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Modern statistical applications often involve minimizing an objective
function that may be nonsmooth and/or nonconvex. This paper focuses on
a broad Bregman-surrogate algorithm framework including the local linear
approximation, mirror descent, iterative thresholding, DC programming and
many others as particular instances. The recharacterization via generalized
Bregman functions enables us to construct suitable error measures and es-
tablish global convergence rates for nonconvex and nonsmooth objectives in
possibly high dimensions. For sparse learning problems with a composite ob-
jective, under some regularity conditions, the obtained estimators as the sur-
rogate’s fixed points, though not necessarily local minimizers, enjoy provable
statistical guarantees, and the sequence of iterates can be shown to approach
the statistical truth within the desired accuracy geometrically fast. The paper
also studies how to design adaptive momentum based accelerations without
assuming convexity or smoothness by carefully controlling stepsize and re-
laxation parameters.

1. Introduction. Many statistical learning problems can be formulated as minimizing a
certain objective function. In shrinkage estimation, the objective can often be represented as
the sum of a loss function and a penalty function, neither of which is necessarily smooth or
convex. For example, when the number of variables is much larger than the number of obser-
vations (p� n), sparsity-inducing penalties come into play and result in nondifferentiability.
Furthermore, many popular penalties are nonconvex [22, 19, 65], making the computation
and analysis more challenging. Although in low dimensions there are ways to tackle nons-
mooth nonconvex optimization, statisticians often prefer easy-to-implement algorithms that
scale well in big data applications. Therefore, first-order methods, gradient-descent type al-
gorithms in particular, have recently attracted a great deal of attention due to their lower
complexity per iteration and better numerical stability than Newton-type algorithms.

In this work, we study a class of algorithms in a Bregman surrogate framework. The idea
is that instead of solving the original problem minβ f(β), one constructs a surrogate function

(1) g(β;β−) = f(β) + ∆ψ(β,β−),

and generates a sequence of iterates according to

(2) β(t+1) ∈ arg min
β

g(β;β(t)).

The generalized Bregman function ∆ψ will be rigourously defined in Section 2.1, and we
will call g a (generalized) Bregman surrogate. Note that ∆ψ is not necessarily the standard
Bregman divergence [9] because we do not restrict ψ to be smooth or strictly convex or even
convex. Bregman divergence does not seem to have been widely used in the statistics com-
munity, but see [64]. The generalized Bregman surrogate framework has a close connection
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to the majorization-minimization (MM) principle [28, 29]. But the surrogate here as a func-
tion of β matches f(β) to a higher order when β− is set to β (cf. Lemma 4) and we do not
always invoke the majorization condition g(β;β−)≥ f(β); the benefits will be seen in step
size control and acceleration.

A variety of algorithms can be recharacterized by Bregman surrogates, including DC pro-
gramming [55], local linear approximation (LLA) [67] and iterative thresholding [8, 47]. In
contrast to the large body of literature in convex optimization, little research has been done
on the rate of convergence of nonconvex optimization algorithms when p > n, and there is a
lack of universal methodologies. Instead of proving local convergence results for some care-
fully chosen initial points, this work aims to establish global convergence rates regardless
of the specific choice of the starting point, where a crucial element is the error measure. We
will see that the most natural measures are unsurprisingly problem-dependent, but can be
conveniently constructed via generalized Bregman functions.

Another perhaps more intriguing question to statisticians is how the statistical accuracy
improves or deteriorates as the cycles progress, and whether the finally obtained estimators
can enjoy provable guarantees in a statistical sense. See, for example, [1, 20, 63]; in partic-
ular, [36], one of the main motivations of our work, showed that for a composite objective
composed of a loss and a regularizer that enforces sparsity, the sequence of iterates β(t) gen-
erated by gradient-descent type algorithms can approach a minimizer βo at a linear rate even
when p > n, if the problem under consideration satisfies some regularity conditions. This
article reveals broader conclusions when using generalized Bregman surrogate algorithms in
the composite setting: the more straightforward statistical error between the t-th iterate β(t)

and the statistical truth β∗ enjoys fast convergence, and the convergent fixed points, though
not necessarily local minimizers, let alone global minimizers, possess the desired statistical
accuracy in a minimax sense. The studies support the practice of avoiding unnecessary over-
optimization in high-dimensional sparse learning tasks. Our theory will make heavy use of
the calculus of generalized Bregman functions—in fact, the proofs become readily on hand
with some nice properties of ∆ established. Again, a wise choice of the discrepancy measure
can facilitate theoretical analysis and lead to less restrictive regularity conditions.

Finally, we would like to study and extend Nesterov’s first and second accelerations
[39, 40]. Accelerated gradient algorithms [4, 57, 32] have lately gained popularity in high-
dimensional convex programming because they can attain the optimal rates of convergence
among first-order methods. However, since convexity is indispensable to these theories, how
to adapt the momentum techniques to nonsmooth nonconvex programming is largely un-
known. Ghadimi and Lan [24] studied how to accelerate gradient descent type algorithms
when the objective function is nonconvex but strongly smooth; the obtained convergence
rate is of the same order as gradient descent for nonconvex problems. We are interested in
more general Bregman surrogates with a possible lack of smoothness and convexity, most
notably in high-dimensional nonconvex sparse learning. This work will come up with two
momentum-based schemes to accelerate Bregman-surrogate algorithms by carefully control-
ling the sequences of relaxation parameters and step sizes.

Overall, this paper aims to provide a universal tool of generalized Bregman functions in the
interplay between optimization and statistics, and to demonstrate its active roles in construct-
ing error measures, formulating less restrictive regularity conditions, characterizing strong
convexity, deriving the so-called basic inequalities in nonasymptotic statistical analysis, de-
vising line search and momentum-based updates, and so on. The rest of this paper is orga-
nized as follows. In Section 2, we introduce the generalized Bregman surrogate framework
and present some examples. Section 3 gives the main theoretical results on computational
accuracy and statistical accuracy. Section 4 proposes and analyzes two acceleration schemes.
We conclude in Section 5. Simulation studies and all technical details are provided in the
Appendices.
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Notation. Throughout the paper, we use C,c to denote positive constants. They are not
necessarily the same at each occurrence. The class of continuously differentiable functions is
denoted by C1. Given any matrixA, we denote its (i, j)-th element byAij . The spectral norm
and the Frobenius norm of A are denoted by ‖A‖2 and ‖A‖F , respectively. The Hadamard
product of two matricesA andB of the same dimension is denoted byA ◦B and their inner
product is 〈A,B〉 = tr{A>B}. If A−B is positive semi-definite, we also write A �B.
Let [p] := {1, · · · , p}. Given J ⊂ [p], we useAJ to denote the submatrix ofA formed by the
columns indexed byJ . Given a setA⊂Rn, we useA◦, ri(A),A to denote its interior, relative
interior, and closure, respectively [45]. When f is an extended real-valued function from
D ⊂Rp to R∪{+∞}, its effective domain is defined as dom(f) = {β ∈Rp : f(β)<+∞}.
Let R+ = [0,+∞).

2. Basics of generalized Bregman surrogates.

2.1. Generalized Bregman functions. Bregman divergence [9], typically defined for con-
tinuously differentiable and strictly convex functions, plays an important role in convex anal-
ysis. An extension of it based on “right-hand” Gateaux differentials helps to handle nons-
mooth nonconvex optimization problems. We begin with one-sided directional derivative.

DEFINITION 1. Let ψ :D ⊂Rp→R be a function. The one-sided directional derivative
of ψ at β ∈D with increment h is defined as

(3) δψ(β;h) = lim
ε→0+

ψ(β+ εh)−ψ(β)

ε
,

provided h is admissible in the sense that β + εh ∈D for sufficiently small ε : 0 < ε < ε0.
When ψ :D→Rn is a vector function, δψ is defined componentwise.

In the following, ψ is called (one-sided) directionally differentiable at β if δψ(β;h) as
defined in (3) exists and is finite for all admissible h, and if this holds for all β ∈D, we say
that ψ is directionally differentiable.

When a > 0, δψ(β;ah) = aδψ(β;h), but δψ is not necessarily a linear operator with re-
spect to h. Definition 1 is a relaxed version of the standard Gateaux differential which studies
the limit when ε→ 0. In high-dimensional sparse problems where nonsmooth regularizers
and/or losses are widely used, (3) is more convenient and useful.

DEFINITION 2 (Generalized Bregman Function (GBF)). The generalized Bregman
function associated with a function ψ is defined by

(4) ∆ψ(β,γ) = ψ(β)−ψ(γ)− δψ(γ;β− γ),

assuming β,γ ∈ dom(ψ) and δψ(γ;β − γ) is meaningful and finite. In particular, when
ψ is differentiable and strictly convex, the generalized Bregman function ∆ψ becomes the
standard Bregman divergence:

(5) Dψ(β,γ) := ψ(β)−ψ(γ)− 〈∇ψ(γ),β− γ〉.

When ψ is a vector function, a vector version of ∆ is defined componentwise.

When ∇ψ exists at β, δψ(β,h) reduces to 〈∇ψ(β),h〉, which is linear in h. So if ψ
is the restriction of a function ϕ ∈ C1 to a convex set, ∆ψ(β,γ) = ∆ϕ(β,γ) for all β,γ ∈
dom(ψ). For simplicity, all functions in our paper are assumed to be defined on a whole vector
space (Rp, typically) unless otherwise mentioned, although most results can be formulated in
the case of extended real-valued functions under the convexity of their effective domains.
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The generalized Bregman ∆ψ(·,γ) can be seen as the difference between the function ψ
and its radial approximations made at γ. A simple but important example is D2(β,γ) :=
D‖·‖22/2(β,γ) = ‖β − γ‖22/2. In general, ∆ψ or Dψ may not be symmetric. The following
symmetrized version turns out to be useful:

(6) ∆̄ψ(β,γ) :=
1

2
(∆ψ+

r
∆ψ)(β,γ) =

1

2
{∆ψ(β,γ) + ∆ψ(γ,β)},

where r
∆(β,γ) denotes ∆(γ,β). If ψ is smooth, ∆̄ψ(β,γ) = 〈∇ψ(β)−∇ψ(γ),β− γ〉.

To simplify the notation, we use ∆ψ ≥∆φ to denote ∆ψ(β,γ)≥∆φ(β,γ) for all β,γ,
and so ∆ψ ≥ 0 stands for ∆ψ(β,γ) ≥ 0,∀β,γ. Some basic properties of ∆ are given as
follows.

LEMMA 1. Let ψ and ϕ be directionally differentiable functions. Then for any α,β,γ,
we have the following properties.

(i) ∆aψ+bϕ(β,γ) = a∆ψ(β,γ) + b∆ϕ(β,γ), ∀a, b ∈R.
(ii) If ψ is convex, it is directionally differentiable and ∆ψ ≥ 0; conversely, if ψ is direction-

ally differentiable and ∆ψ ≥ 0 then ψ is convex.
(iii) If ψ : Rn → R is differentiable and ϕ : Rp → Rn is continuous and directionally

differentiable, then ∆ψ◦ϕ(β,γ) = ∆ψ(ϕ(β),ϕ(γ)) + 〈∆ϕ(β,γ),∇ψ(ϕ(γ))〉. Also, if
ψ : Rn→ R is directionally differentiable and ϕ : Rp→ Rn is linear, then ∆ψ◦ϕ(β,γ) =
∆ψ(ϕ(β),ϕ(γ)).

(iv) ∆ψ(β,γ) =
∫ 1

0

[
δψ
(
γ + t(β− γ); β− γ

)
− δψ(γ;β− γ)

]
dt, provided δψ(γ + t(β−

γ); β− γ) is integrable over t ∈ [0,1].

The properties will be frequently used in the rest of the paper. For instance, for ψ =
ρ‖ · ‖22/2− f , by (i) we can write ∆ψ = ρD2 −∆f . Sometimes, though f is not necessar-
ily convex, f + ν‖ · ‖22/2 is so for some ν ∈ R, which means ∆f ≥ −νD2, owing to (ii).
For l(β) = l0(Xβ + α), commonly encountered in statistical applications, (iii) states that
∆l(β,γ) = ∆l0(Xβ + α,Xγ + α). For (iv), the integrability condition is met when the
directional derivative restricted to the interval [β,γ] is bounded by a constant (or more gen-
erally a Lebesgue integrable function); in particular, if ψ is L-strongly smooth, that is, ∇ψ
exists and is Lipschitz continuous: ‖∇ψ(β) − ∇ψ(γ)‖∗ ≤ L‖β − γ‖ for any β,γ, where
‖ · ‖∗ is the dual norm of ‖ · ‖, ∆ψ(β,γ) ≤ L‖β − γ‖2/2 and for the Euclidean norm,
∆ψ ≤ LD2 results.

Moreover, the GBF operator satisfies some interesting “idempotence” properties under
some mild assumptions, which is extremely helpful in studying iterative optimization algo-
rithms.

LEMMA 2. (i) When ψ is convex, ∆∆ψ(·,α)(β,γ)≤∆ψ(β,γ), and when ψ is concave,
∆∆ψ(·,α)(β,γ)≥∆ψ(β,γ) for all α,β,γ.

(ii) When ψ is directionally differentiable, for all α = (1 − θ)γ + θβ with θ 6∈ (0,1),
∆∆ψ(·,α)(β,γ) = ∆ψ(β,γ) and in particular,

∆∆ψ(·,β)(β,γ) = ∆∆ψ(·,γ)(β,γ) = ∆ψ(β,γ).(7)

(iii) When δψ(·;β − γ) is bounded in a neighborhood of α and has restricted radial
continuity at α: limε→0+ δψ(α+ εh;β − γ) = δψ(α;β − γ) for any h ∈ [β −α,γ −α],
or when δψ(α; ·) has restricted linearity δψ(α;h) = 〈g(α),h〉 for some g and all h ∈ [β−
α,γ −α], we have

∆∆ψ(·,α)(β,γ) = ∆ψ(β,γ).(8)

In particular, (8) holds when ψ is differentiable at α or δψ(·;β− γ) is continuous at α.
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We refer to (ii) as the weak idempotence property and (iii) as the strong idempotence
property. When ∆ψ becomes a legitimate Bregman divergence, (8) can be rephrased into the
three-point property Dψ(β,γ) = Dψ(β,α) +Dψ(α,γ)−〈β−α,∇ψ(γ)−∇ψ(α))〉 [14].
It is worth mentioning that although from (iii), differentiability can be used to gain strong
idempotence, the weak idempotence (7) is often what we need, which always holds under
just directional differentiability.

At the end of the subsection, we give some important facts of GBFs for canonical gener-
alized linear models (GLMs) that are widely used in statistics modeling. Here, the response
variable y ∈ Yn ⊂ Rn has density pη(·) = exp{(〈·,η〉 − b(η))/σ2 − c(·, σ2)} with respect
to measure ν0 defined on Yn (typically the counting measure or Lebesgue measure), where
η ∈ Rn represents the systematic component of interest, and σ is the scale parameter; see
[30]. Since σ is not the parameter of interest, it is more convenient to define the density
exp{(〈·,η〉 − b(η))/σ2} (still written as pη(·) with a slight abuse of notation) with respect
to the base measure dν = exp(−c(·, σ2)) dν0. The loss for η can be written as

l0(η;y) = {−〈y,η〉+ b(η)}/σ2.(9)

That is, l0 corresponds to a distribution in the exponential dispersion family with cumu-
lant function b(·), dispersion σ2 and natural parameter η. In the Gaussian case, l0(η) =
−〈η,y〉/σ2 + ‖y‖22/(2σ2).

Following [62], we define the natural parameter space Ω = dom(b) = {η ∈ Rn : b(η) <
∞} (always assumed to be nonempty) and the mean parameter spaceM = {µ ∈ Rn : µ =
Ey, where y ∼ p for some density p defined on Yn with respect to ν}, and call pη minimal
if 〈a,z〉 = c for almost every z ∈ Yn with respect to ν implies a = 0. When Ω is open,
pη is called regular, and b can be shown to be differentiable to any order and convex, but
not necessarily strictly convex; if, in addition, pη is minimal, b is strictly convex and the
canonical link g = (∇b)−1 is well-defined on M◦. These can all be derived from, say, the
propositions in [62].

LEMMA 3. Assume the exponential dispersion family setup with the associated loss de-
fined in (9). (i) If Ω is an open set or pη is regular, then

l0(η;z) = ∆b(η, ∂b
∗(z))/σ2 − b∗(z)/σ2(10)

for all η ∈ Ω,z ∈ ri(M), where b∗ is the Fenchel conjugate of b, and ∂b∗(z) can take any
subgradient of b∗ at z. If pη is also minimal, ∆b becomes Db, ∂b∗(z) becomes g(z) (which
is unique), and ri(M) becomesM◦. (ii) As long as Ω is open,

l0(η;z) = ∆b∗(z,∇b(η))/σ2 − b∗(z)/σ2(11)

for all η ∈ Ω,z ∈ ri(M). If pη is also minimal, ∆b∗ = Db∗ and ri(M) =M◦. (iii) Given
any η1 ∈Ω◦ and η2 ∈Ω, the Kullback Leibler (KL) divergence of pη2

from pη1
relates to the

GBF of l0 or b by

KL(pη1
, pη2

) = ∆l0(η2,η1) = ∆b(η2,η1)/σ2.(12)

Property (i) shows the importance of GBF in maximum likelihood estimation. A Breg-
man version of Property (ii) was first described in [3], while our conclusions based on
∆b,∆b∗ are more general, as they do not require the strict convexity of b or the differen-
tiability of b∗. Consider for instance the multinomial GLM under a symmetric parametriza-
tion: for [y1, . . . , ym] ∈ Y = {yk ∈ {0,1},1≤ k ≤m,

∑
yk = 1} (n= 1), Eyk ∝ exp(ηk) or

Eyk = exp(ηk)/
∑

exp(ηk) gives b= log
∑

exp(ηk), and thus b∗(µ) takes
∑
µk logµk for
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[µ1, . . . , µm] ∈M = {[µk] :
∑
µk = 1, µk ≥ 0} and +∞ otherwise. Clearly, b∗ is not dif-

ferentiable (given any z ∈ ri(M), ∂b∗(z) = {logz + t1 : t ∈ R}), but nicely our two GBF
representations still hold. In addition, if the right-hand side of (10) or (11), as a function of
z, is continuous onM, which is the case for Bernoulli, multinomial and Poisson, (i) and (ii)
hold for any z ∈M from [62, Theorem 3.4].

Property (iii) (notice the exchange of η1 and η2 in the generalized Bregman expressions)
can be used to formulate and verify model regularity conditions in minimax studies of sparse
GLMs, which are of great interest in high-dimensional statistical learning [58]. More con-
cretely, consider a general signal class

(13) B(s∗,M) = {β∗ ∈Rp : ‖β∗‖0 ≤ s∗,‖β∗‖∞ ≤M},

where s∗ ≤ p, 0≤M ≤+∞. Some applications limit the magnitude of the coefficients βj via
a constraint or a penalty, resulting in a finite M . Let I(·) be any nondecreasing function with
I(0) = 0, I 6≡ 0. Some particular examples are I(t) = t and I(t) = 1t≥c. Recall the regular
exponential dispersion family with systematic component η = Xβ and loss l(β) = l0(η)
defined by (9).

THEOREM 1. In the regular exponential dispersion family setup (with dom(b) a
nonempty open set), assume p≥ 2,1≤ s∗ ≤ p/2. Let

P (s∗) = s∗ log(ep/s∗).(14)

(i) If

∆l0(0,Xβ)σ2 ≤ κD2(0,β), ∀β ∈ B(s∗,M)(15)

where κ > 0, there exist positive constants c, c̃, depending on I(·) only, such that

inf
β̂

sup
β∗∈B(s∗,M)

E
{
I
(
D2(β∗, β̂)/[c̃min{σ2P (s∗)/κ,M2s∗}]

)}
≥ c > 0,

where β̂ denotes any estimator of β∗.
(ii) If

(16)

{
κD2(β1,β2)≤D2(Xβ1,Xβ2)

∆l0(0,Xβ1)σ2 ≤ κD2(0,β1),
∀βi ∈ B(s∗,M)

where κ,κ≥ 0, then there exist positive constants c, c̃ depending on I(·) only such that

inf
β̂

sup
β∗∈B(s∗,M)

E
{
I
(
D2(Xβ∗,Xβ̂)/[cmin{(κ/κ)σ2P (s∗), κM2s∗}]

)}
≥ c > 0.

The GBF-form conditions (15), (16) can be viewed as an extension of restricted isome-
try [11], and are often easy to check using the Hessian. For example, from Lemma 1, we
immediately know that if l0 is L-strongly smooth, (15) is satisfied with κ = L‖X‖22 even
when M = +∞. This is the case for regression and logistic regression, and accordingly, no
estimation algorithms can beat the minimax rate s∗ log(ep/s∗) (ignoring trivial factors). The
optimal lower bounds provide useful guidance in establishing sharp statistical error upper
bounds of Bregman-surrogate algorithms in Section 3.2.
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2.2. Examples of Bregman surrogates.

EXAMPLE 1. (Gradient descent and mirror descent). Gradient descent is a simple
first-order method to minimize a function f ∈ C1 which may be nonconvex. Starting with
β(0), the algorithm proceeds as follows:

(17) β(t+1) = β(t) − α∇f(β(t)),

where α > 0 is a step size parameter. Its rationale can be seen by formulating a Bregman-
surrogate algorithm using ∆ψ = ρD2 −∆f :

β(t+1) = arg min
β

g(β;β(t)) = f(β) + (ρD2 −∆f )(β,β(t))(18a)

= β(t) − 1

ρ
∇f(β(t)),(18b)

where f(·) −∆f (·,β(t)) gives a linear approximation of f and 1/ρ amounts to the step
size. We call ρ the inverse step size parameter. (The generalized Bregman surrogate in (18a)
extends the class of algorithms to a directionally differentiable f , with the update given by
β(t+1) = β(t) + (0∨−δf(β(t);h◦))h◦/ρ and h◦ ∈ arg max‖h‖2=1[δf(β(t);h)]−, where [ ]−
denotes the negative part (t− = (|t| − t)/2).)

More generally, we can use a strictly convex ϕ ∈ C1 to construct

(19) g(β;β(t)) = f(β) + (ρDϕ −∆f )(β,β(t)),

Minimizing (19) with respect to β gives the renowned mirror descent [38]: β(t+1) =
(∇ϕ)−1(∇ϕ(β(t)) −∇f(β(t))/ρ), where (∇ϕ)−1 is the inverse of ∇ϕ. Mirror descent is
widely used in convex programming, but this work does not restrict f to be convex.

EXAMPLE 2. (Iterative thresholding). Sparsity-inducing penalties are widely used in
high-dimensional problems; see, for example, `0, `1 [56], bridge penalties [22], SCAD [19],
capped-`1 [66] and MCP [65]. There is a universal connection between thresholding rules and
penalty functions [48], and the mapping from penalties to thresholdings is many-to-one. This
makes it possible to apply an iterative thresholding algorithm to solve a general penalized
problem of the form minβ l(β) +

∑
j P (%βj ;λ) [8, 47]:

(20) β(t+1) = Θ(%β(t) −∇l(β(t))/%;λ)/%,

where Θ is a thresholding function inducing P , and % > 0 is an algorithm parameter for
the sake of scaling and convergence control. This class of iterative algorithms is called the
Thresholding-based Iterative Selection Procedures (TISP) in [47] and is scalable in computa-
tion. For the rigorous definition of Θ and the Θ-P coupling formula, see Section 3.1 for detail.
Some examples of Θ include: (i) soft-thresholding ΘS(t;λ) = sgn(t)(|t| − λ)1|t|>λ, which
induces the `1 penalty, (ii) hard-thresholding ΘH(t;λ) = t1|t|>λ, which is associated with
(infinitely) many penalties, with the capped-`1 penalty, (55), and the discrete `0 penalty as
particular instances. The nonconvex SCAD and MCP penalties also have their corresponding
thresholding rules. In this sense, thresholdings extend proximity operators. One can regard
(20) as an outcome of minimizing the following Bregman surrogate

(21) g(β;β(t)) = l(β) +
∑

P (%βj ;λ) + (%2D2 −∆l)(β,β
(t)).

Here, we linearize l only, as minβ g(β;β(t)) has (20) as its globally optimal solution. Inter-
estingly, the set of fixed points under the g-mapping enjoys provable guarantees that may not
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hold for the set of local minimizers to the original objective (Section 3.2.1). This is particu-
larly the case when Θ has discontinuities and P (t;λ) is given by PΘ(t;λ) + q(t;λ), where
PΘ is defined by (48) and q is a function satisfying q(t;λ)≥ 0 for all t ∈R and q(t;λ) = 0 if
t= Θ(s;λ) for some s ∈R [49].

A closely related iterative quantile-thresholding procedure [48, 52] proceeds by β(t+1) =
Θ#(β(t)−∇l(β(t))/%2; q) for the sake of feature screening: min l(β) s.t. ‖β‖0 ≤ q, and uses
a similar surrogate g(β;β(t)) = l(β)+(%2D2−∆l)(β,β

(t)). Here, the quantile thresholding
Θ#(α; q), as an outcome of ming(β;β−), keeps the top q elements of αj after ordering them
in magnitude, |α(1)| ≥ · · · ≥ |α(p)|, and zero out the rest. To avoid ambiguity, we assume no
ties occur in performing Θ#(α; q) throughout the paper, that is, |α(q)|> |α(q+1)|.

EXAMPLE 3. (Nonnegative matrix factorization). Nonnegative Matrix Factorization
(NMF) [34] provides an effective tool for feature extraction and finds widespread appli-
cations in computer vision, text mining and many other areas. NMF approximates a non-
negative data matrix X ∈ Rn×p+ by the product of two nonnegative low-rank matrices
W ∈ Rn×r+ and H ∈ Rr×p+ . The KL divergence is often used to make a cost function, that
is, minW∈Rn×r+ ,H∈Rr×p+

KL(X,WH) :=
∑

i,j [Xij log(Xij/(WH)ij) −Xij + (WH)ij ],
which gives a nonconvex optimization problem. The following multiplicative update rule
(MUR) shows good scalability in big data applications [15]:

H
(t+1)
kj =H

(t)
kj exp

[
− 1

ρ

∑
i

(
Wik −

WikXij

(WH(t))ij

)]
,(22)

W
(t+1)
ik =W

(t)
ik exp

[
− 1

ρ

∑
j

(
Hkj −

HkjXij

(W (t)H)ij

)]
.(23)

The update formulas can be explained from a Bregman surrogate perspective. Since the prob-
lem is symmetric in W and H , ∆KL(X,WH) = ∆KL(X>,H>W>), we take (22) for
instance to illustrate the point. Noticing that the criterion is separable in the column vec-
tors of H , it suffices to look at minh∈Rr+ f(h) = KL(x,Wh) =

∑
i[xi log(xi/(Wh)i) −

xi + (Wh)i], where x can be any column of X . Then it is easy to verify that the following
Bregman surrogate,

(24) g(h;h(t)) = f(h) + (ρDϕ −Df )(h,h(t)), ϕ(h) =
∑

(hi loghi − hi),

leads to the multiplicative update formulas.

EXAMPLE 4. (DC programming). DC programming [55] is capable of tackling a large
class of nonsmooth nonconvex optimization problems; see, for example, [23, 43]. A “dif-
ference of convex” (DC) function f is defined by f(β) = d1(β)− d2(β), where d1 and d2

are both closed convex functions. To minimize f(β), a standard DC algorithm generates two
sequences {β(t)} and {γ(t)} that obey

(25) γ(t) ∈ ∂d2(β(t)), β(t+1) ∈ ∂d∗1(γ(t)),

where ∂d(β) is the subdifferential of d(·) at β, and d∗1(·) is the Fenchel conjugate of d1(·).
(As before, d1, d2 are assumed to be real-valued functions defined on Rp, so the sequences
are well-defined and finite.) This elegant algorithm does not involve any line search and
guarantees global convergence given any initial point. Many popular nonconvex algorithms
can be derived from (25) [2].

Focusing on the β-update, we know that β(t+1) must be a solution to minβ d1(β) −
〈β,γ(t)〉 or minβ d1(β) − 〈β − β(t),γ(t)〉. Due to the convexity of d2, 〈β − β(t),γ(t)〉 ≤
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supγ∈∂d2(β(t))〈β − β
(t),γ〉 = δd2(β(t);β − β(t)) for all γ(t) ∈ ∂d2(β(t)),β ∈ Rp. Thus

minβ d1(β) − 〈β − β(t),γ(t)〉 should be no lower than minβ d1(β) − δd2(β(t);β − β(t)).
Choosing β(t+1) ∈ arg mind1(β) − δd2(β(t);β − β(t)) and γ(t) = δd2(β(t);β(t+1) −
β(t))(β(t+1) − β(t))/‖β(t+1) − β(t)‖22 ensures (25), which simply amounts to using a Breg-
man surrogate

(26) g(β;β(t)) = f(β) + ∆d2
(β,β(t)).

For the γ-updates, a Bregman surrogate g(γ;γ(t)) = (d∗2 − d∗1)(γ) + ∆d∗1 (γ,γ(t)) can be
similarly constructed.

EXAMPLE 5. (Local linear approximation). Zou and Li [67] proposed an effective
local linear approximation (LLA) technique to minimize penalized negative log-likelihoods.
In their paper, the loss function is assumed to be convex and smooth, and the penalty is
concave on R+. We give a new characterization of LLA by use of a Bregman surrogate.

Let l be a directionally differentiable loss function but not necessarily continuously differ-
entiable, and P be a function that is concave and differentiable over (0,+∞), and satisfies
P (t) = P (−t) for any t ∈R, P (0) = 0. Consider the problem minβ l(β)+

∑
j P (βj). Using

the generalized Bregman notation ∆‖·‖1(β,γ), or ∆1(β,γ) for short, define

(27) g(β;β(t)) = l(β) +
∑

P (βj) +
∑[

αj∆1(βj , β
(t)
j )−∆P (βj , β

(t)
j )
]
.

In contrast to (21), (27) linearizes P instead of l. Simple calculation shows

∆1(βj , β
(t)
j ) =

{
|βj | − sgn(β

(t)
j )βj , β

(t)
j 6= 0

0, β
(t)
j = 0,

(28)

∆P (βj , β
(t)
j ) =

{
P (βj)− P (β

(t)
j )− P ′(β(t)

j )(βj − β(t)
j ), β

(t)
j 6= 0

P (βj)− P ′+(0)|βj |, β
(t)
j = 0,

(29)

where sgn(·) is the sign function and P ′+(β) denotes the right derivative of P (·) at β. Inter-
estingly, with αj = |P ′+(β

(t)
j )|, the ∆1-based surrogate (27) can be shown to be

l(β) +
∑
j

[
P (|β(t)

j |) + P ′+(|β(t)
j |)(|βj | − |β

(t)
j |)

]
,

which is exactly the surrogate constructed by Zou and Li. To the best of our knowledge, the
generalized Bregman formulation is new.

LLA requires solving a weighted lasso problem at each step. We can further linearize l
as in Example 2 to improve its scalability. LLA is popular among statisticians, but to our
knowledge, there is a lack of global convergence-rate studies in large-p applications. We will
see that reformulating LLA from the generalized Bregman surrogate perspective leads to a
convenient choice of the convergence measure in analyzing the algorithm.

EXAMPLE 6. (Sigmoidal regression). We use the univariate-response sigmoidal regres-
sion to illustrate this type of nonconvex problems that is commonly seen in artificial neural
networks. The formulation carries over to multilayered networks and recurrent networks [51].

Let X = [x1,x2, . . . ,xn]> ∈ Rn×p be the data matrix, and y = [y1, · · · , yn]> be the re-
sponse vector. Define π(ν) = eν/(1 + eν); if ν is replaced by a vector, π is defined compo-
nentwise. The sigmoidal regression solves

(30) min
β

f(β) =
1

2

n∑
i=1

(yi − π(x>i β))2.
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Then ∇2f(β) =
∑n

i=1[(−2µ3
i + 3µ2

i − µi)yi + (3µ4
i − 5µ3

i + 2µ2
i )]xix

>
i , where µi =

π(x>i β). Because µi ∈ [0,1], we get ∇2f(β)�X>diag{|0.1yi|+ 0.08}ni=1X , which moti-
vates a Bregman surrogate

g(β;β(t)) = f(β) + Dψ−f (β,β(t)), ψ(β) =
1

2
β>X>diag{|0.1yi|+ 0.08}Xβ.

Solving minβ g(β;β(t)) yields β(t+1) = β(t) + B−1X>(u(t) − u(t) ◦ u(t)) ◦ (y − u(t)),
where B =X>diag{|0.1yi|+ 0.08}ni=1X , u(t) = π(X>β(t)) and ◦ denotes the Hadamard
product. This type of surrogate functions is closely related to proximal Newton-type methods
[46] and signomial programming [33].

3. Bregman-surrogate algorithm analysis. Motivated by the examples in Section 2,
we study a generalized Bregman-surrogate algorithm family for solving minβ f(β), with the
sequence of iterates defined by

(31) β(t+1) ∈ arg min
β

g(β;β(t)) := f(β) + ∆ψ(β,β(t)), t≥ 0

The objective function f and the auxiliary function ψ are assumed to be directionally differ-
entiable but need not be smooth or convex. ψ has flexible options as seen from the previous
examples.

Equation (31) does not necessarily give an MM procedure, as the majorization condition
g(β;β−) ≥ f(β) may not hold. But we have the following zeroth-order and first-order de-
generacies when β− = β, which provides rationality of investigating the accuracy of fixed
points under the g-mapping (31).

LEMMA 4. Let g(β;β−) = f(β) + ∆ψ(β,β−) with f and ψ directionally differ-
entiable. Then (i) g(β;β) = f(β), and (ii) δg(β;β−,h)|β−=β = δf(β;h),∀β,h, where
δg(β;β−,h) is the directional derivative of g( · ;β−) at β with increment h.

The lemma relates the set of fixed points of the algorithm mapping,

{β : β ∈ arg min
β
g(β;β−)|β−=β},(32)

which we will call the fixed points of g for short, to the set of directional stationary points of
f (under directional differentiability),

{β : δf(β;h)≥ 0 for any admissible h},(33)

which becomes the set of stationary points when f ∈ C1. The link is general for any gener-
alized Bregman surrogate in (31) regardless of the specific form of ψ. An important impli-
cation is that in studying convergence it is legitimate to measure how β(t+1) and β(t) differ,
as widely used in practice. Later we will see that it is indeed possible to provide provable
guarantees for the fixed points of this type of surrogates. In contrast, a general MM algo-
rithm does not always have the first-order degeneracy and so attaining β(t+1) = β(t) does not
necessarily ensure a good-quality solution, especially in nonconvex scenarios.

3.1. Computational accuracy. We first study the optimization error of (31), then turn to
its statistical error in Section 3.2. This subsection aims to derive universal rates of conver-
gence under no regularity conditions.
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• General setting. In this part, the objective f(β) does not have any known structure. To
better connect with some conventional results in convex optimization, we first present two
propositions for (31) on the function-value convergence and iterate convergence. While the
resultant rates are encouraging, the error bounds are most informative under certain smooth-
ness and convexity assumptions. This suggests the necessity of choosing a proper conver-
gence measure in order to avoid stringent or awkward technical conditions in nonconvex
optimization.

PROPOSITION 1. Given an arbitrary initial point β(0), let β(t) be the sequence gener-
ated according to (31) where ψ is differentiable. Then

(34) avg
0≤t≤T

f(β(t+1))− f(β̄)≤ 1

T + 1
[∆ψ(β̄,β(0))−∆ψ(β̄,β(T+1))]

for any β̄ satisfying

(35) ∆ψ(β(t+1),β(t)) + ∆f (β̄,β(t+1))≥ 0, 0≤ t≤ T.

Here, avg0≤t≤T f(β(t+1)) denotes the average of f(β(1)), . . . , f(β(T+1)).
In particular, if both f and ψ are convex, then f(β(t)) is nonincreasing and

(36) f(β(T+1))− f(β)≤
∆ψ(β,β(0))

T + 1
, ∀β.

Equation (34) shows a convergence rate of O(1/T ) under (35) that amounts to step size
control. For example, for ∆ψ = ρDϕ −∆f in mirror descent, (35) shows that ρ should be
sufficiently large, which in turns gives a small stepsize 1/ρ:

ρ≥ (∆f (β(t+1),β(t))−∆f (β̄,β(t+1)))/Dϕ(β(t+1),β(t)),

or ρ ≥∆f (β(t+1),β(t))/Dϕ(β(t+1),β(t)) when f is convex. In nonconvex scenarios, the
condition may be hard to verify, but one has reason to believe that with a properly small step
size, a generalized Bregman-surrogate algorithm should not be much slower than gradient
descent.

Actually, a faster rate of convergence may be obtained under some GBF comparison con-
ditions, (37) and (39) below, which can be viewed as substitutes for conventional strong
convexity in a more general sense. (The corresponding geometric decay of the errors is moti-
vating in high dimensional statistical learning, in light of the “restricted” strongly convexity
often possessed by such a type of problems [36].)

PROPOSITION 2. Consider the iterative algorithm defined by (31) starting at an arbi-
trary point β(0) with ψ differentiable, and let βo be a minimizer of f(β). (i) If for some
κ > 1, ∆φ = ∆ψ + ∆f satisfies

(37) ∆̄φ ≥
κ

κ− 1
∆ψ,

then for any T ≥ 0, we have

(38) ∆̄φ(βo,β(T+1))≤
(κ− 1

κ+ 1

)T+1
∆̄φ(βo,β(0))− κ

2
min

0≤t≤T
∆ψ(β(t+1),β(t)).

(ii) Alternatively, if

(39) 2∆̄f ≥ ε∆ψ
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for some ε > 0, then

(40) ∆ψ(βo,β(T+1))≤
( 1

1 + ε

)T+1
∆ψ(βo,β(0))− 1

ε
min

0≤t≤T
∆ψ(β(t+1),β(t))

for any T ≥ 0.

REMARK 1. We give an illustration of (i) and (ii) to compare their assumptions and
conclusions. In gradient descent with ∆φ = ρD2, (37) becomes ρD2 ≥ (ρD2−∆f )κ/(κ−
1) or ∆f ≥ (ρ/κ)D2 and when f is µ-strongly convex and ρ-strongly smooth, κ = ρ/µ.
Then (38) reads

(41) D2(βo,β(T+1))≤
(ρ− µ
ρ+ µ

)T+1
D2(βo,β(0)).

The D2-form bound is classical for problems with strong convexity; see, for example, Theo-
rem 2.1.15 in [41]. Yet it is worth mentioning that our Bregman comparison conditions do not
require ψ to be strongly convex to attain the linear rate. (40) gives a linear convergence re-
sult, too, in terms of yet another measure. In the same setup, (39) holds for ε : ερ/(2 + ε) = µ
and similarly

(42) ∆ψ(βo,β(T+1))≤
(ρ− µ
ρ+ µ

)T+1
∆ψ(βo,β(0)).

A careful examination of the proof in Section A.8 shows that (39) is applied once, while (37)
is applied twice on both sides of (A.13), and so (ii) appears less technically demanding.
Picking a suitable error function can assist analysis and relax regularity assumptions. The
same ∆ψ will be used in studying the statistical error convergence in Theorem 5.

Instead of naively comparing f(β(t)) with fo, or β(t) with βo, which may be unattainable
or nonunique in nonconvex optimization, one can measure the algorithm convergence in a
wiser manner. Ben-Tal and Nemirovski [5] pointed out that with an inappropriate measure of
discrepancy, the convergence rate of gradient descent for minimizing a nonconvex objective
can be arbitrarily slow, and a common choice is to bound

min
t≤T
‖∇f(β(t))‖2.(43)

This is reasonable since when ∇f(β(t)) = 0, gradient descent stops iterating and delivers a
stationary point. (43) can be rewritten as ρ2 times

min
t≤T

D2(β(t+1),β(t))(44)

as β(t+1)−β(t) =−∇f(β(t))/ρ. The idea of checking stationarity by the difference between
two successive iterates generalizes, thanks to Lemma 4, and eventually leads to an error
bound that can get rid of condition (35).

THEOREM 2. Any generalized Bregman surrogate algorithm defined by (31) satisfies the
following bound for all T ≥ 1,

(45) avg
0≤t≤T

(2∆̄ψ + ∆f )(β(t),β(t+1))≤ 1

T + 1

[
f(β(0))− f(β(T+1))

]
.

(45) obtains the same rate of convergence as Proposition 1, but is free of any conditions
other than directional differentiability, because only the weak idempotence is needed to derive
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the bound. A proper stepsize control can often make the GBF error nonnegative (e.g., (50)).
But even when β(t) diverges, (45) still applies.

Notice the factor ‘2’ proceeding the symmetrized Bregman ∆̄ψ on the left-hand side of
(45). This gives a relaxed stepsize control than MM. We use mirror descent ∆ψ = ρDϕ−∆f

to exemplify the point without requiring f to be convex, cf. Example 1.

COROLLARY 1. In the mirror descent setup with a possibly nonconvex objective, sup-
pose that ∆f ≤ LD̄ϕ for some L > 0, infβ f(β)≥ 0, and the inverse stepsize parameter ρ
is taken such that ρ > L/2. Then any accumulation point of β(t) is a fixed point of g and

avg
0≤t≤T

D̄ϕ(β(t),β(t+1))≤ f(β(0))

(T + 1)(2ρ−L)
.(46)

Hence in the special case of gradient descent, (46) recovers min0≤t≤T ‖∇f(β(t))‖22 =
O(1/T ) [5] when ρ > L/2. In comparison, MM algorithms always require ∆ψ ≥ 0, or ρ≥
L. A smaller value of ρ means a larger step size with which the algorithm converges faster.

• Composite setting. High-dimensional statistical learning often has an additive objective
f(β) = l0(Xβ) + P (%β;λ), where X ∈Rn×p is the predictor or feature matrix, l0(·) is the
loss defined on Xβ (and so l(β) = l0(Xβ)), P (·;λ) is a sparsity-inducing regularizer and
% is a controllable parameter, typically taking ‖X‖2 to match the scale. Unless otherwise
mentioned, P (β;λ) denotes

∑
j P (βj ;λ) with a little abuse of notation.

Such a composite setup is widely assumed in convex optimization [57, 18]. But among the
abundant choices of l0 and P in the literature, many of them are nonconvex. The good news
is that the main theorem proved in the previous subsection adapts to the composite setting
and we give some results for iterative thresholding and LLA as an illustration (cf. Examples
2, 5).

Iterative thresholding. Many popularly used penalty functions are associated with threshold-
ings rigorously defined as follows.

DEFINITION 3 (Thresholding function). A threshold function is a real-valued function
Θ(t;λ) defined for −∞ < t <∞ and 0 ≤ λ <∞ such that (i) Θ(−t;λ) = −Θ(t;λ); (ii)
Θ(t;λ)≤Θ(t′;λ) for t≤ t′; (iii) limt→∞Θ(t;λ) =∞; (iv) 0≤Θ(t;λ)≤ t for 0≤ t <∞.

Given Θ, a critical concavity numberLΘ ≤ 1 can be introduced such that dΘ−1(u;λ) du≥
1−LΘ for almost every u≥ 0, or

(47) LΘ = 1− ess inf{dΘ−1(u;λ)/du : u≥ 0},
with ess inf the essential infimum and Θ−1(u;λ) := sup{t : Θ(t;λ) ≤ u},∀u > 0. For
the widely used soft-thresholding ΘS(t;λ) = sgn(t)(|t| − λ)1|t|>λ and hard-thresholding
ΘH(t;λ) = t1|t|>λ, LΘ equals 0 and 1, respectively. In fact, when LΘ > 0, the penalty in-
duced by Θ via (48) is nonconvex, and LΘ gives a concavity measure of it according to
Lemma A.3. The Bregman surrogate characterization of iterative thresholding in (21) yields
a general conclusion for any Θ in possibly high dimensions.

PROPOSITION 3. Given any thresholding Θ and directionally differentiable l(·), con-
sider the iterative thresholding procedure (20): β(t+1) = Θ(%β(t) −∇l(β(t))/%;λ)/% with
% > 0. Construct

(48) PΘ(t;λ) =

∫ |t|
0

(Θ−1(u;λ)− u) du, ∀t ∈R,
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and define f(β) = l(β)+PΘ(%β;λ), g(β,β−) = l(β)+PΘ(%β;λ)+(%2D2−∆l)(β,β
−).

Then β(t) ∈ arg minβ g(β,β(t−1)) and for all T ≥ 1

(49) avg
0≤t≤T

(%2(2−LΘ)D2−
r
∆l)(β

(t),β(t+1))≤ 1

T + 1

[
f(β(0))− f(β(T+1))

]
.

When the loss satisfies ∆l ≤ LD2, a reasonable choice of % is

(50) %2 >L/(2−LΘ).

So when LΘ > 0, the step size upper bound will be smaller than that as LΘ = 0. This is often
the price to pay for nonconvex optimization. On the other hand, (49) still ensures the universal
rate of convergence of O(1/T ), in spite of the high dimensionality and nonconvexity.

Local linear approximation. Next, we study the computational convergence of LLA for solv-
ing the penalized estimation problem minf(β) = l(β) + P (%β), assuming l is directionally
differentiable, P (0) = 0, P ′+(0)<+∞, P (t) = P (−t)≥ 0 and P (t) is differentiable for any
t > 0. Recall its Bregman form surrogate

(51) g
(t)
LLA(β;β(t)) = l(β) + P (%β) + ∆‖α(t)◦(·)‖1−P (·)(%β, %β

(t)),

where α(t) = [α
(t)
j ] with α

(t)
j = |P ′+(β

(t)
j )|,1 ≤ j ≤ p. We abbreviate ∆‖α(t)◦(·)‖1−P (·) to

∆
(t)
LLA, which does not satisfy strong idempotence. By combining ∆̄

(t)
LLA and ∆f to evaluate

LLA’s optimization error, we obtain a convergence result without any additional assumptions.

PROPOSITION 4. Given any starting point β(0), the LLA iterates satisfy the following
bound for all T ≥ 1:

avg
0≤t≤T

[2∆̄
(t)
LLA(%β(t), %β(t+1)) + ∆f (β(t),β(t+1))]≤ 1

T + 1
[f(β(0))− f(β(T+1))].

Ignoring the cost difference per iteration, the convergence rate of LLA is no slower
than that of gradient descent. If l is a negative log-likelihood function associated with a
log-concave density and P is concave on R+, as assumed in [67], 2∆̄

(t)
LLA(%β, %β′) +

∆f (β,β′) = ∆l(β,β
′) + ∆−P (%β′, %β) + 2

∑
j α

(t)
j ∆̄1(%βj , %β

′
j)≥ 0,∀β,β′. But Propo-

sition 4 holds even when P is nonconcave on R+ and l is nonconvex.
The global convergence-rate results presented in this subsection are free of any regularity

conditions on sparsity, sample size, initial point and design incoherence. High-dimensional
learning algorithms may however show a better convergence rate when the problems under
consideration are “regular” in a certain sense.

3.2. Statistical accuracy. To statisticians, the statistical accuracy of Bregman-surrogate
algorithms with respect to a statistical truth (denoted by β∗) is perhaps more meaningful than
the optimization error to a certain local or global minimizer, since real world data are always
noisy. Section 3.2.1 and Section 3.2.2 will study the statistical error of the final estimate β̂
and the t-th iterate β(t), respectively, where combining the generalized Bregman calculus
and the empirical process theory eases the treatment of a nonquadratic loss.

The techniques based on GBFs apply to a general problem (see, e.g., Theorem A.1 in
Section A.18), but here we focus on the aforementioned sparse learning in the composite
setting: minβ l(β)+PΘ(%β;λ), where l(β) = l0(η) = l0(Xβ) is directionally differentiable
and PΘ(·;λ) is induced by a thresholding Θ via (48). Since l0 is placed on Xβ, we include
here a scaling parameter % (often ‖X‖2) in the penalty; this will yield a universal choice of
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the regularization parameter λ that does not vary with the sample size. Throughout Section
3.2, we assume that % satisfies %≥ ‖X‖2. Note that neither the loss nor the penalty needs to
be convex or smooth.

Give any directionally differentiable ψ, the sequence of iterates is generated by

(52) β(t+1) ∈ arg min
β

g(β;β(t)) := l(β) + PΘ(%β;λ) + ∆ψ(β,β(t)).

Nonconvex iterative thresholding and LLA are particular instances.
First, we must characterize the notion of noise in this nonlikelihood setting, to take into

account the randomness of samples. Assume l0 is differentiable at point Xβ∗ (but not nec-
essarily differentiable on all of Rn) and define the effective noise by

(53) ε=−∇l0(Xβ∗).

(An alternative assumption is that δl0(Xβ∗;h) is a sub-Gaussian random variable with mean
0 and scale bounded by cσ for any unit vector h, but we will not pursue further in the current
paper.)

Typically, E[ε] should be 0, and so ∇{E[l0(Xβ∗)]}= 0 assuming the differentiation and
expectation are exchangeable, which means the statistical truth makes the gradient of its risk
vanish. For a GLM with yi (1 ≤ i ≤ n) following a distribution in the exponential family
that has cumulant function b and canonical link function g = (b′)−1, the loss is then l(β) =
l0(Xβ) =−〈y,Xβ〉+ 〈1, b(Xβ)〉 (cf. (9) with σ = 1), and so

(54) ε= y− g−1(Xβ∗) = y−E(y).

Our effective noise, as a joint outcome of the loss and the response, does not depend on
the regularizer, and may differ from the raw noise. For example, under y = Xβ∗ + εraw,
l(β) = lHuber(r) =

∑
i:|ri|≤aσ r

2
i /2 +

∑
i:|ri|>aσ(a|ri| − a2σ2/2) with r = y−Xβ [27], sim-

ple calculation gives εi = εraw
i 1|εraw

i |≤aσ + aσ1|εraw
i |>aσ , which is bounded by aσ, thereby

sub-Gaussian, no matter what distribution the raw noise follows. This nonparametricness is
apparent for any l0 that is (globally) Lipschitz, for example, the logistic deviance and hinge
loss for classification.

In this section, we assume that ε is a sub-Gaussian random vector with mean zero and scale
bounded by σ, cf. Definition A.1, where εi are not required to be independent. Examples
include Gaussian random variables and bounded random variables such as Bernoulli.

The support of β is denoted by J (β) = {j : βj 6= 0}, and its cardinality is J(β) =

|J (β)|= ‖β‖0. We abbreviate J(β∗) to J∗ and J(β̂) to Ĵ . In sparse learning, J∗� n� p is
typically true. The sparsity suggests the possibility of obtaining a fast rate of convergence in
statistical error. The following penalty induced by the hard-thresholding ΘH(t;λ) = t1|t|>λ
by (48) turns out to play a key role in the analysis

(55) PH(t;λ) = (−t2/2 + λ|t|)1|t|<λ + (λ2/2)1|t|≥λ.

An important fact is that PΘ(t;λ)≥ PH(t;λ) for any t ∈R and any thresholding rule Θ. This
is simply because in shrinkage estimation, any Θ(t;λ) with λ as the threshold is identical to
zero as t ∈ [0, λ) and is bounded above by the identity line for t≥ λ.

3.2.1. Statistical accuracy of fixed-point solutions. The finally obtained solutions from a
Bregman surrogate algorithm can be described as the fixed points of g (recall (32)),

(56) β̂ ∈ arg min
β

g(β; β̂).

We denote the set byF , and call such solutions the F -estimators. When the objective function
is convex, an F-estimator is necessarily a globally optimal solution to the original problem by
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Lemma 4, thus an M-estimator. In general, however, the lack of convexity and smoothness
may make β̂ neither an M-estimator nor a Z-estimator [60], which poses new and intriguing
challenges to statistical algorithmic analysis. It is also worth mentioning that another impor-
tant class of “A-estimators” that have alternative optimality, typically arising from block co-
ordinate descent (BCD) algorithms like in Example 3, can often be converted to F-estimators;
see Section A.17.

Nicely, if the problem is regular, all F-estimators defined through g can achieve essentially
the best statistical precision in possibly high dimensions. This is nontrivial since even f ’s
locally optimal solutions do not all have the provable guarantee (cf. Remark 4). Theorem
3 and Theorem 4 below only make use of the weak idempotence property; another notable
feature is that the conditions and conclusions below are regardless of the form of ∆ψ .

THEOREM 3. Suppose there exist δ > 0, ϑ > 0 and large enough K ≥ 0 so that the
following inequality holds for any β ∈Rp:

%2LΘD2(β,β∗) + δD2(Xβ,Xβ∗) + ϑPH(%(β−β∗);λ) + PΘ(%β∗;λ)

≤2∆̄l(β,β
∗) + PΘ(%β;λ) +Kλ2J(β∗),

(57)

where λ=Aσ
√

log(ep)/
√

(δ ∧ ϑ)ϑ with A a sufficiently large constant. Then

D2(Xβ̂,Xβ∗)≤ 2KA2

(δ ∧ ϑ)δϑ
σ2J∗ log(ep),(58)

PH(%(β̂−β∗);λ)≤ 4KA2

(δ ∧ ϑ)ϑ2
σ2J∗ log(ep),(59)

with probability at least 1−Cp−cA2

, where C,c are positive constants.

Moreover, an oracle inequality [17, 31] can be built to justify the estimators even when β∗

is not exactly sparse. Toward this goal, recall the notion of a pseudo-metric d (cf. Definition
A.2), that is, d is nonnegative, symmetric, and satisfies the triangle inequality, and suppose
without loss of generality that

αd2(η,η′)≤∆l0(η,η′)≤ Ld2(η,η′),∀η,η′

for some pseudo-metric d with −∞≤ α ≤ L ≤ +∞. For regression l(β) = l0(η) = ‖y −
η‖22/2, α= L= 1> 0.

THEOREM 4. Assume for given β ∈ Rp, there exist r: 0≤ r < 1, αr/L≥ 0, positive δ,
ϑ, and a large enough K ≥ 0 so that

%2LΘD2(β,γ) + δD2(Xβ,Xγ) + ϑPH(%(β− γ);λ) + PΘ(%β;λ)

≤ (1 +
α

L
r)∆l(β,γ) + PΘ(%γ;λ) +Kλ2J(β)

(60)

for any γ ∈ Rp, where λ = Aσ
√

log(ep)/
√

(δ ∧ ϑ)ϑ with A a sufficiently large constant.
The oracle inequality below holds for some constant C > 0,

E∆l(β̂,β
∗)≤ E

{(1 + r

1− r

)2
∆l(β,β

∗) +
(1 + r)KA2

(1− r)(2ϑ∧ δ)ϑ
σ2J(β) log(ep)

}
+

C(1 + r)

(1− r)(2ϑ∧ δ)
σ2.

(61)

Compared with (57) which fixes γ at β∗, (60) has (1 + α
Lr)∆l in place of 2∆̄l as the first

term on the right-hand side. Nonrigorously, these conditions ask 2∆̄l or (1 + α
Lr)∆l to dom-

inate %2LΘD2 in a restricted sense; Remark 2 argues that (60) is not technically demanding
compared with many other regularity conditions in the literature.
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When r = 0, the multiplicative constant proceeding ∆l(β,β
∗) in (61) is as small as 1,

resulting in a sharp oracle inequality [31]. If one sets β = β∗ in (61), the Bregman error
∆l(β̂,β

∗) is of the order σ2J∗ log(ep) for any thresholding (when δ,ϑ,K are treated as
constants). But the bias term ∆l(β,β

∗) or ∆l0(Xβ,Xβ∗) helps to handle approximately
sparse signals: when β∗ contains a number of small nonzero elements, rather than taking β =
β∗, a reference β with a reduced support will yield an even smaller error bound benefiting
from the bias-variance tradeoff.

Unlike the optimization error bounds, the statistical error bounds never vanish (unless
σ → 0). We can similarly analyze the set of global minimizers, in which case the term
%2LΘD2(β,β∗) is dropped from the regularity conditions, but the error bounds remain of
the same order (cf. Remark A.1 in Section A.12). In fact, for sparse GLMs, by Theorem 1,
the rate σ2J∗ log(ep) is essentially minimax optimal (thus unbeatable) up to a logarithmic
factor.

REMARK 2 (Regularity condition comparison). The GBF-based regularity conditions
(57), (60) are no more demanding than some commonly used regularity conditions. As-
sume that PΘ is subadditive: PΘ(t + s) ≤ PΘ(t) + PΘ(s), which holds when it is con-
cave on R+. Let J = J (β), J = |J (β)|, γ = β′ − β. Then, from PΘ(%β′J ;λ) −
PΘ(%βJ ;λ) ≤ PΘ(%(β′ − β)J ;λ) and PΘ(%β′J c ;λ) = PΘ(%(β′ − β)J c ;λ), (60) is im-
plied by PΘ(%γJ ;λ)+ϑPH(%γJ ;λ)+LΘD2(%β, %β′)+δ‖Xγ‖22/2≤ (2−ε)∆l(β,β

′)+
Kλ2J + PΘ(%γJ c ;λ) − ϑPH(%γJ c ;λ), or (1 + ϑ)PΘ(%γJ ;λ) + LΘD2(%β, %β′) +
δ‖Xγ‖22/2≤ (2− ε)∆l(β,β

′) +Kλ2J + (1− ϑ)PΘ(%γJ c ;λ) since PH ≤ PΘ.
To get more intuition, let l(β) = ‖Xβ − y‖22/2. Then the above condition simplifies to

(1+ϑ)PΘ(%γJ ;λ)+LΘ‖%γ‖22/2≤ (2−ε′)‖Xγ‖22/2+Kλ2J +(1−ϑ)PΘ(%γJ c ;λ) with
ε′ = ε+ δ, or the following sufficient condition (with K redefined) for all γ ∈Rp:

(62) (1 + ϑ)PΘ(%γJ ;λ) +
LΘ

2
‖%γ‖22 ≤K

√
Jλ‖Xγ‖2 + (1− ϑ)PΘ(%γJ c ;λ).

For lasso, where PΘ(β;λ) = λ‖β‖1, there is a rich collection of regularity conditions in the
literature. In this convex case, LΘ = 0 and % can be arbitrarily large. (62) reduces to (with ϑ
and K redefined and λ canceled)

(1 + ϑ)%‖γJ ‖1 ≤K
√
J‖Xγ‖2 + %‖γJ c‖1,∀γ(63)

for someK ≥ 0, ϑ > 0. Taking %= c‖X‖2 results in scale invariance with respect toX . Let’s
compare (63) with the restricted eigenvalue (RE) condition and the compatibility condition
[7, 59]. For given J , the two conditions assume that there exist positive numbers κ, ϑRE such
that J‖Xγ‖22 ≥ κ‖γJ ‖21 (compatibility) or more restrictively, ‖Xγ‖22 ≥ κ‖γJ ‖22 (RE), for
all γ : (1 + ϑRE)‖γJ ‖1 ≥ ‖γJ c‖1. Therefore, (1 + ϑ)%‖γJ ‖1 ≤K

√
J‖Xγ‖2 ∨ %‖γJ c‖1

with K = (1 + ϑRE)/(%
√
κ), ϑ= ϑRE . That is, the RE-type conditions are more demanding

than (63) (and (60)). Another popular set of regularity conditions is based on restricted
strong convexity (RSC). Under a version of RSC condition (and assuming f is differen-
tiable), [36, Theorem 1] showed that ‖β̃ − β∗‖22 has a bound of order σ2(J∗ log p)/n

for any stationary point β̃. In the lasso case, the condition becomes ‖Xγ‖22 ≥ α‖γ‖22 −
τ log p‖γ‖21/n for some constant α > 0 and τ ≥ 0, from which it follows that for any
γ : (1 + ϑRE)‖γJ ‖1 ≥ ‖γJ c‖1, ‖Xγ‖22 ≥ α‖γ‖22 − τ(2 + ϑRE)2 log p

n ‖γJ ‖
2
1 ≥ α‖γ‖22 −

τ(2 + ϑRE)2 J log p
n ‖γJ ‖22 ≥ κ′‖γJ ‖22, where κ′ = α− τ(2 + ϑRE)2(J log p/n). Therefore,

when n� J log p, RSC implies RE and so is more restrictive than (63). See Remark A.1 in
Section A.12 for an extension to general penalties.
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REMARK 3 (Technical treatment). A big difference between our work and [36] is that the
latter enforces an `1-type side constraint, for example, ‖β‖1 ≤R, in addition to the sparsity-
inducing penalty P . The use of the constraint is a necessary ingredient of the proofs and the
constraint parameter R appears in the minimum sample size condition and the error bounds
implicitly. However, few practically used algorithms seem to include such an additional `1
constraint.

Our analysis does not need any side constraint, and the resulting error bounds and the
oracle inequality hold with no minimum sample size requirement. In fact, in dealing with a
general penalty that may be nonconvex, our treatment of the stochastic term is distinctive
from the conventional “`1 fashion” via Hölder’s inequality: 〈ε,Xβ〉 ≤ ‖X>ε‖∞‖β‖1 (see,
e.g., [10, 7, 37]). More concretely, applying the union bound to ‖X>ε‖∞ will lead to a
further upper bound ‖β‖22 + P (β;λ) up to multiplicative factors [36], while we can bound
〈ε,Xβ〉 by the sum of ‖Xβ‖22/a and a light penalty PH(β;λ)/b for any a, b > 0, with a
proper choice of λ.

REMARK 4 (Fixed points vs. local minimizers). Targeting at the fixed points of the Breg-
man surrogate instead of the local minimizers of the original objective seems more reason-
able from a statistical perspective. Certainly, if f is smooth, F contains more valid solutions
(cf. Lemma 4). But a more important reason is that F can adaptively exclude bad local solu-
tions for some statistical learning problems with severe nonsmoothness and nonconvexity.

For instance, each bridge `q-penalty (q : 0 ≤ q < 1) [22] determines a thresholding Θq ,
which is however the solution for infinitely many penalties; picking the particular one con-
structed from (48) that is the lowest and directionally differentiable [49], one can repeat
the analysis in Theorems 3, 4 to show provable guarantees for all the fixed points of the
iterative Θq procedure. In contrast, as pointed out by [36], the original optimization prob-
lem may contain “faulty” local minimizers. In fact, when q = 0, the `0-penalized problem
minβ ‖Xβ−y‖22/2 + (λ2/2)‖β‖0 (not directionally differentiable) always has 0 as a local
minimizer which is however a poor estimator as β∗ is large. Switching to the surrogate’s
fixed points successfully addresses the issue: β̂ = 0 is a valid fixed point only when X>y is
properly small: ‖X>y‖∞ ≤ λ, or the true signal is inconsequential relative to the maximum
noise level.

3.2.2. Statistical analysis of the iterates from Bregman surrogates. We show a nice result
for (52) in the composite setting: under a regularity condition similar to those in Section 3.2.1,
with high probability, the t-th iterate can approach the statistical target within the desired
precision geometrically fast, even when p > n. Specifically, we add a mild multiple of ∆ψ to
the left-hand side of (57) and assume that for some δ > 0, ε > 0, ϑ > 0 and large K ≥ 0,

ε∆ψ(β∗,β) + δD2(Xβ,Xβ∗) + ϑPH(%(β−β∗);λ) + PΘ(%β∗;λ)

≤ (2∆̄l − %2LΘD2)(β,β∗) + PΘ(%β;λ) +Kλ2J(β∗),∀β
(64)

and ψ is differentiable for simplicity. Recall that (39) in Proposition 2 requires 2∆̄f to dom-
inate ε∆ψ; (64) gives a large-p extension of it.

THEOREM 5. Under the above regularity condition, for λ = Aσ
√

log(ep)/
√

(δ ∧ ϑ)ϑ
with A sufficiently large and κ= 1/(1 + ε), we have

(65) ∆ψ(β∗,β(t))≤ κt∆ψ(β∗,β(0)) +
κ

1− κ
(Kλ2J∗ − min

1≤s≤t
∆ψ(β(s),β(s−1)))

for any t ≥ 1 with probability at least 1 − Cp−cA2

, where C,c are universal positive con-
stants.
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The error measure ∆ψ(β∗,β(t)) in (65) has β∗ as its first argument and differs from the
∆l(β̂,β

∗) used in (61). According to the proof, (64) only needs to hold for β = β(s) (0 ≤
s≤ t), and so different starting values may give different values of κ. With ∆ψ ≥ 0 (which
can be realized by stepsize control), the fast converging statistical error to O(σ2J∗ log(ep))
implies that over-optimization may be unnecessary. As an example, consider the iterative
thresholding procedures with ∆l ≤ LD2 and %2 >L. Then (65) yields

‖β∗ −β(t)‖22 ≤ κt
%2

%2 −L
‖β∗ −β(0)‖22 +

2κK

(1− κ)(%2 −L)
λ2J∗.

So it is possible to terminate the iterative algorithm before full computational convergence
without sacrificing much statistical accuracy. The simulations in Section C.2 support this
point.

REMARK 5. Theorem 5 reveals the fast decay of the direct statistical error between β(t)

and β∗. [1] and [36] argued a similar point for gradient descent type algorithms, in a some-
how indirect manner: (i) β(t) can approach any globally optimal solution β̃ geometrically
fast in computation under a combination of an RSC condition and an RSM condition, and
(ii) under some regularity conditions, every local minimum point is close enough to the au-
thentic β∗. In the RSC condition for (i), the factor proceeding the dominant term ∆̄l is 1
(there are two different sets of RSC conditions used in Theorem 1 and Theorem 3 of [36],
the factor α1 in the second set corresponding to half of the α1 used in the first set). But (64)
allows it to be 2. Moreover, Theorem 5 does not need the extra RSM condition and applies to
a broader class of algorithms. For example, we can show that the statistical error of the LLA
algorithm reduces at a linear rate to the desired precision under some regularity conditions;
see Proposition 5 and Lemma A.7 in Section A.16.

4. Two acceleration schemes for generalized Bregman surrogates. How to acceler-
ate first-order algorithms without incurring much additional cost per iteration has lately at-
tracted lots of attention in big data applications. In convex optimization, Nesterov’s momen-
tum techniques prove to be quite effective in that the rate of convergence can be improved
from O(1/t) to O(1/t2), which is optimal when using first-order methods on smooth prob-
lems [41, 57, 4, 32]. This section attempts to extend Nesterov’s first and second accelerations
[39, 40] to Bregman-surrogate algorithms. With a possible lack of smoothness or convexity,
carefully choosing the relaxation parameters and step sizes is the key, and we will see the
benefit of maximizing a quantity Rt/(θ2

t ρt) at the t-th iteration, with Rt appropriately de-
fined via generalized Bregman notation. We consider the following two broad scenarios to
devise the acceleration schemes.

Scenario 1. g(β;γ) = f(β) − ∆ψ0
(β,γ) + ρD2(β,γ). This surrogate family includes

gradient descent type algorithms. Often, if minβ f(β) + ∆ψ(β,γ) is easy to solve, so is
minβ f(β) + ∆ψ(β,γ) + ρD2(β,γ), in which case ψ0 =−ψ.

Scenario 2. g(β;γ) = f(β) −∆ψ0
(β,γ) + ρ∆φ(β,γ). This gives a more general class

than the first one.

This section assumes that f , ψ0, φ, ∆ψ0
(·,γ), ∆ψ0

(·,γ) are directionally differentiable
given any γ. We introduce a convenient notation Cψ defined for any ψ as follows

(66) Cψ(α,β, θ) = θψ(α) + (1− θ)ψ(β)−ψ(θα+ (1− θ)β),

where 0≤ θ ≤ 1. Like ∆, C is a linear operator of ψ and its nonnegativity means convexity.
Some connections between ∆ and C are given below.
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LEMMA 5. Let ψ be directionally differentiable. (i) Cψ(α,β, θ) = (1− θ)∆ψ(β,α)−
∆ψ(θα+ (1− θ)β,α) for any α,β and θ ∈ [0,1]. (ii) C∆ψ(·,α) = Cψ if ψ is differentiable
at α.

An acceleration scheme of the second kind. Scenario 2 is of our primary interest since it
applies more broadly. Below, we modify the surrogate and define an iterative algorithm (not
a descent method) that involves three sequences α(t), β(t), γ(t) starting at α(0) = β(0):

γ(t) = (1− θt)β(t) + θtα
(t)(67a)

α(t+1)= argminf(β)−∆ψ0
(β,γ(t))+µ0∆φ(β,γ(t))+θtρt∆φ(β,α(t))(67b)

β(t+1) = (1− θt)β(t) + θtα
(t+1),(67c)

for some µ0 ≥ 0, θt ∈ (0,1], ρt > 0 (∀t≥ 0), to be chosen later. Notice the extra GBF term
µ0∆φ(·,γ(t)) in (67b) in addition to ∆φ(·,α(t)). The design of relaxation parameters θt and
inverse step size parameters ρt, µ0 holds the key to acceleration. Let

ψ̄0 = ψ0 − µ0φ.(68)

We advocate the following line search criterion

Rt := θ2
t ρt∆φ(α(t+1),α(t))−∆ψ̄0

(β(t+1),γ(t)) + (1− θt)∆ψ̄0
(β(t),γ(t))

+ Cf(·)−∆ψ̄0
(·,γ(t))(α

(t+1),β(t), θt)≥ 0,
(69a)

θ2
t

1− θt
=
θt−1(ρt−1θt−1 + µ0)

ρt
, t≥ 1.(69b)

The update of the relaxation parameter involves ρ and µ as well.
Theorem 6 presents two error bounds without assuming convexity or smoothness, and

shows in general the reasonability of (69a).

THEOREM 6. Let ρt be any positive sequence. Consider the algorithm defined by (67a)–
(67c) and (69b). Let Et(β) = ∆ψ̄0

(β,γ(t))+∆f(·)−∆ψ0 (·,γ(t))(β,α
(t+1))+(µ0∆∆φ(·,γ(t))−φ(·)

+ θtρt∆∆φ(·,α(t))−φ(·))(β,α
(t+1)).

(i) When µ0 = 0, for any β and T ≥ 0,

f(β(T+1))− f(β)

θ2
TρT

+ T · avg
0≤t≤T

Et(β)

θtρt
+ T · avg

0≤t≤T

Rt
θ2
t ρt

≤∆φ(β,α(0))−∆φ(β,α(T+1)) +
1− θ0

θ2
0ρ0

[
f(β(0))− f(β)

]
.

(70)

(ii) Moreover, given any µ0 ≥ 0,

f(β(T+1))− f(β) + θ2
T (ρT +

µ0

θT
)∆φ(β,α(T+1))

+ΣT
t=0

(
ΠT
s=t+1(1− θs)

)
(Rt + θtEt(β))

≤
(∏T

t=1(1− θt)
)[

(1− θ0)(f(β(0))− f(β)) + θ2
0ρ0∆φ(β,β(0))

](71)

for all β and T ≥ 0, where by convention,
∏u
s=l as = 1 as l > u.
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First, we make a discussion of the results for convex optimization. Assume ∆φ ≥ σD2 for
some σ > 0. With the additional knowledge that f(·) −∆ψ̄0

(·,γ(t)) is convex and ∆ψ̄0
≤

Lψ̄0
D2 for some Lψ̄0

≥ 0, (69a) is implied by

(72) θ2
t (ρt −Lψ̄0

/σ)∆φ(α(t+1),α(t)) + (1− θt)∆ψ̄0
(β(t),γ(t))≥ 0.

So when f is convex, criterion (69) is satisfied by ρt = ρ ≥ Lψ̄0
/σ,ψ0 = f,µ0 = 0 and

θt+1 = (
√
θ4
t + 4θ2

t − θ2
t )/2, degenerating to Nesterov’s second method [40, 57], and the

convergence rate is of orderO(1/T 2) according to (70) and (75). The second conclusion tells
more when strong convexity (or restricted strong convexity) arises. Given a convex f satisfy-
ing µDφ ≤∆f ≤ LDφ with 0< µ≤ L and φ differentiable, taking ψ0 = f , µ0 = µ, and ρt =

L−µ ensures Et(β) = ∆f−µφ(β,γ(t))+∆f(·)−∆f (·,γ(t))(β,α
(t+1))≥∆f−µφ(β,γ(t))≥ 0

and Rt ≥ θ2
t ρtDφ(α(t+1),α(t))−∆ψ̄0

(β(t+1),γ(t))≥ θ2
t (ρt+µ0−L)σD2(α(t+1),α(t)) =

0. According to (69b), the following choice

(73) θt = θ0 =
2√

4κ− 3 + 1
with κ= L/µ

suffices, and the optimization problem to solve in (67b) becomes

minf(γ(t)) + δf(β;β− γ(t)) + µDφ(β,γ(t))+
2(L− µ)√
4κ− 3 + 1

Dφ(β,α(t)).(74)

From (71), both f(β(T+1))− f(β) and Dφ(β,α(T+1)) enjoy a linear convergence with rate
parameter

√
4κ−3−1√
4κ−3+1

, or an iteration complexity of O(
√
κ log(1/ε)), significantly faster than

O(κ log(1/ε)) in Proposition 2. Hence (67), (69) can achieve rate-optimality in various con-
vex scenarios. To the best of our knowledge, this is the first “all-in-one” form of the second
acceleration that adapts.

The proposed algorithm can even go beyond convexity. As a demonstration, let us apply
the acceleration to the iterative quantile-thresholding procedure (cf. Example 2) for solving
the feature screening problem: min l(β) = ‖y −Xβ‖22/2 s.t. ‖β‖0 ≤ q, which is noncon-
vex. Here, q is bounded above by p but may be larger than n. Take φ = ‖ · ‖22/2, µ0 = 0
and ψ0(β) = l(β)− Lφ(β) for some L ≥ 0. Given any s ≤ p and X , define the restricted
isometry number ρ+(s) [12] that satisfies ‖Xβ‖22 ≤ ρ+(s)‖β‖22, ∀β : ‖β‖0 ≤ s, which can
be much smaller than ‖X‖22 as s is small.

COROLLARY 2. Assume q is set larger than the target ‖β∗‖0 with the ratio denoted by
r. Then for any L ≥ ρ+(2q)/

√
r, there exists a universal ρt (ρt = ρ+(2q)(1− 1/

√
r), say),

thereby θt+1 = (
√
θ4
t + 4θ2

t −θ2
t )/2, such that the accelerated iterative quantile-thresholding

according to (67a)–(67c) satisfies l(β(T+1))− l(β∗) + min0≤t≤T ∆ψ0
(β∗,γ(t))≤A/T 2 for

all T ≥ 0, where A is independent of T .

The proof of the corollary shows the power of an accumulative Rt-control, and applies
more generally: if the objective function f(β), possibly nonconvex, can be written as the
sum of a convex function l(β) with ∆l ≤ LD2 and a function P (β) that can be lifted:
∆P + L0D2 ≥ 0 for some finite L0 ≥ 0, then one can utilize a ψ0 as l − 0.6L0‖ · ‖22 and a
universal ρt to fulfill T ·avgt≤T Rt/(θ

2
t ρt)≥ 0 in (70) (although not every Rt is necessarily

nonnegative) so as to attain an O(1/T 2) error bound. See Remark A.3 in Section A.14.
Of course, a time-varying ρt can provide finer control, and the theorem does not limit ρt to

be constant. In fact, under µ0 = 0, as long as ρt/ρt−1 ≥ 1− (at+ab+1)/(t+ b−1)2 (t≥ 1)
for some constants a, b: a >−2, b≥ a+1, induction based on (69b) gives θt ≤ (a+2)/(t+b)
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and
∑T

t=0 ρT /(ρtθt)≥ (T + c1)2/(a+ 2)2 + c2 (with constants ci dependent on a, b) for any
t≥ 1, from which it follows that

θ2
T =O(1/T 2) and T · avg0≤t≤T (1/(ρtθt))≥O(T 2/ρT ).(75)

Now, underRt ≥ 0 or just
∑T

t=0Rt/(θ
2
t ρt)≥ 0, (70) gives f(β(T+1))−f(β)+min0≤t≤T Et(β)

≤O(ρT /T
2) for any β. Typically, (69a) involves a line search. If the condition fails for the

current value of ρt, one can set ρt = αρt for some α > 1 and recalculate θt, γ(t), α(t+1) and
β(t+1) according to (69b) and (67) to verify it again. In implementation, it is wise to limit the
number of searches at each iteration (denoted by M ) to control the per-iteration complexity.
If (69a) does not hold after m times of search, we simply pick the ρt that gives the largest
Rt/(θ

2
t ρt) based on Theorem 6. Some details are in Algorithm B.1. In simulation studies,

letting M = 3, α= 2 already shows excellent performance; see Figure C.5 and Figure C.6.

An acceleration scheme of the first kind. For the algorithms falling into Scenario 1, we can
alternatively consider two sequences of iterates generated by

γ(t) = β(t) + {ρt−1θt(1− θt−1)/(ρt−1θt−1 + µ0)}(β(t) −β(t−1)),(76a)

β(t+1) = arg minf(β)−∆ψ0
(β,γ(t))+µ0D2(β,γ(t))+ρtD2(β,γ(t)),(76b)

for some µ0 ≥ 0, θt ∈ (0,1], ρt > 0 for all t ≥ 0, and we force γ(0) = β(0). (76a), (76b)
give a new first type acceleration, and notably, the novel update of γ(t) involves ρt−1. When
β(t+1) = γ(t) one stops the algorithm and obtains a fixed point with provable statistical guar-
antees as shown in Section 3.2.1.

Similar to (68), let ψ̄0 = ψ0 − µ0‖ · ‖22/2. Define the line search criterion

Rt := (ρtD2 −∆ψ̄0
)(β(t+1),γ(t)) + (1− θt)∆ψ̄0

(β(t),γ(t))≥ 0,(77a)

θ2
t

1− θt
=
θt−1(ρt−1θt−1 + µ0)

ρt
, θt ≥ 0, ρt > 0, t≥ 1.(77b)

Note that Rt is defined differently from (69a). The following theorem reveals the importance
of maximizing Rt in each iteration step when performing possibly nonconvex optimization.

THEOREM 7. Given any ρt > 0 (t≥ 0), consider the algorithm defined by (76a), (76b),
and (77b). Let Et(β) = ∆ψ̄0

(β,γ(t)) + {Cf(·)−∆ψ0
(·,γ(t))(β,β

(t), θt) + ∆f(·)−∆ψ0
(·,γ(t))

(θtβ+ (1− θt)β(t),β(t+1))}/θt.
(i) When µ0 = 0, we have

f(β(T+1))− f(β)

θ2
TρT

+ T · avg
0≤t≤T

Et(β)

θtρt
+ T · avg

0≤t≤T

Rt
θ2
t ρt

≤D2(β,β(0)) +
1− θ0

θ2
0ρ0

[
f(β(0))− f(β)

]
for any β and T ≥ 0.

(ii) Moreover, given any µ0 ≥ 0, for all β and T ≥ 0,

f(β(T+1))− f(β) + θ2
T (ρT +

µ0

θT
)D2(β, (γ(T+1)−(1−θT+1)β(T+1))/θT+1)

+ΣT
t=0

(
ΠT
s=t+1(1− θs)

)
(Rt + θtEt(β))

≤
(∏T

t=1(1− θt)
)[

(1− θ0)(f(β(0))− f(β)) + θ2
0ρ0D2(β,β(0))

]
.
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Again, the new proposal of the iterate and parameter updates adapts to various situations,
with µ0 (which can be a sequence µt, cf. Remark A.2) measuring the degree of convexity
(or restricted convexity in a nonconvex composite problem). For example, when f is con-
vex and L-strongly smooth, µ0 = 0, ρt = L, ψ0 = f , and θt+1 = (

√
θ4
t + 4θ2

t − θ2
t )/2 make

(77) hold, corresponding to Nesterov’s first method. Interestingly, if f is µ-strongly con-
vex, the associated standard momentum update γ(t) = β(t) + θt(θ

−1
t−1 − 1)(β(t) − β(t−1))

only attains a linear rate at 1 − 1/κ (κ = L/µ) (cf. Remark A.4), showing no theoretical
advantage over the plain gradient descent. (76) fixes the issue: with µ0 = µ, ρt = L − µ,
θt = 2/(

√
4κ− 3 + 1), an accelerated linear rate parameter is obtained as (

√
4κ− 3− 1)/

(
√

4κ− 3 + 1)(≤ 1−
√

3/(4κ)). (When µ0 is unknown, (76b) based on the split L= ρt+µt
is still advantageous over the classical acceleration with ρt = L.) We proved these error
bounds by use of GBFs, which is perhaps more straightforward than Nesterov’s ingenious
proof based on the notion of estimate sequence, and more importantly, (76), (77) provide a
universal “all-in-one” form, instead of separate schemes in different situations [41].

Theorem 7 accommodates diverse choices of the parameters ψ0, µ0, ρt, θt and is motivat-
ing in the nonconvex composite setup. Consider, for example, minf(β) = ‖y −Xβ‖22/2 +
PΘ(%β;λ). Because the objective is nonconvex when p > n and LΘ > 0, how to acceler-
ate the associated iterative thresholding procedure is an unconventional problem. From the
studies in Section 3.2, we have learned that a sparsity-inducing penalty with a properly large
threshold to suppress the noise can result in strong convexity in a restricted sense. We can then
use a surrogate f(β) + (ρD2−∆ψ0

)(β,β−) where ψ0(β) = ‖y−Xβ‖22/2−%2LΘ‖β‖22/2
and µ0 = 0. Since f(·)−∆ψ0

(·,γ) is convex (cf. Lemma A.3), Et(β)≥∆ψ0
(β,γ(t)). More-

over, thanks to the sparsity in β(t), and thus γ(t),X(β(t)−γ(t)) involves just a small number
of features. So with an incoherent design, a properly small % can make ∆ψ0

(β(t),γ(t))≥ 0.
Now, taking a constant ρt as large as, for instance, ‖X‖22 − %2LΘ, may yield a convergence
rate of order O(1/t2). (Actually, linear convergence may result from the restricted strong
convexity under some regularity conditions.) More generally, different ρt’s are allowed in the
theorem: (75) is still secured with just, say, ρt/ρt−1 ≥ 1− (t+ 3)/(t+ 1)2. A line search can
be used to determine a proper sequence ρt; see Algorithm B.2 for more details.

The proposed accelerations of the first kind and of the second kind can be utilized in a
wide range of problems. Because they are momentum based, the original algorithms need
not be substantially modified to have an improved iteration complexity, and the two theo-
rems proved in this section apply in any dimensions with no design coherence restrictions.
Another delightful fact is that our “all-in-one” forms update the iterates adaptively according
to the degree of convexity µ0 ≥ 0, which can be relaxed to a sequence of local measures µt
(Remark A.2). With a line search to get properly large µt, this could be helpful in high di-
mensional sparse learning problems which may or may not have restricted strong convexity
(the associated parameter often hard to determine in theory).

5. Summary. This paper studied the class of iterative algorithms derived from GBF-
defined surrogates with a possible lack of convexity and/or smoothness. These surrogates
differ from the MM surrogates frequently used in statistical computation, in that they gain
additional first-order degeneracy and may drop the majorization requirement. GBFs have
interesting connections to the densities in the exponential family and possess some idempo-
tence properties that are useful for studying iterative algorithms.

The GBF calculus built by the lemmas not only facilitates optimization error analysis but
can be bound to the empirical process theory for nonasymptotic statistical analysis (cf. Sec-
tions 3.2 and A.18). In addition to obtaining some insightful results in the realm of convex
optimization, we were able to build universal global convergence rates for a broad class of
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Bregman-surrogate algorithms for nonsmooth nonconvex optimization. Moreover, in the non-
convex composite setting that is of great interest in high dimensional statistics, we found that
the sequence of iterates generated by Bregman surrogates can approach the statistical truth
at a linear rate even when p > n, and the obtained fixed points enjoy oracle inequalities with
essentially the optimal order of statistical accuracy, under some regularity conditions less de-
manding than those used in the literature. Finally, we devised two “all-in-one” acceleration
schemes with novel updates of the iterates and relaxation and stepsize parameters, and some
sharp theoretical bounds were shown without assuming smoothness or convexity.

APPENDIX A: PROOFS

We list some notation and symbols that are used in the proofs. Given a directionally differ-
entiable function ψ, ∆ψ(β,γ) = ψ(β)− ψ(γ)− δψ(γ;β − γ), ∆̄ψ(β,γ) = (∆ψ(β,γ) +

∆ψ(γ,β))/2, and
r
∆ψ(β,γ) = ∆ψ(γ,β). We occasionally denote ∆ψ(β,γ) by ∆(β,γ)

when there is no ambiguity. The classes of continuous functions and continuously differen-
tiable functions are denoted by C0 and C1, respectively. Recall that all functions are assumed
to be defined on a vector space unless otherwise mentioned.

DEFINITION A.1. We call ξ a sub-Gaussian random variable if and only if there exist
constants C,c > 0 such that P{|ξ| ≥ t} ≤ Ce−ct2 ,∀t > 0. The scale (or ψ2-norm) of ξ is
defined by σ(ξ) = inf{σ > 0 : E exp(ξ2/σ2) ≤ 2}. More generally, ξ ∈ Rp is called a sub-
Gaussian random vector with scale bounded by σ if all one-dimensional marginals 〈ξ,α〉
are sub-Gaussian satisfying ‖〈ξ,α〉‖ψ2

≤ σ‖α‖2, ∀α ∈Rp.

DEFINITION A.2. We call d a pseudo-metric if it satisfies d(η1,η2) = d(η2,η1)≥ 0 and
d(η1,η2)≤ d(η1,η3) + d(η2,η3), for all η1,η2,η3.

We state a first-order optimality condition satisfied by all local minimizers of f that is
directionally differentiable. The result is basic and we omit the proof. It holds the key to
deriving the so-called “basic inequality” in a variety of statistical learning problems.

LEMMA A.1. Let f : Rp → R be a real-valued function and C ⊂ Rp be a convex set.
Suppose that f is directionally differentiable at βo that is a local minimizer to the problem
minβ∈C f(β). Then δf(βo;h)≥ 0 with h= β − βo or f(β)− f(βo)≥∆f (β,βo) for all
β ∈C .

A.1. Proof of Lemma 1. (i) This property is straightforward by definition:

∆aψ+bϕ(β,γ)

= (aψ + bϕ)(β)− (aψ + bϕ)(γ)− δ(aψ + bϕ)(γ;β− γ)

=a
[
ψ(β)−ψ(γ)− δψ(γ;β− γ)

]
+ b
[
ϕ(β)−ϕ(γ)− δϕ(γ;β− γ)

]
=a∆ψ(β,γ) + b∆ϕ(β,γ).

(ii) From [45, Theorem 23.1], the convexity of ψ implies the directional differentiability
of ψ and the positively homogenous convexity of δψ(β; ·) for any given β, and we can write

(A.1) δψ(β;h) = inf
ε>0

ψ(β+ εh)−ψ(β)

ε
.

Putting ε= 1 and h= γ−β in (A.1) gives δψ(β;γ−β)≤ ψ(γ)−ψ(β), thus ∆ψ(γ,β)≥
0.
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Conversely, suppose that ψ defined on Rn is directionally differentiable (δψ exists and
is finite), thus radially continuous, and ∆ψ ≥ 0. For any sβ : 〈sβ,h〉 ≤ δψ(β;h),sγ :
〈sγ ,h〉 ≤ δψ(γ;h) ∀h,

ψ(β)−ψ(γ)− 〈sγ ,β− γ〉 ≥∆ψ(β,γ)≥ 0,(A.2)

ψ(γ)−ψ(β)− 〈sβ,γ −β〉 ≥∆ψ(γ,β)≥ 0.(A.3)

Adding them together gives 〈sβ − sγ ,β − γ〉 ≥ 0. This indicates the monotone property of
the Clarke-Rockafellar subdifferential of ψ, thereby its convexity according to [16].

(iii) To show the first result, notice that ∆ψ◦ϕ(β,γ)−∆ψ(ϕ(β),ϕ(γ)) = limε→0+{ψ(ϕ(γ)
+ε(ϕ(β)−ϕ(γ)))−ψ(ϕ(γ+ε(β−γ)))}/ε= 〈∇ψ(ϕ(γ)),ϕ(β)−ϕ(γ)〉−δ(ψ◦ϕ)(γ;β−
γ). From ψ ∈ C1 and ϕ ∈ C0,

δ(ψ ◦ϕ)(γ;β− γ) = lim
ε→0+

{ψ(ϕ(γ) + (ϕ(γ + ε(β− γ))−ϕ(γ)))−ψ(ϕ(γ))}/ε

= lim
ε→0+

〈∇ψ(ϕ(γ)),ϕ(γ + ε(β− γ))−ϕ(γ)/ε〉

=〈∇ψ(ϕ(γ)), δϕ(γ;β− γ〉.

Using the definition of ∆ϕ(β,γ) (the componentwise extension), we obtain the conclusion.
Next, we prove the second result. Let ϕ : Rp→Rn be the linear function ϕ(β) =Xβ+α

with its Jacobian matrix Dϕ(β) := [ Djϕi(x)] =X ∈ Rn×p. By definition, ∆ψ◦ϕ(β,γ) =
ψ(ϕ(β))−ψ(ϕ(γ))− δ(ψ ◦ϕ)(γ;β− γ) and

δ(ψ ◦ϕ)(γ;β− γ) = lim
ε→0+

{ψ(ϕ(γ + ε(β− γ)))−ψ(ϕ(γ))}/ε

= lim
ε→0+

{ψ(ϕ(γ) + εDϕ(γ)(β− γ)))−ψ(ϕ(γ))}/ε

= δψ(ϕ(γ); Dϕ(γ)(β− γ)) = δψ(ϕ(γ);ϕ(β)−ϕ(γ)),

from which it follows that ∆ψ◦ϕ(β,γ) = ∆ψ(ϕ(β),ϕ(γ)).
(iv) From Theorem 11 in [25], for any continuous function f with finite Dini derivative

D+f(x) := lim supε→0+(f(x + ε) − f(x))/ε, if D+f(x) is integrable over [a, b], f(b) −
f(a) =

∫ b
a D

+f(x)dx. By definition, ψ is continuous when restricted to the line segment
[β,γ] (radial continuity). It follows that

ψ(β)−ψ(γ) = ψ
(
γ + t(β− γ)

)∣∣∣1
t=0

=

∫ 1

0
lim
ε→0+

1

ε

[
ψ
(
γ + (t+ ε)(β− γ)

)
−ψ

(
γ + t(β− γ)

)]
dt

=

∫ 1

0
lim
ε→0+

1

ε

[
ψ
(
γ + t(β− γ) + ε(β− γ)

)
−ψ

(
γ + t(β− γ)

)]
dt

=

∫ 1

0
δψ
(
γ + t(β− γ); β− γ

)
dt.

Hence, ∆ψ can be formulated by

∆ψ(β,γ) =

∫ 1

0

[
δψ
(
γ + t(β− γ); β− γ

)
− δψ(γ;β− γ)

]
dt.
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A.2. Proof of Lemma 2. (i) First, if δψ(α; · −α) is directionally differentiable, then

(A.4) ∆ψ(β,γ)−∆∆ψ(·,α)(β,γ) = ∆δψ(α;·−α)(β,γ)

for anyα,β,γ. In fact, ∆ψ(β,γ)−∆∆ψ(·,α)(β,γ) = ∆ψ(·)−∆ψ(·,α)(β,γ) = ∆ψ(α)+δψ(α;·−α)

(β,γ) = ∆δψ(α;·−α)(β,γ).
Accordingly, when ψ is convex, which means δψ(α; · −α) is convex as well (cf. Section

A.1), ∆δψ(α;·−α)(β,γ)≥ 0 by Lemma 1. The result under concavity can be similarly proved.
(ii) Let

q(·;α) = δψ(α; · −α).(A.5)

We want to show for α= θβ + (1− θ)γ with θ ≤ 0 or θ ≥ 1, ∆q(·;α)(β,γ) is well-defined
and equals 0. This is intuitive due to the linearity of q when restricted to [β,γ], assuming
β−α and γ −α are positively collinear.

To verify it, by definition,

δq(·;α)(γ;β− γ) = lim
ε→0+

[q(γ + ε(β− γ);α)− q(γ;α)]/ε

= lim
ε→0+

[δψ(α;γ + ε(β− γ)−α)− δψ(α;γ −α)]/ε

= lim
ε→0+

[δψ(α; (θ− ε)(γ −β))− δψ(α; θ(γ −β))]/ε

= lim
ε→0+

[δψ(α; (ε− θ)(β− γ))− δψ(α; (−θ)(β− γ))]/ε,

and so with θ > 0,

δq(·;α)(γ;β− γ) = lim
ε→0+

[(θ− ε)δψ(α;γ −β)− θδψ(α;γ −β)]/ε

=− δψ(α;γ −β),

and with θ ≤ 0,

δq(·;α)(γ;β− γ) = lim
ε→0+

[(ε− θ)δψ(α; (β− γ))− (−θ)δψ(α; (β− γ))]/ε

= δψ(α;β− γ).

The above derivation also guarantees the existence of ∆∆ψ(·,α)(β,γ). Now, as θ ≥ 1,
〈β − α,γ − β〉 ≥ 0 and so q(β;α) − q(γ;α) − δq(·;α)(γ;β − γ) = δψ(α;β − α) −
δψ(α;γ −α) + δψ(α;γ −β) = 0. As θ ≤ 0, 〈β−α,γ −β〉 ≤ 0 and q(β;α)− q(γ;α)−
δq(·;α)(γ;β− γ) = δψ(α;β−α)− δψ(α;γ −α)− δψ(α;β− γ) = 0.

(iii) By definition, we have

δq(·;α)(z;β− γ)

= lim
ε2→0+

1

ε2
{q(z + ε2(β− γ);α)− q(z;α)}

= lim
ε2→0+

1

ε2
{δψ(α;z + ε2(β− γ)−α)− δψ(α;z −α)}.

Under the restricted linearity condition δψ(α;h) = 〈g(α),h〉,∀h ∈ [β − α,γ −α], for
z = γ + t(β− γ) with t ∈ [0,1),

δq(·;α)(z;β− γ) = lim
ε2→0+

1

ε2
〈g(α),z + ε2(β− γ)−α− z +α〉

=〈g(α),β− γ〉.



ANALYSIS OF BREGMAN-SURROGATE ALGORITHMS 27

Under the restricted continuity condition limε→0+ δψ(α+ εh;β−γ) = δψ(α;β−γ),∀h ∈
[β−α,γ −α], for z = γ + t(β− γ) with t ∈ [0,1),

δq(·;α)(z;β− γ)

= lim
ε2→0+

1

ε2

{
lim

ε1→0+

1

ε1

[
ψ
(
α+ ε1[z + ε2(β− γ)−α]

)
−ψ(α)

]
− lim
ε1→0+

1

ε1

[
ψ
(
α+ ε1(z −α)

)
−ψ(α)

]}
= lim
ε2→0+

lim
ε1→0+

1

ε1ε2

[
ψ
(
(1− ε1)α+ ε1z − ε1ε2γ + ε1ε2β

)
−ψ

(
(1− ε1)α+ ε1z

)]
= lim
ε2→0+

lim
ε1→0+

1

ε1ε2

∫ 1

0
δψ
(
(1− ε1)α+ ε1z + ε1ε2s(β− γ); ε1ε2(β− γ)

)
ds

= lim
ε2→0+

lim
ε1→0+

∫ 1

0
δψ
(
(1− ε1)α+ ε1z + ε1ε2s(β− γ);β− γ

)
ds

= lim
ε2→0+

∫ 1

0
lim

ε1→0+
δψ
(
α+ ε1(z + ε2s(β− γ)−α);β− γ

)
ds

= δψ(α;β− γ),

where we used the positive homogeneity of δψ(α; ·) and the dominated convergence theo-
rem. (The integral is well-defined due to the boundedness and Lebesgue measurability of the
integrand.)

The two sets of conditions are not equivalent in multiple dimensions. But in either case,
δq(·;α)(z;β− γ) is a term independent of z. Hence by Lemma 1 (iv),

∆∆ψ(·,α)(β,γ) =

∫ 1

0

[
δq(·;α)

(
γ + t(β− γ); β− γ

)
− δq(·;α)(γ;β− γ)

]
dt= 0.

A.3. Proof of Lemma 3. (i) Let ϕ = b∗. Then for all subgradient g ∈ ∂ϕ(z), (g,z)
makes a conjugate pair and so 〈g,z〉 = b(g) + ϕ(z) (see, e.g., [45]). Using the shorthand
notation (∂ϕ(z),z), we represent it as 〈∂ϕ(z),z〉= b(∂ϕ(z)) + ϕ(z). Therefore,

σ2l0(η;z) + b∗(z) =−〈z,η〉+ b(η) + ϕ(z)

=−〈z,η〉+ b(η) + 〈z, ∂ϕ(z)〉 − b(∂ϕ(z))

= b(η)− b(∂ϕ(z))− 〈z,η− ∂ϕ(z)〉

= b(η)− b(∂ϕ(z))− 〈∇b(∂ϕ(z)),η− ∂ϕ(z)〉

= ∆b(η, ∂ϕ(z)).

When pη is minimal, M is full-dimensional and the canonical link g = (∇b)−1 is well-
defined on M◦ (Proposition 3.1 and Proposition 3.2 in [62] can be slightly modified to in-
clude the dispersion parameter), and so (g(z),∇b(g(z))) or (g(z),z) makes a conjugate
pair.

(ii) Let µ(η) =∇b(η) or µ for brevity. It follows that η ∈ ∂ϕ(µ) and so

−〈z,η〉+ b(η) + b∗(z) =−〈z,η〉+ 〈µ,η〉 − ϕ(µ) + ϕ(z)

=−〈z −µ,η〉 − ϕ(µ) + ϕ(z)

≥−δϕ(µ;z −µ)−ϕ(µ) + ϕ(z) = ∆ϕ(z,µ),
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where the inequality is due to [45, Theorem 23.2]. We claim that the inequality is actually an
equality.

Indeed, if there exist η1,η2 ∈ ∂ϕ(µ) with η1 6= η2, then ∆̄b(η2,η1) = 〈∇b(η2) −
∇b(η1),η2 − η1〉= 0 and so ∆b(η2,η1) = 0 since b is convex. Therefore, for any random
vector y following pη in the exponential family, where η = tη1 + (1− t)η2, t ∈ (0,1),

V ar((η2 − η1)Ty) = 0,

which can be obtained from Proposition 3.1 of [62]. Because exp((〈·,η〉 − b(η))/σ2) > 0
for any η ∈ Ω, we have 〈η2 − η1,z〉= c for almost every z ∈ Yn with respect to ν (i.e., pη
is not minimal). It follows that

〈z −µ,η1 − η2〉= 0.

Finally, from δϕ(µ;h) = sup{〈g,h〉 : g ∈ ∂ϕ(µ} [45, Theorem 23.4], the claim is true.
In the case that pη is also minimal, ϕ can be shown to be strictly convex and differentiable

onM◦ [45, Theorem 26.4].
(iii) Let dPη = pη dν0. By definition,

KL(pη1
, pη2

) =

∫
log( dPη1

/dPη2
) dPη1

=

∫
pη1

log(pη1
/dpη2

) dν0

and so

KL(pη1
, pη2

) =

∫
log {e(〈y,η1〉−b(η1))/σ2−c(y,σ2)/e(〈y,η2〉−b(η2))/σ2−c(y,σ2)}dPη1

=
1

σ2

∫
〈y,η1 − η2〉 − b(η1) + b(η2) dPη1

=
1

σ2
{b(η2)− b(η1) +

∫
〈y,η1 − η2〉dPη1

}

=
1

σ2
{b(η2)− b(η1) + 〈∇b(η1),η1 − η2〉}

= ∆b(η2,η1)/σ2,

where the third equality is due to Ey∼pη1
y =∇b(η1) under η1 ∈ Ω◦ (which can be derived

from Proposition 3.1 of [62]). Moreover, from Lemma 1, σ2∆l0(η2,η1) = ∆b(η2,η1).

A.4. Proof of Lemma 4. In this proof, all directional derivatives are with respect with
β. The result of (i) is trivial from the construction of g. For (ii), by definition, we have
δg(β;β−,h) = δf(β;h) + δψ(β;h)− δq(β;β−,h) with q(β;β−) = δψ(β−;β − β−). It
follows from q(β;β−) = limε→0+[ψ(β− + ε(β−β−))−ψ(β−)]/ε that

δq(β;β−,h) = lim
ε′→0+

[q(β+ ε′h;β−)− q(β;β−)]/ε′

= lim
ε′→0+

{
(1/ε′) lim

ε→0+
[ψ(β− + ε(β+ ε′h−β−))− ψ(β−)]/ε

}
− lim
ε′→0+

δψ(β−;β−β−)/ε′.

When β− = β, δψ(β−;β−β−) = 0 and so

δq(β;β−,h)|β−=β = lim
ε′→0+

lim
ε→0+

[ψ(β+ ε(ε′h))−ψ(β)]/(εε′)

= lim
ε′′→0+

[ψ(β+ ε′′h)−ψ(β)]/ε′′

= δψ(β;h).
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The above argument also guarantees the existence of δg(β;β−,h)|β−=β . Therefore,
δg(β;β−,h)|β−=β = δf(β;h) for any β and h.

A.5. Proof of Lemma 5. All results in Lemma 1 and Lemma 2 can be formulated for C.
For example, ψ is convex if and only if Cψ ≥ 0, Caφ+bϕ = aCφ + bCϕ, ∆ψ ≥ µD2 implies
Cψ ≥ µC2 since C2(α,β, θ) := C‖·‖22/2(α,β, θ) = θ(1− θ)D2(α,β), and so on. To show
(i), we have

Cψ(α,β, θ) + ∆ψ(θα+ (1− θ)β,α)

=θψ(α) + (1− θ)ψ(β)−ψ(θα+ (1− θ)β)

+ψ(θα+ (1− θ)β)−ψ(α)− δψ(α; θα+ (1− θ)β−α)

= (θ− 1)ψ(α) + (1− θ)ψ(β)− δψ(α; (1− θ)(β−α))

= (1− θ)ψ(β)− (1− θ)ψ(α)− (1− θ)δψ(α;β−α)

= (1− θ)∆ψ(β,α).

Similar to the proof of Lemma 2, let q(·;α) = δψ(α; · −α). Then

C∆ψ(·,α)(β,γ, θ)−Cψ(β,γ, θ) = Cψ(α)+q(·;α)(β,γ, θ) = Cq(·;α)(β,γ, θ),

without requiring the directional differentiability of q(·;α). We can show analogous results
to Lemma 2. For example, for any convex ψ, from the positively homogenous convexity of
q,

C∆ψ(·,α) ≤Cψ

holds for any α, and for α= (1− θ)γ + θβ with θ 6∈ (0,1),

C∆ψ(·,α)(β,γ) = Cψ(β,γ)

follows from the restricted linearity of q. In particular, when∇ψ(α) exists, q is linear and so
Cq(·;α) ≡ 0 which gives the result in (ii).

A.6. Proof of Theorem 1. The theorem can be proved based on Theorem 6.1 of [37] and
property (iii) of Lemma 3 in Section 2.1. We give some details for the second conclusion; the
proof of the first follows similar lines and is easier. Consider a signal subclass

B1 = {β : βj ∈ {0, τR},‖β‖0 ≤ s∗},

where

R= [σ(log(ep/s∗))1/2/κ1/2]∧M

and 1 > τ > 0 is a small constant to be chosen later. Clearly, B1 ∈ B(s∗,M). By Stirling’s
approximation, log |B1| ≥ log

(
p
s∗

)
≥ s∗ log(p/s∗)≥ cs∗ log(ep/s∗) for some universal con-

stant c.
Let ρ(β1,β2) = ‖β1 −β2‖0, the Hamming distance between β1 and β2. By Lemma A.3

in [44], there exists a subset B10 ⊂B1 such that 0 ∈ B10 and

log |B10| ≥ c1s
∗ log(ep/s∗), ρ(β1,β2)≥ c2s

∗,∀β1,β2 ∈ B10,β1 6= β2

for some universal constants c1, c2 > 0. Then

‖Xβ1 −Xβ2‖22 ≥ κ‖β1 −β2‖22 = κτ2R2ρ(β1,β2)≥ c2κτ
2R2s∗(A.6)

for any β1,β2 ∈ B10, β1 6= β2.
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By Lemma 3 (iii), since Ω is open, for any β ∈ B10, we have

KL(pβ, p0) = ∆l0(0,Xβ)≤ τ2κR2s∗/(2σ2).

Therefore,

(A.7)
1

|B10| − 1

∑
β∈B10\{0}

KL(pβ, p0)≤ τ2s∗ log(ep/s∗).

Combining (A.6) and (A.7) and choosing a sufficiently small value for τ , we can apply
Theorem 2.7 of [58] to get the desired lower bound.

A.7. Proof of Proposition 1. We first introduce a lemma.

LEMMA A.2. For the sequence of iterates {β(t)} defined by (31) starting from an arbi-
trary point β(0), if f(·) and g(·;β(t)) are directionally differentiable, the following inequality
holds for any β and t≥ 0

f(β) + ∆ψ(β,β(t))

≥ f(β(t+1)) + ∆ψ(β(t+1),β(t)) + (∆∆ψ(·;β(t)) + ∆f )(β,β(t+1)).
(A.8)

It can be proved by Lemma A.1 and Lemma 1 (details omitted). Rearranging (A.8) gives

f(β(t+1))− f(β) + ∆ψ(β(t+1),β(t)) + ∆f (β,β(t+1))

≤∆ψ(β,β(t))−∆∆ψ(·;β(t))(β,β
(t+1)).

Under ∆ψ(β(t+1),β(t)) + ∆f (β,β(t+1))≥ 0, we have

(A.9) f(β(t+1))− f(β)≤∆ψ(β,β(t))−∆∆ψ(·;β(t))(β,β
(t+1)).

By Lemma 2, when ψ is differentiable, ∆∆ψ(·;β(t)) is well-defined and equals ∆ψ . Adding
up the corresponding inequality for t= 0,1, . . . , T leads to

T∑
t=0

[f(β(t+1))− f(β)]≤∆ψ(β,β(0))−∆ψ(β,β(T+1)).

Therefore,

avg
0≤t≤T

f(β(t+1))− f(β)≤ 1

T + 1
[∆ψ(β,β(0))−∆ψ(β,β(T+1))].

Note that under just the directional differentiability of ∆ψ(·;β(t)), (35) can be replaced by
∆ψ(β(t+1),β(t)) + (∆f + ∆∆ψ(·;β(t)) −∆ψ)(β,β(t+1))≥ 0, 0≤ t≤ T .

In the specific case that both f and ψ are convex, (35) is always satisfied by Lemma 1 and
letting β = β(t) in (A.9) gives

f(β(t+1))− f(β(t))≤−∆ψ(β(t),β(t+1))≤ 0.

Hence f(β(T+1))−f(β) = min0≤t≤T f(β(t+1))−f(β)≤ avg0≤t≤T f(β(t+1))−f(β). The
proof is complete.
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A.8. Proof of Proposition 2. Substituting βo for β in Lemma A.2 gives

f(β(t+1))− f(βo) + ∆ψ(β(t+1),β(t)) + ∆∆ψ(·;β(t))(β
o,β(t+1))

≤∆ψ(βo,β(t))−∆f (βo,β(t+1)).
(A.10)

By Lemma A.1, we get

(A.11) f(β(t+1))− f(βo)≥∆f (β(t+1),βo).

Combining (A.10) and (A.11) yields

(2∆̄f + ∆∆ψ(·;β(t)))(β
o,β(t+1)) + ∆ψ(β(t+1),β(t))≤∆ψ(βo,β(t)).(A.12)

It follows from the strong idempotence property that

(A.13) (2∆̄f + ∆ψ)(βo,β(t+1))≤∆ψ(βo,β(t))− min
0≤t≤T

∆ψ(β(t+1),β(t)),

for any 0≤ t≤ T , and so (40) can be obtained under 2∆̄f ≥ ε∆ψ .
To show the first result, since ∆φ = ∆ψ + ∆f , (A.13) becomes

(2∆̄f + ∆φ −∆f )(βo,β(t+1))≤ (∆φ −∆f )(βo,β(t))− min
0≤t≤T

∆ψ(β(t+1),β(t)).

Because κ > 1, (37) implies that

∆f ≥ (κ+ 1)∆̄φ/κ−
r
∆φ.

Applying the inequality twice, we obtain ((κ+1)/κ)∆̄φ(βo,β(t+1))≤ (2−(κ+1)/κ)∆̄φ(βo,

β(t))−min0≤t≤T ∆ψ(β(t+1),β(t)), or

(A.14) ∆̄φ(βo,β(t+1))≤ κ− 1

κ+ 1
∆̄φ(βo,β(t))− κ

κ+ 1
min

0≤t≤T
∆ψ(β(t+1),β(t)).

The final conclusion can be obtained by applying (A.14) iteratively for t= 0,1, . . . , T .

A.9. Proofs of Theorem 2 and Corollary 1. The proof of the theorem follows from
Section A.7. In fact, setting β = β(t) in (A.8) gives

(
r
∆ψ +∆∆ψ(·;β(t)) + ∆f )(β(t),β(t+1))≤ f(β(t))− f(β(t+1)),

which, by the weak idempotence property (with α= β(t)), reduces to

(A.15) (2∆̄ψ + ∆f )(β(t),β(t+1))≤ f(β(t))− f(β(t+1)).

Summing up (A.15) over t= 0,1, . . . , T gives the conclusion.

Next, we prove a result slightly more general than Corollary 1. Recall the surrogate

g(β;β−) = f(β) + (ρDϕ −∆f )(β,β−)

where ϕ ∈ C1 is a strictly convex function, and f is continuous and directionally differen-
tiable but not necessarily convex or differentiable. Denote arg ming(β;β−) by T (β−).

COROLLARY 1’. Suppose that ∆f ≤ LD̄ϕ for some L > 0 and the inverse stepsize pa-

rameter ρ satisfies ρ > L/2. Then avg0≤t≤T (2ρD̄ϕ −
r
∆f )(β(t),β(t+1)) ≤ f(β(0))

(T+1) and so

avg0≤t≤T D̄ϕ(β(t),β(t+1))≤ f(β(0))
(T+1)(2ρ−L) .

Moreover, for any accumulation point of β(t) at which T is continuous, it must be a fixed
point of T . This is particularly true when f ∈ C1.
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PROOF. Observe from (A.15) that

f(β(t))− f(β(t+1))≥ (2ρD̄ϕ − 2∆̄f + ∆f )(β(t),β(t+1))

≥ (2ρD̄ϕ −∆f )(β(t+1),β(t))

≥ (2ρ−L)D̄ϕ(β(t+1),β(t))≥ 0.

The error bounds can be obtained.
Let βo be the limit point of some subsequence βtl as l→∞. Hence f(β(t)) converges

monotonically to liml→∞ f(βtl) = f(βo). It follows that

lim
t→+∞

D̄ϕ(β(t+1),β(t)) = 0.

T is a well-defined function because of the strict convexity of the g-optimization problem.
From the continuity assumptions,

0 = lim
l→+∞

D̄ϕ(β(tl+1),β(tl)) = D̄ϕ(T (βo),βo)

and thus T (βo) = βo, i.e., βo is a fixed point of T .

A.10. Proof of Proposition 3. First, we show a result when using the Bregman surrogate
g(β;β−) = l(β)+P (%β)+∆ψ(β,β−) for solving minβ f(β) = l(β)+P (%β) where l and
P directionally differentiable and can be nonconvex. Define

(A.16) LP := inf{L ∈R : ∆P +LD2 ≥ 0},

which provides an index to characterize the degree of nonconvexity of P , c.f. [36]. Assume
LP > −∞. Then for β(t+1) ∈ arg minβ g(β;β(t)), the following inequality holds for all
T ≥ 1

avg
0≤t≤T

(2∆̄ψ + ∆l − %2LPD2)(β(t),β(t+1))≤ 1

T + 1

[
f(β(0))− f(β(T+1))

]
.

The result can be proved from Theorem 2, noticing the fact that ∆f (β,β−) = ∆l(β,β
−) +

∆P (%β, %β−) ≥∆l(β,β
−) − LPD2(%β, %β−) = ∆l(β,β

−) − %2LPD2(β,β−) for any
β,β−. The details are omitted.

It suffices to proving the following lemma to complete the proof of Proposition 3.

LEMMA A.3. Given any thresholding function Θ satisfying Definition 3, let PΘ be the
Θ-induced penalty in (48). Then LΘ as defined in (47) equals LPΘ

that is given in (A.16).

PROOF. Since ∆PΘ
(β,γ) =

∑
j ∆PΘ

(βj , γj), it suffices to show the result in the univari-
ate case. Recall that Θ−1(u;λ) := sup{t : Θ(t;λ) ≤ u},∀u > 0. Since PΘ(γ) = PΘ(|γ|) =∫ |γ|

0 (Θ−1(u;λ) − u) du, we assume γ ≥ 0 without loss of generality. We define s(u;λ) =

Θ−1(u;λ) − u for u ≥ 0, and extend s(·) to (−∞,0) by s(−u) = −s(u), u > 0. Clearly,
s′(u) = s′(|u|) a.e., and so −LΘ = ess inf{s′(u;λ) : u 6= 0}. By definition,

δPΘ(γ;β − γ) =

{
s(γ)(β − γ), if γ ≥ 0,

s(0)|β|, if γ = 0.
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When β ≥ 0 and γ 6= 0, we get

(∆PΘ
+LD2)(β,γ)

=PΘ(β)− PΘ(γ)− δPΘ(γ;β − γ) +LD2(β,γ)

=

∫ β

γ
s(u) du− s(γ)(β − γ) +

1

2
L(β − γ)2

=

∫ β

γ
s(u) du−

∫ β

γ
s(γ) du+L

∫ β

γ
(u− γ) du

=

∫ β

γ

[
s(u)− s(γ) +L(u− γ)

]
du

=

∫ β

γ

∫ u

γ

[
s′(v) +L

]
dv du.

When β < 0 and γ 6= 0,

(∆PΘ
+LD2)(β,γ)

=PΘ(β)− PΘ(γ)− δPΘ(γ;β − γ) +LD2(β,γ)

=

∫ −β
γ

s(u) du− s(γ)(β − γ) +
1

2
L(β − γ)2

=

∫ −β
−γ

s(u) du−
∫ −β
−γ

s(−γ) du+L
∫ −β
−γ

(u+ γ) du

=

∫ −β
−γ

[
s(u)− s(−γ) +L(u+ γ)

]
du

=

∫ −β
−γ

∫ u

−γ

[
s′(v) +L

]
dv du.

Similarly, when γ = 0, (∆PΘ
+ LD2)(β,0) =

∫ |β|
0

∫ u
0 [s(v) + L] dv du. It is then easy to

verify that LΘ = LPΘ
.

A.11. Proof of Proposition 4. Let f(β) = l(β) + P (%β) and recall

g
(t)
LLA(β;β(t)) = f(β) + ∆

(t)
LLA(%β, %β(t))

= f(β) +
∑
j

(α
(t)
j ∆1 −∆P )(%βj , %β

(t)
j ).

The proof is similar to that of Theorem 2 and we give some details for complete-
ness. The important fact β(t+1) ∈ arg minβ g

(t)
LLA(β;β(t)) as shown in Example 5 implies

∆g
(t)
LLA(·;β(t))(β

(t),β(t+1))≤ f(β(t))−f(β(t+1))+∆
(t)
LLA(%β(t), %β(t))−∆

(t)
LLA(%β(t+1), %β(t))
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or

f(β(t))− f(β(t+1))

≥∆f (β(t),β(t+1)) + ∆∆
(t)
LLA(%·,%β(t))(β

(t),β(t+1)) + ∆
(t)
LLA(%β(t+1), %β(t))

=∆f (β(t),β(t+1)) + ∆∆
(t)
LLA(·,%β(t))(%β

(t), %β(t+1)) + ∆
(t)
LLA(%β(t+1), %β(t))

=∆f (β(t),β(t+1)) + ∆
(t)
LLA(%β(t), %β(t+1)) + ∆

(t)
LLA(%β(t+1), %β(t)).

=∆f (β(t),β(t+1)) + 2∆̄
(t)
LLA(%β(t), %β(t+1)).

The conclusion follows from summing up this inequality for t= 0,1, . . . , T .

A.12. Proofs of Theorem 3 and Theorem 4. Let f(β) = l(β) + PΘ(%β;λ) and recall
g(β;β−) = f(β) + ∆ψ(β,β−). We first introduce a lemma.

LEMMA A.4. Let β̂ ∈ F . Then for any β ∈Rp, we have the following inequality regard-
less of the specific form of ψ

(∆l − %2LΘD2)(β, β̂) + ∆l(β̂,β
∗) + PΘ(%β̂;λ)

≤∆l(β,β
∗) + 〈ε,Xβ̂−Xβ〉+ PΘ(%β;λ).

(A.17)

PROOF. Denote ĝ(β) := g(β; β̂) = l(β)+PΘ(%β;λ)+∆ψ(β, β̂). Since β̂ is a minimizer
of ĝ(·), Lemma A.1 shows that for any β, ∆ĝ(β, β̂)≤ ĝ(β)− ĝ(β̂). On the one hand,

ĝ(β)− ĝ(β̂)

= l(β)− l(β̂) + PΘ(%β;λ)− PΘ(%β̂;λ) + ∆ψ(β, β̂)

= l(β)− l(β∗)− (l(β̂)− l(β∗)) + PΘ(%β;λ)− PΘ(%β̂;λ) + ∆ψ(β, β̂)

=∆l(β,β
∗) + 〈∇l(β∗),β−β∗〉 − (∆l(β̂,β

∗) + 〈∇l(β∗), β̂−β∗〉)

+ PΘ(%β;λ)− PΘ(%β̂;λ) + ∆ψ(β, β̂)

=∆l(β,β
∗)−∆l(β̂,β

∗) + 〈ε,Xβ̂−Xβ〉+ PΘ(%β;λ)− PΘ(%β̂;λ) + ∆ψ(β, β̂).

On the other hand, by Lemma 1, Lemma 2, and Lemma A.3,

∆ĝ(β, β̂) =∆l(β, β̂) + ∆PΘ(%·)(β, β̂) + ∆∆ψ(·,β̂)(β, β̂)

=∆l(β, β̂) + ∆PΘ(%·)(β, β̂) + ∆ψ(β, β̂)

≥∆l(β, β̂)− %2LΘD2(β, β̂) + ∆ψ(β, β̂).

The conclusion follows.

To handle the stochastic term 〈ε,Xβ̂−Xβ〉 in (A.17), we introduce the following result.

LEMMA A.5. LetX ∈Rn×p, ε be a sub-Gaussian random vector with mean 0 and scale
bounded by σ, and λo = σ

√
log(ep). Suppose that % ≥ ‖X‖2. Then there exist universal

constants A0,C, c > 0 such that for any a≥ 2b > 0 and A1 ≥A0, the following event

sup
β∈Rp

{
2〈ε,Xβ〉 − 1

a
‖Xβ‖22 −

1

b
[PH(%β;

√
abA1λ

o)]
}
≥ aσ2t

occurs with probability at most C exp(−ct)p−cA2
1 .
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The lemma can be proved by Lemma 4 of [49] based on a scaling argument.
Let R= supβ,β̂∈Rp{〈ε,Xβ̂−Xβ〉 −

1
2a‖Xβ̂−Xβ‖

2
2 − 1

2b [PH(%(β̂− β);
√
abAλo)]}

with λo = σ
√

log(ep). Plugging the bound into (A.17) gives

(∆l − %2LΘD2)(β, β̂) + ∆l(β̂,β
∗) + PΘ(%β̂;λ)− PΘ(%β;λ)

≤∆l(β,β
∗) +

1

2a
‖Xβ̂−Xβ‖22 +

1

2b
[PH(%(β̂−β);

√
abAλo)] +R

(A.18)

with P(2R≥ aσ2t)≤C exp(−ct)p−cA2

for any a≥ 2b > 0 and A large.
To prove Theorem 3, substitute β∗ for β in (A.18) and combine it with the regularity

condition (57), resulting in(
δ− 1

a

)
D2(Xβ̂,Xβ∗) +

(
ϑ− 1

2b

)
PH(%(β̂−β∗;λ)≤Kλ2J(β∗) +R

where λ =
√
abAλo, a ≥ 2b > 0, and A ≥ A0 with A0 given in Lemma A.5. Setting a =

2/(δ∧ (2ϑ)), b= 1/(2ϑ) or a= 2/((2δ)∧ϑ), b= 1/ϑ bounds D2(Xβ̂,Xβ∗) or PH(%(β̂−
β∗);λ). Finally, by Lemma A.5, P(R≤ 0)≥ 1−Cp−cA2

.
For Theorem 4, we combine (A.18) and (60) with γ = β̂:

∆l(β̂,β
∗) +

(
δ− 1

a

)
D2(Xβ,Xβ̂)≤ α

L
r∆l(β, β̂) + ∆l(β,β

∗) +Kλ2J(β) +R.

Take the same choice for λ and set a= 2/(δ ∧ (2ϑ)), b= 1/(2ϑ).
Case (i): αr/L= 0. The conclusion follows easily, and does not need any restriction on α

or L.
Case (ii): αr/L > 0. Then 0 < r < 1 and α/L > 0. If α < 0, (αr/L)∆l0(Xβ,Xβ̂) ≤

αrd2(Xβ,Xβ̂)≤ 0, reducing to the first case. Assume α> 0. Then
α

L
r∆l(β, β̂) =

α

L
r∆l0(Xβ,Xβ̂)≤ αrd2(Xβ,Xβ̂)

≤ αr(d(Xβ,Xβ∗) + d(Xβ̂,Xβ∗))2

≤ αr(1 + 1/M)d2(Xβ,Xβ∗) + αr(1 +M)d2(Xβ̂,Xβ∗)

≤ r(1 + 1/M)∆l(β,β
∗) + r(1 +M)∆l(β̂,β

∗),

for any M > 0. Take M = (1− r)/(1 + r). Then

1/{1− r(1 +M)}= 1 + r(1 + 1/M) = (1 + r)/(1− r).

So we obtain

(
1− r
1 + r

∆l0 +
δ

2
D2)(Xβ̂,Xβ∗)

≤ 1 + r

1− r
∆l0(Xβ,Xβ∗) +

KA2

((2ϑ)∧ δ)ϑ
σ2J(β) log(ep) +R.

Finally, from P(2R≥ aσ2t)≤C exp(−ct)p−cA2 ≤C exp(−ct), we have ER≤Caσ2. The
oracle inequality is proved. In fact, we also get

E[D2(Xβ̂,Xβ∗)]≤ 2(1 + r)

(1− r)δ
E[∆l0(Xβ,Xβ∗)]

+
2KA2

(ϑ∧ δ)ϑδ
σ2J(β) log(ep) +

C

(ϑ∧ δ)δ
σ2

under the same condition.
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REMARK A.1. Recall J∗ = J(β∗),J ∗ = J (β∗) and P (β;λ) =
∑

j P (βj ;λ). When β̂
is a global minimizer, applying the bound of the stochastic term proved in Lemma A.5 gives
the same conclusions (58), (59), under

ϑPH(%(β−β∗);λ) + PΘ(%β∗;λ)

≤ (2∆̄l0 − δD2)(Xβ,Xβ∗) + PΘ(%β;λ) +Kλ2J∗,∀β
(A.19)

for some δ > 0, ϑ > 0 and large enough K ≥ 0. Assuming PΘ is subadditive, we can follow
the arguments in Remark 2 to show that (A.19) is implied by (1 + ϑ)PΘ(%(β−β∗)J ∗ ;λ)≤
(2∆̄l0 − δD2)(Xβ,Xβ∗) + Kλ2J∗ + (1 − ϑ)PΘ(%(β − β∗)J ∗c ;λ). Furthermore, when
l0 is µ-strongly convex as in regression, one can take δ = µ and the regularity condition is
implied by

(1 + ϑ̄)PΘ(%γJ ∗ ;λ)≤ K̄λ
√
J∗‖Xγ‖2 + PΘ(%γJ ∗c ;λ),∀γ(A.20)

for some ϑ̄ (= 2ϑ
1−ϑ)> 0 and K̄

(
=

√
2(2µ−δ)K

1−ϑ
)
≥ 0, or the constrained forms

[PΘ(%γJ ∗ ;λ)]2 ≤ K̃λ2J∗‖Xγ‖22, ∀γ : PΘ(%γJ ∗c ;λ)≤ (1 + ϑ̄)PΘ(%γJ ∗ ;λ)(A.21) ∑
j∈J ∗

P 2
Θ(%γj ;λ)≤ K̃λ2‖Xγ‖22, ∀γ : PΘ(%γJ ∗c ;λ)≤ (1 + ϑ̄)PΘ(%γJ ∗ ;λ)(A.22)

for some ϑ̄ > 0 and K̃ ≥ 0. The conclusions and conditions can also be formulated in the
oracle inequality setup of Theorem 4. (A.20), (A.21) and (A.22) extend the comparison con-
dition (62), compatibility condition and RE condition to a more general penalty.

A.13. Proof of Theorem 5. We prove the result under a more relaxed assumption: l, g
are merely directionally differentiable, and (64) is replaced by

(%2LΘD2 + ε∆ψ)(β∗,β) + (∆ψ −∆∆ψ(·;α))(β
∗,β) + ϑPH(%(β−β∗);λ) + PΘ(%β∗;λ)

≤ (2∆̄l0 − δD2)(Xβ,Xβ∗) + PΘ(%β;λ) +Kλ2J(β∗),∀β,α

for some δ > 0, ε > 0, ϑ > 0 and large K ≥ 0.
Recall the objective function f(β) = l(β) + PΘ(%β;λ) and the surrogate function

g(β;β−) = f(β) + ∆ψ(β,β−). From Lemma A.2 and Lemma A.3, we obtain

f(β) + ∆ψ(β,β(t))

≥f(β(t+1)) + ∆ψ(β(t+1),β(t)) + (∆∆ψ(·;β(t)) + ∆l + ∆PΘ(%·))(β,β
(t+1))

≥f(β(t+1)) + ∆ψ(β(t+1),β(t)) + (∆∆ψ(·;β(t)) + ∆l − %2LΘD2)(β,β(t+1)).

Substituting β∗ for β yields

∆ψ(β∗,β(t))

≥∆ψ(β(t+1),β(t)) + (∆∆ψ(·;β(t)) + ∆l)(β
∗,β(t+1))−LΘD2(%β∗, %β(t+1))

+ l(β(t+1))− l(β∗) + PΘ(%β(t+1);λ)− PΘ(%β∗;λ)

=∆ψ(β(t+1),β(t)) + ∆∆ψ(·;β(t))(β
∗,β(t+1))−LΘD2(%β∗, %β(t+1))

2∆̄l(β
∗,β(t+1))− 〈ε,Xβ(t+1) −Xβ∗〉+ PΘ(%β(t+1);λ)− PΘ(%β∗;λ).
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From the above regularity condition,

ε∆ψ(β∗,β(t+1)) +LΘD2(%β∗, %β(t+1)) + δD2(Xβ∗,Xβ(t+1))

+ ϑPH(%(β(t+1) −β∗);λ) + PΘ(%β∗;λ) + (∆ψ −∆∆ψ(·;β(t)))(β
∗,β(t+1))

≤2∆̄l(β
∗,β(t+1)) + PΘ(%β(t+1);λ) +Kλ2J(β∗),

and so we obtain

(ε+ 1)∆ψ(β∗,β(t+1)) + ∆ψ(β(t+1),β(t))

+ δD2(Xβ∗,Xβ(t+1)) + ϑPH(%(β(t+1) −β∗);λ)

≤∆ψ(β∗,β(t)) + 〈ε,Xβ(t+1) −Xβ∗〉+Kλ2J∗.

(A.23)

According to Lemma A.5, as long as A ≥ A0/
√

2, choosing λ =
√

2abAλo, b =
1/(2ϑ), a = 1/(δ ∧ ϑ) guarantees that the probability of the following inequality occurring
for all t,

〈ε,Xβ(t+1) −Xβ∗〉 − δD2(Xβ∗,Xβ(t+1))− ϑPH(%(β(t+1) −β∗);λ)≥ 0,

is no greater than Cp−cA
2

. Together with (A.23), with probability 1−Cp−cA2

(A.24) ∆ψ(β∗,β(t+1))≤ 1

ε+ 1
[∆ψ(β∗,β(t))−∆(β(t+1),β(t)) +Kλ2J∗]

for all t. The desired inequality can be shown by iteratively applying (A.24) for t= 0,1,2, . . ..

A.14. Proofs of Theorem 6 and Corollary 2. First we prove Theorem 6. Note that
(67b), (69b) have additional terms involving µ0. The first result for µ0 = 0 can be shown
based on a GBF translation of the proof of Proposition 1 in [57]. For convenience, let ht(β)
= f(β)−∆ψ̄0

(β,γ(t)) = f(β)−∆ψ0
(β,γ(t)) + µ0∆φ(β,γ(t)). Applying Lemma A.2 to

(67b) yields (∆f −∆∆ψ̄0
(·,γ(t)) +θtρt∆∆φ(·,α(t)))(β,α

(t+1))≤ ht(β)+θtρt∆φ(β,α(t))−
ht(α

(t+1))− θtρt∆φ(α(t+1),α(t)) ∀β, or

ht(α
(t+1))− ht(β) + θtρt∆φ(α(t+1),α(t))

≤θtρt∆φ(β,α(t))− (θtρt∆∆φ(·,α(t)) + ∆f(·)−∆ψ̄0
(·,γ(t)))(β,α

(t+1)).
(A.25)

By definition, Cht(α
(t+1),β(t), θt) = θtht(α

(t+1)) + (1− θt)ht(β(t))− ht(β(t+1)); adding
it to (A.25) multiplied by θt gives

ht(β
(t+1))− (1− θt)ht(β(t))− θtht(β)

+ θ2
t ρt∆φ(α(t+1),α(t)) + Cht(α

(t+1),β(t), θt)

+ θ2
t ρt∆∆φ(·,α(t))−φ(·)(β,α

(t+1))

≤θ2
t ρt∆φ(β,α(t))− (θ2

t ρt∆φ + θt∆f(·)−∆ψ̄0
(·,γ(t)))(β,α

(t+1)),

and so

f(β(t+1))− f(β)− (1− θt)[f(β(t))− f(β)] + θt∆ψ̄0
(β,γ(t))

+ θt{(∆f(·)−∆ψ̄0
(·,γ(t)) + θtρt∆∆φ(·,α(t))−φ(·))(β,α

(t+1))}+Rt

≤θ2
t ρt(∆φ(β,α(t))−∆φ(β,α(t+1))),∀t≥ 0

(A.26)
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where Rt is given by θ2
t ρt∆φ(α(t+1),α(t))−∆ψ̄0

(β(t+1),γ(t)) + (1− θt)∆ψ̄0
(β(t),γ(t)) +

Cf(·)−∆ψ̄0
(·,γ(t))(α

(t+1),β(t), θt).
Under µ0 = 0, (A.26) implies that

1

θ2
t ρt

[
f(β(t+1))− f(β)

]
− 1− θt

θ2
t ρt

[
f(β(t))− f(β)

]
+
Et(β)

θtρt
+

Rt
θ2
t ρt

≤∆φ(β,α(t))−∆φ(β,α(t+1)).

(A.27)

Since in this case (69b) gives (1− θt)/θ2
t ρt = 1/θ2

t−1ρt−1 for any t≥ 1, we obtain the first
conclusion

1

θ2
TρT

[
f(β(T+1))− f(β)

]
− 1− θ0

θ2
0ρ0

[
f(β(0))− f(β)

]
+

T∑
t=0

(Et(β)

θtρt
+

Rt
θ2
t ρt

)
≤∆φ(β,α(0))−∆φ(β,α(T+1)).

On the other hand, given µ0 ≥ 0, (A.26) can be written as

f(β(t+1))− f(β)− (1− θt)[f(β(t))− f(β)]

+Rt + θt∆ψ̄0
(β,γ(t)) + θt∆f(·)−∆ψ0

(·,γ(t))(β,α
(t+1))

+ θt(µ0∆∆φ(·,γ(t))−φ(·) + θtρt∆∆φ(·,α(t))−φ(·))(β,α
(t+1))

≤θ2
t ρt∆φ(β,α(t))− θ2

t (ρt +
µ0

θt
)∆φ(β,α(t+1)).

(A.28)

Therefore, we have

f(β(t+1))− f(β) + θ2
t (ρt +

µ0

θt
)∆φ(β,α(t+1)) + θtEt(β) +Rt

≤ (1− θt)[f(β(t))− f(β)] + θ2
t ρt∆φ(β,α(t)),∀t≥ 0

and from (69b),

f(β(t+1))− f(β) + θ2
t (ρt +

µ0

θt
)∆φ(β,α(t+1)) + θtEt(β) +Rt

≤ (1− θt)[f(β(t))− f(β) + θ2
t−1(ρt−1 +

µ0

θt−1
)∆φ(β,α(t))],∀t≥ 1

The second conclusion can be obtained by a recursive argument and RT + θTET (β) + (1−
θT )(RT−1 + θT−1ET−1(β)) + · · · (1− θT ) · · · (1− θ1)(R0 + θ0E0(β)) =

∑T
t=0(

∏T
s=t+1(1−

θs))(Rt + θtEt(β)).

REMARK A.2. With the ‘=’ in (69b) replaced by ‘≤’, (71) still holds when ∆φ ≥ 0 (or
φ is convex), and (70) still holds if we set β to be a minimizer of f . But the equality form of
(69b) makes our conclusions applicable to say the noise-free statistical truth β = β∗, which
may not be a minimizer of the sample-based objective. The same comment applies to Theorem
7.

Also, it is trivial to see that the conclusions extend to a varying sequence of µt. (Concretely,
the µ0 in (67b), (68), and Et(β) becomes µt, and the µ0 in (69b), (71) becomes µt−1, µT ,
respectively.) One can add backtracking for µt in the algorithm to further reduce its iteration
complexity.
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Finally, we prove Corollary 2’ which implies Corollary 2 and applies to any convex l0 in
(A.29) below. The proof is based on an accumulative Rt bound that can be derived in a more
general setup; see (A.32) in Remark A.3.

Here, the optimization problem of interest in “variable screening” is

min l(β) = l0(Xβ) s.t. ‖β‖0 ≤ q,(A.29)

to estimate the target β∗ satisfying the strict inequality ‖β∗‖0 < q. Take µ0 = 0, φ= ‖ · ‖22/2,
ψ0(β) = l(β)−Lφ(β) for some L≥ 0.

Given l0, X , and s≤ p, we extend the notion of restricted isometry numbers ρ+, ρ− [12]:

(A.30) ρ−(s)D2(β,γ)≤∆l0(Xβ,Xγ)≤ ρ+(s)D2(β,γ),∀β,γ : ‖β− γ‖0 ≤ s.
(The dependence on X and l0 is dropped for the sake of brevity.)

COROLLARY 2’. Let l0 be any convex function and q be any nonnegative integer no more
than p. As long as r = q/‖β∗‖0 > 1, for any L ≥ ρ+(2q)/

√
r, there must exist a universal

ρt = ρ0,∀t, e.g.,

ρ0 = (1− 1/
√
r)ρ+(2q),

and thus θt+1 = (
√
θ4
t + 4θ2

t − θ2
t )/2, so that the accelerated iterative quantile-thresholding

according to (67a)–(67c) satisfies

l(β(T+1))− l(β∗)
θ2
T

+ T · avg
0≤t≤T

∆ψ0
(β∗,γ(t))

θt
+
L(1− θT )

θ3
T

D2(β(T+1),β(T ))

≤ ρ0D2(β∗,α(0)), for all T ≥ 0,

or l(β(T+1))− l(β∗) + min0≤t≤T ∆ψ0
(β∗,γ(t))≤A/T 2 with A independent of T .

Seen from the error measure, r should be appropriately large (but cannot be too large from
the perspective of statistical accuracy.)

To prove the corollary, we first introduce a useful result [50, Lemma 9].

LEMMA A.6. Given q ≤ p, β̂ = Θ#(y; q) is a globally optimal solution to minβ∈Rp l(β) =

‖y − β‖22/2 s.t. ‖β‖0 ≤ q. Let J = J (β), Ĵ = J (β̂) and assume J(β̂) = q. Then, for any
β with J(β)≤ s= q/r and r ≥ 1,

l(β)− l(β̂)≥ {1−L(J , Ĵ )}D2(β̂,β),

where L(J , Ĵ ) = (|J \Ĵ |/|Ĵ \J |)1/2 ≤ (s/q)1/2 = r−1/2.

Set β = β∗ in the previous proof, and apply, instead of Lemma A.2, Lemma A.6 (where
‖α(t+1)‖0 = q due to the no-tie-occurring assumption) to (67b). (A.25) is then replaced by

l(α(t+1))−∆ψ0
(α(t+1),γ(t))− l(β∗) + ∆ψ0

(β∗,γ(t)) + θtρtD2(α(t+1),α(t))

≤θtρtD2(β∗,α(t))− (θtρt +L)(1− 1√
r

)D2(β∗,α(t+1)).

Accordingly, (A.26) becomes

l(β(t+1))− l(β∗)− (1− θt)(l(β(t))− l(β∗)) +Rt

+ θt

{
∆ψ0

(β∗,γ(t)) +
[
L(1− 1√

r
)− θtρt√

r

]
D2(β∗,α(t+1))

}
≤θ2

t ρt(D2(β∗,α(t))−D2(β∗,α(t+1))),
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where Rt is the same as before. Based on Lemma 1, Lemma 2, Lemma 5 (together with some
results in its proof), (A.30), and the following facts

β(t) − γ(t) = θt(β
(t) −α(t)) = θt(1− θt−1)(β(t−1) −α(t)),∀t≥ 1

β(t+1) − γ(t) = θt(α
(t+1) −α(t)),∀t≥ 0

we obtain for all t≥ 1,

Rt ≥θ2
t ρtD2(α(t+1),α(t))−∆ψ0

(β(t+1),γ(t)) + (1− θt)∆ψ0
(β(t),γ(t))

+Lθt(1− θt)D2(α(t+1),β(t))

=θ2
t (ρt +L)D2(α(t+1),α(t))−∆l0(Xβ(t+1),Xγ(t)) + (1− θt)∆l(β

(t),γ(t))

+L{θt(1− θt)D2(α(t+1),β(t))− (1− θt)D2(β(t),γ(t))}

=θ2
t (ρt +L)D2(α(t+1),α(t))−∆l0(Xβ(t+1),Xγ(t)) + (1− θt)∆l(β

(t),γ(t))

+L{θt(1− θt)D2(α(t+1),β(t))− (1− θt)θ2
t (1− θt−1)2D2(α(t),β(t−1))}

≥θ2
t (ρt +L)D2(α(t+1),α(t))− θ2

t ρ+(2q)D2(α(t+1),α(t))

+Lθt(1− θt){D2(α(t+1),β(t))− θt(1− θt−1)2D2(α(t),β(t−1))},

and Rt ≥ θ2
t {ρt +L− ρ+(2q)}D2(α(t+1),α(t)) as t= 0. It follows that

T∑
t=0

Rt
θ2
t ρt
≥

T∑
t=0

ρt +L− ρ+(2q)

ρt
D2(α(t+1),α(t)) +L1− θT

θTρT
D2(α(T+1),β(T ))

+L
T−1∑
t=0

{1− θt
θtρt

− (1− θt)2(1− θt+1)

ρt+1

}
D2(α(t+1),β(t))

=

T∑
t=0

ρt +L− ρ+(2q)

ρt
D2(α(t+1),α(t)) +

L(1− θT )

θ3
TρT

D2(β(T+1),β(T ))

+L
T−1∑
t=0

1− θt
θtρt

{
1− (1− θt)θt+1

θt+1

θt

}
D2(α(t+1),β(t)).

Therefore, choosing a universal ρt = ρ0 ≥ ρ+(2q) − L (which implies θt ↓) ensures∑T
t=0Rt/(θ

2
t ρt)≥ 0.

Moreover, Et(β∗)≥∆ψ0
(β∗,γ(t)) holds under

{
L(1− 1√

r
)− θtρt√

r

}
D2(β∗,α(t+1))} ≥ 0

or L(1 − 1/
√
r) ≥ ρt/

√
r. It is easy to see that as long as r > 1, there exist positive L, ρ0

satisfying {
L(
√
r− 1)≥ ρ0

ρ0 ≥ ρ+(2q)−L.
(A.31)

Furthermore, for any L ≥ ρ+(2q)/
√
r, we can always choose ρ0 = (1− 1/

√
r)ρ+(2q). The

rest of the proof proceeds as before.

REMARK A.3. The idea of controlling the overall
∑

t≤T
Rt
θ2
t ρt

can be extended with a
proper choice of ψ0 to a general problem minf(β) that may be nonconvex. In fact, if f(β)
can be decomposed as l(β) + P (β) with 0 ≤∆l ≤ LD2 and ∆P + L0D2 ≥ 0 for some
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finite L0 ≥ 0, then setting µ0 = 0, ψ0 = l−L‖ · ‖22/2 with L≥L0 and repeating the previous
arguments, we obtain

T∑
t=0

Rt
θ2
t ρt
≥

T∑
t=0

1

ρt
(ρt∆φ +LD2 −LD2)(α(t+1),α(t))

+

T−1∑
t=0

1

θ2
t ρt

∆l(β
(t+1),γ(t+1)) +

(L−L0)(1− θT )

θ3
TρT

D2(β(T+1),β(T ))

+

T−1∑
t=0

L1− θt
θtρt

{L−L0

L
− (1− θt)θt+1

θt+1

θt

}
D2(α(t+1),β(t)).

(A.32)

With ρt = ρ0, it can be shown that (1 − θt)θt+1
θt+1

θt
achieves the maximum value 0.1612

at t = 3 and so L ≥ 1.2L0 makes the last term nonnegative. (A varying ρt may reduce L
further.) Therefore, under ∆φ ≥ σD2, we can choose any ρ0 ≥ (L− L)/σ and L ≥ 1.2L0

so that for any β,

f(β(T+1))− f(β)

θ2
T

+ T · avg
0≤t≤T

Et(β)

θt
+

(L−L0)(1− θT )

θ3
T

D2(β(T+1),β(T ))

≤ ρ0D2(β,α(0)),∀T ≥ 0.

Hence for some A independent of T , f(β(T+1)) − f(β) + min0≤t≤T Et(β) ≤ A/T 2, or
f(β(T+1))−f(β)+min0≤t≤T {∆ψ0

(β,γ(t))+∆f(·)−∆ψ0 (·,γ(t))(β,α
(t+1))} ≤A/T 2 when

φ is differentiable.

A.15. Proof of Theorem 7. The construction of the new acceleration scheme and the
proof are motivated by Proposition 2 of [57], with the use of GBF calculus. First, from
Lemma A.2, given any β′t,

f(β(t+1))− f(β′t) + (ρtD2 −∆ψ̄0
)(β(t+1),γ(t)) + ∆f (β′t,β

(t+1))

≤(ρtD2 −∆ψ̄0
)(β′t,γ

(t))− (ρtD2 −∆∆ψ̄0
(·,γ(t)))(β

′
t,β

(t+1))
(A.33)

Let β′t = θtβ+ (1− θt)β(t) with θt to be determined. Define ht(·) = f(·)−∆ψ̄0
(·,γ(t)). By

the definition of C,

−f(β′t) = θt∆ψ̄0
(β,γ(t)) + (1− θt)∆ψ̄0

(β(t),γ(t))−∆ψ̄0
(β′t,γ

(t))

− θtf(β)− (1− θt)f(β(t)) + Cht(β,β
(t), θt).

Plugging the last equality into (A.33) yields

f(β(t+1))− f(β)− (1− θt)(f(β(t))− f(β))

+ (ρtD2 −∆ψ̄0
)(β(t+1),γ(t)) + Cht(β,β

(t), θt)

+ θt∆ψ̄0
(β,γ(t)) + (1− θt)∆ψ̄0

(β(t),γ(t))

≤ (ρtD2 −∆ψ̄0
)(β′t,γ

(t))− (ρtD2 −∆∆ψ̄0
(·,γ(t)))(β

′
t,β

(t+1))

+ ∆ψ̄0
(β′t,γ

(t))−∆f (β′t,β
(t+1))

=ρt[D2(β′t,γ
(t))−D2(β′t,β

(t+1))]−∆ht(β
′
t,β

(t+1))
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and based on the definition of ψ̄0 and Rt,

f(β(t+1))− f(β) +Rt

+ ρtD2(β′t,β
(t+1)) + Cµ0D2(·,γ(t))(β,β

(t), θt) + µ0D2(β′t,β
(t+1))

+ θt∆ψ̄0
(β,γ(t)) + Cf(·)−∆ψ0

(·,γ(t))(β,β
(t), θt) + ∆f(·)−∆ψ0

(·,γ(t))(β
′
t,β

(t+1))

≤ (1− θt)(f(β(t))− f(β)) + ρtD2(β′t,γ
(t)).

From Section A.5, Cµ0D2(·,γ(t))(β,β
(t), θt) = µ0C2(β,β(t), θt) = µ0θt(1− θt)D2(β,β(t))

and so

f(β(t+1))− f(β) +Rt + θtEt(β)

+ (ρt + µ0)D2(β′t,β
(t+1)) + µ0θt(1− θt)D2(β,β(t))

≤ (1− θt)(f(β(t))− f(β)) + ρtD2(β′t,γ
(t)).

(A.34)

We would like to write (ρt+µ0)D2(θtβ+(1−θt)β(t),β(t+1))+µ0θt(1−θt)D2(β,β(t))
into the form of a multiple of D2(β,ν(t+1)) for some ν(t+1). This can be done by solving
the gradient equation with respect to β:

ν(t+1) =
(ρt + µ0)θtβ

(t+1) − ρtθt(1− θt)β(t)

ρtθ2
t + µ0θt

.(A.35)

On the other hand, ∇ρtD2(θtβ+ (1− θt)β(t),γ(t)) = 0 gives

ν(t) =
γ(t)

θt
− 1− θt

θt
β(t).(A.36)

Combining (A.35) and (A.36) results in

(A.37) γ(t) = β(t) +
ρt−1θt(1− θt−1)

ρt−1θt−1 + µ0
(β(t) −β(t−1)),

as in (76a). Therefore, (A.34) becomes

f(β(t+1))− f(β) + (θ2
t ρt + µ0θt)D2(β,ν(t+1)) +Rt + θtEt(β)

≤ (1− θt)(f(β(t))− f(β)) + θ2
t ρtD2(β,ν(t)).

(A.38)

Let µ0 = 0. It follows from (A.38) that

1

θ2
t ρt

[
f(β(t+1))− f(β)

]
+ D2(β,ν(t+1)) +

Et(β)

θtρt
+

Rt
θ2
t ρt

≤ (1− θt)
θ2
t ρt

[
f(β(t))− f(β)

]
+ D2(β,ν(t)),∀t≥ 0.

(A.39)

Under (77b), we have

1

θ2
t ρt

[
f(β(t+1))− f(β)

]
+ D2(β,ν(t+1)) +

Et(β)

θtρt
+

Rt
θ2
t ρt

≤ 1

θ2
t−1ρt−1

[
f(β(t))− f(β)

]
+ D2(β,ν(t)), ∀t≥ 1.

(A.40)
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Summing (A.40) for t= T, . . . ,1 and (A.39) for t= 0 gives

1

θ2
TρT

[f(β(T+1))− f(β)] +

T∑
t=0

(Et(β)

θtρt
+

Rt
θ2
t ρt

)
≤ 1− θ0

θ2
0ρ0

[
f(β(0))− f(β)

]
+ D2(β,ν(0))−D2(β,ν(T+1)),

and so the first bound noticing that ν(0) = γ(0) = β(0).
Moreover, given any µ0 ≥ 0, from (77b), (A.38) implies for any t≥ 1,

f(β(t+1))− f(β) + (θ2
t ρt + µ0θt)D2(β,ν(t+1)) +Rt + θtEt(β)

≤ (1− θt)[f(β(t))− f(β) + (θ2
t−1ρt−1 + µ0θt−1)D2(β,ν(t))].

(A.41)

Similar to the proof of Theorem 6, a recursive argument using (A.41) and (A.38) gives the
second bound.

REMARK A.4. Compared with the proof of Theorem 6, the proof here needs to perform
a finer analysis of Cht (the proof of Corollary 2’ uses a similar treatment). Otherwise one
would get γ(t) = β(t) + θt(θ

−1
t−1− 1)(β(t)−β(t−1)) and ρtθ2

t /(1− θt) = θ2
t−1(ρt−1 + µ0) in

place of (76a), (77b), respectively. Following the same proof, we can show that the resultant
algorithm does result in a linear rate when µ0 = µ > 0, but offers no acceleration (θ0 = 1/κ)
in strongly smooth and convex optimization.

Finally, Remark A.2 still applies. For example, the second conclusion holds when the ‘=’
in (77b) is replaced by ‘≤’, and it is straightforward to see that µ0 can be similarly replaced
by a sequence of varying µt to speed the convergence.

A.16. Statistical accuracy of LLA iterates. In this subsection, assume f(β) = l(β) +
P (%β), l(β) = l0(Xβ), P (%β) =

∑
j P (%βj) (by a slight abuse of notation), P (0) = 0,

P ′+(0)<+∞, P (t) = P (−t)≥ 0, P (t) is differentiable for any t > 0, and P is concave on
(0,+∞). Recall ∆

(t)
LLA = ∆‖α(t)◦(·)‖1−P (·) which does not satisfy the strong idempotence.

ASSUMPTION A(ε, δ,ϑ,K,α,β) GivenX,α,β, there exist ε > 0, δ > 0, ϑ > 0,K ≥ 0 such
that the following inequality holds

(1 + ε)∆‖α◦(·)‖1−P (·)(%β
∗, %β) + δD2(Xβ∗,Xβ) + ϑPH(%(β−β∗);λ)

≤2∆̄l(β
∗,β) + P (%β;λ)− P (%β∗;λ) +Kλ2J∗.

PROPOSITION 5. Assume that for any given T ≥ 1, A(ε, δ,ϑ,K,α(t),β(t)) (1≤ t≤ T )
is satisfied for some ε > 0, δ > 0, ϑ > 0,K ≥ 0. Let λ=Aσ

√
log(ep)/

√
(δ ∧ ϑ)ϑ. Then the

following inequality holds with probability at least 1−Cp−cA2

∆
(T )
LLA(%β∗, %β(T ))≤ κT∆

(0)
LLA(%β∗, %β(0)) +

κ

1− κ
Kλ2J∗,

where κ= 1/(1 + ε) and C,c are universal positive constants.

PROOF. From the proof of Proposition 4, for any β,

∆f (β,β(t+1)) + ∆∆
(t)
LLA(·,%β(t))(%β, %β

(t+1))

≤f(β)− f(β(t+1)) + ∆
(t)
LLA(%β, %β(t))−∆

(t)
LLA(%β(t+1), %β(t)).
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Using the definition of ∆
(t)
LLA, we have

∆P (%β, %β(t+1))−∆∆
P (·,%β(t))

(%β, %β(t+1))

+ ∆l(β,β
(t+1)) +

∑
j

α
(t)
j ∆∆1(·,%β(t)

j )(%βj , %β
(t+1)
j )

≤f(β)− f(β(t+1)) + ∆
(t)
LLA(%β, %β(t)),

(A.42)

where we used ∆
(t)
LLA(%β(t+1), %β(t))≥ 0 since P (·) is concave on (0,+∞).

LEMMA A.7. For any P (·) which is differentiable on (0,+∞) and satisfies P (t) =
P (−t)≥ 0, P (0) = 0 and P ′+(0)<+∞, we have ∆∆P (·,α)(β,γ) = ∆P (β,γ)−P ′+(0)∆1(β,
γ)1α=0 for any α,β, γ ∈R. In particular, ∆∆1(·,α)(β,γ) = ∆1(β,γ)1α6=0.

The result can be shown from the proof of Lemma 2. Indeed, from (29),

∆P (·, α) =

{
P (·)− P (α)− P ′(α)(· − α), α 6= 0

P (·)− P ′+(0)| · |, α= 0.

When α 6= 0, by Lemma 1 and Lemma 2, ∆∆P (·,α)(β,γ) = ∆P (β,γ)−∆P (α)+P ′(α)(·−α)(β,γ)
= ∆P (β,γ). When α = 0, ∆∆P (·,α)(β,γ) = ∆P (β,γ) − P ′+(0)∆1(β,γ). Combining the
two cases gives

∆∆P (·,α)(β,γ) = ∆P (β,γ)− P ′+(0)∆1(β,γ)1α=0.

When P (β) = ‖β‖1, ∆∆1(·,α)(β,γ) = ∆1(β,γ)−∆1(β,γ)1α=0 = ∆1(β,γ)1α6=0.

From Lemma A.7,

∆P (%β, %β(t+1))−∆∆
P (·,%β(t))

(%β, %β(t+1)) =
∑

j:β
(t)
j =0

P ′+(0)∆1(%βj , %β
(t+1)
j )

and ∑
j

α
(t)
j ∆∆1(·,%β(t)

j )(%βj , %β
(t+1)
j ) =

∑
j:β

(t)
j 6=0

α
(t)
j ∆1(%βj , %β

(t+1)
j ).

Plugging these into (A.42) gives ∆l(β,β
(t+1)) +

∑
j:β

(t)
j =0P

′
+(0)∆1(%βj , %β

(t+1)
j ) +∑

j:β
(t)
j 6=0α

(t)
j ∆1(%βj , %β

(t+1)
j )≤ f(β)− f(β(t+1)) + ∆

(t)
LLA(%β, %β(t)).

Together with α(t)
j = |P ′+(β

(t)
j )| ≤ P ′+(0), we have

∆l(β,β
(t+1)) +

∑
j

α
(t)
j ∆1(%βj , %β

(t+1)
j )≤ f(β)− f(β(t+1)) + ∆

(t)
LLA(%β, %β(t)).

(A.43)

Letting β = β∗ and using the definition of ε, we obtain

2∆̄l(β
∗,β(t+1)) + ∆‖α(t)◦(·)‖1(%β∗, %β(t+1)) + P (%β(t+1);λ)

≤∆
(t)
LLA(%β∗, %β(t)) + 〈ε,Xβ(t+1) −Xβ∗〉+ P (%β∗;λ).

From the regularity condition,

(1 + ε)∆
(t+1)
LLA (%β∗, %β(t+1)) + δD2(Xβ∗,Xβ(t+1)) + ϑPH(%(β(t+1) −β∗);λ)

≤2∆̄l(β
∗,β(t+1)) + ∆‖α(t)◦(·)‖1(%β∗, %β(t+1)) + P (%β(t+1);λ)− P (%β∗;λ) +Kλ2J∗
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for 1≤ t≤ T . The final conclusion can be proved by combining the last two inequalities and
then applying a similar probabilistic argument as in Theorem 5.

A.17. A-estimators as F-estimators. In this part, we show that an important class of
A-estimators that has alternative optimality, typically arising from block coordinate descent
(BCD) algorithms, can often be converted to F-estimators, and analyzed in a similar way. Let
β = [βT[1], . . . ,β

T
[K]]

T where β[k] is the kth block, 1≤ k ≤K , and we use β[−k] to denote the
subvector after removing the kth block. Assume

f = l+ P

where l is differentiable, and P is separable: P (β) =
∑
Pk(β[k]). When viewed as a function

of β[k] only, f is denoted by f(β[k];β[−k]). We say β̂ has alternative optimality or is an A-
estimator if

(A.44) β̂[k] ∈ arg min
β[k]

f(β[k]; β̂[−k]),1≤ k ≤K.

LEMMA A.8. Let β̂ be an A-estimator of minf(β). Construct a surrogate function:

gρ(β;β−) = f(β)−∆l(β,β
−) +

∑
ρkD2(β[k],β

−
[k])(A.45)

where ρ= (ρ1, . . . , ρK) with ρk ≥ 0.
(i) If Pk are directionally differentiable and

∆Pk +LkD2 ≥ 0(A.46)

for some Lk ≥ 0, then for any ρk ≥Lk, β̂ must satisfy

(A.47) β̂ ∈ arg min
β
gρ(β;β−)|β−=β̂.

(ii) If l as a function of βk satisfies ∆l(·;β[−k])
≤ LkD2,∀β[−k], 1≤ k ≤K , or less restric-

tively,

∆l̂k(·)(β[k], β̂[k])≤ LkD2(β[k], β̂[k]), ∀β[k](A.48)

where l̂k(β[k]) denotes lk(β[k]; β̂[−k]), then for any ρk > Lk, (A.47) still holds. In addition,
if β̂[k] is the unique solution to (A.44), then ρk ≥ Lk suffices.

Overall, (A.47) provides a useful joint optimization form that can be used as the so-called
“basic inequality” in empirical process theory, and so with the lemma, A-estimators can an-
alyzed like F-estimators. Moreover, the quality of the initial point can be incorporated in the
analysis; see [54].

PROOF. (i) The condition (A.46) means that gρ is convex in, β[k]. By Lemma 4 and
Lemma 1, and the fact that gρ is separable in β[k], 1≤ k ≤K , we immediately know that β̂
is necessarily a solution to minβ gρ(β; β̂).

(ii) We use a shorthand notation ĝk(β[k]) to denote gρ(β; β̂) as a function of β[k] when
β[−k] = β̂[−k]. Let β̃[k] ∈ arg min ĝk(β[k]). It suffices to show β̃[k] = β̂[k]. Because of the
separability of gρ,

f(β̃[k]; β̂[−k]) + (ρk −Lk)D2(β̂[k], β̃[k])≤ f(β̂[k]; β̂[−k])

and so (ρk −Lk)D2(β̂[k], β̃[k]) = 0. The conclusion follows.
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Some conclusions like (i) can be extended to functions defined on Riemannian manifolds.
It is also worth mentioning that in the regression setup, which is of primary interest in many
statistical applications, we can use some surrogates with ρk = 1, regardless of the design or
penalty, to convert alternative optimality to joint optimality. The following lemma exemplifies
the point in matrix regression, and is condition free.

LEMMA A.9. Let l0(A;Y ) = ‖Y −A‖2F /2, and A be defined differently as follows.
(i) Let A=

∑
XkBk with B = (B1, . . . ,BK), where the dependence of B (and Xk) is

dropped for simplicity. Consider the problem

min
B1,...,BK

l0(A;Y ) +
∑

Pk(Bk) s.t.A=
∑

XkBk.(A.49)

Then the set of A-estimators of (A.49) is exactly the set of F-estimators associated with the
following surrogate

g(B,B−) = l0(A;Y )−Dl0(A,A−) +
∑

Pk(Bk) +
∑

D2(XkBk,XkB
−
k ).(A.50)

(ii) Let A = XB1 · · ·BK with B = (B1, . . . ,BK), where the dependence of B (and
Xk) is dropped for simplicity. Consider

min
B1,...,BK

l0(A;Y ) +
∑

Pk(Bk) s.t.A=XB1 · · ·BK .(A.51)

Redefine l0 as a function l̄0 of B and introduce a discrepancy measure d2 as follows

l0(A;Y ) = l̄0(B;X,Y )

d2(B,B−) =
1

2

K∑
k=1

‖XB−1 · · ·B
−
k−1(Bk −B−k )B−k+1 · · ·B

−
K‖

2
F .

Then the set of A-estimators of (A.51) is exactly the set of F-estimators associated with the
surrogate

g(B,B−) = l̄0(B)−∆l̄0(B,B−) +
∑

Pk(Bk) + d2(B,B−)

=
1

2
‖A− −Y ‖2F + 〈XB−1 · · ·B

−
K −Y ,

K∑
k=1

XB−1 · · ·B
−
k−1(Bk −B−k )B−k+1 · · ·B

−
K〉+

∑
Pk(Bk)

1

2

K∑
k=1

‖XB−1 · · ·B
−
k−1(Bk −B−k )B−k+1 · · ·B

−
K‖

2
F .

(A.52)

The lemma can be directly proved by the definition of GBF and matrix differentiation and
its proof is omitted. For the application of the first result (i), see [50] for example. The second
result can be used to study bilinear problems or NMF like matrix decomposition problems.
One could show a statistical accuracy result in terms of d1 (which satisfies d1 ≤Kd2),

d1(B,B−) =
1

2

∥∥ K∑
k=1

XB−1 · · ·B
−
k−1(Bk −B−k )B−k+1 · · ·B

−
K

∥∥2

F
,

under a proper regularity condition involving d2; see, for example, [53].
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A.18. Statistical error analysis of a general optimal solution. This part demonstrates
that using the statistical notions and Bregman calculus developed earlier can perform statis-
tical analysis of a general optimization problem that may not be in the MLE setup:

min
β
f(β) s.t. β ∈ S(A.53)

where f is directionally differentiable and S ⊂Rp can be formulated by linear equality con-
straints Aβ =α, sparsity constraints ‖β‖0 ≤ s, nonnegativity constraints β ≥ 0, and so on.

Statistically, we would like to study how a target parameter can be recovered from solving
(A.53) in the present of data noise. Following (53), let β∗ be a statistical truth and define the
associated effective noise by ε=−∇f(β∗), assuming f is differentiable at β∗.

Although β∗ in the above definition can be any point, a meaningful recovery must be under
some conditions satisfied the associated ε. Consider the following three scenarios:

(a) Statistical estimation often assumes a zero mean noise:

Eε= 0,(A.54)

which essentially means that the statistical truth makes the gradient of the expectation of f
(so as to remove data randomness) vanish—see Section 3.2. Yet (A.54) alone does not always
guarantee a unique β∗.

(b) Stronger conclusions can be obtained for the β∗ that satisfies the no-model-ambiguity
assumption: f is differentiable at β∗ ∈D = dom(f) with the gradient ∇f(β∗) =−ε, β∗ is
a finite optimal solution to the Fenchel conjugate as ζ =−ε:

f∗(ζ) = sup
β
〈ζ,β〉 − f(β),(A.55)

and the extended real-valued convex function f∗ is differentiable at−ε. This assumption sim-
ply means that (β∗,−ε) makes a so-called “conjugate pair”. Note that f need not be overall
strictly convex, especially when D is compact according to Danskin’s min-max theorem [6].

(c) Another popular assumption in statistical learning is strong convexity in a restricted
sense (especially when β =Aα with ‖α‖0 ≤ s):

(∆f − µD2)(β1,β2)≥ 0, ∀β1,β2 ∈ S(A.56)

for some µ > 0. The condition may hold even when the number of unknowns is much larger
than the sample size [12, 36].

The following theorem uses the GBF calculus to argue how the statistical accuracy of the
obtained solutions is determined by the (tail decay of) effective noise. Probabilistic arguments
can follow to bound the stochastic terms more explicitly.

THEOREM A.1. Let β̂ be an optimal solution to (A.53).
(i) Under the zero mean assumption (A.54) and β∗ ∈ S , the risk of β̂ in terms of ∆f

satisfies a Fenchel-Young form bound

E∆f (β̂,β∗)≤ E[f∗(ε) + f(β∗)].(A.57)

(ii) Under the no-model-ambiguity assumption in (b) and β∗ ∈ S , we have

∆f (β̂,β∗)≤∆f∗(ε,−ε).(A.58)

(iii) An oracle inequality holds for any δ > 0 and any reference β ∈ S:

(∆f − δD2)(β̂,β∗)≤∆f (β,β∗) +
1

2δ
[ sup
θ∈Γ(β)

〈ε,θ〉]2,(A.59)

where Γ(β) = {θ : ‖θ‖2 ≤ 1,θ = β̄−β for some β̄ ∈ S}. In particular, under (A.56),

D2(β̂,β∗)≤ 1

µ
∆f (β,β∗) +

1

2µ2
[ sup
θ∈Γ(β)

〈ε,θ〉]2.(A.60)
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The first two bounds reveal the important role of the Fenchel conjugate of the loss, and can
be made more explicit under proper Orlicz norm conditions of ε; the third conclusion, on the
basis of the supremum of an empirical process [60], demonstrates how modern probabilistic
tools can be used to derive finite-sample error bounds of β̂ in a general noisy setup.

PROOF. First, by definition, f(β̂) ≤ f(β∗), from which it follows that ∆f (β̂,β∗) ≤
〈ε, β̂−β∗〉. Define

h(δ) = ∆f (δ +β∗,β∗).

By assumption, f is a proper function and applying Fenchel-Young’s inequality gives

∆f (β̂,β∗)≤ 〈ε,δ〉|δ=β̂−β∗ ≤
1

c
∆f (δ +β∗,β∗)|δ=β̂−β∗ +

1

c
h∗(cε)

or (1− 1/c)∆f (β̂,β∗)≤ h∗(cε)/c for any c > 0.
On the other hand,

h∗(ζ) = sup
δ
〈ζ,δ〉 − f(β∗ + δ) + f(β∗) + 〈∇f(β∗),δ〉

= sup
δ
〈ζ +∇f(β∗),δ〉 − f(β∗ + δ) + f(β∗)

= sup
δ
〈ζ +∇f(β∗),β∗ + δ〉 − f(β∗ + δ) + f(β∗)− 〈ζ +∇f(β∗),η∗〉

= f∗(ζ +∇f(β∗)) + f(β∗)− 〈ζ +∇f(β∗),β∗〉,

where f(β∗),∇f(β∗) are known to be finite. Therefore we obtain

∆f (β̂,β∗)≤ 1

c− 1
[f∗((c− 1)ε) + f(β∗)− (c− 1)〈ε,β∗〉], ∀c > 0.(A.61)

Taking c= 2 and using Eε= 0 gives the ∆f risk bound (A.57).
Next, we prove the second bound under the no-model-ambiguity assumption. Using the

optimality of β∗, we have further

h∗(ζ) = f∗(ζ +∇f(β∗))− f∗(−ε)− 〈ζ,β∗〉.

Moreover, from the assumption and definition (A.55), it is easy to show that β∗ ∈ ∂f∗(−ε),
and so ∇f∗(−ε) = β∗, from which it follows that

h∗(ζ) = ∆f∗(ζ − ε,−ε).(A.62)

Taking c= 2 gives (A.58) (even though Eε may not be 0).
Finally, for any β ∈ S , f(β̂)≤ f(β) and so

∆f (β̂,β∗)≤∆f (β,β∗) + 〈ε, (β̂−β)/‖β̂−β‖2)〉‖β̂−β‖2.

We obtain a general result

(∆f − δD2)(β̂,β∗)≤∆f (β,β∗) +
1

2δ
[ sup
θ∈Γ(β)

〈ε,θ〉]2,(A.63)

for any δ > 0.
Based on the regularity condition,

δ

2
D2(β̂,β∗)≤∆f (β̂,β∗)− δ

2
D2(β̂,β∗)≤∆f (β,β∗) +

1

δ
( sup
θ∈Γ(β)

〈ε,θ〉)2

for any δ ≤ µ. Taking δ = µ gives the desired result.
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Algorithm B.1 Accelerated Bregman of the second kind

Input β(0): initial value; ρmin > 0, α> 0, M ∈N, µ0 ≥ 0 (e.g., ρmin = 1, α= 2, M = 3)

1: θ0 ∈ (0,1], t← 0, α(0)← β(0);
2: while not converged do
3: ρt← ρmin/α, s← 0
4: repeat
5: s← s+ 1
6: ρt← αρt
7: if t≥ 1, then θt← (

√
r2 + 4r− r)/2 with r = (ρt−1θt−1 + µ0)θt−1/ρt

8: γ(t)← (1− θt)β(t) + θtα
(t)

9: α(t+1)← arg minβ{f(β)−∆ψ0
(β,γ(t))+µ0∆φ(β,γ(t)) + θtρt∆φ(β,α(t))}

10: β(t+1)← (1− θt)β(t) + θtα
(t+1)

11: Rt← θ2
t ρt∆φ(α(t+1),α(t))−∆ψ̄0

(β(t+1),γ(t))

+(1− θt)∆ψ̄0
(β(t),γ(t)) + Cf(·)−∆ψ̄0

(·,γ(t))(α(t+1),β(t), θt)

12: until Rt ≥ 0 or s >M

13: if s >M , pick (α(t+1),β(t+1),γ(t), ρt, θt) with the largest Rt/(θ
2
t ρt)

14: t← t+ 1
15: end while
16: return β(t+1).

APPENDIX B: ALGORITHMS FOR ACCELERATIONS

For clarity, we give an outline of the algorithms for acceleration.

Algorithm B.2 Accelerated Bregman of the first kind

Input β(0): initial value; ρmin > 0, α> 0, M ∈N, µ0 ≥ 0 (ρmin = 1, α= 2, M = 3)
1: θ0 ∈ (0,1], t← 0;
2: while not converged do
3: ρt← ρmin/α, s← 0
4: repeat
5: s← s+ 1
6: ρt← αρt
7: if t≥ 1, then θt← (

√
r2 + 4r− r)/2 with r = (ρt−1θt−1 + µ0)θt−1/ρt

8: γ(t)← β(t) + {ρt−1θt(1− θt−1)/(ρt−1θt−1 + µ0)}(β(t) −β(t−1))

if t≥ 1 and β(t) if t= 0

9: β(t+1)← arg minβ{f(β)−∆ψ0
(β,γ(t)) + µ0D2(β,γ(t)) + ρtD2(β,γ(t))}

10: Rt← (ρtD2 −∆ψ̄0
)(β(t+1),γ(t)) + (1− θt)∆ψ̄0

(β(t),γ(t))

11: until Rt ≥ 0 or s >M

12: if s >M , pick (β(t+1),γ(t), ρt, θt) with the largest associated Rt/(θ
2
t ρt)

13: t← t+ 1
14: end while
15: return β(t+1).

APPENDIX C: EXPERIMENTS

This section performs some simulation studies to support the theoretical results.

C.1. Computational error. In this part, we use mirror descent and DC programming to
solve two nonconvex problems.
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• Nonconvex mirror descent for IS divergence minimization. In infrared astronomi-
cal satellite (IRAS) image reconstruction [13] and audio signal processing [21, 35], the
Itakura-Saito (IS) divergence (or the negative cross Burg entropy), IS(a,b) =

∑
i(ai/bi −

log(ai/bi) − 1), is popularly used to measure the discrepancy between the observed data
and the reconstructed data. Given X ∈ Rn×p+ , and y ∈ Rn+, the problem can be defined by
minf(β) := IS(y,Xβ) s.t.β ∈Rp+, which is nonconvex in β. To maintain the nonnegativity
constraint in updating β automatically, we develop a mirror descent algorithm. Concretely,
define g(β;β−) = f(β) + (ρDϕ −∆f )(β,β−), where ϕ(β) =

∑
j βj logβj − βj . Then,

minimizing g(β;β(t)) with respect to β gives rise to a multiplicative rule

(C.1) β
(t+1)
j = β

(t)
j exp

[
− 1

ρ

∑
i

(Xβ(t))i − yi
(Xβ(t))2

i

Xij

]
.

From Theorem 2, the O(1/T ) rate of convergence holds for the optimization error
avg0≤t≤T (2ρD̄ϕ −∆f )(β(t+1),β(t)). To verify this, we generated a design matrix of size
1000×1000 with all elements drawn from U(0,1), and set y =Xβ∗+ewith β∗j chosen uni-
formly from the interval (0,5) and ei ∼N (0, σ2) with σ2 = 10. We fixed 1/ρ= 0.01. Figure
C.1 shows how the logarithm of optimization error converges to −∞ (since log 0 =−∞) for
50 different β(0) with β(0)

j randomly chosen from U(0,1). Observe that all the error curves
in the log-log plot are bounded by a line with slope −1.

FIG C.1. Log-log plot of optimization error v.s. number of iterations: mirror descent for IS divergence
minimization with 50 random starting points. All error curves are bounded above by the dashed line
which has slope −1.

• DC programming for capped-`1 SVM. High-dimensional classification with concur-
rent feature selection can be achieved by minimizing a composite objective function. Given
X = [x1, . . . ,xn]> ∈ Rn×p and y ∈ {−1,1}n, let l(β) =

∑n
i=1(1− yix>i β)+ be the hinge

loss [61] that is nondifferentiable, and P (β;λ) =
∑p

j=1 min(λ|βj |, λ2/2) be the capped-
`1 penalty [66] which is nonsmooth and nonconvex. [42] proposed an effective DC algo-
rithm for solving minβ f(β) := l(β) + P (β;λ) based on the decomposition P (β;λ) =
d1(β;λ)− d2(β;λ) with

(C.2) d1(β;λ) = λ‖β‖1, d2(β;λ) =

p∑
j=1

max(λ|βj | − λ2/2,0).
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As stated in Example 4, we can recharacterize DC as a Bregman-surrogate algorithm

β(t+1) ∈ arg minf(β) + ∆d2
(β,β(t))(C.3a)

∈ arg min
β

n∑
i=1

max(0,1− yix>i β) + λ

p∑
j=1

(
|βj | − βj1|β(t)

j |≥λ/2
)
.(C.3b)

(C.3b) is equivalent to a linear program: minξ,ζ,β
∑n

i=1 ξi+λ
∑p

j=1 ζj−λ
∑p

j=1 βj1|β(t)
j |≥λ/2

s.t. ξi ≥ 1− yix>i β for i ∈ [n], −ζj ≤ βj ≤ ζj for j ∈ [p] and ξi, ζj ≥ 0 for i ∈ [n], j ∈ [p],
which can be efficiently solved by standard linear programming (LP) solvers. For the con-
vergence of the DC algorithm, a similar result can be shown for the optimization error
avg0≤t≤T (∆l+

r
∆d2

+∆d1
)(β(t),β(t+1)), following the lines of the proof of Proposition

4.
We generated X ∈ R400×800 with each row following N (0,Σ) and Σij = 0.5|i−j|, β∗ =

[15,10,0, . . . ,0]>, and y = sgn(Xβ∗+e) where ei ∼N (0, σ2) with σ2 = 10. We fixed λ=
1 and ran the DC algorithm for 50 different starting points with each component randomly
drawn from U(0,1). The corresponding optimization error curves are plotted in Figure C.2,
where the O(1/T ) rate of convergence is impressive.
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FIG C.2. Log-log plot of optimization error v.s. number of iterations: DC programming for capped-`1
SVM (50 different initial points).

C.2. Statistical error. In this part, we consider two algorithms for sparse regression:
LLA and iterative thresholding. The nonconvex “hard” penalty defined by (55) is applied,
which is constructed from the hard-thresholding rule via (48). GivenX ∈Rn×p and y ∈Rn,
we study the following regularized problem minβ f(β) := l(β) +

∑p
j=1PH(%βj ;λ), where

l is the loss function and %= ‖X‖2. The loss functions under consideration are the ordinary
quadratic loss and a nonconvex loss which is resistant to gross outliers:

(i) `2 loss: l(β) = ‖y−Xβ‖22/2;
(ii) Tukey’s biweight loss: l(β) =

∑n
i=1

∫ |x>i β−yi|
0 ψ(t)dt and ψ(t) = t[1− (t/c)2]2 if |t| ≤ c

and 0 otherwise, where c = 4.685σ with σ a robust estimate of the standard deviation of
errors [26].

In either case, we have a nonconvex optimization problem. In simulations, the design matrix
X ∈Rn×p has i.i.d. rows drawn fromN (0,Σ) with Σij = 0.15|i−j|, the response is given by
y =Xβ∗ + e with ei ∼N(0, σ2) and σ2 = 10, and the regularization parameter λ is set to
Aσ
√

log(ep). We set n= 800, p= 1000,β∗ = [12,8,0, . . . ,0]> and A= 2.
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First, we tested the statistical accuracy of LLA (cf. Theorem 3 and Proposition 5). We
generated 15 initial points β(0) with each element following U(−a,a), with a ∈ {0.5,1,1.5}
and 5 for each. Figure C.3 shows how the statistical error varies as the cycles progress, with
each curve representing an average over 20 implementations of the same setting. Here, the
errors are plotted on a log scale for a better view of the convergence rate. Unlike Figure
C.1 and Figure C.2, the statistical errors can not reach 0 (or −∞ in the log plot) due to the
existence of noise. But they all achieved essentially the same order of statistical precision,
which verifies Theorem 3, and the statistical convergence of LLA was really fast.
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FIG C.3. Log plot of the statistical accuracy of LLA iterates in PH -penalized sparse regression (left)
and robust regression (right).

On the other hand, the computational burden of LLA turned out to be pretty high, mainly
due to the cost of solving a weighted lasso problem at each iteration. We thus turned to
iterative thresholding because of its low per-iteration complexity. Figure C.4 shows some
analogous results. According to Figure C.4, all final statistical errors were controlled within
the same order of precision. The convergence process seems to conform to the bound in The-
orem 5: when t is small, log ∆ψ(β∗,β(t)) . − log(1/κ) t+ log(∆ψ(β∗,β(0))), and when
t is large, log ∆ψ(β∗,β(t)) . κt∆ψ(β∗,β(0)) + log(κKλ2J∗/(1 − κ)), demonstrating an
exponential decay.

C.3. Accelerations. We test the acceleration schemes in IS divergence minimization and
robust sparse regression in this subsection.

Figure C.5 shows the power of applying the (second) acceleration in IS divergence mini-
mization problem in Section C.1, where we used 50 starting points with β(0)

j ∼ U(0,1),1≤
j ≤ p. With the acceleration, the number of iterations was brought down from 1000 to less
than 50 to reach the same value of the objective function, and the overall computational time
was saved by nearly 90%.

Figure C.6 shows the convergence of statistical error when applying the (first) acceleration
scheme in iterative thresholding for the PH -penalized Tukey’s loss minimization problem as
mentioned in Section C.2. The simulation setting remains the same as before and we sampled
20 initial points with β(0)

j ∼ U(−1,1),1 ≤ j ≤ p. A substantial reduction in the number of
iterations was achieved. Of course, the line search causes some overhead in computation.
But the accelerated iterative thresholding still reduced the overall running time by more than
30%, and obtained slightly better statistical accuracy.
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FIG C.4. Log plot of the statistical accuracy of iterative thresholding iterates in PH -penalized sparse
regression (left) and robust regression (right).
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FIG C.5. Objective function value (shown on log scale) v.s. number of iterations for the plain and
accelerated exponentiated gradient descent algorithms in nonconvex Burg entropy optimization.
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