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Motile dislocations knead odd crystals into whorls
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The competition between thermal fluctuations and potential forces governs the stability of matter in equilibrium, in particular
the proliferation and annihilation of topological defects. However, driving matter out of equilibrium allows for a new class of
forces that are neither attractive nor repulsive, but rather transverse. The possibility of activating transverse forces raises the
question of how they affect basic principles of material self-organization and control. Here we show that transverse forces orga-
nize colloidal spinners into odd elastic crystals crisscrossed by motile dislocations. These motile topological defects organize
into a polycrystal made of grains with tunable length scale and rotation rate. The self-kneading dynamics drive super-diffusive
mass transport, which can be controlled over orders of magnitude by varying the spinning rate. Simulations of both a minimal
model and fully resolved hydrodynamics establish the generic nature of this crystal whorl state. Using a continuum theory,
we show that both odd and Hall stresses can destabilize odd elastic crystals, giving rise to a generic state of crystalline active
matter. Adding rotations to a material's constituents has far-reaching consequences for continuous control of structures and

transport at all scales.

the energetics of topological defects in two-dimensional

melting have provided a lens through which to understand
the phases of condensed matter'~, such as superfluid films, colloids
and liquid crystals*®. Although these systems span a wide range of
particle interactions, scales and intermediate phases, they are all
unified in that the forces between constituents are primarily longi-
tudinal, their dynamics are equilibrium, and their interactions are
symmetric under both time-reversal and parity. What happens if
the inter-particle interactions include transverse forces as well'*-'*2
This deceivingly minimal generalization can break these assump-
tions at a fundamental level.

In equilibrium, transverse forces cannot alter the phase behav-
iour of condensed matter. However, there is no such guarantee out
of equilibrium, and such transverse interactions generically occur in
collections of naturally and artificially spinning objects. Examples
include planetary disks'", spinning cell aggregates and membrane
inclusions®”, active colloids and grains'>'”'%**-%, atmospheric
scale dynamics®®?, parity-breaking fluids**~** and simple models of
turbulence®. Yet to be determined are how this more general and
ubiquitous form of matter generically self-organizes, the nature of
its stable phases and how it transitions between them.

Figure la and Supplementary Video 1 show a ~200%200-pm
region within a centimetre-scale monolayer of magnetic colloids.
Each particle is uniformly spun by an externally applied magnetic
field, resulting in their self-organization into a dynamic and dense
phase. The active rotation of the magnets gives rise to both longi-
tudinal magnetic attraction and sustained chiral transverse hydro-
dynamic interactions, as illustrated in the inset of Fig. 1a. Crucially,
the forces are separation-dependent and can be tuned by varying
the rotation frequency, providing an ideal platform for exploring
how transverse interactions shape the dense phases of chiral matter.

| he celebrated interplay between configurational entropy and

On spinning our particles, we find that the system generically
self-organizes into crystal ‘whorls. A snapshot, coloured by the phase
of the crystalline bond-orientational order parameter, y(x) (Fig. 1b
and Supplementary Video 2), reveals a polycrystalline arrangement
of grains of triangular crystal order separated by topological defects
organized into grain boundaries”. This picture is reminiscent of
metallurgical crystalline phases with quenched disorder; however,
unlike their crystalline static counterpart, the structure is continu-
ally evolving, and grain boundaries move, collapse and spontane-
ously emerge as crystalline domains rotate like vortical whorls (Fig.
lc and Supplementary Videos 3 and 12). Segmenting the phase
into crystalline domains enables us to study its statistical proper-
ties, revealing that, after a short transient, the domains within this
polycrystal settle to a constant characteristic size (Supplementary
Section 2.2). This scale can be tuned by altering the particle rotation
rate alone, yielding either substantially larger or smaller crystalline
whorls, as in Fig. 3.

What powers this lively steady state? Careful inspection reveals
that the motion of topological defects in the crystalline structure
is unlike the familiar motion of dislocations found in conventional
passive materials. Conventional dislocations are either stationary or
diffuse bidirectionally driven by thermal fluctuations. In our chiral
medium, we instead observe that they move ballistically, as shown
in Fig. 2a and Supplementary Video 4.

We can gain an intuitive understanding of what powers disloca-
tion motility by inspecting the plastic deformations of the crystal
brought about by dislocation glide. As shown in Fig. 2b, dislocation
glide reflects the displacement of one crystal plane over the other.
As this deformation is equal parts rotation and shear, it is naturally
actuated by the rotational drive.

To isolate this phenomenon, we introduce a minimal model of
the overdamped dynamics of spinners interacting via transverse,

James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA. 2Basque Center for Applied Mathematics (BCAM), Bilbao, Spain.
3Center for Computational Biology, Flatiron Institute, New York, NY, USA. “Laboratoire de Physique, ENS de Lyon, Université de Lyon, Université Claude
Bernard, CNRS, Lyon, France. *Courant Institute, New York University, New York, NY, USA. ¢James Franck Institute, Enrico Fermi Institute and Department of
Physics, University of Chicago, Chicago, IL, USA. "Present address: Laboratory for Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland. ™e-mail: mshelley@flatironinstitute.org; denis.bartolo@ens-lyon.fr; wtmirvine@uchicago.edu

212 NATURE PHYSICS | VOL 18 | FEBRUARY 2022 | 212-218 | www.nature.com/naturephysics


mailto:mshelley@flatironinstitute.org
mailto:denis.bartolo@ens-lyon.fr
mailto:wtmirvine@uchicago.edu
http://orcid.org/0000-0002-9603-5501
http://orcid.org/0000-0003-0130-3532
http://orcid.org/0000-0002-9732-8875
http://orcid.org/0000-0001-7660-5012
http://orcid.org/0000-0002-4835-0339
http://orcid.org/0000-0002-4925-2060
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-021-01429-3&domain=pdf
http://www.nature.com/naturephysics

NATURE PHYSICS ARTICLES

(Bap) %

Fig. 1] A crystal whorl state. a, A dense and dynamic phase of colloids spinning at frequency £ and interacting through both longitudinal and transverse
pairwise interactions is directly imaged with a microscope through crossed polarizers. The rotation-averaged position of each particle appears as a bright
spot after background subtraction, time-averaging and blurring, revealing intermittent crystalline order (Supplementary Video 1). Magnifying a region
reveals a highly ordered crystalline structure (top), and time-averaging further reveals a rotating flow (bottom). b, To further illuminate the polycrystalline
structure of this phase, we colour particles by the angle of the local bond-orientational order parameter 6,=arg(y,). The polycrystal can be segmented
into domains, and boundaries are drawn between them (Supplementary Video 2). The inset highlights the individual defects between grains, coloured by
the number of neighbours, underlying grain boundaries. ¢, The polycrystal is dynamical and displays intermittent vortical flows, as revealed when each
region is coloured by its vorticity @ (Supplementary Video 3). The inset presents the same vortical information through the streamlines of the particle flow

(Supplementary Video 12).

frequency-dependent forces and potential longitudinal forces
(Supplementary Section 4.1)*. This minimal approach is informed
by full hydrodynamic simulations of particles that closely approxi-
mate our experimental system (Supplementary Section 5.1). The
transverse forces arise primarily from near-field hydrodynamic
interactions, while the longitudinal interactions arise primarily
from both steric repulsion and magnetic attraction (Supplementary
Section 5.5).

By initializing simulations with a single dislocation in an oth-
erwise perfectly ordered triangular crystal (Supplementary Videos
5 and 6), we are able to observe the motion of dislocations iso-
lated from interactions with other defects in both minimal and
full hydrodynamic simulations. As shown in Fig. 2c, we observe
that the glide speed is frequency-dependent. When the longitudi-
nal interactions between particles are isotropic, corresponding to
time-averaged magnetic interactions (Supplementary Sections 4.5
and 5.3), the glide velocity is a monotonically increasing function
with a threshold (Fig. 2c and Supplementary Section 4.5.1). This is
consistent with the notion of a unidirectional propulsion resisted
by a local Peierls barrier’*. In the case of anisotropic dipolar
interactions, at low frequencies we observe a correction to defect
propulsion brought about by a competition between magnetic and
rotational interactions (Fig. 2c).

The motility of individual dislocations provides a substantial
twist on the collective dynamics of defects normally driven by
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elastic interactions’~*. For example two defects that would nor-
mally attract and annihilate in response to elastic forces can instead
unbind when propelled by transverse forces, as shown in Fig. 2d.

The collective dynamics of several defects is similarly affected.
Figure 2e shows snapshots from simulations in which we initial-
ized a finite-sized grain in an otherwise perfect crystal and varied
the rotation frequency (Supplementary Videos 7 and 8). Altering
the frequency affects transverse interactions most strongly and thus
enables us to tune the balance between stabilizing elastic interac-
tions and defect motility. As shown in Fig. 2e, the grain size is set
by the competition between motility and defect interactions. At low
rotation frequencies the grains are stable, and their size becomes
larger when the defect’s propulsion direction is outwards. Similarly,
they shrink and collapse for inwards defect motility. When the sys-
tem is driven sufficiently strongly, the defect motility overpowers
the elastic interactions, resulting in unstable grain boundaries.

In the polycrystalline state we observe in our experiments, the
instability of grain boundaries results in the exchange of disloca-
tions between adjacent grains, as well as defect proliferation. These
nonlinear dynamics drive the system to the dynamical crystal whorl
state, erasing any memory of the initial configuration.

The flow field v(x;) that emerges from the combination of motil-
ity and proliferation can be readily measured from individual par-
ticle trajectories and its corresponding vorticity w(x;) is shown in
Fig. 1c. When time-averaged, this flow field corresponds to a quiet
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Fig. 2 | Motile dislocations. Dislocations in the chiral crystalline phase behave

Q2 x sign(Ad) (s7)

like active particles. a, In the experiment, dislocations are observed to

move ballistically in the direction of their Burgers vector. The colourmap is the same as in Fig. 1b. b, This behaviour is reproduced in simulations of
both the full hydrodynamic and minimal models by initializing a configuration corresponding to a single dislocation in an otherwise undefected crystal.
In a crystal of particles interacting via transverse forces, we can intuit the dislocation’s direction of motion from the relative displacement of the crystal,

which is coloured by the relative density 8p = p — p normalized by the standa
speed v, depends weakly on the details of the interactions. In both the minimal

rd deviation ¢, (Supplementary Section 2.5). ¢, The precise dislocation
and full hydrodynamic models, the speed increases with frequency for

isotropic dipole interactions (top). By contrast, dislocation motility is reversed at a frequency threshold for anisotropic dipole interactions (bottom).

Error bars represent the fit covariance (minimal) and standard error (full). d, By tuning the frequency £ and initial separation r,, two defects that would
otherwise attract and annihilate can be made to repel, overwhelming even elastic forces with transverse ones. The colourmap is the same as in Fig. 1b.

e, The collective dynamics of many defects arranged to form a grain boundary inherits this sensitivity to transverse forces. Such a grain boundary collapses
when elastic forces dominate, and expands without bound when transverse forces dominate. The colourmap is the same as in Fig. 1b, and the orange lines
indicate the position of the grain boundary in the initial and present states, for comparison.

bulk (Supplementary Section 2.3) and a lively edge'®. However, our
time-resolved measurements reveal instantaneous dynamics shaped
by unsteady vortical flows, as illustrated in Fig. 1c. The dynamical
and structural pictures of this chiral whorl state are aligned. As seen
in Fig. 1b,c, the grain boundaries support strongly localized flows
with a vorticity opposite to the particle rotation. By contrast, the
grains correspond to low positive vorticity, intermittently inter-
rupted by isolated dislocations zipping through.

In this chaotic stationary state, the balance between even and odd
forces remains the controlling parameter that determines the char-
acteristic size of the chiral whorls, which can be viewed through the
vorticity in Fig. 3a and the distribution of crystalline grains in Fig.
3b,c (Supplementary Sections 2.2, 2.3, 4.4 and 5.2). The sustained
proliferation and annihilation of motile dislocations is reminiscent
of active nematics where motile disclinations power spatiotemporal
chaos”. Here, dislocations give rise to self-kneading crystal whorls.

This self-kneading of the crystal phase results in enhanced mix-
ing, which can be qualitatively captured by artificially tagging the
colloids and watching them spread (Fig. 3d and Supplementary
Video 11). As shown in Fig. 3e, an artificially dyed blob spreads
anisotropically before disintegrating into separate blobs, hinting at
a mechanism reminiscent of Richardson diffusion in turbulence.
We investigate this quantitatively by tracking the mean-squared
separation between pairs of particles in the chiral phase. Figure 3f
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shows that pair separation is super-diffusive above a separation
that corresponds to the characteristic grain size due to a punctu-
ated mix of conventional diffusion within crystalline whorls and
Richardson-like diffusion between them. Note that tuning the fre-
quency of rotation alters both the basic unit of time as well as the
domain size (Fig. 3d,e), enabling effective diffusion rates to be tuned
over orders of magnitude.

To determine whether the crystal whorl state is generic we
repeated the experiments shown in Fig. 1 while varying the applied
magnetic field strength, adding a static vertical component of
magnetic field and varying the shape of the magnetic particles
(Supplementary Section 2.6). We also varied the microscopic inter-
actions in our minimal model simulations (Supplementary Section
4.8). Finally, in full hydrodynamic simulations, we simulated
spheres and cubes that interact both magnetically and via isotro-
pic attraction potentials (Supplementary Section 5.2). In all cases
we find that, when transverse interactions dominate, the system
self-organizes into a crystal whorl state, supporting the notion that
this state is generic. To gain further insight into the origins of this
new state of matter, we adopt a continuum perspective and inves-
tigate destabilization mechanisms within this approach. As illus-
trated in Fig. 4, the microscopic rotational drive induces transverse
interactions between the constituent particles that in turn give rise
to active stresses in the crystal phase. To gain an essential insight,
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Fig. 3 | Transport in the crystalline whorl state. a, The self-kneading of crystalline patches of material is tunable through the rotation frequency Q to yield
a range of scales. The colourmap is the same as in Fig. Tc. b, These states are characterized by an exponential distribution p(&,) of grain sizes &, Dashed
straight lines represent the slope of the associated exponential fit. ¢, Accordingly, the average size of grains in the steady state tends to decrease with
frequency. Error bars, which are smaller than markers, represent standard error. d, The constant structural kneading of the chiral whorl state by topological
defects introduces novel mixing properties that can be imaged by artificially dying stratified layers in a crystal that subsequently bleed into each other. e,
In contrast to conventional diffusive processes, the smearing of the fluid over time is a strongly anisotropic process, in which an example blob of fluid is
pulled apart by the flow between two chiral whorls. f, The pairwise separation (8x)? plotted versus time t for particles initially in close proximity suggests
that this abnormal spreading gives rise to super-diffusive behaviour, which itself is a function of rotational frequency. Error bars represent standard error.

we first consider the simplified case of a material in which neigh-
bouring particles interact via constant pairwise transverse forces.
Figure 4 shows how such interactions naturally give rise to a uni-
form antisymmetric odd stress'**>*, as well as all elastic moduli that
can arise in an isotropic solid when energy conservation cannot be
assumed™. As shown in Fig. 4b,c, the moduli originate geometri-
cally through the changes in perimeter of an infinitesimal material
patch. A dilation (Fig. 4b) does not alter the total force on the edge,
but increases the perimeter, thereby coupling dilation and rotational
stress. Similarly, a shear deformation (Fig. 4c) alternately increases
and decreases the length of the edges, giving rise to a rotated shear
stress (Supplementary Section 6.2).

The addition of spatial dependence to the interaction forces
(Supplementary Section 6.3) makes estimating the moduli more
challenging, but it does not alter the basic conclusion that a crystal
of spinning particles is a quintessential odd elastic solid. Measuring
the deformation field in a collection of nearly circular, monocrystal-
line droplets (Fig. 4¢,f) provides corroborating evidence from exper-
iments and simulations. The droplets rotate at a constant angular
velocity that decreases with their radius R. Regardless of the droplet
size, they consistently display a radial strain profile that varies from
compressive in the centre to dilational on the edge. Within an elastic
description, this qualitative feature must originate from odd elastic
moduli. A continuum prediction of the strain field (Supplementary
Section 7.2) confirms this intuition and predicts the shape of the
density profile, as illustrated in Fig. 4d.

A natural question to ask is then whether odd elastic sol-
ids powered by odd stresses are linearly stable. We consider
the continuum description of an elastic solid with a local dis-
placement u(r, t) and local velocity v(r, t), that is allowed to
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experience all stresses consistent with broken parity and time
reversal (Supplementary Sections 6.1 and 8.1)'**". In addition to
elastic contributions, the symmetric stress includes even and odd
viscous contributions 6;;= —pd; + K 04, + 11;10,V,., where p is the
pressure, Ky, is the elasticity tensor and 7, is the viscosity tensor.
The inner drive imposed by the spinners is encoded by the anti-
symmetric stress o} = 2#pe;2, where g; is the Levi-Civita sym-
bol. Ignoring inertia, the dynamics is given by the balance between
viscoelastic stresses and substrate drag defined by a constant fric-

tion coefficient I":
Iv=V-6+V-cP" (1)

and the continuity equation dp+V - (pv) =0.

Linearizing about a homogeneous quiescent base state u=v=0
and p=p, and making the ansatz u, v, p x exp (—iwt + ik - r), we
readily obtain an expression for the dispersion v=Re(w) and damp-
ing a=Im(w) of displacement and density waves (Supplementary
Section 8.2). We find a generic scenario yielding exponential ampli-
fication of density fluctuations. A number of different combinations
of off-diagonal material parameters in 1 and K result in different
instabilities. However, they all reflect the same mechanistic picture,
sketched in Fig. 5a. A density fluctuation is converted to a localized
rotation. The resulting net shear across the density fluctuation is in
turn converted into an outward force amplifying the initial pertur-
bation, and so on, to defect unbinding. Competition with the sta-
bilizing influence of the conventional bulk and the shear moduli of
the elastic solid determine the consistent shape of the dispersion
curves shown in Fig. 5a and Supplementary Section 8.2. Crucially,
this generic mechanism relies on the coupling between stresses and
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Fig. 4 | Odd response in the steady state. a, A patch of material built of particles that interact with their neighbours via constant, separation-independent
transverse forces f parallel to the material's edge sustains a net odd stress 2,22 =nf/L on its edge, where n is the number of particles on an edge of length
L (see Supplementary Section 6.2 for a more general discussion). On each edge, the macroscopic total force F=nf is unchanged upon dilating the edge, but
as the length L of the boundary is increased, there is a net change in stress A(F/L) in a direction opposite to the odd stress. b, For a uniform dilation, the
deformation leads to a net counter-rotational stress. This coupling between dilation and rotation is denoted by K2l in the elasticity tensor. ¢, Similarly, for

a shear deformation, the system acquires a net rotated shear stress, representative of the odd elasticity K. d, In a droplet of crystalline material, the odd
stress induces a net rotation, balanced by friction with the substrate. The naturally occurring azimuthal distortion generates, via the odd elastic moduli, a
characteristic radial density dependence (Supplementary Section 7.2). e, We observe this signature of odd elastic response in experiments on droplets by
measuring the dilational component of the strain through the relative density 8p/p. f, In both the experiments and simulations, 8p/p transitions radially
within a droplet from contracting to dilating in a manner independent of droplet radius R. In both cases, we obtain excellent qualitative agreement with the
theoretical prediction for the transition radius, denoted by the dashed line (Supplementary Section 7.2).

strains having different spatial symmetries, which is only allowed
when time-reversal and parity symmetries are broken at the micro-
scopic level>*.

To test this simplified model, we measure the flows v(x) that
occur in the bulk of a large crystallite driven at finite rotation fre-
quency (Supplementary Video 10) and measure the Fourier spec-
trum of all scalar measures of deformation, including velocity and
strain rate (Supplementary Section 2.4). Figure 5b shows that, fol-
lowing the onset of rotations, the azimuthally averaged spectra
evolve before eventually settling into a steady state. By comparing
the spectra at different times, we extract the mode growth curves
shown in Fig. 5 for experiments (Fig. 5¢) and simulations (Fig. 5f,g
and Supplementary Sections 2.4, 4.8 and 5.4). They reveal the pres-
ence of an instability at finite wavelength for all modes with rel-
atively constant growth above a characteristic scale. As shown in
Fig. 5¢, a spatial map of the integrated growth rate reveals that this
instability is consistent with the destabilization of our chiral crystal.

We note, however, that in finite crystalline domains, defects are
readily produced at the boundary. Their subsequent propulsion into
the bulk could curtail or otherwise affect the full development of the
instability. Crucially, we have not observed the spontaneous appear-
ance of defects in the middle of a crystallite in our experiments.
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These combined observations suggest the existence of an additional
mechanism for destabilization in which motile defects nucleate at
the boundary and invade the crystal phase, actively fracturing the
bulk into whorls.

Our minimal model simulations provide an ideal arena to
investigate this possibility. By varying the microscopic interaction
parameters, we can tune the system from linearly stable to linearly
unstable (Supplementary Section 4.8.1). Remarkably, in both the
stable and unstable regimes, we observe that initially perfectly crys-
talline droplets are destabilized by the production of defects at the
edges of the droplets, which subsequently invade the bulk in a vis-
ible front (Fig. 5d,e). The only difference is that, deep in the unstable
regime (Fig. 5e), we also observe defect nucleation in the bulk of
the droplet before the front arrives. Notably, in both cases, a crystal
whorl emerges as the steady state (Supplementary Section 4.8.2).
This mechanism of destabilization has a different origin from the
linear instability described above. Within our continuum approach,
the presence of a constant background odd stress plays no role in
the crystal’s stability—rather, its primary effect is to drive defect
propulsion (Supplementary Sections 7.3 and 8.2.1).

Remarkably, measurements of the spectral growth in both
regimes, performed for simulations initialized in a polycrystalline
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Fig. 5 | Measuring an elasto-hydrodynamic instability. a, The chiral phase responds to a perturbation in spinner density by (1) coupling internal rotations
to flow gradients that are (2) transformed into Hall stresses that (3) destabilize the crystal further (Supplementary Section 8.1). A linear stability analysis
of this model yields predictions for spectral growth curves arising from the interplay between odd transport coefficients (,, K,) and Magnus-like couplings
(njq, Ki, ni) whose generic shape we show here. b, As the chiral phase approaches the steady state of Fig. 1, we can measure the spectrum of its flow

to see decay at large scales and growth at small scales. ¢, The total amount of growth measured at these smaller scales can be mapped over time and
compared to the grain boundaries to reveal enhanced growth within initially crystalline patches and vanishing growth at later times (Supplementary Section
2.4). The estimated spectrum of growth @(q) reveals stabilization at scales A>> {&,) and constant destabilization at scales A< {&,) .d, In simulations,
we tune the inter-particle interaction range to prepare a theoretically stable crystal, for which the crystal is destabilized through dislocation production to
reach the whorl state. e, Similarly, simulations that are theoretically unstable can become unstable in response to bulk density fluctuations. The colourmap
is the same as in Fig. 1b. f, The estimated spectrum and spatial map of growth for a theoretically stable simulation resembles the experiment when a
polycrystal is destabilized. g, The same signatures are observed in a linearly unstable simulation. The colourmaps in f,g are the same as in c.

phase, display general shapes and spatial maps that are similar to
those observed in the experiment (Fig. 5f,g). The similar shape of
the resulting curves demonstrates the challenge of disentangling the
precise origin of the growth in terms of linear response coefficients.
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Breaking parity by spinning a material’s constituents gives rise to
transverse forces that fundamentally alter the organization of mat-
ter. Spinner crystals generically melt into a dynamical state driven
by motile dislocations. The resulting, tunable crystal whorl state

217


http://www.nature.com/naturephysics

ARTICLES

NATURE PHYSICS

opens new avenues for the control of structure and transport, from
synthetic materials to biological colonies.

Note added in proof: In the concluding stages of our work we
became aware of a complementary, independent effort by the
groups of N. Fakhri and J. Dunkel who studied parity-breaking
crystal dynamics in a bio-physical system (unpublished).
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