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The celebrated interplay between configurational entropy and 
the energetics of topological defects in two-dimensional 
melting have provided a lens through which to understand 

the phases of condensed matter1–3, such as superfluid films, colloids 
and liquid crystals4–9. Although these systems span a wide range of 
particle interactions, scales and intermediate phases, they are all 
unified in that the forces between constituents are primarily longi-
tudinal, their dynamics are equilibrium, and their interactions are 
symmetric under both time-reversal and parity. What happens if 
the inter-particle interactions include transverse forces as well10–18? 
This deceivingly minimal generalization can break these assump-
tions at a fundamental level.

In equilibrium, transverse forces cannot alter the phase behav-
iour of condensed matter. However, there is no such guarantee out 
of equilibrium, and such transverse interactions generically occur in 
collections of naturally and artificially spinning objects. Examples 
include planetary disks19, spinning cell aggregates and membrane 
inclusions20,21, active colloids and grains13,17,18,22–27, atmospheric 
scale dynamics28,29, parity-breaking fluids30–35 and simple models of 
turbulence36. Yet to be determined are how this more general and 
ubiquitous form of matter generically self-organizes, the nature of 
its stable phases and how it transitions between them.

Figure 1a and Supplementary Video 1 show a ~200 × 200-μm 
region within a centimetre-scale monolayer of magnetic colloids. 
Each particle is uniformly spun by an externally applied magnetic 
field, resulting in their self-organization into a dynamic and dense 
phase. The active rotation of the magnets gives rise to both longi-
tudinal magnetic attraction and sustained chiral transverse hydro-
dynamic interactions, as illustrated in the inset of Fig. 1a. Crucially, 
the forces are separation-dependent and can be tuned by varying 
the rotation frequency, providing an ideal platform for exploring 
how transverse interactions shape the dense phases of chiral matter.

On spinning our particles, we find that the system generically 
self-organizes into crystal ‘whorls’. A snapshot, coloured by the phase 
of the crystalline bond-orientational order parameter, ψ6(x) (Fig. 1b 
and Supplementary Video 2), reveals a polycrystalline arrangement 
of grains of triangular crystal order separated by topological defects 
organized into grain boundaries37. This picture is reminiscent of 
metallurgical crystalline phases with quenched disorder; however, 
unlike their crystalline static counterpart, the structure is continu-
ally evolving, and grain boundaries move, collapse and spontane-
ously emerge as crystalline domains rotate like vortical whorls (Fig. 
1c and Supplementary Videos 3 and 12). Segmenting the phase 
into crystalline domains enables us to study its statistical proper-
ties, revealing that, after a short transient, the domains within this 
polycrystal settle to a constant characteristic size (Supplementary 
Section 2.2). This scale can be tuned by altering the particle rotation 
rate alone, yielding either substantially larger or smaller crystalline 
whorls, as in Fig. 3.

What powers this lively steady state? Careful inspection reveals 
that the motion of topological defects in the crystalline structure 
is unlike the familiar motion of dislocations found in conventional 
passive materials. Conventional dislocations are either stationary or 
diffuse bidirectionally driven by thermal fluctuations. In our chiral 
medium, we instead observe that they move ballistically, as shown 
in Fig. 2a and Supplementary Video 4.

We can gain an intuitive understanding of what powers disloca-
tion motility by inspecting the plastic deformations of the crystal 
brought about by dislocation glide. As shown in Fig. 2b, dislocation 
glide reflects the displacement of one crystal plane over the other. 
As this deformation is equal parts rotation and shear, it is naturally 
actuated by the rotational drive.

To isolate this phenomenon, we introduce a minimal model of 
the overdamped dynamics of spinners interacting via transverse, 
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frequency-dependent forces and potential longitudinal forces 
(Supplementary Section 4.1)38. This minimal approach is informed 
by full hydrodynamic simulations of particles that closely approxi-
mate our experimental system (Supplementary Section 5.1). The 
transverse forces arise primarily from near-field hydrodynamic 
interactions, while the longitudinal interactions arise primarily 
from both steric repulsion and magnetic attraction (Supplementary 
Section 5.5).

By initializing simulations with a single dislocation in an oth-
erwise perfectly ordered triangular crystal (Supplementary Videos 
5 and 6), we are able to observe the motion of dislocations iso-
lated from interactions with other defects in both minimal and 
full hydrodynamic simulations. As shown in Fig. 2c, we observe 
that the glide speed is frequency-dependent. When the longitudi-
nal interactions between particles are isotropic, corresponding to 
time-averaged magnetic interactions (Supplementary Sections 4.5 
and 5.3), the glide velocity is a monotonically increasing function 
with a threshold (Fig. 2c and Supplementary Section 4.5.1). This is 
consistent with the notion of a unidirectional propulsion resisted 
by a local Peierls barrier39,40. In the case of anisotropic dipolar 
interactions, at low frequencies we observe a correction to defect 
propulsion brought about by a competition between magnetic and 
rotational interactions (Fig. 2c).

The motility of individual dislocations provides a substantial 
twist on the collective dynamics of defects normally driven by 

elastic interactions41–46. For example two defects that would nor-
mally attract and annihilate in response to elastic forces can instead 
unbind when propelled by transverse forces, as shown in Fig. 2d.

The collective dynamics of several defects is similarly affected. 
Figure 2e shows snapshots from simulations in which we initial-
ized a finite-sized grain in an otherwise perfect crystal and varied 
the rotation frequency (Supplementary Videos 7 and 8). Altering 
the frequency affects transverse interactions most strongly and thus 
enables us to tune the balance between stabilizing elastic interac-
tions and defect motility. As shown in Fig. 2e, the grain size is set 
by the competition between motility and defect interactions. At low 
rotation frequencies the grains are stable, and their size becomes 
larger when the defect’s propulsion direction is outwards. Similarly, 
they shrink and collapse for inwards defect motility. When the sys-
tem is driven sufficiently strongly, the defect motility overpowers 
the elastic interactions, resulting in unstable grain boundaries.

In the polycrystalline state we observe in our experiments, the 
instability of grain boundaries results in the exchange of disloca-
tions between adjacent grains, as well as defect proliferation. These 
nonlinear dynamics drive the system to the dynamical crystal whorl 
state, erasing any memory of the initial configuration.

The flow field v(xi) that emerges from the combination of motil-
ity and proliferation can be readily measured from individual par-
ticle trajectories and its corresponding vorticity ω(xi) is shown in 
Fig. 1c. When time-averaged, this flow field corresponds to a quiet 
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Fig. 1 | A crystal whorl state. a, A dense and dynamic phase of colloids spinning at frequency Ω and interacting through both longitudinal and transverse 
pairwise interactions is directly imaged with a microscope through crossed polarizers. The rotation-averaged position of each particle appears as a bright 
spot after background subtraction, time-averaging and blurring, revealing intermittent crystalline order (Supplementary Video 1). Magnifying a region 
reveals a highly ordered crystalline structure (top), and time-averaging further reveals a rotating flow (bottom). b, To further illuminate the polycrystalline 
structure of this phase, we colour particles by the angle of the local bond-orientational order parameter θ6=arg(ψ6). The polycrystal can be segmented 
into domains, and boundaries are drawn between them (Supplementary Video 2). The inset highlights the individual defects between grains, coloured by 
the number of neighbours, underlying grain boundaries. c, The polycrystal is dynamical and displays intermittent vortical flows, as revealed when each 
region is coloured by its vorticity ω (Supplementary Video 3). The inset presents the same vortical information through the streamlines of the particle flow 
(Supplementary Video 12).
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bulk (Supplementary Section 2.3) and a lively edge16. However, our 
time-resolved measurements reveal instantaneous dynamics shaped 
by unsteady vortical flows, as illustrated in Fig. 1c. The dynamical 
and structural pictures of this chiral whorl state are aligned. As seen 
in Fig. 1b,c, the grain boundaries support strongly localized flows 
with a vorticity opposite to the particle rotation. By contrast, the 
grains correspond to low positive vorticity, intermittently inter-
rupted by isolated dislocations zipping through.

In this chaotic stationary state, the balance between even and odd 
forces remains the controlling parameter that determines the char-
acteristic size of the chiral whorls, which can be viewed through the 
vorticity in Fig. 3a and the distribution of crystalline grains in Fig. 
3b,c (Supplementary Sections 2.2, 2.3, 4.4 and 5.2). The sustained 
proliferation and annihilation of motile dislocations is reminiscent 
of active nematics where motile disclinations power spatiotemporal 
chaos47. Here, dislocations give rise to self-kneading crystal whorls.

This self-kneading of the crystal phase results in enhanced mix-
ing, which can be qualitatively captured by artificially tagging the 
colloids and watching them spread (Fig. 3d and Supplementary 
Video 11). As shown in Fig. 3e, an artificially dyed blob spreads 
anisotropically before disintegrating into separate blobs, hinting at 
a mechanism reminiscent of Richardson diffusion in turbulence. 
We investigate this quantitatively by tracking the mean-squared 
separation between pairs of particles in the chiral phase. Figure 3f  

shows that pair separation is super-diffusive above a separation 
that corresponds to the characteristic grain size due to a punctu-
ated mix of conventional diffusion within crystalline whorls and 
Richardson-like diffusion between them. Note that tuning the fre-
quency of rotation alters both the basic unit of time as well as the 
domain size (Fig. 3d,e), enabling effective diffusion rates to be tuned 
over orders of magnitude.

To determine whether the crystal whorl state is generic we 
repeated the experiments shown in Fig. 1 while varying the applied 
magnetic field strength, adding a static vertical component of 
magnetic field and varying the shape of the magnetic particles 
(Supplementary Section 2.6). We also varied the microscopic inter-
actions in our minimal model simulations (Supplementary Section 
4.8). Finally, in full hydrodynamic simulations, we simulated 
spheres and cubes that interact both magnetically and via isotro-
pic attraction potentials (Supplementary Section 5.2). In all cases 
we find that, when transverse interactions dominate, the system 
self-organizes into a crystal whorl state, supporting the notion that 
this state is generic. To gain further insight into the origins of this 
new state of matter, we adopt a continuum perspective and inves-
tigate destabilization mechanisms within this approach. As illus-
trated in Fig. 4, the microscopic rotational drive induces transverse 
interactions between the constituent particles that in turn give rise 
to active stresses in the crystal phase. To gain an essential insight, 
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Fig. 2 | Motile dislocations. Dislocations in the chiral crystalline phase behave like active particles. a, In the experiment, dislocations are observed to  
move ballistically in the direction of their Burgers vector. The colourmap is the same as in Fig. 1b. b, This behaviour is reproduced in simulations of  
both the full hydrodynamic and minimal models by initializing a configuration corresponding to a single dislocation in an otherwise undefected crystal.  
In a crystal of particles interacting via transverse forces, we can intuit the dislocation’s direction of motion from the relative displacement of the crystal, 
which is coloured by the relative density δρ = ρ − ρ̄ normalized by the standard deviation σρ (Supplementary Section 2.5). c, The precise dislocation 
speed vd depends weakly on the details of the interactions. In both the minimal and full hydrodynamic models, the speed increases with frequency for 
isotropic dipole interactions (top). By contrast, dislocation motility is reversed at a frequency threshold for anisotropic dipole interactions (bottom).  
Error bars represent the fit covariance (minimal) and standard error (full). d, By tuning the frequency Ω and initial separation r0, two defects that would  
otherwise attract and annihilate can be made to repel, overwhelming even elastic forces with transverse ones. The colourmap is the same as in Fig. 1b.  
e, The collective dynamics of many defects arranged to form a grain boundary inherits this sensitivity to transverse forces. Such a grain boundary collapses 
when elastic forces dominate, and expands without bound when transverse forces dominate. The colourmap is the same as in Fig. 1b, and the orange lines 
indicate the position of the grain boundary in the initial and present states, for comparison.
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we first consider the simplified case of a material in which neigh-
bouring particles interact via constant pairwise transverse forces. 
Figure 4 shows how such interactions naturally give rise to a uni-
form antisymmetric odd stress16,48,49, as well as all elastic moduli that 
can arise in an isotropic solid when energy conservation cannot be 
assumed50. As shown in Fig. 4b,c, the moduli originate geometri-
cally through the changes in perimeter of an infinitesimal material 
patch. A dilation (Fig. 4b) does not alter the total force on the edge, 
but increases the perimeter, thereby coupling dilation and rotational 
stress. Similarly, a shear deformation (Fig. 4c) alternately increases 
and decreases the length of the edges, giving rise to a rotated shear 
stress (Supplementary Section 6.2).

The addition of spatial dependence to the interaction forces 
(Supplementary Section 6.3) makes estimating the moduli more 
challenging, but it does not alter the basic conclusion that a crystal 
of spinning particles is a quintessential odd elastic solid. Measuring 
the deformation field in a collection of nearly circular, monocrystal-
line droplets (Fig. 4e,f) provides corroborating evidence from exper-
iments and simulations. The droplets rotate at a constant angular 
velocity that decreases with their radius R. Regardless of the droplet 
size, they consistently display a radial strain profile that varies from 
compressive in the centre to dilational on the edge. Within an elastic 
description, this qualitative feature must originate from odd elastic 
moduli. A continuum prediction of the strain field (Supplementary 
Section 7.2) confirms this intuition and predicts the shape of the 
density profile, as illustrated in Fig. 4d.

A natural question to ask is then whether odd elastic sol-
ids powered by odd stresses are linearly stable. We consider 
the continuum description of an elastic solid with a local dis-
placement u(r, t) and local velocity v(r, t), that is allowed to  

experience all stresses consistent with broken parity and time 
reversal (Supplementary Sections 6.1 and 8.1)16,50. In addition to 
elastic contributions, the symmetric stress includes even and odd 
viscous contributions σij = −pδij + Kijkl∂kuℓ + ηijkl∂kvℓ., where p is the 
pressure, Kijkl is the elasticity tensor and ηijkl is the viscosity tensor. 
The inner drive imposed by the spinners is encoded by the anti-
symmetric stress σspin

ij = 2ηRϵijΩ, where εij is the Levi-Civita sym-
bol. Ignoring inertia, the dynamics is given by the balance between 
viscoelastic stresses and substrate drag defined by a constant fric-
tion coefficient Γ:

Γv = ∇ · σ +∇ · σspin, (1)

and the continuity equation ∂tρ + ∇ ⋅ (ρv) = 0.
Linearizing about a homogeneous quiescent base state u = v = 0 

and ρ = ρ0 and making the ansatz u, v, ρ ∝ exp (−iωt+ ik · r), we 
readily obtain an expression for the dispersion v ≡ Re(ω) and damp-
ing α ≡ Im(ω) of displacement and density waves (Supplementary 
Section 8.2). We find a generic scenario yielding exponential ampli-
fication of density fluctuations. A number of different combinations 
of off-diagonal material parameters in η and K result in different 
instabilities. However, they all reflect the same mechanistic picture, 
sketched in Fig. 5a. A density fluctuation is converted to a localized 
rotation. The resulting net shear across the density fluctuation is in 
turn converted into an outward force amplifying the initial pertur-
bation, and so on, to defect unbinding. Competition with the sta-
bilizing influence of the conventional bulk and the shear moduli of 
the elastic solid determine the consistent shape of the dispersion 
curves shown in Fig. 5a and Supplementary Section 8.2. Crucially, 
this generic mechanism relies on the coupling between stresses and 
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strains having different spatial symmetries, which is only allowed 
when time-reversal and parity symmetries are broken at the micro-
scopic level50,51.

To test this simplified model, we measure the flows v(x) that 
occur in the bulk of a large crystallite driven at finite rotation fre-
quency (Supplementary Video 10) and measure the Fourier spec-
trum of all scalar measures of deformation, including velocity and 
strain rate (Supplementary Section 2.4). Figure 5b shows that, fol-
lowing the onset of rotations, the azimuthally averaged spectra 
evolve before eventually settling into a steady state. By comparing 
the spectra at different times, we extract the mode growth curves 
shown in Fig. 5 for experiments (Fig. 5c) and simulations (Fig. 5f,g 
and Supplementary Sections 2.4, 4.8 and 5.4). They reveal the pres-
ence of an instability at finite wavelength for all modes with rel-
atively constant growth above a characteristic scale. As shown in 
Fig. 5c, a spatial map of the integrated growth rate reveals that this 
instability is consistent with the destabilization of our chiral crystal.

We note, however, that in finite crystalline domains, defects are 
readily produced at the boundary. Their subsequent propulsion into 
the bulk could curtail or otherwise affect the full development of the 
instability. Crucially, we have not observed the spontaneous appear-
ance of defects in the middle of a crystallite in our experiments. 

These combined observations suggest the existence of an additional 
mechanism for destabilization in which motile defects nucleate at 
the boundary and invade the crystal phase, actively fracturing the 
bulk into whorls.

Our minimal model simulations provide an ideal arena to 
investigate this possibility. By varying the microscopic interaction 
parameters, we can tune the system from linearly stable to linearly 
unstable (Supplementary Section 4.8.1). Remarkably, in both the 
stable and unstable regimes, we observe that initially perfectly crys-
talline droplets are destabilized by the production of defects at the 
edges of the droplets, which subsequently invade the bulk in a vis-
ible front (Fig. 5d,e). The only difference is that, deep in the unstable 
regime (Fig. 5e), we also observe defect nucleation in the bulk of 
the droplet before the front arrives. Notably, in both cases, a crystal 
whorl emerges as the steady state (Supplementary Section 4.8.2). 
This mechanism of destabilization has a different origin from the 
linear instability described above. Within our continuum approach, 
the presence of a constant background odd stress plays no role in 
the crystal’s stability—rather, its primary effect is to drive defect 
propulsion (Supplementary Sections 7.3 and 8.2.1).

Remarkably, measurements of the spectral growth in both 
regimes, performed for simulations initialized in a polycrystalline 
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phase, display general shapes and spatial maps that are similar to 
those observed in the experiment (Fig. 5f,g). The similar shape of 
the resulting curves demonstrates the challenge of disentangling the 
precise origin of the growth in terms of linear response coefficients.

Breaking parity by spinning a material’s constituents gives rise to 
transverse forces that fundamentally alter the organization of mat-
ter. Spinner crystals generically melt into a dynamical state driven 
by motile dislocations. The resulting, tunable crystal whorl state 
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opens new avenues for the control of structure and transport, from 
synthetic materials to biological colonies.

Note added in proof: In the concluding stages of our work we 
became aware of a complementary, independent effort by the 
groups of N. Fakhri and J. Dunkel who studied parity-breaking 
crystal dynamics in a bio-physical system (unpublished).

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-021-01429-3.
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