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Abstract—Artificial neural networks (ANNs) especially deep
convolutional neural networks are very popular these days and
have been proved to successfully offer quite reliable solutions
to many vision problems. However, the use of deep neural
networks is widely impeded by their intensive computational
and memory cost. In this paper, we propose a novel efficient
network pruning framework that is suitable for both non-
structured and structured channel-level pruning. Our proposed
method tightens a sparsity constraint by gradually removing
network parameters or filter channels based on a criterion and
a schedule. The attractive fact that the network size keeps
dropping throughout the iterations makes it suitable for the
pruning of any untrained or pre-trained network. Because our
method uses a L0 constraint instead of the L1 penalty, it does not
introduce any bias in the training parameters or filter channels.
Furthermore, the L0 constraint makes it easy to directly specify
the desired sparsity level during the network pruning process.
Finally, experimental validation on extensive synthetic and real
vision datasets show that the proposed method obtains better or
competitive performance compared to other states of art network
pruning methods.

I. INTRODUCTION

In recent years, artificial neural networks (ANNs) especially
deep convolutional neural networks (DCNNs) are widely
applied and have become the dominant approach in many
computer vision tasks. These tasks include image classification
[1]–[4], object detection [5], [6], semantic segmentation [7],
3D reconstruction [8], etc. The quick development in the
deep learning field leads to network architectures that can
go nowadays as deep as 100 layers and contain millions or
even billions of parameters. Along with that, more and more
computation resources must be utilized to successfully train
such a deep modern neural network.

The deployment of DCNNs in real applications is largely
impeded by their intensive computational and memory cost.
With this observation, the study of network pruning methods
that learn a smaller sub-network from a large original network
without losing much accuracy has attracted a lot of attention.
Network pruning algorithms can be divided into two groups:
non-structured pruning and structured pruning. The earliest
work for non-structured pruning is conducted by [9], the most

recent work is done by [10], [11]. The non-structured pruning
aims at directly pruning parameters regardless of the consistent
structure for each network layer. This renders modern GPU
acceleration technique unable to obtain computational benefits
from the irregular sparse distribution of parameters in the
network, only specialized software or hardware accelerators
can gain memory and time savings. The advantage of non-
structured pruning is that it can obtain high network sparsity
and at the same time preserve the network performance as
much as possible. On the other side, structured pruning aims at
directly removing entire convolutional filers or filter channels.
Li et al. [12] determines the importance of a convolutional
filter by measuring the sum of its absolute weights. Liu
et al. [13] introduces a L1-norm constraint in the batch
normalization layer to remove filter channels associated with
smaller γ. Although structured pruning cannot obtain the same
level of sparsity as non-structured pruning, it is more friendly
to modern GPU acceleration techniques and independent of
any specialized software or hardware accelerators.

Unfortunately, many of the existing non-structured and
structured pruning techniques are conducted in a layer-wise
way, requiring a sophisticated procedure for determining the
hyperparameters of each layer in order to obtain a desired
number of weights or filters/channels in the end. This kind of
pruning manner is not effective nor efficient.

We combine regularization techniques with sequential algo-
rithm design and direct sparsity level control to bring forward a
novel network pruning scheme that could be suitable for either
non-structured pruning or structured pruning (particular for fil-
ter channel-wise pruning of DCNNs with Batch Normalization
layers). We investigate a parameter estimation optimization
problem with a L0-norm constraint in the parameter space,
together with the use of annealing to lessen the greediness of
the pruning process and a general metric to rank the impor-
tance of the weights or filter channels. An attractive property
is that parameters or filter channels are removed while the
model is updated at each iteration, which makes the problem
size decrease during the iteration process. Experiments on
extensive real vision data, including the MNIST, CIFAR, and
SVHN provide empirical evidence that the proposed network
pruning scheme obtains a performance comparable to or better
than other state of art pruning methods.
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II. RELATED WORK

Network pruning is a very active research area nowadays,
it provides a powerful tool to accelerate the network inference
by having a much smaller sub-network without too much
loss in accuracy. The earliest work about network pruning
can be dated back to 1990s, when [9] and [14] proposed a
weight pruning method that uses the Hessian matrix of the loss
function to determine the unimportant weights. Recently, [11]
used a quality parameter multiplied by the standard deviation
of a layer’s weights to determine the pruning threshold. A
weight in a layer will be pruned if its absolute value is
below that threshold. [15] proposed a pruning method that
can properly incorporate connection slicing into the pruning
process to avoid incorrect pruning. These pruning schemes
mentioned above are all non-structured pruning, needing spe-
cialized hardware or software to gain computation and time
savings.

For structured pruning, there are also quite a few works in
the literature. [12] determine the importance of a convolutional
filter by measuring the sum of its absolute weights. [16]
compute the average percentage of zero activations after the
ReLu function and determine to prune the corresponding filter
if its this percentage score is high. [17] propose an iterative
two-step channel pruning method by a LASSO regression
based channel selection and least square reconstruction. [13]
introduce a L1-norm constraint in the batch normalization
layer to remove filter channels associated with smaller |γ|.
[18] impose an extra cluster loss term in the loss function
that forces filters in each cluster to be similar and only keep
one filter in each cluster after training. [19] utilize a greedy
algorithm to perform channel selection in a layer-wise way by
constructing a specific optimization problem.

III. NETWORK PRUNING VIA ANNEALING AND DIRECT
SPARSITY CONTROL

Given a set of training examples D = {(xi, yi), i =
1, ..., N} where x is an input and y is a corresponding target
output, with a differentiable loss function L(·) we can formu-
late the pruning problem for a neural network with parameters
W = {(Wj,bj), j = 1, ..., L} as following constrained
problem

min
W

L(W) s.t. ||W||0 ≤ K (1)

where the L0 norm bounds the number of non-zero parameters
in W to be less than or equal to a specific positive integer K.

For non-structured pruning, we directly address the pruning
problem in the whole W space. The final W will have
an irregular distribution pattern of the zero-value parameters
across all layers.

For structured pruning, suppose the DCNN is with convo-
lutional filters or channels C = {Cj , j = 1, ...,M}, we can
replace the constrained problem (1) by

min
W

L(W) s.t. ||C||0 ≤ K (2)

By solving the problem (2), we will obtain the W on the con-
volutional layers having more uniform zero-value parameter
distribution, specialized in some filters or filter channels.

These constrained optimization problems (1) and (2) facil-
itate parameter tuning because our sparsity parameter K is
much more intuitive and easier to specify in comparison to
penalty parameters such as λ in λ||W||1 and λ||C||1.

In this work, we will focus on the study of the weight-
level pruning (non-structured pruning) for all neural networks
and channel-level pruning (structured pruning) particularly for
neural networks with Batch Normalization layers.

IV. BASIC ALGORITHM DESCRIPTION

Some key ideas in our algorithm design are: a) We conduct
our pruning procedures in the specified parameter spaces; b)
We use an annealing plan to directly control the sparsity level
in each parameter space; c) We gradually remove the most
”unimportant” parameters or channels to facilitate computa-
tion. The prototype algorithms, summarized in Algorithm 1
and 2, show our ideas. It starts with either an untrained or
pre-trained model and alternates two basic steps: one step
of parameter updates towards minimizing the loss L(·) by
gradient descent and one step that removes some parameters
or channels according to a ranking metric R.

Algorithm 1 Network Pruning via Direct Sparsity Control
- Weight-Level (DSC-1)

Input: Training set T = {(xi, yi)}ni=1, desired parameter
space {Wj | ∪ Wj = W & ∩ Wj = ∅}Bj=1, desired
number {Kj}Bj=1 of parameters, desired annealing schedule
{Me

j , e = 1, .., N iter}Bj=1, an ANN model.
Output: Pruned ANN depending on exactly {Kj}Bj=1 pa-
rameters in each parameter space {Wj}Bj=1.

1: If the ANN is not pre-trained, train it to a satisfying level.

2: for e = 1 to N iter do
3: Sequentially update W ←W − η ∂L(W)

∂W via backprop-
agation.

4: for j = 1 to B do
5: Keep the Me

j most important parameters inWj based
on ranking metric R.

6: end for
7: end for
8: Fine-tune the pruned ANN with exactly {Kj}Bj=1 param-

eters in each parameter space {Wj}Bj=1.

The intuition behind our DSC algorithms is that during the
pruning process, each time we remove a certain number of
the most unimportant parameters/channels in each parame-
ter/channel space based on an annealing schedule. This ensures
that we do not inject too much noise in the parameter/channel
dropping step so that the pruning procedure can be conducted
smoothly. Our method directly controls the sparsity level
obtained at each parameter/channel space, unlike many layer-
wise pruning methods where a sophisticated procedure has to



be used to control how many parameters are kept, because
pruning the weights or channels in all layers simultaneously
can be very time-consuming.

Algorithm 2 Network Pruning via Direct Sparsity Control
- Channel-Level (DSC-2)

Input: Training set T = {(xi, yi)}ni=1, desired channel
space {Cj | ∪ Cj = C & ∩ Cj = ∅}Bj=1, desired number
{Kj}Bj=1 of channels, desired annealing schedule {Me

j , e =
1, .., N iter}Bj=1, a DCNN model.
Output: Pruned DCNN depending on exactly {Kj}Bj=1

channels in each channel space {Cj}Bj=1.
1: If the DCNN is not pre-trained, train it to a satisfying

level.
2: for e = 1 to N iter do
3: Sequentially update W ←W − η ∂L(W)

∂W via backprop-
agation

4: for j = 1 to B do
5: Keep the Me

j most important channels in Cj based
on ranking metric R.

6: end for
7: end for
8: Fine-tune the pruned DCNN with exactly {Kj}Bj=1 chan-

nels in each parameter space {Cj}Bj=1.

Through the annealing schedule, the support set of the
network parameters or channels is gradually shrunken until
we reach ||W||0 ≤ K or ||C||0 ≤ K. The keep-or-kill rule
is based on the ranking metric R and does not involve any
information of the objective function L. This is in contrast
to many ad-hoc networking pruning approaches that have to
modify the loss function and can not easily be scaled up to
many existing pre-trained models.

V. IMPLEMENTATION DETAILS

In this part, we provide implementation details of our
proposed DSC algorithms.

First, the annealing schedule Me is determined empirically.
Our experimental experience shows that the following an-
nealing plans can perform well to balance the efficiency and
accuracy:

Me =


(1− p0) + p0(

N1 − e
µe+N1

))M, 1 ≤ e < N1

(1−min(p, p0 +

⌊
e−N1

N c

⌋
ν))M,N1 < e ≤ N iter

Here M is the total number of parameters or channels in the
neural network. Our Me consists two parts. The first part can
be used to quickly prune the unimportant parameters with
a reasonable value of µ down to a percentage p0 of the
parameters. The second part can further refine our pruned
sub-network to a more compact model. µ is the pruning rate
and we will set it to µ = 10 for all experiments. p0 ∈ [0, 1]
denotes the percentage of parameters or channels to be pruned
in the first part. p ∈ [0, 1] denotes the final pruning percentage

Fig. 1. Annealing schedule with N1 = 10, N iter = 20, Nc = 1, p0 =
0.8, p = 0.9, ν = 0.02.

goal at the end of the pruning procedure, thus the number
of remaining parameters is K = M(1 − p). The parameter
N c specifies how many epochs to train before performing
another pruning. We will select N c ∈ {1, 2}. ν denotes the
incremental pruning percentage as the annealing continues
and will be set to ν ∈ {0.005, 0.01, 0.02}. An example of
an annealing schedule Me (with M = 1 for clarity) with
N1 = 10, N iter = 20, N c = 1, p0 = 0.8, p = 0.9, and
ν = 0.02 is shown in Figure 1.

Second, as the convolutional layers and fully connected
layers have very different behavior in a DCNN, we will prune
them separately during the structured and non-structured prun-
ing process, i.e. we will fix the convolutional layer parameters
while pruning the fully connected layer, and vice versa.

Third, the ranking metric R we select for structured and
non-structured pruning is different. For non-structured prun-
ing, the parameter dropping procedure based on the magnitude
of the parameter yields quite good pruning results in our
experiments. Therefore we will select it as our metric to
rank the importance of parameters for all our non-structured
pruning experiments:

R(w) = |w|, w ∈ W (3)

For structured channel pruning, various dropping criteria are
proposed. One family of channel pruning metrics are based on
the value of the channel weights. Li [20] uses the L1-norm
by summing up the magnitude of all channel weights to rank
the importance of the metric in a channel space; Wen [21]
suggests the use of the L2-norm. Another family of channel
pruning metrics [13] lies in the absolute value of the Batch
Normalization scales, as Batch normalization [22] has been
widely adopted by most modern DCNNs to accelerate the
training speed and convergence. Assume zin and zout to be
the input and output of a Batch Normalization layer, we can
formulate the transformation of that BN layer performs as:

BN(zin) =
zin − µB√
σ2
B + ε

; zout = γ ·BN(zin) + β



where B denotes the mini-batch statistic of input activations,
µB and σB are the mean and standard deviation over B, γ
and β are trainable scale and shift parameters of the affine
transformation. Liu [13] directly leverages the parameters γ in
the Batch Normalization layers as the scaling factors they need
for channel pruning. They impose a L1 norm on each Batch
Normalization layer for the γ to reformulate the training loss
function. Here we combine the metrics of these two families to
enjoy wider flexibility on the DCNNs and define our ranking
metrics as follows:

RB(C) = |γC |
RL(C) = (||C||L1

+ ||C||L2
)/2

R(C) = α · RB(C)
Rmax

B (C)
+ (1− α) · RL(C)

Rmax
L (C)

(4)

where γC is the scale parameter of the BN for channel C,
α ∈ [0, 1] is a hyper-parameter that needs to be specified
to balance the two ranking terms RB and RL. The main
differences from the other pruning methods are that we do
not make any modifications to the loss function, but utilize
a L0 norm constraint and we use an annealing schedule to
gradually eliminate channels and lessen the greediness.

Fourth, after the pruning process, we will conduct a fine-
tuning procedure to gain back the performance lost during the
pruning period. Before we start the fine-tuning, we can remove
for non-structured pruning the neurons that have zero incoming
or outgoing degree and structured-pruning the convolution
filter channels with all zero parameters to form a more compact
network for later inference use.

VI. EXPERIMENTS

In this section, we first present a simulation on a synthetic
dataset named parity dataset [23] to demonstrate the effective-
ness of our DSC algorithm with selected Me annealing plan.
Then we conduct non-structured pruning with Lenet-300-100
and LeNet-5 [24] on MNIST [25] dataset. Finally we conduct
our experiments with VGG-16 [2] and DenseNet-40 [4] on
CIFAR [26] and SVHN [27] dataset for structured channel
pruning.

A. Synthetic Parity Dataset

The parity data with noise is a classical problem in com-
putational learning theory [23]. The data has feature vector
x ∈ Rp which is uniformly drawn from {−1,+1}p. The label
is generated follow the XOR logic: for some unknown subset
of k indices 1 ≤ i1 < ... < ik, the label value is set as

y =

{
xi1xi2 ...xik with probablity 0.9

− xi1xi2 ...xik with probablity 0.1

That is this dataset cannot be perfectly separated and the best
classifier would have a prediction error of 0.1.

This kind of dataset is frequently used to test different
optimizers and regularization techniques on the neural net-
work (NN) model. We perform the experiment in p = 50
dimensional data with parities k = 5. The training set, valid
set, and testing set contain respectively 15K, 5K and 5K

Fig. 2. Test error vs number of hidden nodes. Comparison between single
hidden layer neural networks trained by NN + Adam + DSC-1 starting with
256 hidden nodes, NN + Adam, NN + SGD and BoostNet.

data points. We train a one hidden layer neural network with
default stochastic gradient descent (SGD) optimizer, Adam
[28] optimizer and Adam + DSC-1. For NN with Adam
+ DSC-1, we start with 256 hidden nodes, and down to
a hidden node number B in the range B ∈ [1, 16] using
annealing schedule Me. We report the best result out of 10
independent random initializations. Recently, a neural network
based boosting method named BoostNet [23] significantly
outperformed a normal NN on this data. As Zhang’s [23]
experiment setting is very similar to us but with more training
data, so we directly extract their results and report together
with our experimental outcomes. The comparison of the test
errors is shown in Figure 2.

We can see that the NN with the SGD optimizer cannot
learn any good model with less than 100 hidden nodes on this
data, while a NN with the Adam optimizer can learn some
pattern when the number of hidden nodes is greater than 25,
but still mostly cases are trapped in shallow local optima.
The BoostNet can learn well if the hidden node number is
greater than about 45 hidden nodes. The best performance
is achieved by NN with Adam + DSC-1, with 256 starting
hidden nodes. After applying DSC-1 during the NN training,
we only needed to keep as few as 6 hidden nodes to get the
best possible prediction error. This observation implies: The
DSC-1 algorithm has a good capability to find a global or deep
enough local optimum by gradually removing unimportant
connections; The direct sparsity control design can help the
final NN model reach very close to the most compact model
achievable.

B. Non-structured Pruning on MNIST

The MINIST dataset provided by [25] is a handwritten digits
dataset that is widely used in evaluating machine learning al-
gorithms. It contains 50K training observations, 10K validation
and 10K testing observations respectively. In this section, we
will test our non-structured pruning method DSC-1 on two
network models: LeNet-300-100 and LeNet-5.



LeNet-300-100 [24] is a classical fully connected neural
network with two hidden layers. The first hidden layer has 300
neurons and the second has 100. The LeNet-5 is a conventional
convolutional neural network that has two convolution layers
and two fully connected layers. LeNet-300-100 consists of
267K learnable parameters and LeNet-5 consists of 431K. To
have a fair comparison with [11], we follow the same ex-
perimental setting by using the default SGD method, training
batch size and initial learning rate to train the two models from
scratch. After a model with similar performance was obtained,
we stop the training and directly apply our DSC-1 pruning
algorithm to compress the model. During the pruning and
retraining procedure, a learning rate with 1/10 of the original
network’s learning rate is adopted. A momentum with value
of 0.9 is used to speed up the model retraining.

Model Error Params Prune Rate
Lenet-300-100 (Baseline) 1.64% 267k -
Lenet-300-100 (Han et al.) 1.59% 22K 91.8%
Lenet-300-100 (Ours) 1.57% 17.4K 93.5%
Lenet-5 (Baseline) 0.8% 431K -
Lenet-5 (Han et al.) 0.77% 36k 91.6%
Lenet-5 (Ours) 0.77% 15.8k 96.4%

TABLE I
NON-STRUCTURED PRUNING COMPARISON. OUR DSC-1 PRUNING

METHOD CAN LEARN A MORE COMPACT SUB-NETWORK.

Model Layer Params. Han % Ours %
fc1 236K 8% 4.6%

Lenet-300-100 fc2 30K 9% 20.1%
fc3 1K 26% 68.5%
Total 267K 8.2% 6.5%
conv1 0.5K 66% 75%
conv2 25K 12% 29.1%

Lenet-5 fc1 400K 8% 1.8%
fc2 5K 19% 17.2%
Total 431K 8.4% 3.6%

TABLE II
LAYER BY LAYER COMPRESSION COMPARISONS ON LENET-300-100 AND

LENET-5. THE PERCENTAGE OF REMAINING PARAMETERS OF [11]’S
PRUNING METHOD IS DISPLAYED IN THE THIRD COLUMN, OUR DSC-1

PRUNING IS DISPLAYED IN THE LAST COLUMN.

In LeNet-300-100, a total of 20 epochs were used for both
pruning and fine-tuning. For the annealing schedule, p0 is
directly set to 0.85 without using any annealing schedule. Then
we follow the fine-grain pruning annealing schedule which
N c = 1 and ν = 0.05 to reach at the final percentage goal
p = 0.935.

The remaining epochs are used for fine-tuning purposes.
In LeNet-5, the pruning for fully connected layers and con-
volutional layers are treated separately. For pruning on fully
connected layers, we directly set at p0 = 0.9 and then reach
p = 0.98 with N c = 1, ν = 0.05. For the convolutional layers
we start with p0 = 0, N c = 1 and ν = 0.05 to reach at
p = 0.7. The total number of pruning and retraining epochs
for LeNet-5 is 40 epochs. After several experimental trials, we
output our best result in Table I .

From the result table shown above, one can observe that
our proposed non-structured pruning algorithm can learn a

more compact sub-network for both LeNet300-100 and LeNet-
5 with comparable performance with [11].

By using a hyperparameter we can directly control the spar-
sity level to get close to the most compact model achievable.
It is not hard to conjecture that using a quality factor times the
variance as a pruning threshold in each layer as proposed by
[11] cannot exactly determine how many parameters should be
kept. Our method can directly control the sparsity level and
therefore enjoy a higher possibility to reach the position of the
most compact sub-network.

Table II shows the layer-by-layer compression comparisons
between ours and [11]. It is interesting to see that although
two different pruning algorithms yield a similar performance
result, the network architecture is quite different. Our DSC-1
algorithm controls the directly specified sparsity level in the
parameter space with an annealing schedule, this ensures the
target sub-network can learn its pattern in an automatic way.
For LeNet300-100, the most parameter killing comes from
the first layer, which is quite reasonable as the images in the
MNIST dataset are grayscale containing a large portion of
pure black pixels. This large portion of black pixels almost
has nothing to contribute to the neural network learning of
useful information. The least parameter percentage dropping
comes from the output layer, preserved as high as 68.5%.
We can conjecture the reason for this behavior could be
that as the most unrelated features are removed from the
first fully connected layer, the output layer should remain a
considerable number of parameters to bear the weight of those
kept and useful features. For LeNet-5, the most parameter
preservation occurs in the first convolutional layer. This is
again really very reasonable, as indeed the first layer should
be the most important layer that directly extracts relevant
features from the raw input image pattern. Our direct sparsity
control strategy lets the network itself decide which part is
more important, and which part contains most irrelevant or
junk connections that could be removed safely. The parameter
percentage distribution of the two fully connected layers in
LeNet-5 has a similar behavior as in LeNet-300-100.

C. Structured Channel Pruning on the CIFAR and SVHN
Datasets

The CIFAR datasets (CIFAR10 and CIFAR100) provided
by [26] are well established computer vision datasets used
for image classification and object recognition. Both CIFAR
datasets consist of a total of 60K natural color images and are
divided into a training dataset with 50K images and a testing
dataset with 10K images. The CIFAR-10 dataset is drawn from
10 classes with 6000 images per class. The CIFAR-100 dataset
is drawn from 100 classes with 60 images per class. The color
images in the CIFAR datasets have resolution 32× 32.

The SVHN dataset [27] is a real-world image dataset for
developing machine learning classification and object recog-
nition algorithms. Similar to MNIST it consists of cropped
digit images, but has as many as 600K training samples and
26K testing images in total. Each digit image is 32× 32 and
extracted from natural scenes.



DCNN Model Error (%) Channels Pruned Params Pruned
Base-unpruned [13] 6.34 5504 - 20.04M -
Pruned [13] 6.20 1651 70% 2.30M 88.5%

VGG-16 Base-unpruned (Ours) 6.34 4224 - 14.98M -
Pruned (Ours) 6.14 1689 60% 4.40M 70.6%
Pruned (Ours) 6.20 1267 70% 2.88M 80.7%
Base-unpruned [13] 6.11 9360 - 1.02M -

DenseNet-40 Pruned [13] 5.65 2808 70% 0.35M 65.2%
Pruned (Ours) 5.48 3744 60% 0.45M 55.9%
Pruned (Ours) 5.57 2808 70% 0.34M 66.7%

TABLE III
PRUNING PERFORMANCE RESULTS COMPARISON ON CIFAR-10.

DCNN Model Error (%) Channels Pruned Params Pruned
Base-unpruned [13] 26.74 5504 - 20.08M -

VGG-16 Pruned [13] 26.52 2752 50% 5.00M 75.1%
Base-unpruned (Ours) 26.81 4224 - 15.02M -
Pruned (Ours) 26.55 2112 50% 6.01M 60.0%
Base-unpruned [13] 25.36 9360 - 1.06M -

DenseNet-40 Pruned [13] 25.72 3744 60% 0.46M 54.6%
Pruned (Ours) 25.66 3744 60% 0.47M 55.6%

TABLE IV
PRUNING PERFORMANCE RESULTS COMPARISON ON CIFAR-100.

In this section, we will test our structured channel pruning
method DSC-2 on two network models: VGG-16 [2] and
DenseNet40 [4]. The VGG-16 [2] is a deep convolutional neu-
ral network containing 16 layers which was mainly designed
for the ImageNet dataset. Here we adopt a variation of VGG-
16 designed for CIFAR datasets, which was used in [12] and
has a smaller number of total parameters compared to Liu’s
[13], to conduct our experiments and compare with other state
of art pruning algorithms. For DenseNet [4] we adopted the
DenseNet40 with a total of 40 layers and a growth rate of 12.

We first train all the networks from scratch to obtain similar
baseline results compared to [13]. The total epochs for training
was set to 250 epochs for CIFAR, 20 epochs for SVHN,
for all networks. The batch size used was 128. A Stochastic
Gradient Descent (SGD) optimizer with an initial learning rate
of 0.1, weight decay of 5× 10−4 and momentum of 0.9 was
adopted. A division of the learning rate by 5 occurs at every
25%, 50%, 75% of total training epochs. For these datasets,
standard data augmentation techniques like normalization,
random flipping, and cropping may be applied.

During the pruning and fine-tuning procedure, the same
number of training epochs is adopted in total. We use an
SGD optimizer with an initial learning rate of 0.005 and no
weight decay or very small weight decay for pruning and
fine-tuning purposes. Similarly, a division of the learning rate
by 2 occurs at every 25%, 50%, 75% of total training epochs.
For the annealing schedule, a grid search is utilized here to
determine the best p0, N c and α for different p. After the first
part of the pruning schedule when we reach the pruning target
p0, we conduct the fine-grain pruning for each final pruning
rate p. We output our best results in Table III for CIFAR 10,

Table IV for CIFAR 100 and Table V for SVHN.
The experimental results displayed in Tables III, IV and V

demonstrate the effectiveness of our proposed channel pruning
algorithm DSC-2. It can be observed that our DSC-2 method
can obtain results competitive with or even better than [13].
What’s even better, our DSC-2 pruning method does not
introduce any extra term in the training loss function. By using
the annealing schedule to gradually remove the ”unimportant”
channels based on a specified channel importance ranking
metric R, we could successfully find a compact sub-network
without losing any model performance. Our DSC-2 is easy to
use and can be easily scaled up to any untrained or existing
pre-trained model. The results of the FLOPs ratio between the
original DCNNs and pruned sub-networks are shown in Figure
3.

Figure 4 displays two 70% channel-pruned network models
for the CIFAR-10 dataset. Due to the significant differences
in network architecture between the VGG-16 and DenseNet-
40, the resulting distribution of the percentage of remaining
channels is quite different. For VGG-16, only a very small
number of channels are kept in the last five CONV layers. This
is reasonable as the last five CONV layers are those layers that
initially have 512 input channels. Evidently, we do not need so
many channels in each of the last five layers. The high pruning
percentage may suggest that the VGG-16 network is over-
parameterized in a layer-wise way for the CIFAR 10 dataset.
For DenseNet-40 with a growth rate of 12, the kept channel
percentage is relatively evenly distributed in each CONV layer
except the two transitional layers. This is again very reasonable
based on the special architecture of DenseNet. With a growth
rate of 12, every 12 consecutive layers are correlated with



DCNN Model Error (%) Channels Pruned Params Pruned
Base-unpruned [13] 2.17 5504 - 20.04M -
Pruned [13] 2.06 2201 60% 3.04M 84.8%

VGG-16 Base-unpruned (Ours) 2.18 4224 - 14.98M -
Pruned (Ours) 2.06 1689 60% 4.31M 71.2%
Base-unpruned [13] 1.89 9360 - 1.02M -

DenseNet-40 Pruned [13] 1.81 3744 60% 0.44M 56.6%
Pruned (Ours) 1.80 3744 60% 0.46M 54.9%

TABLE V
PRUNING PERFORMANCE RESULTS COMPARISON ON SVHN.

Fig. 3. FLOPs ratio between the original DCNNs and pruned sub-network for VGG-16 and DenseNet-40 on CIFAR and SVHN dataset.

70% channel pruned VGG-16 70% channel pruned DenseNet-40
Fig. 4. The remaining channel distribution for each CONV layer for pruned networks on CIFAR 10. The first CONV layer is not displayed as our channel
pruning algorithm DSC-2 will not act on this layer, thus contain the full percentage of channels.

each other, and outputs of those previous CONV layers will
be concatenated to be the inputs of the following CONV
layer inside the growth rate period. Only the transitional layers
do not hold that property. Overall, our channel-level pruning
algorithm DSC-2 can automatically detect the reasonable sub-
network without performance loss for VGG-16 and DenseNet-
40 on the CIFAR and SVHN datasets.

Figure 5 displays the best results we obtained for just
using one single global pruning rate p ∈ {0.1, 0.3, 0.5, 0.7}
to perform the channel pruning in the whole channel space.
We can observe that even using a single target pruning rate
parameter, we can still obtain very good sub-networks that
generalize to CIFAR-10 test data well. A large portion of our
best results displayed in Tables III, IV and V are obtained just
using a single global pruning rate to guide the network pruning

procedure. This observation makes our annealing pruning
algorithm very easy to use, without worrying about channel
subspace partitions. We also tested three different values for
the parameter α of Eq. (4). For DenseNet-40, all of the choices
of α can yield satisfactory performance for the pruned sub-
network. For VGG-16, when α is set to 0, that is when the
magnitude of γ is used as the ranking metric for channel
pruning, gives the best results. This implies that different α
values may be suitable for different network architectures.

VII. CONCLUSION

This paper presented a neural network pruning framework
that is suitable for both structured and non-structured pruning.
The method directly imposes a L0 sparsity constraint on
the network parameters, which is gradually tightened to the
desired sparsity level. This direct control allows us to obtain



VGG-16 DenseNet-40
Fig. 5. The test error for various channel pruned percentage using one single global pruning rate for CIFAR-10.

the precise sparsity level desired, as opposed to other methods
that obtain the sparsity level indirectly through either a quality
factor times the variance or the use of penalty parameters.
Experiments on extensive synthetic and real vision data,
including the MNIST, CIFAR, and SVHN provide empirical
evidence that the proposed network pruning scheme obtains
a performance comparable to or better than other state of art
pruning methods.
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