placental disc, and the fetal membranes. For this
study, digital images of the membranes from which a
strip is taken rolled up tightly and cross-sectioned were
analyzed. An example of the membrane roll is shown
(Figure 2). The membrane roll provides opportunity to
examine a large cross-sectional area of the decidual re-
gion of the placenta, which contains the distal portion of
decidual spiral arterioles and is the region where DV
lesions are most likely to be found. The images were
reviewed by two pathologists (L.S. and S.K.) who labeled
710 instances of DV that were used as the primary labels
for training. These labels were curated with the VGG
Image Annotator.”’ In addition, healthy regions of the
image were annotated by a graduate student (D.C.)
trained to identify blood vessels in WSIs, who provided
6095 annotations for training. Because the presented al-
gorithm was trained to identify diseased blood vessels,
variance in the labels of the healthy class should not have
affected the performance metrics of our algorithm, which
was compared with the ground truth labels from
physicians.
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Object Detection

The purpose of this stage of the framework is to localize blood
vessels in the WSI, analyzed at a low resolution, to feed these
localizations into the next stage of the classification pipeline.
To accomplish this, a localization framework called Reti-
naNet, published by Facebook,! is used. This framework
introduced focal loss for training, which reduces the influence
of well-classified background examples on the weight up-
dates during training, and has been shown to be effective for
object detection frameworks, particularly in cases such as
ours where the number of background pixels vastly out-
weighs the pixels occupied by objects during training. The
algorithm in this article uses a ResNet backbone as the feature
extractor for this framework,”” which uses residual learning
to alleviate the vanishing gradient problem when training
deep networks. The entire framework was initialized with
network weights pretrained on the MS-COCO data set.”” The
MS-COCO data set used for this task is available from
Common Objects in Context (COCO, hittp://images.
cocodataset.org/zips/train2017.zip, last accessed May 17,
2020). All layers of the network were then fine-tuned
through training on WSI data set.

For training, each WSI is split into a grid of 256 x 256-
pixel patches at four times resolution, with a 10% overlap
between patches to help account for blood vessels that
would be split between patches. Because this overlap will
sometimes cause the algorithm to detect the same blood
vessel on two different patches, nonmaximum suppression
is used to only keep the most confident among overlapping
outputs before feeding into the next stage of the ML pipe-
line, to avoid having duplicate predictions on the same
blood vessel. As a preprocessing step, slide patches that
contained bubble artifacts were excluded from analysis
because of the changes these bubbles cause in imaging
features. Patches with folds that went through an annotated
blood vessel were also removed because these could
potentially affect the analysis. This patch generation typi-
cally results in around 50 to 100 patches per WSI. Similarly
to many other state-of-the-art medical image analysis algo-
rithms,”*** the data were augmented with random flips,
rotations, and translations during training. In addition, a
method of stain normalization introduced by Macenko

Figure 2 Example image and blood vessel
patches from data set. A: A digitized whole slide
image of a placental membrane roll [low magnifi-
cation; hematoxylin and eosin (H&E) stain]. To
illustrate relative scale, the blue square indicates
a single blood vessel. B: Image patch showing an
example of a healthy blood vessel (high magnifi-
cation; H&E stain). C: Image patch showing a
decidual arteriole affected by early-stage decidual
vasculopathy, characterized by smooth hypertro-
phic muscle around the blood vessel lumen (high
magnification; H&E stain). Scale bars: 125 pm (B);
100 pm (C). Original magnification, x20 (A).
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Method for aggregating latent feature representations from numerous blood vessels in one image. First, all detected blood vessels are evaluated

with the classification algorithm. Then, the 128-node latent spaces from the top 10 predicted diseased blood vessels are concatenated into a single 10 x 128
matrix. Finally, a pooling operation is performed on each column of this matrix, where either the maximum or minimum value is taken, depending on if that

node was maximized or minimized by the diseased image set during training.

et al’® was used, which maps the individual stain contri-
butions in an RGB (red, green, blue) image through an
optical density transformation. The network was trained for
75 epochs, with a learning rate of 1 x 107> and a batch size
of 1.

Classification

The blood vessel classification stage of the pipeline analyzes
each blood vessel patch that has been identified from the
previous object detection stage, for the purpose of classi-
fying vessels with DV. To feed an image into this network,
an image patch is taken around each localized blood vessel
at 10x resolution (2.5 times higher than the previous stage),
with 20 pixels of padding added around each side of the
blood vessel. Because blood vessels can exhibit a range of
shapes and sizes, each image is rescaled to be square, and
then resampled to 299 x 299 pixels before feeding into the
network.

Our model utilizes the Xception convolutional neural
network backbone,”” which uses depth-wise separable con-
volutions to reduce the computational complexity required to
train a deep convolutional neural network. Initialized weights
learned from training on the ImageNet data set were used.”**’
The data set is available from ImageNet (h1tp.//image-net.org/
download-images, last accessed May 17, 2020, a free account
registration is required). The 1024 feature maps learned by
network are fed through a global average pooling layer,
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which is a method to effectively reduce the trainable
parameters during classification to avoid overfitting.”® The
output from this layer is fed through a 128 dense layer before
the final classification layer. The network is trained with the
Adam optimizer,’" and dropout™” of 50% is applied to the 128-
node fully connected layer.

Standard data augmentation of flips, shear, rotation, and
translation is used. Flips were performed with 50% likeli-
hood, shear was applied between -15 and 15 degrees,
rotation was applied between -45 and 45 degrees, and
translation was applied between —15% and 15% of the size
of the image in both the x and y directions. These aug-
mentations are used because it is expected that because the
orientation of a blood vessel is irrelevant to its classification,
these types of affine translations would generate images that
would still be considered valid blood vessels and diagnos-
able by a physician. The shear transformation is used
because it is a method of simulating a blood vessel taken in
an out-of-plane cross-section, providing more diversity in
the training set. To account for the class imbalance in this
stage of training, the data augmentation pipeline is weighted
so that the underrepresented diseased class receives more
augmentations during each batch.

Aggregation

After obtaining localized blood vessels and diseased clas-
sifications for each blood vessel in a WSI, the next step is to
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Figure 4 Example output from object detection framework for blood
vessel detection, showing bounding boxes being drawn around each blood
vessel in the image patch, along with prediction outputs from the algo-
rithm for each detection.

aggregate these predictions to obtain a single vector of data
for classification of disease at the image level. This classi-
fication can be used to alert the physician about which im-
ages would benefit from more in-depth pathologic
inspection.

To maximize classification accuracy at this stage, it is
desirable to incorporate information from many regions of
the image rather than relying on image features detected
from a single blood vessel. That is, it is expected that a
more holistic representation of classified disease in the
image will result in a better global-scale classification ac-
curacy. However, each WSI has a different number of blood
vessels, and any number of these vessels can have or not
have disease.

From the previous stages of the analysis pipeline, each
blood vessel has been identified and classified through a
deep network. The method for aggregating these is
described (Figure 3). First, the blood vessels are classified
with the deep learning network. The latent feature repre-
sentation of each classified blood vessel is 128 nodes in
length. The blood vessels are sorted in a list based on the
classification network’s output confidence, from most to

Table 2 Results of Blood Vessel Object Detection, Trade-Off
between High Disease Class Recall, and Overall Precision as the
Discriminative Threshold Is Lowered

Total predictions Overall Diseased
made on 2524 test patches, n precision class recall
28,834 0.08 0.95
16,663 0.13 0.94
12,400 0.22 0.92

6574 0.45 0.9

5028 0.59 0.86

4228 0.69 0.8

3660 0.77 0.77
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least diseased (note that even healthy blood vessels can be
ranked in terms of diseased confidence). In this work, al-
gorithm confidence is considered to be proportional to the
deviation from 0.5 of the scalar classification output, with a
diseased classification of 1.0 being maximally confident.
Next, the latent vectors are stacked into one matrix of shape
Nx128, where N is the number of analyzed blood vessels
included in the analysis. In this work, the top 10 ranked
blood vessels are used for the analysis. This number is
chosen to minimize the potential negative impact of having
a large number of healthy blood vessels in the downstream
analysis, because most diseased images in the training set
had <10 diseased blood vessels. The latent spaces are
aggregated instead of the individual blood vessel classifi-
cations so that the full algorithm pipeline has the opportu-
nity to make decisions from the more holistic feature sets
learned during training, such as morphologic patterns across
blood vessels, and not solely from the scalar classifications.
After this aggregation, the data are pooled by calculating
either the maximum or the minimum of the data for each
node of the feature map; this is determined for each node
based on if that node was being maximized or minimized
by the diseased image class during training. As expected for
a well-balanced classifier, about half of the nodes were
being maximized and half were being minimized during
training.

Once the aggregated latent vector, of size 1 x 128, has
been generated for each image in the training set, principal
component analysis is performed to reduce the dimension-
ality to 1 x 5. Principal component analysis is an unsu-
pervised transformation method that linearly maps data to a
lower dimensional space while maximizing the amount of
variance explained in the original data.”® This trans-
formation is used to reduce the number of dimensions of the
training data, to reduce the risk of overfitting on a small data
set, while still keeping as much of the variance in the data as
possible.

After dimensionality reduction, the pooled latent repre-
sentation is concatenated with a vector of patient metadata
describing the mother’s health and outcome of the delivery.
The metadata features used in this work are described
(Table 1).

The combined vector of latent and metadata features is
zero centered and scaled by the SD. The resulting data are
used to train a random decision forest classifier to perform a
binary classification between diseased and healthy slides. A
random decision forest’ is a method of ensemble learning
in which a large number of shallow decision trees are
constructed to provide an output that is the mode of the
predictions from each tree. This type of model was selected
for its robustness to overfitting, particularly on small data
sets.” A diseased slide is defined as one with at least one
example of a diseased blood vessel, which is considered a
clinically relevant indication of potential hypoxia-related
disease. At this stage of the pipeline, each whole slide
image, as opposed to each blood vessel patch, is considered
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Table 3 Performance Metrics for Blood Vessel Patch
Classification

Variable Validation, % Test, %
Sensitivity 95 94
Specificity 96 96
Accuracy 96 96

n = 989 validation; n = 1341 test.

to be one data sample, which drastically lowers to available
training data compared with the previous stages of the
pipeline. To help avoid overfitting, a fivefold cross valida-
tion is used to select the best model parameters for the
training set, which are then applied to the test set.

Results
Object Detection

The whole slide data set of 181 slides (46 with identified
DV, 135 without) was split into a set of 11,610 low-
resolution patches for the blood vessel detection step. For
this set, 7281 patches were used for training, 1805 were
used for validation, and 2524 were used for testing. Because
the number of DV annotations is small compared with the
total number of blood vessel annotations, and to prevent
overfitting, this stage of the network treats blood vessels as a
single class and does not make a classification, instead only
outputting bounding boxes for any predicted blood vessels.
An example of this is shown (Figure 4).

The purpose of this stage of the pipeline is to narrow
down the number of regions that need to be analyzed in
higher resolution as much as possible, without missing re-
gions of DV in the WSI. To this end, one feature of the

A

presented algorithm is that the discriminative threshold can
be tuned to be more lenient and find a higher percentage of
diseased blood vessels, at the expense of making more
predictions on incorrect regions as well. The results of
sweeping through many of these thresholds are shown
(Table 2). Although this stage of the network is being
trained to detect blood vessels without differentiating be-
tween healthy and diseased classes, the primary metrics that
are considered important for this research are the network’s
ability to capture the disease cases, because the purpose of
the framework is to identify DV within the digital slide.
Using a lenient cutoff value (such as the 28,834 predictions)
(Table 2), the recall of the diseased class (the number of
diseased vessels captured in the predictions divided by the
total number of diseased vessels) is high, whereas the total
class precision (the number of total annotations captured in
the predictions divided by the total number of predictions
made) is low. However, using a stricter cutoff value (such as
the 3660 predictions) (Table 2) results in fewer overall
predictions, raising the total class prediction while lowering
the diseased recall.

Classification

At this stage in the ML pipeline, patches are taken at high
resolution around each annotated blood vessel. Of the 6095
total annotated blood vessels, 3765 (3313 healthy and 452
diseased) were used for training, 989 (879 healthy and 110
diseased) were used for validation, and 1341 (1193 healthy
and 148 diseased) were used for testing. These images were
augmented throughout training, which is described in detail
above (Materials and Methods). The algorithm was trained
for 40 epochs (cycles through full training set), and the
trained model with the highest validation accuracy was
selected for testing.
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Figure 5 Blood vessel classification results. A: Confusion matrix of results on test set (positive predictive value = 0.74, and negative predictive

value = 0.99). B: Receiver operating characteristic (ROC) curve of blood vessel classification results on the test data set, illustrating the achievable trade-off
between true- and false-positive rates as the discriminative threshold of the classifier is varied. The dashed line shows the comparison to a random classifier.
C: Results of two-dimension principal component analysis (PCA) on the 128-node latent space of classified blood vessel patches from the test set, to help
visualize clusters being formed by the classification algorithm. Dark points indicate diseased blood vessels; and light points, healthy placenta vessels. AUC,

area under the curve.
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Table 4 Results of Test Slides from the Combined Object Detection and Classification Pipeline

Predictions from Fraction of diseased Diseased recall on Overall diseased  Healthy recall on object  Overall diseased
object detection, n blood vessels located object detection outputs  recall detection outputs precision
28,834 0.95 0.92 0.87 0.91 0.19

16,663 0.94 0.92 0.86 0.91 0.29

12,400 0.92 0.92 0.85 0.91 0.35

6574 0.9 0.92 0.83 0.92 0.53

5028 0.86 0.93 0.80 0.92 0.58

4228 0.8 0.93 0.74 0.92 0.61

3660 0.77 0.93 0.72 0.92 0.64

The overall performance metrics for the blood vessel
classification stage of the ML pipeline is shown (Table 3).
For the test set, a sensitivity (true positives divided by total
positives) of 94% and a specificity (true negatives divided
by total negatives) of 96% was achieved. A slightly higher
weighting toward the negative classification rate in both the
validation and test set is observed, which may be due to the
large class imbalance between the diseased and healthy sets.
The confusion matrix for the test results is shown
(Figure 5A), demonstrating the specific results for each
class.

To demonstrate the expected trade-off between the true- and
false-positive rates from the binary classification, a receiver
operating characteristic curve was generated for the results on
the test data. This curve is made by sweeping through every
possible discriminative threshold value of a binary classifier
and plotting the corresponding true-positive and false-positive
rate for each point. The area under the curve is a commonly
reported metric in binary classification, and is interpreted as the
probability that a classifier will rank a randomly chosen posi-
tive sample higher than a randomly chosen negative sample.”®
A receiver operating characteristic curve with an area under the

>
w

curve equal to 1 is considered a perfect classifier. The area
under the curve for the blood vessel classification task applied
to the test set was 0.99 (Figure 5B).

A two-dimensional principal component analysis of the
latent space of the validation set was also performed, mapping
the data to the two orthogonal dimensions corresponding to the
highest variance in the training set. This mapping can be used
to visualize the algorithm’s separation of the class populations
and provide some measure of validation that a useful latent
representation has been learned. Two visible distributions
emerge between the healthy and diseased classes (Figure 5C).

Results from Combined Object Detection and
Classification Framework

Both the classification and the object detection phases of the
ML framework were trained separately from one another
during the training phase. However, to get a more accurate
estimate for the performance of the entire pipeline in a
clinical setting, the held-out test slides were run through the
entire ML pipeline, with the predictions made from one
phase being used as the inputs for the next phase. To ensure
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Figure 6

using latent features and patient metadata.
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Total Variance Explained Ratio

0.65
0.6
0.55

0.5
0

Number of Principal Components

10

20
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—Train

—-Test

40

50

Healthy | Diseased

Healthy | Diseased

Results from combined object detection + classification analysis. A: Examination of variance explained by principal components used to trade-off
between the number of principal components used and the ratio of explained variance (or the ratio of the cumulative sum of eigenvalues) in the blood vessel
latent space analysis, with principal components fit to the train set and applied to both the train and test set. Five principal components were selected to be
used for the final analysis, as higher numbers of principal components begin to display evidence of overfitting between the train and test set. B: Confusion
matrix showing global disease classification results on test set, using latent features only. C: Confusion matrix showing global disease classification results
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Table 5 Global Disease Classification Results based on Aggre-
gated Classification Latent Space Vectors, Both with and without
Inclusion of Patient Metadata Features

Latent features, % Latent + metadata, %

Variable Validation Test Validation Test
Sensitivity 98 89 99 100
Specificity 98 96 99 96
Accuracy 98 94 99 97

unbiased assessment, no model parameters at any stage of
the pipeline were influenced by any data from these held-out
test slides. For labeling purposes, any output from the object
detection algorithm that had an intersection over union of
>0.15 with a diseased blood vessel was given a diseased
label, and all other predictions were given a healthy label.
This intersection over union was chosen because, with a
margin of padding being added around each object before
being analyzed with the classification algorithm, it was ex-
pected to cover a sufficient area of diseased tissue for a
classification to be made, a claim that has been validated
qualitatively through shadowing sessions with a pathologist.

Similar to the results of the object detection stage of the
pipeline, the discriminative threshold can be tuned to be
either more strict, and make fewer incorrect predictions at
the expense of finding fewer of the diseased blood vessels,
or more lenient, and make more incorrect predictions while
also finding a higher percentage of the total number of
diseased blood vessels. The results of this trade-off for
seven different discriminative thresholds are shown
(Table 4). The main two performance metrics for compari-
son of these results are the overall diseased recall, which is
the fraction of total diseased blood vessels that were located
and correctly classified by the pipeline, and the overall
diseased precision, which is the fraction of disease pre-
dictions that were actually diseased blood vessels.

Whole Slide Classification through Aggregated Latent
Space Analysis

To obtain a single whole slide classification of disease, the
latent space features from the blood vessel classifications are
sorted, aggregated, and pooled for each patient, using a
pooling technique described (Materials and Methods). This
results in a vector of 1 x 128, on which dimensionality
reduction via principal component analysis is performed.
The obtainable explained variance ratio between using 1 and
50 principal components (eigenvectors) that were fit to the
training data set, applied to both the train and test set, is
shown (Figure 6A). The explained variance ratio for N
principal components is equal to the sum of the N largest
eigenvalues of the covariance matrix of the data, divided by
the total sum of all eigenvalues. The first several principal
components increase the explained variance significantly,
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and it starts leveling off at a higher number of principal
components. Five eigenvectors were selected to be used in
the analysis, to avoid overfitting between the training and
test data that starts to become more apparent at higher
numbers of principal components.

The resulting feature set is concatenated with patient
metadata features and used as the input data to train a
random decision forest™* classification algorithm, which is a
method of ensembling numerous shallow decision trees to
prevent overfitting. A hyperparameter grid search was per-
formed to scan through a set of potential algorithm param-
eters, in which the following parameters were explored:
number of estimators, maximum depth per tree, and
maximum features to consider at each split. Feature splits
were selected using the maximum information gain crite-
rion. A five-fold cross validation was performed for each
parameter combination in the grid search, and the parame-
ters with the best average performance across all five folds
in the cross validation were selected to be used for testing
the model performance. The final chosen parameters were as
follows: number of estimators, 50; maximum depth, 2; and
maximum features, 3. For testing, all five folds were com-
bined and used to train a random decision forest algorithm
with the selected parameters, which was applied to the held-
out test set. The results from this are shown (Table 5) for
both the case of only using latent image features, as well as
the combined analysis with latent image features and patient
metadata. The confusion matrix of these results is shown
(Figure 6, B and C).

Discussion

In the whole slide classification through latent feature
analysis, one case from the diseased and one case from the
healthy class were misclassified. In the combined latent
feature and patient metadata analysis, only one healthy case
was misclassified. At the whole slide level, the algorithm’s
approach of aggregating blood vessel predictions appears to
mitigate the risk of misclassification by incorporating the
highest activated features from the set of classified blood
vessels. This algorithm design was partially motivated by
comments from a perinatal pathologist during shadowing
sessions, that accurate DV classification could be made by a
clear observation of DV in a small number of blood vessels,
regardless of less certain classification of most blood
vessels.

Although there has been recent work in artificial in-
telligence classification for other types of digital pathol-
ogy,”’’ there has been less work in algorithmic DV
classification that could provide a baseline for compari-
son. Redline et al’® performed a group survey of eight
pathologists classifying placental lesions from 20 whole
slide images, reporting that collective individual sensi-
tivity and specificity for finding mural hypertrophy was
88% and 92%, respectively, which is somewhat lower

2119


http://ajp.amjpathol.org

Clymer et al

than our individual blood vessel classification rates of
94% sensitivity and 96% specificity. Furthermore, the area
under the curve of 0.99 for individual test set blood
vessel classifications in this study is within the range
often considered to be excellent.’”"’

The blood vessel classification results (Figure 5) show
higher classification accuracy compared with the combined
object detection and classification pipeline results (Table 4).
This is anticipated because of the variability induced when
the predicted blood vessel bounding boxes do not line up
with the ground truth bounding box locations, which is
caused by error in the object detection stage’s bounding box
predictions. This forces the classification algorithm to make
predictions on partially cut off blood vessels. As such, the
algorithm appears to be overfitting slightly toward classi-
fying blood vessels that are fully visible and centered in an
image. In addition, to achieve a high percentage of identified
diseased blood vessels, a low discriminative threshold for
the object detection is required, resulting in a high number
of overall predictions being made. Despite both a high
sensitivity and specificity, the large number of healthy
patches compared with diseased patches causes a low
diseased precision (true positives divided by total predicted
condition positive). However, the number of false positives
is still low, accounting for the size of an individual blood
vessel compared with the size of a whole slide image. For
example, for an average blood vessel size approximately
150 pixels in length, there would be around 40,000 patches
of this size in an average test slide. A balanced classifier
with even 99% accuracy, tested on all possible patches,
would have hundreds of false positives that could result in a
diseased precision of <0.01. The current study's pipeline is
able to achieve diseased precisions of between 0.19 and
0.64, in part because of the low-resolution object detection
stage that limits the number of patches that need to be
analyzed in the classification stage. Depending on the
importance of minimizing false negatives versus false pos-
itives, the discriminative threshold can be tuned to meet the
user requirements.

One of the main sources for error in the combined ML
pipeline seems to come from partially truncated blood
vessels in the object detection stage. One potential method
to account for this would be to add random crops in the
augmentation pipeline during training, to simulate partially
visible blood vessels. Another aspect to explore could be
further analysis of image regions containing artifacts, such
as bubbles or tissue folds, which were removed from
training in the current study. With a larger data set, the ML
algorithm could potentially be trained to perform a quality
check to recognize these artifacts, as either a preprocessing
module at the beginning of the ML pipeline or additional
classifications through the algorithm’s regular inference.
There has been recent research in the literature dedicated to
whole slide digital image quality checks,”’ which could
potentially be incorporated with the current study's pipeline
to improve robustness.
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The data used in this study consisted of cases from a
single institution. Because variations in scanning techniques
have the possibility of causing biases between local in-
stitutions, future development would benefit from cross-
institutional data sources to help validate the generalizability
of the algorithm. However, some recent research*>* has
found that regularized convolutional neural networks trained
on single-institution data were robust to cohort variations
during validation on data from other institutions.

Another matter for consideration when applying this al-
gorithm clinically is the method in which the output is
shown to the user who may or may not be familiar with
artificial intelligence, to increase explainability and confi-
dence, as well as efficiency in analysis. One possible
method of output would be to provide a gallery of high-
resolution image patches to the physician, that are sorted by
the confidence level of the algorithm, so that the user is first
shown the blood vessels that are most strongly considered to
show disease, to allow the physician to efficiently sort
through a large amount of imaging data. Furthermore, more
data could allow for additional complexity in placental
analysis, both in terms of expanding beyond a binary clas-
sification to account for multiple grades and morphologies
of DV as well as expanding the placental regions, structures,
and pathologies to be analyzed. In addition, in the future, it
would be of interest to compare the current study methods
with a set of new experiments using only the clinical met-
adata, to learn the types of cases that are best served by WSI
analysis.

In summary, the proposed ML framework introduces a
hierarchical method to analyze histologic digital images, for
the purpose of automating placental DV lesion inspection.
Results from this data set show the algorithm’s ability to
discriminate key features and candidate locations within a
high-resolution WSI while keeping false positives mini-
mized. This type of artificial intelligence approach can allow
many more placentas to be screened with fewer patholo-
gists, increasing DV detection for mothers who are at risk
for preeclampsia in subsequent pregnancies.” When this risk
of preeclampsia is identified earlier, it allows for preventa-
tive treatment, such as low-dose aspirin to delay the pro-
gression of the disease during pregnancy.**" This can
accordingly reduce health care expenses and reduce both
mother and neonatal morbidity, particularly in the devel-
oping world where perinatal pathologist expertise may not
be available.
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