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Abstract

In this paper, we test for the effects of high-dimensional covariates on the
response. In many applications, different components of covariates usually ex-
hibit various levels of variation, which is ubiquitous in high-dimensional data.
To simultaneously accommodate such heteroscedasticity and high dimensional-
ity, we propose a novel test based on an aggregation of the marginal cumulative
covariances, requiring no prior information on the specific form of regression
models. Our proposed test statistic is scale-invariance, tuning-free and con-
venient to implement. The asymptotic normality of the proposed statistic is
established under the null hypothesis. We further study the asymptotic rel-
ative efficiency of our proposed test with respect to the state-of-art universal
tests in two different settings: one is designed for high-dimensional linear model
and the other is introduced in a completely model-free setting. A remarkable
finding reveals that, thanks to the scale-invariance property, even under the
high-dimensional linear models, our proposed test is asymptotically much more
powerful than existing competitors for the covariates with heterogeneous vari-
ances while maintaining high efficiency for the homoscedastic ones.
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1 Introduction

In regression analysis, it is of fundamental importance to infer whether a set of co-

variates x = (X1, . . . , Xp)
T ∈ Rp has any effect on a response Y ∈ R1. Consider the

null hypothesis

H0 : E(Y | x) = E(Y ), almost surely. (1.1)

If H0 holds, it implies that x does not contribute to the conditional mean function

of Y . Thus there is no need to build a regression model for the conditional mean

function. In genomic studies, exploring whether a set of genes is predictive for certain

clinical outcomes can be formulated as the hypothesis in (1.1). See, for example, the

significant gene set selection in Subramanian et al. (2005), Efron and Tibshirani

(2007) and Zhong and Chen (2011).

Testing for the covariates effects has received much attention, and many tests have

been developed for low and fixed-dimensional covariates. By assuming E(Y | x) =

xTβ, testing (1.1) is equivalent to checking whether β = 0. The classical F -test can

be used to infer the overall significance of linear regression coefficients. Moreover,

many model-specification tests are also designed to test (1.1), including the local

(Hardle and Mammen, 1993; Zheng, 1996; Guo et al., 2016) and global smoothing

tests (Stute, 1997; Stute et al., 1998; Escanciano, 2006). Without specifying a func-

tional form of E(Y | x), Wang and Akritas (2006) developed a test for covariate effects

in a completely nonparametric fashion. Shao and Zhang (2014) proposed a martin-

gale difference divergence in the setting of fixed dimension. However, these methods

do not target the case of high-dimensional covariates and suffer from the curse of
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dimensionality when the covariate dimension p diverges. In particular, Zhong and

Chen (2011) proved the power of F -test is adversely impacted by an increasing ratio

p/n even when p < n − 1, where n is the sample size. For the martingale difference

divergence that can capture any type of conditional mean dependence in the fixed

dimension, Zhang et al. (2018) showed that it can only measure the component-wise

linear dependence in high dimension.

In the case of high dimensional covariates, many tests have been proposed under

parametric model settings. For example, in high-dimensional linear regression models,

Goeman et al. (2006) considered a score test in an empirical Bayesian model. Zhong

and Chen (2011) proposed a simultaneous test for coefficients based on a U -statistic.

This work is further modified by Feng et al. (2013) with Wilcoxon scores, and by

Cui et al. (2018) with refitted cross-validation. In high-dimensional generalized linear

regression models, Goeman et al. (2011) extended the test of Goeman et al. (2006)

and derived its asymptotic distribution. Guo and Chen (2016) introduced a test that

is robust to a wide range of link functions. It is desirable to develop a test that can

accommodate the high-dimensionality without any parametric model assumptions.

Directly testing (1.1) without specifying any model structure is very challenging

in high dimensions. McKeague and Qian (2015) proposed an adaptive resampling

test (ART) using the maximum-type statistic on the slopes of marginal linear re-

gressions. The ART may effectively detect the presence of significant covariates

under working model: Y = β0 + x>β + ε, where ε and x are uncorrelated, and

β = arg minγ E(Y − x>γ)2. Thus, the ART procedure may be directly applied for

the hypothesis (1.1) under condition that β = 0 implies that E(Y | x) = E(Y ).

Luedtke and van der Laan (2018) established theoretical properties of the standard-
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ized ART procedure under high-dimensional setting and further introduced a more

computationally tractable approach to the ART. Zhang et al. (2018) considered a

relatively weaker null hypothesis:

H ′0 : E(Y | Xs) = E(Y ) almost surely, for all 1 ≤ s ≤ p. (1.2)

It is clear that H0 in (1.1) implies H ′0 in (1.2), but not vice versa. In other words, the

distance between E(Y | x) and E(Y ) cannot be fully captured by pairwise distances

between E(Y | Xs) and E(Y ), for s = 1, . . . , p. However, Zhang et al. (2018) pointed

out that the difference between E(Y | Xs) and E(Y ) can be regarded as the marginal

effect of Xs contributing to Y . From this point of view, the pairwise distances be-

tween E(Y | Xs) and E(Y ) are still informative in testing H0 in (1.1). The pairwise

comparison partly motivates us to develop a novel high-dimensional nonparametric

test for H ′0 in (1.2).

In real applications, different components of covariates usually exhibit different

levels of variation. For example, in high-dimensional microarray data, the variation

of expression differs substantially from gene to gene (Nettleton et al., 2008). The

heterogeneous variances of covariates may affect the performances of the testing pro-

cedures, when the test statistics are not scale invariant. See, for example, McKeague

and Qian (2015) and its discussions and rejoinder for extensive discussions on this is-

sue. To deal with the issue, a widely used strategy is to standardize each covariate by

its corresponding standard deviation prior to implementing the aforementioned tests.

Examples include Zhong and Chen (2011), McKeague and Qian (2015) and Zhang

et al. (2018). This strategy however brings difficulties in theoretical justifications for
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diverging p and requires implicitly the variances of all covariates be finite.

To accommodate the issues of heterogeneous covariates variances and high di-

mensionality, we introduce a novel test to detect the mean effects of high-dimensional

covariates on the response. Without any model assumptions, our test statistic is built

on cumulative covariance (Zhou et al., 2020), which utilizes the rank of covariates and

hence is scale-invariance. To illustrate the appealing features of our proposed test,

we compare it with two state-of-art tests: one is proposed by Zhong and Chen (2011)

and the other by Zhang et al. (2018). The first test is designed for high-dimensional

model and originates from the classical F -test that is known to be powerful when p

is fixed as n → ∞. The second test is developed in a high-dimensional model-free

setting. The asymptotic properties of these two tests are universal (Paindaveine and

Verdebout, 2016), in the sense that p may go to infinity in an arbitrary rate as n

goes. This also applies to our proposed test. In what follows, we summarize our

contributions as well as the desirable properties of the new test.

• A direct implementation of the proposed test statistic according to its definition

has a computational complexity of order O(n5p), which is computationally ex-

pensive. By sorting the covariates in an increasing order, we provide an efficient

algorithm to reduce the computational cost of its numerator to O{np log(n)}.

This algorithm can also be adapted to Zhong and Chen (2011)’s and Zhang

et al. (2018)’s test statistics to improve the computational efficiency of their

numerators. The denominators of three statistics can be calculated in O(n2p)

operations. Therefore, the overall computational complexities of three tests are

all of order O(n2p).
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• We derive the universally asymptotic normality of our proposed test statistic

under the high-dimensional null hypothesis, without any assumption on relative

growth rate between p and n. No bootstrap or random permutation is required

to approximate the asymptotic null distributions. In this sense, our testing

procedure is tuning-free and distribution-free.

• We derive the asymptotic power function of our proposed test and carefully

study its asymptotic relative efficiency with respect to the tests proposed by

Zhong and Chen (2011) and Zhang et al. (2018) in high-dimensional linear

models. When each covariate has the same variance, we prove that the asymp-

totic relative efficiency of our proposal is near 0.872 with respect to Zhong and

Chen (2011), and 0.979 with respect to Zhang et al. (2018). However, under

the heterogeneous variances of covariates, the asymptotic relative efficiency can

even go to infinity as p goes to infinity. See Section 3 for detailed discussions.

This implies that our proposed test has little efficiency loss for homoscedastic

covariates, but substantial efficiency gain for heteroscedastic cases.

The rest of the paper is organized as follows. In Section 2, we introduce a new

conditional mean testing procedure based on the cumulative covariance, and derive

its asymptotic distribution under the null hypothesis and alternatives. Section 3

carefully studies the asymptotic relative efficiency of the proposed test with respect

to the tests in Zhong and Chen (2011) and Zhang et al. (2018). We assess the finite

sample performance of the proposed test through Monte Carlo simulations and a real

data application in Sections 4.1 and 4.2, respectively. A short discussion is given in

Section 5. All technical proofs and extra simulations are relegated to the supplement.
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2 A New Test Procedure

For the purpose of comparison, we first review the tests proposed by Zhong and Chen

(2011) and Zhang et al. (2018). We will compare the asymptotic relative efficiency of

these two tests with our proposed procedure in Section 3.

2.1 Two existing tests allowing for universal (n, p)-asymptotics

Let xi = (Xi1, . . . , Xip)
T. Suppose we have a random sample {(xi, Yi), i = 1, . . . , n}

drawn independently from the joint distribution of (x, Y ). Throughout this paper,

we denote (n)m = n(n − 1) . . . (n −m + 1) and C(n,m) = (n)n/{(n)m(n −m)n−m}

for 1 ≤ m ≤ n, and
n∑

(i,j)

,
n∑

(i,j,k)

,
n∑

(i,j,k,l)

and
n∑

(i,j,k,l,r)

denote summations that are taken over all possible permutations of distinctive indices.

The test in Zhong and Chen (2011) is constructed through a modified F -statistic

under linear model assumption,

ZCn,p = {4(n)4σ̂1}−1
p∑
s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(Xis −Xjs)(Xks −Xls), (2.1)

where σ̂2
1 = [{2(n)2}−1

n∑
(i,j)

(Yi− Yj)2][{4(n)4}−1
n∑

(i,j,k,l)

{(xi− xj)
T(xk − xl)}2]. The test

statistic in Zhang et al. (2018) is built upon the martingale difference divergence
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without model assumptions,

ZYSn,p = {4(n)4σ̂2}−1
p∑
s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(|Xis −Xls| (2.2)

+ |Xjs −Xks| − |Xis −Xks| − |Xjs −Xls|),

where σ̂2
2 = [(n− 1)3/{n(n− 3)4}]

n∑
(i,j)

p∑
s,t=1

Ãij(s)Ãij(t)B̃ij, and Ãij(s) and B̃ij are the

U -centered versions of Aij(s) = |Xis −Xjs| and B̃ij = (Yi − Yj)2/2, respectively. See

more details in Zhang et al. (2018, Equation (7)). Zhong and Chen (2011, Theorem 3)

and Zhang et al. (2018, Theorem 2.2) established the asymptotic normality properties

for {n(n − 1)/2}1/2ZCn,p and {n(n − 1)/2}1/2ZYSn,p when both the dimension and

the sample size go to infinity.

Both tests of Zhong and Chen (2011) and Zhang et al. (2018) require the existence

of the second moments of covariates and are not invariant under scale transformations,

which indicates their power performances heavily depend on the variance magnitudes

of covariates. In Sections 3 and 4, we will show the advantages of scale-invariance

property from both the asymptotic and the numerical perspectives.

In high-dimension setting, easy implementation is a desirable property for test-

ing. Therefore, we are interested in the computational complexity of these two tests.

Naively computing ZCn,p and ZYSn,p by (2.1) and (2.2) is very complicated. Our fast

algorithm given in the following Section 2.4 can be adapted to calculate the numer-

ators of ZCn,p and ZYSn,p, which have the computational complexity of O(np) and

O{np log(n)}, respectively. The details of the adapted algorithms can be found in

Section S.7 of the supplement. The denominators of ZCn,p and ZYSn,p, namely σ̂1

and σ̂2, can be computed in O(n2p) operations.
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2.2 Cumulative covariance revisited

We next review the cumulative covariance that is introduced by Zhou et al. (2020).

Let X and Y denote two random variables. Under the assumption that the second

moment of Y is finite, the cumulative covariance CCov(Y | X) is defined as

CCov(Y | X) = E[cov2{Y, I(X < X̃) | X̃}], (2.3)

where (X̃, Ỹ ) is an independent copy of (X, Y ) and I(·) is an indicator function. The

cumulative covariance is non-negative and equals zero if and only if E(Y | X) = E(Y ).

In this sense, the cumulative covariance can fully characterize the conditional mean

dependence. An appealing property of the cumulative covariance is that it keeps in-

variant with respect to arbitrary strictly monotone transformation of X. This invari-

ance property, however, is not shared by martingale difference divergence. Therefore,

the test proposed by Zhang et al. (2018), which is built upon martingale difference

divergence, requires the second moment of X be finite, while the CCov-based test

allows it to be infinity. We shall elaborate this in detail in the sequel.

2.3 The CCov-based test statistic in high dimension

To test H ′0 in (1.2), it is natural to use the summation of all marginal cumulative

covariances,

p∑
s=1

CCov(Y | Xs), (2.4)

9



which is non-negative and equals zero if and only if the pairwise differences between

E(Y | Xs) and E(Y ), for all s = 1, . . . , p, are identically zero. For simplicity, we

assume that all the components of x are continuous so that the probability of a tie

occurring in the data is zero. A natural estimator of (2.4) can be defined as

Wn,p = n−3
p∑
s=1

n∑
j=1

[
n∑
i=1

(
Yi − Y

)
{I(Xis < Xjs)− Fn,s(Xjs)}

]2
,

where

Y = n−1
n∑
i=1

Yi, and Fn,s(Xjs) = n−1
n∑
i=1

I(Xis < Xjs).

This sample version appears straightforward, however, Wn,p involves several redun-

dant terms that bring in asymptotically non-negligible bias-terms in high dimension,

resulting in a fragile size performance for the test based on Wn,p. The details of

bias-terms can be found in Appendix S.2. To formulate the CCov-based test in high

dimension, we consider instead

Tn,p = {4(n)5}−1
p∑
s=1

n∑
(i,j,k,l,r)

(Yi − Yj)(Yk − Yl)ψ(Xis, Xjs, Xrs)ψ(Xks, Xls, Xrs), (2.5)

where ψ(X1, X2, X3) = I(X1 < X3) − I(X2 < X3). Proposition 1 in Appendix S.1

ensures that Tn,p is an unbiased estimator of (2.4). Thus Tn,p is basically all we

need to test H ′0 in (1.2). For arbitrary strictly monotone transformations Ms, we

have ψ(Xis, Xjs, Xrs) ψ(Xks, Xls, Xrs) = ψ{Ms(Xis),Ms(Xjs),Ms(Xrs)}ψ{Ms(Xks),

Ms(Xls),Ms(Xrs)} for i, j, k, l, r = 1, . . . , n. Consequently, the proposed test statistic

Tn,p is automatically scale-invariance.
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2.4 Computational algorithm

Directly computing Tn,p through (2.5) has a computational complexity of order O(n5p).

To reduce the computational burden, we provide a computationally efficient algo-

rithm to implement the proposed statistic Tn,p. First, for any s = 1, . . . , p, sort the

n observation of {Xis : i = 1, . . . , n} to be X(1)s < . . . < X(n)s. Second, find the cor-

responding response Y(i)s associated with X(i)s. Denote Ẏ(i)s = Y(i)s − Y . After these

two preliminary steps, the following theorem shows how to compute Tn,p efficiently.

Theorem 1. For a random sample {xi, Yi}ni=1 drawn from joint distribution of (x, Y ),

Tn,p = {(n)5}−1
[
(n− 2)(n− 3)

p∑
s=1

n∑
j=1

( j−1∑
i=1

Ẏ(i)s

)2
+ 2

p∑
s=1

n∑
j=1

{(
nj − 2n− 2j + 2

)
×Ẏ(j)s

j−1∑
i=1

Ẏ(i)s

}
−

p∑
s=1

n∑
j=1

{(
n2 − 2nj − n+ 4j − 4

) j−1∑
i=1

Ẏ 2
(i)s

}
−{n(n2 − 3n+ 8)/3}

p∑
s=1

n∑
i=1

Ẏ 2
(i)s + 2

p∑
s=1

n∑
i=1

(i− 1)2Ẏ 2
(i)s

]
.

Theorem 1 guarantees that Tn,p can be computed in only O{np log(n)} operations.

2.5 Asymptotic null distribution

To establish the asymptotic normality of our test statistic, we study Hoeffding de-

composition (Serfling, 1980) for the variance of Tn,p, which is valid for diverging

p. Define φs(i, j, k, l, r) = (Yi − Yj)(Yk − Yl)ψ(Xis, Xjs, Xrs)ψ(Xks, Xls, Xrs)/4 for
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i, j, k, l, r = 1, . . . , n and s = 1, . . . , p, and symmetrize it by

hs(i, j, k, l, r) =
{
φs(i, j, k, l, r) + φs(i, k, j, l, r) + φs(i, l, j, k, r)

+φs(r, j, k, l, i) + φs(r, k, j, l, i) + φs(r, l, j, k, i) + φs(i, r, k, l, j)

+φs(i, k, r, l, j) + φs(i, l, r, k, j) + φs(i, j, r, l, k) + φs(i, r, j, l, k)

+φs(i, l, j, r, k) + φs(i, j, k, r, l) + φs(i, k, j, r, l) + φs(i, r, j, k, l)
}
/15.

Write h(i, j, k, l, r) =
p∑
s=1

hs(i, j, k, l, r), for i, j, k, l, r = 1, . . . , n. Then, the statistic

Tn,p has the following expression,

Tn,p = 1/{n(n− 1)(n− 2)(n− 3)(n− 4)}
n∑

(i,j,k,l,r)

h(i, j, k, l, r).

It is clear that Tn,p is actually a U -statistic of order five. This finding is very useful

in subsequent derivations. For c = 1, . . . , 5, let h(c)(z1, . . . , zc) = E{h(1, 2, 3, 4, 5) |

z1, . . . , zc} be projections of h to lower-dimensional sample spaces, where zi = (xi, Yi)

is the i-th observation.

To determine the asymptotic form of Tn,p, we study its variance decomposition

for high-dimensional data. Towards this end, we impose the following assumption.

Assumption 1. Assume that

0 < c ≤ var(Y | x) ≤ E1/2[{Y − E(Y | x)}4 | x] ≤ C <∞, (2.6)

almost surely for some constants c and C.

This assumption is also considered by Patilea et al. (2016) and Zhang et al. (2018)
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to derive the asymptotic properties of their test statistics. Assumption 1 holds true

for any p when Y = E(Y | x) + σ(x)ε, where E(ε | x) = 0, E(ε2 | x) ≥ c1 > 0,

E(ε4 | x) ≤ C1 <∞ and 0 < c < σ(x) < C <∞. If the model error {Y − E(Y | x)}

and x are independent, and the fourth moments of the model error are bounded, then

(2.6) is trivially true.

Denote ξc = var{h(c)(z1, . . . , zc)}, for c = 1, . . . , 5. The following lemma states

the Hoeffding decomposition (Serfling, 1980) for the variance of Tn,p as p→∞.

Lemma 1. Suppose that Assumption 1 holds. Under H ′0, we have ξ1 = 0, var(Tn,p) =

{C(n, 5)}−1
∑5

c=2 C(5, c)C(n − 5, 5 − c)ξc and the terms ξ2, ξ3, ξ4 and ξ5 are of the

same order as p→∞. In particular, var(Tn,p) = {n(n− 1)/2}−1S2{1 + o(1)}, where

S2 = 4−1var

[
p∑
s=1

K0(Y1, Y2)K1{Fs(X1s), Fs(X2s)}

]
,

K0(Y1, Y2) = {Y1−E(Y )}{Y2−E(Y )}, K1{Fs(X1s), Fs(X2s)} = F 2
s (X1s)+F 2

s (X2s)−

2 max{Fs(X1s), Fs(X2s)} + 2/3, and Fs(·) is the cumulative distribution function of

Xs for s = 1, . . . , p.

Define

T̃n,p = {n(n− 1)/2}−1/2
n∑

(i,j)

p∑
s=1

K0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}/4.

Based on Lemma 1, we derive that [{n(n− 1)/2}1/2 Tn,p− T̃n,p]/S → 0 in probability

under H ′0 in the supplement. Thus, it suffices to derive the asymptotic distribution

of T̃n,p/S under the null.

Define V (x1,x2) =
p∑
s=1

K1{Fs(X1s), Fs(X2s)}. To establish the asymptotic nor-
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mality of T̃n,p/S, we use the martingale central limit theorem (Hall and Heyde, 2014,

CLT). The following assumption is imposed to facilitate the proof of martingale CLT

and is closely related to the typical condition (2.1) of Hall (1984).

Assumption 2. As p→∞ and n→∞,

E{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)}/E2{V (x1,x2)
2} → 0,

E{V (x1,x2)
4}/[nE2{V (x1,x2)

2}]→ 0.

Assumption 2 is presented in an abstract way and can be made more explicit under

specific dependence structures. To illustrate this, we consider the commonly encoun-

tered banded dependence structure, where the random vector x is m-dependent. In

Section S.9 of the supplement, it can be verified that

E{V (x1,x2)
2} ≥ 8p/45→∞,

0 ≤ E{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)} = O(pm3),

E{V (x1,x2)
4} = O

[
pm3 + E2{V (x1,x2)

2}
]
.

Assumption 2 is trivially satisfied if m = o(p1/3) for the divergent p. In particular,

if m is a fixed constant, the above conditions are fairly mild when p is divergent.

Moreover, there is no explicit relationship between p and n in Assumption 2. If the

coordinates of x are independent but not necessarily identically distributed, p can

grow to infinity freely as n→∞.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Under the null hypothesis H ′0,

as n, p→∞, {n(n− 1)/2}1/2 Tn,p/S converges in distribution to N(0, 1).
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To formulate a test procedure based on Tn,p, we need to provide a suitable variance

estimator for S2. We consider the following estimator,

S2
n,p = {4cnn(n− 1)}−1

n∑
(i,j)

K0(Ẏi, Ẏj)
2
[ p∑
s=1

K1{Fn,s(Xis), Fn,s(Xjs)}
]2
,

where Ẏi = Yi − Y , Fn,s is the empirical distribution function of Xs and cn = {(1 −

n−1)2 + n−2}2 is a finite sample adjustment factor to reduce the bias of S2
n,p. See

the proof of Theorem 3 for details. The variance estimator S2
n,p has a computational

cost of order O(n2p). In what follows, we derive the ratio-consistency of this variance

estimator.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then, we have the ratio con-

sistency that as n, p → ∞, S2
n,p/S

2 converges in probability to 1. Consequently,

{n(n− 1)/2}1/2 Tn,p/Sn,p converges in distribution to the standard normal distribu-

tion under the H ′0.

Theorems 2 and 3 reveal that the asymptotic normality of our proposed statistic

under the null hypothesis holds with no restriction on relative growth rate between

p and n. Theorem 3 suggests that our proposed test rejects the null hypothesis H ′0

in (1.2) at significant level α if {n(n− 1)/2}1/2 Tn,p/Sn,p > zα, where zα is the 1− α

quantile of standard normal.

15



2.6 Asymptotic distribution under alternatives

For the power analysis, we consider a class of alternatives H ′1 satisfying

var

{
p∑
s=1

Ls(Y1, X1s)

}
= o(n−1S2) and var

{
p∑
s=1

Ls(Y1, X2s)

}
= o(S2),

where Ls(u, v) = E
[
K0(u, Y2)K1{Fs(v), Fs(X2s)}

]
. These two conditions are assumed

to describe a small difference between H ′0 and H ′1 in intuitive way. Thus, the under-

lying alternatives may be viewed as ‘local’ alternatives. Rigorous definition of local

alternatives perhaps may be arguably phrased in terms of contiguity, but this is be-

yond the scope of this paper. Under H ′1, the variance of Tn,p defined in Lemma 1

remains valid. In the following theorem, we derive the asymptotic distribution of our

proposed test statistic under the alternatives, which allows for power evaluations.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Under H ′1, as n, p→∞,

{n(n− 1)/2}1/2
{
Tn,p −

p∑
s=1

CCov(Y | Xs)

}
/S

converges in distribution to the standard normal.

Based on Theorems 3 and 4 as well as Slutsky’s theorem, the power of the proposed

test under H ′1 is

Ψn,p = {1 + o(1)}Φ

[
−zα + {n(n− 1)/2}1/2

p∑
s=1

CCov(Y | Xs)/S

]
,

where Φ(·) is the cumulative distribution function of N(0, 1), and zα denotes the 1−α
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quantile of N(0, 1). The power of our test is in spirit controlled by

SNRNEW = {n(n− 1)/2}1/2
p∑
s=1

CCov(Y | Xs)/S,

which can be viewed as a signal to noise ratio.

3 Asymptotic Relative Efficiency

It is challenging to compare our test with the tests of Zhong and Chen (2011) and

Zhang et al. (2018) in a completely model-free context. We study the asymptotic

powers of these three tests under high-dimensional linear models, and anticipate that

similar conclusions can be drawn from nonlinear models. Let us consider the model

Y = xTβ + ε, (3.1)

where β = (β1, . . . , βp)
T, x = (X1, . . . , Xp)

T ∼ N(0,Σ), and ε is independent of x

with E(ε) = 0 and var(ε) = σ2. To illustrate the implication of SNRNEW, we consider

a diagonal matrix Σ = diag(d1, . . . , dp). Following Theorem 1(3) in Zhou et al. (2020),

we can derive that

SNRNEW =
{

15n(n− 1)/(4π2σ4p)
}1/2 p∑

s=1

dsβ
2
s ,

By contrast, the asymptotic power of Zhong and Chen (2011)’s test depends on

SNRZC =
{
n(n− 1)/(2σ4)

}1/2 p∑
s=1

d2sβ
2
s

( p∑
s=1

d2s

)−1/2
.
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From Shao and Zhang (2014, Theorem 1(3)) and Székely et al. (2007, Theorem 7(ii)),

the asymptotic power of Zhang et al. (2018)’s test is related to

SNRZYS =
[
n(n− 1)/{8σ4(1−

√
3 + π/3)}

]1/2 p∑
s=1

d3/2s β2
s

( p∑
s=1

ds

)−1/2
.

Based on the signal to noise ratios of three tests, the asymptotic relative efficiency of

Zhong and Chen (2011)’s test with respect to our proposal is

ARE(NEW,ZC) =
{

15/(2π2p)
}1/2 ( p∑

s=1

dsβ
2
s

)( p∑
s=1

d2s

)1/2( p∑
s=1

d2sβ
2
s

)−1
.

The asymptotic relative efficiency of Zhang et al. (2018)’s test with respect to ours is

ARE(NEW,ZYS) =
{

30(1−
√

3 + π/3)/(π2p)
}1/2 ( p∑

s=1

dsβ
2
s

)( p∑
s=1

ds

)1/2( p∑
s=1

d3/2s β2
s

)−1
.

To view a rough picture of the asymptotic power comparison, we consider three

scenarios in what follows.

3.1 Homoscedastic case: the marginal variance of each co-

variate is the same

In the homoscedastic case, d1 = . . . = dp. Direct computation shows ARE(NEW,ZC) ≈

0.872 and ARE(NEW,ZYS) ≈ 0.979. It follows that ARE(ZYS,ZC) ≈ 0.891, which

is in line with Remark 2.6 in Zhang et al. (2018). These results imply that our pro-

posed test is asymptotically less powerful than Zhong and Chen (2011)’s test, which

is specially designed for the linear models. Both our proposed test and Zhang et al.
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(2018) ’s test are model-free, and perform comparably under the homoscedastic case.

3.2 Heteroscedastic case when the number of non-zero effects

is fixed

For simplicity, we assume that all non-zero coefficients βs have the same magnitude,

that is, βs = κI(1 ≤ s ≤ q), s = 1, . . . , p, for κ 6= 0, q ∈ {1, . . . , p} is fixed. In this

setting, if we assume the condition

p = o

{
min

(
p∑
s=1

d2s,

p∑
s=1

ds

)}
, (3.2)

we have ARE(NEW,ZC) →∞ and ARE(NEW,ZYS) →∞, as p→∞. The condi-

tion (3.2) is a sufficient, but not necessary condition for our test to be more powerful

than Zhong and Chen (2011)’s test and Zhang et al. (2018) ’s test. In Section S.8 of

the supplement, we show that the proposed test may still have better power perfor-

mances when p = O {min (
∑p

s=1 d
2
s,
∑p

s=1 ds)}. The condition (3.2) is trivially true in

the case that different components of x have distinctive scales. Under this condition,

our test is substantially more powerful than both Zhong and Chen (2011)’s and Zhang

et al. (2018)’s tests. To further compare the asymptotic power performances of these

two tests under the heteroscedastic case, we further impose the condition

p∑
s=1

ds = o

(
p∑
s=1

d2s

)
. (3.3)

This condition is also mild if the variance of each covariate differs much. Under this

assumption, we show the asymptotic power of Zhang et al. (2018)’s test is superior
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to that of Zhong and Chen (2011)’s test, which is also a totally new finding and have

not been discovered by Zhang et al. (2018). Therefore, the asymptotic powers of

three tests arranged in a descending order are those of our proposed test, Zhang et al.

(2018) ’s test and Zhong and Chen (2011)’s test.

Consider an explicit scenario satisfying (3.2) and (3.3): There is a parameter δ > 0

not depending on the dimension p such that

ds � sδ, for s = 1, . . . , p,

where for two sequences {as} and {bs}, we write as � bs if there exist positive con-

stants c and C such that c ≤ lim infs as/bs ≤ lim sups as/bs ≤ C.

In the ultrahigh dimension setting log p � nθ, the signal to noise ratios of three

tests are respectively

SNRZC � (log p)1/θp−(1+2δ)/2, SNRZYS � (log p)1/θp−(1+δ)/2, SNRNEW � (log p)1/θp−1/2.

As the dimension p → ∞, all the three tests will have trivial powers and cannot

distinguish the alternatives from the null. The statistical intuition behind this phe-

nomenon is that for fixed-dimensional signals, high dimensionality is a total curse and

the signal to noise ratios of three tests converge to zero. Even in this case, the conver-

gence rate of our proposed test is still slower than those of Zhong and Chen (2011)’s

and Zhang et al. (2018)’s tests. We can also give the explicit order of asymptotic

relative efficiency of these three tests in this case.

ARE(NEW,ZC) � pδ,ARE(NEW,ZYS) � pδ/2, and ARE(ZYS,ZC) � pδ/2.
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In terms of the asymptotic power, the performance of our proposed test is the best,

followed by Zhang et al. (2018)’s test. Zhong and Chen (2011)’s test is unfortunately

the worst among the three tests.

3.3 Heteroscedastic case when the number of non-zero effects

is diverging

Assume that βs = κI(1 ≤ s ≤ q), s = 1, . . . , p, for κ 6= 0, q(≤ p) is diverging. All

other settings are remained exactly the same as those in Section 4.2.

Suppose that q � pτ with 0 < τ < 1. In the ultrahigh dimension setting of

log p � nθ for some 0 < θ < 1, the signal to noise ratios of three tests are respectively

SNRZC � (log p)1/θpτ(1+2δ)−1/2−δ, SNRZYS � (log p)1/θpτ(1+3δ/2)−1/2−δ/2, and

SNRNEW � (log p)1/θpτ(1+δ)−1/2.

(a) If the signals are dense, that is, in the order of q = pτ with 1/2 ≤ τ < 1,

all the signal to noise ratios SNRZC, SNRZYS and SNRNEW go to infinity as p→∞.

Therefore, these three tests have nontrivial power under H ′1.

(b) If the signals are sparse, that is, in the order of q = pτ with 0 < τ < 1/2.

Apparently, τ(1 + 2δ)− 1/2− δ < 0 in SNRZC, which implies that Zhong and Chen

(2011)’s test may suffer from low power under the sparse alternatives even when

the covariate is homoscedastic, which is consistent with the fact that Zhong and

Chen (2011)’s test is designed to target dense alternatives. By contrast, Zhang et al.

(2018)’s test may break down for 0 < τ ≤ 1/3, since τ(1 + 3δ/2) − 1/2 − δ/2 < 0
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in SNRZYS for all δ > 0. Our proposed test has a nontrivial power as long as δ ≥

(2τ)−1 − 1.

Moreover, no matter the signal is dense or sparse, the asymptotic relative efficiency

of these three tests are

ARE(NEW,ZC) = pδ(1−τ),ARE(NEW,ZYS) = pδ(1−τ)/2, and ARE(ZYS,ZC) � pδ(1−τ)/2,

which implies that our proposed test is still asymptotically more powerful than Zhong

and Chen (2011)’s and Zhang et al. (2018)’s tests.

In summary, the aforementioned power analysis suggests that compared to Zhong

and Chen (2011)’s and Zhang et al. (2018)’s tests, our proposed test has a substan-

tial efficiency gain in heteroscedastic case while maintaining high power efficiency in

homoscedastic case. We shall verify this finding through numerical studies.

4 Numerical Studies

4.1 Simulation studies

We conduct simulations to evaluate the finite-sample performance of the proposed

test and compare it with the two universal (n, p)-asymptotic tests proposed by Zhong

and Chen (2011) and Zhang et al. (2018). In addition, we compare our proposal test

with the ART (McKeague and Qian, 2015) and its related test proposed by Zhang

and Laber (2015) in the supplement.
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Let us consider the following three models:

Yi = xT

i β1 + εi, (4.1)

Yi = 3xT

i β3 + exp(xT

i β4/2) + exp(xT

i β2 − 1)εi, (4.2)

Yi = (xT

i β5) exp(xT

i β2/
√

2) + exp(xT

i β5/
√

2q) + εi, (4.3)

where xi = (Xi1, . . . , Xip)
T is generated from the following moving average model:

Xis = sδ/2{ρ1Zis + ρ2Zi(s+1) + · · ·+ ρTZi(s+T−1)}, (4.4)

for δ ≥ 0, T = 8 and s = 1, . . . , p. Here, zi = (Zi1, . . . , Zi(p+T−1))
T is (p + T − 1)-

dimensional standard normal. The coefficients {ρk}Tk=1 are generated independently

from the uniform distribution on [0, 1] and are kept fixed once generated. The moving

average model (4.4) implies that Σ = cov(xi) = (σst)p×p, consists of

σst = (st)δ/2
T∑
k=1

ρkρk+|s−t|I{|s− t| < T}, for s, t = 1, . . . , p.

Therefore,

var(Xs) = sδ
T∑
k=1

ρ2k, for s = 1, . . . , p.

The parameter δ controls the degree of heteroscedasticity. We consider δ = 0, 0.25, 0.5,

0.75 and 1, where δ = 0 indicates that all covariates are homogeneous. The error term

εi follows two different distributions: N(0, 1) and the centralized gamma distribution

with shape parameter 1 and scale parameter 1, where the centralized gamma distri-
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bution is skewed to the right.

Under the null hypothesis H ′0, the coefficients in all three models are all zero.

Following Zhong and Chen (2011) and Zhang et al. (2018), we consider two config-

urations of alternative hypothesis. (a) Non-sparse case: the total number of active

covariates q = [p0.7/2], where [x] denotes the largest integer not greater than x. (b)

Sparse case: the total number of active covariates q = [3p0.3/2]. The coefficients are

defined as follows.

β1 : βj = ||β||/√q, for j = 1, . . . , q,

β2 : βj = 1, for j = 1,

β3 : βj = ||β||/√q, for j = 2, . . . , [q/2] + 1,

β4 : βj = ||β||/√q, for j = [q/2] + 2, . . . , q + 1,

β5 : βj = ||β||/√q, for j = 2, . . . , q + 1,

where ||β||2 = 0.04. All other entries are identically 0. We choose n =80, 120 and

p = 550, 1116, according to p = [exp(n0.4) + 230]. Model (4.1) is a linear regression

model where the first q covariates have the same magnitude of signals. Model (4.2) is

a partially linear model with heteroscedastic errors while Model (4.3) is a nonlinear

model. The significance level α is fixed at 0.05 and all results are based on 1,000

Monte Carlo replications.

Table 1 reports the empirical sizes and powers of our proposed test as well as those

of Zhong and Chen (2011)’s and Zhang et al. (2018)’s tests for linear model (4.1).

The empirical sizes of all three tests are reasonably close to 5% under two different

error distributions. We display the kernel density estimates for the standardized test
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statistic Tn,p for linear model (4.1) in Figure 1, which can be well approximated by

a standard normal distribution. This confirms the theoretical results in Theorem 3.

Since our proposed test is scale-invariance, its empirical sizes stay the same under

different values of δ. This property is not shared by Zhong and Chen (2011)’s or

Zhang et al. (2018)’s test. In terms of power, when δ = 0, Zhong and Chen (2011)’s

test is an obvious winner, and Zhang et al. (2018)’s test is slightly better than our

proposed test. The differences among three tests are not remarkable. This echoes the

theoretical finding in Section 3 that our proposed test has little efficiency loss when

each covariate has the same variance. However, when δ is larger than zero, the story

becomes totally different. Our proposed test has the best performances, followed by

Zhang et al. (2018)’s test, and then Zhong and Chen (2011)’s test. When δ = 1, the

empirical powers of our proposed test and the two competitors are 0.998, 0.133, 0.056

respectively under sparse H1 with (n, p) = (120, 1116) and normal errors. Under

this scenario, our proposed test significantly outperforms the competitors while the

empirical power of Zhong and Chen (2011)’s test is close to the significance level.

This implies that even under the linear models, our proposed test has substantial

efficiency gain compared with the two competitors for the heteroscedastic covariates,

in accordance with asymptotic power comparison in Section 3. Compared to non-

sparse alternatives, all three tests have power reductions under sparse ones.

Tables 2 and 3 summarize the results of all three tests for models (4.2) and (4.3).

The sizes of all three tests are satisfactory regardless of δ, (n, p) and error distribu-

tions. Under alternatives, Zhong and Chen (2011)’s test and Zhang et al. (2018)’s test

gradually break down as δ increases. By contrast, our proposed test remains valid

for a wide range of δ. When δ = 1, the empirical powers of our test arrive at 0.922 in
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model (4.2) and 0.911 in model (4.3) under non-sparse H1 with (n, p) = (120, 1116)

and normal errors. Similar to the phenomenon in linear model, our scale-invariance

test is still much more powerful for nonlinear models with heteroscedastic covariates.

Table 1: The empirical sizes and powers for linear model (4.1) at the significance level 5%,
where δ controls the degree of heterogeneity in terms of the covariate variances. Throughout
our numerical studies, we refer to our proposed test, and the tests proposed by Zhong and
Chen (2011) and Zhang et al. (2018) as NEW, ZC and ZYS, respectively.

Normal error Gamma error

(n, p) Hypothesis δ ZC ZYS NEW ZC ZYS NEW

(80, 550) H0 0.00 0.054 0.050 0.045 0.052 0.054 0.059
0.25 0.054 0.048 0.045 0.059 0.059 0.059
0.50 0.053 0.052 0.045 0.064 0.065 0.059
0.75 0.062 0.052 0.045 0.066 0.063 0.059
1.00 0.067 0.053 0.045 0.060 0.066 0.059

Non-sparse H1 0.00 0.772 0.735 0.718 0.783 0.757 0.735
0.25 0.665 0.830 0.934 0.688 0.834 0.933
0.50 0.422 0.833 0.996 0.458 0.846 0.991
0.75 0.240 0.771 1.000 0.260 0.783 1.000
1.00 0.140 0.627 1.000 0.152 0.638 1.000

Sparse H1 0.00 0.522 0.488 0.470 0.523 0.515 0.497
0.25 0.218 0.371 0.652 0.228 0.390 0.638
0.50 0.115 0.271 0.795 0.099 0.270 0.779
0.75 0.072 0.197 0.911 0.079 0.184 0.905
1.00 0.065 0.138 0.965 0.068 0.134 0.972

(120, 1116) H0 0.00 0.047 0.048 0.044 0.052 0.049 0.052
0.25 0.043 0.041 0.044 0.057 0.052 0.052
0.50 0.042 0.044 0.044 0.058 0.053 0.052
0.75 0.039 0.046 0.044 0.064 0.057 0.052
1.00 0.039 0.047 0.044 0.063 0.057 0.052

Non-sparse H1 0.00 0.849 0.814 0.797 0.842 0.811 0.794
0.25 0.731 0.918 0.981 0.749 0.909 0.979
0.50 0.466 0.912 1.000 0.471 0.918 0.999
0.75 0.246 0.830 1.000 0.251 0.836 1.000
1.00 0.139 0.655 1.000 0.150 0.661 1.000

Sparse H1 0.00 0.670 0.612 0.593 0.643 0.620 0.602
0.25 0.231 0.452 0.796 0.242 0.452 0.796
0.50 0.101 0.303 0.933 0.110 0.304 0.941
0.75 0.063 0.190 0.982 0.079 0.201 0.989
1.00 0.056 0.133 0.998 0.063 0.131 1.000
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Figure 1: Density curves of the asymptotic null distribution of our test statistic under
(n, p) = (80, 550) (black dashed line) and (n, p) = (120, 1116) (blue dashed line) compared
with the standard normal distribution (red solid line).

4.2 An application

We apply our proposed test to a gene expression data set. The cardiomyopathy mi-

croarray data comes from a study by Redfern et al. (2000), and has been analyzed by

several important researchers, including Segal et al. (2003), Hall and Miller (2009), Li

et al. (2012) and Shao and Zhang (2014). It contains 6,319 gene expression values from

30 mice. Redfern et al. (2000) reported that the overexpression of G protein-coupled

receptor Ro1 in hearts of adult mice would lead to a lethal dilated cardiomyopathy.

This finding helps geneticists look into the etiology of human disease. We test whether

the gene set contributes to expression level of Ro1.

Figure 2 shows the standard deviation of each gene expression level, which ranges

from 17.34 to 18,437.96. This implies that the variation of gene differs substantially

from each other. We divide the whole dataset into two subsets with n1 = 16 and

n2 = 14. On the first subset, we follow Li et al. (2012) and Shao and Zhang (2014) to

screen out unimportant genes by marginally testing the conditional mean indepen-

dence between the expression levels of each gene and Ro1. The Benjamini-Hochberg
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Table 2: The empirical sizes and powers for partially linear model (4.2) at the significance
level 5%, where δ controls the degree of heterogeneity in terms of the covariate variances.
Refer to the captions in Table 1 for abbreviations.

Normal error Gamma error

(n, p) Hypothesis δ ZC ZYS NEW ZC ZYS NEW

(80, 550) H0 0.00 0.054 0.050 0.045 0.052 0.054 0.059
0.25 0.054 0.048 0.045 0.059 0.059 0.059
0.50 0.053 0.052 0.045 0.064 0.065 0.059
0.75 0.062 0.052 0.045 0.066 0.063 0.059
1.00 0.067 0.053 0.045 0.060 0.066 0.059

Non-sparse H1 0.00 0.646 0.684 0.683 0.684 0.728 0.714
0.25 0.487 0.690 0.814 0.479 0.715 0.837
0.50 0.233 0.634 0.903 0.243 0.644 0.924
0.75 0.128 0.504 0.951 0.143 0.506 0.964
1.00 0.072 0.321 0.952 0.070 0.329 0.967

Sparse H1 0.00 0.343 0.391 0.380 0.354 0.396 0.402
0.25 0.131 0.289 0.474 0.130 0.306 0.505
0.50 0.064 0.195 0.561 0.058 0.193 0.608
0.75 0.046 0.136 0.648 0.048 0.133 0.713
1.00 0.044 0.107 0.749 0.037 0.104 0.804

(120, 1116) H0 0.00 0.047 0.048 0.044 0.052 0.049 0.052
0.25 0.043 0.041 0.044 0.057 0.052 0.052
0.50 0.042 0.044 0.044 0.058 0.053 0.052
0.75 0.039 0.046 0.044 0.064 0.057 0.052
1.00 0.039 0.047 0.044 0.063 0.057 0.052

Non-sparse H1 0.00 0.669 0.700 0.691 0.687 0.747 0.733
0.25 0.483 0.725 0.862 0.520 0.749 0.870
0.50 0.261 0.672 0.939 0.276 0.720 0.946
0.75 0.125 0.533 0.973 0.133 0.546 0.976
1.00 0.064 0.275 0.922 0.047 0.266 0.906

Sparse H1 0.00 0.450 0.479 0.468 0.478 0.523 0.523
0.25 0.159 0.339 0.600 0.162 0.381 0.639
0.50 0.068 0.211 0.727 0.064 0.233 0.751
0.75 0.055 0.148 0.830 0.047 0.151 0.846
1.00 0.050 0.109 0.903 0.045 0.099 0.906

procedure is applied to control the false discovery rate at 0.001. After the screening

procedure, the tests proposed by Zhong and Chen (2011) and Zhang et al. (2018) and

our proposal retain 145, 79 and 163 genes respectively.
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Table 3: The empirical sizes and powers for nonlinear model (4.3) at the significance level
5%, where δ controls the degree of heterogeneity in terms of the covariate variances. Refer
to the captions in Table 1 for abbreviations.

Normal error Gamma error

(n, p) Hypothesis δ ZC ZYS NEW ZC ZYS NEW

(80, 550) H0 0.00 0.054 0.050 0.045 0.052 0.054 0.059
0.25 0.054 0.048 0.045 0.059 0.059 0.059
0.50 0.053 0.052 0.045 0.064 0.065 0.059
0.75 0.062 0.052 0.045 0.066 0.063 0.059
1.00 0.067 0.053 0.045 0.060 0.066 0.059

Non-sparse H1 0.00 0.735 0.762 0.753 0.740 0.766 0.743
0.25 0.429 0.650 0.831 0.443 0.662 0.846
0.50 0.215 0.512 0.862 0.206 0.530 0.890
0.75 0.101 0.371 0.877 0.105 0.375 0.912
1.00 0.056 0.272 0.884 0.080 0.266 0.922

Sparse H1 0.00 0.638 0.695 0.670 0.672 0.707 0.667
0.25 0.226 0.464 0.741 0.212 0.448 0.751
0.50 0.087 0.288 0.801 0.079 0.263 0.797
0.75 0.051 0.170 0.827 0.055 0.160 0.845
1.00 0.042 0.110 0.847 0.048 0.116 0.862

(120, 1116) H0 0.00 0.047 0.048 0.044 0.052 0.049 0.052
0.25 0.043 0.041 0.044 0.057 0.052 0.052
0.50 0.042 0.044 0.044 0.058 0.053 0.052
0.75 0.039 0.046 0.044 0.064 0.057 0.052
1.00 0.039 0.047 0.044 0.063 0.057 0.052

Non-sparse H1 0.00 0.794 0.816 0.805 0.804 0.820 0.803
0.25 0.434 0.689 0.871 0.430 0.696 0.881
0.50 0.207 0.512 0.906 0.179 0.528 0.905
0.75 0.107 0.378 0.911 0.090 0.348 0.914
1.00 0.075 0.271 0.911 0.055 0.225 0.922

Sparse H1 0.00 0.732 0.767 0.744 0.733 0.764 0.740
0.25 0.199 0.471 0.809 0.202 0.461 0.815
0.50 0.088 0.246 0.847 0.077 0.263 0.851
0.75 0.056 0.158 0.877 0.054 0.155 0.870
1.00 0.050 0.116 0.882 0.043 0.107 0.881

We then compare the power performances of these three tests. We randomly pick

6, 7, 8, 9 and 10 samples from the second subset of data and test the overall effects

of selected genes. Each testing procedure is repeated 1,000 times and the empirical

power is reported in Table 4. The powers of all tests gradually approach to one
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Figure 2: The standard deviation of each covariate.

as the sample size increases, and our proposed test outperforms both competitors

significantly, particularly when the sample size is small.

Table 4: The empirical powers for ZC, ZYS tests and our proposed test.
random samples ZC ZYS NEW

6 0.363 0.105 0.463
7 0.432 0.328 0.731
8 0.569 0.632 0.912
9 0.692 0.845 0.980
10 0.831 0.975 1.000

5 Discussion

In this paper, we develop a new test to examine the effects of high-dimensional co-

variates on the response without any model assumptions. Our test statistic is built on

the cumulative covariance, which has an explicit form and is completely free of tun-

ing parameters. The limiting distributions of our proposed test statistic are normal

under both the null hypothesis and the alternatives. Our asymptotic power analysis

and numerical studies show that even under the high-dimensional linear models, our

proposed test has substantial power improvement compared to the tests of Zhong and
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Chen (2011) and Zhang et al. (2018) in the heteroscedastic covariates setting, while

maintaining high efficiency in the homoscedastic cases. It is also important to remark

here that our proposed testing procedure can be easily generalized to multivariate

response case. For the multivariate response y ∈ Rq (q > 1), where q is allowed to be

large but finite, we can analogously define

E
[
cov{yT, I(X < X̃) | X̃}cov{y, I(X < X̃) | X̃}

]
,

where (X̃, ỹ) is an independent copy of (X,y). This metric reduces to (2.3) in the

univariate case of q = 1. The corresponding test statistic is further defined by

{4(n)5}−1
p∑
s=1

n∑
(i,j,k,l,r)

(yi − yj)
T(yk − yl)ψ(Xis, Xjs, Xrs)ψ(Xks, Xls, Xrs).

The computationally efficient algorithm and theoretical analysis for our test statistic

in (2.5) can be directly applied to the above statistic. It is also worth noting that

our test procedure is built on a sum-of-squares-based statistic and targets dense al-

ternatives. To enhance its power for sparse signals, we suggest to follow the ideas of

McKeague and Qian (2015), Fan et al. (2015), Chen et al. (2019) and Zheng et al.

(2019) to construct test statistics, which deserve further investigations.
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Supplement to “Testing the effects of high-dimensional

covariates via aggregating cumulative covariances”

S.1. Proposition 1 and Its Proof.

To justify the unbiasedness of Tn,p in high dimension, we provide a simple and equiv-

alent expression for CCov(Y | X) in (2.3).

Proposition 1. Let {(X̃i, Ỹi), i = 1, . . . 5} be the five independent copies of (X, Y ).

Assume that var(X) > 0, 0 < var(Y ) < ∞ and X is continuous, then CCov(Y | X)

can be expressed as

E
[
(Ỹ1 − Ỹ3)(Ỹ2 − Ỹ4)ψ(X̃1, X̃3, X̃5)ψ(X̃2, X̃4, X̃5)

]
/4, (S.1)

where the function ψ(·, ·, ·) is defined as

ψ(X1, X2, X3) = I(X1 < X3)− I(X2 < X3).

In contrast to the standard version in (2.3), this expression in (S.1) plays an important

role in constructing a scale-invariance test statistic for high-dimensional conditional

mean independence without bias correction.

Proof: Using the equality cov{Y, I(X < x)} = E
[
(Ỹ1 − Ỹ2){I(X̃1 < x) − I(X̃2 <

x)}
]
/2 for any x ∈ R1, we obtain

cov2{Y, I(X < x)} = E
[
(Ỹ1 − Ỹ2)(Ỹ3 − Ỹ4){I(X̃1 < x)− I(X̃2 < x)}

×{I(X̃3 < x)− I(X̃4 < x)}
]
/4.

By the law of iterated expectations, we complete the proof.
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S.2. Proof of Theorem 1

It is noted that

n∑
i=1

(
Yi − Y

)
{I(Xis < Xjs)− Fn,s(Xjs)}

= (2n)−1
n∑

i=1

n∑
k=1

(Yi − Yk){I(Xis < Xjs)− I(Xks < Xjs)},

for j = 1, . . . , n and s = 1, . . . , p. Define

J1 =

p∑
s=1

n∑
(i,j,k,l,r)

(Yi − Yj)(Yk − Yl)ψ(Xis, Xjs, Xrs)ψ(Xks, Xls, Xrs),

J2 =

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(Yi − Yj)(Yk − Yl)ψ(Xis, Xjs, Xis)ψ(Xks, Xls, Xis),

J3 =

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(Yi − Yj)(Yi − Yk)ψ(Xis, Xjs, Xls)ψ(Xis, Xks, Xls),

J4 =

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

(Yi − Yj)(Yj − Yk)ψ(Xis, Xjs, Xis)ψ(Xjs, Xks, Xis),

J5 =

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

(Yi − Yj)(Yj − Yk)ψ(Xis, Xjs, Xjs)ψ(Xjs, Xks, Xjs),

J6 =

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

(Yi − Yj)2ψ2(Xis, Xjs, Xks),

J7 =

p∑
s=1

n∑
i=1

n∑
j=1

(Yi − Yj)2ψ2(Xis, Xjs, Xjs).

Then, after straightforward but laborious computations, we have

Wn,p = n−5(J1/4 + J2 + J3 − 2J4 − 2J5 − J6/2 + 2J7),

Tn,p = {4(n)5}−1J1.

To derive an efficient algorithm for Tn,p, it suffices to analyze Wn,p, J2, J3, J4, J5, J6

and J7, respectively. For any s = 1, . . . , p, sort the n observations of this covariate

{Xis : i = 1, . . . , n} to be X(1)s < . . . < X(n)s. Next, find the corresponding response

2



Y(i)s associated with X(i)s. Denote Ẏ(i)s = Y(i)s − Y with Y = n−1
∑n

i=1 Yi. Following

the computational algorithm in Section 3.2 of Zhu et al. (2010), we have

Wn,p = n−3
p∑

s=1

n∑
j=1

( n∑
i<j

Ẏ(i)s
)2
.

Then, we turn to deal with the terms J2, J3, J4, J5, J6 and J7. Denote Ẏi = Yi−Y i,

it can be shown that

J2 =

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(Ẏi − Ẏj)(Ẏk − Ẏl)I(Xjs < Xis)I(Xls < Xis)

−
p∑

s=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(Ẏi − Ẏj)(Ẏk − Ẏl)I(Xjs < Xis)I(Xks < Xis)

= 2n

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

ẎjẎkI(Xjs < Xis)I(Xks < Xis)

−2n

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

ẎiẎkI(Xjs < Xis)I(Xks < Xis)

= 2n

p∑
s=1

n∑
j=1

(
j−1∑
i=1

Ẏ(i)s

)2

− 2n

p∑
s=1

n∑
j=1

{
(j − 1)Ẏ(j)s

j−1∑
i=1

Ẏ(i)s

}
,

where the second equality follows from the fact that
n∑

i=1

Ẏi = 0. Similarly, it follows

that

J3 = n2

p∑
s=1

n∑
i=1

n∑
j=1

Ẏ 2
i I(Xis < Xjs)− 2n

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

Ẏ 2
i I(Xis < Xks)I(Xjs < Xks)

+3n

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

ẎiẎjI(Xis < Xks)I(Xjs < Xks)

+

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Ẏ 2
i I(Xjs < Xls)I(Xks < Xls)

=

p∑
s=1

n∑
j=1

[{
n2 − 2n(j − 1)

} j−1∑
i=1

Ẏ 2
(i)s

]
+ 3n

p∑
s=1

n∑
j=1

(
j−1∑
i=1

Ẏ(i)s

)2

3



+ {(n− 1)n(2n− 1)/6}
p∑

s=1

n∑
i=1

Ẏ 2
(i)s.

Moreover, we have

J4 = n

p∑
s=1

n∑
i=1

n∑
j=1

Ẏ 2
i I(Xis < Xjs) +

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

ẎiẎjI(Xis < Xks)I(Xjs < Xks)

− n

p∑
s=1

n∑
i=1

n∑
j=1

ẎiẎjI(Xis < Xjs)−
p∑

s=1

n∑
i=1

n∑
j=1

n∑
k=1

Ẏ 2
i I(Xis < Xks)I(Xjs < Xks)

=

p∑
s=1

n∑
j=1

(
j−1∑
i=1

Ẏ(i)s

)2

+

p∑
s=1

n∑
j=1

{
(n− j + 1)

j−1∑
i=1

Ẏ 2
(i)s

}
− n

p∑
s=1

n∑
j=1

{
Ẏ(j)s

j−1∑
i=1

Ẏ(i)s

}
.

Similar calculation shows that

J5 =

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

Ẏ 2
k I(Xis < Xks)I(Xjs < Xks)

−2

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

ẎiẎkI(Xis < Xks)I(Xjs < Xks)

+

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

ẎiẎjI(Xis < Xks)I(Xjs < Xks)

=

p∑
s=1

n∑
i=1

{
(i− 1)2Ẏ 2

(i)s

}
− 2

p∑
s=1

n∑
j=1

{
(j − 1)Ẏ(j)s

j−1∑
i=1

Ẏ(i)s

}
+

p∑
s=1

n∑
j=1

(
j−1∑
i=1

Ẏ(i)s

)2

.

Furthermore, it can be shown that

J6 = 2

p∑
s=1

n∑
i=1

n∑
j=1

Ẏ 2
i I(Xis < Xjs) + 2

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

Ẏ 2
j I(Xis < Xks)

−4

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

Ẏ 2
i I(Xis < Xks)I(Xjs < Xks)

+4

p∑
s=1

n∑
i=1

n∑
j=1

n∑
k=1

ẎiẎjI(Xis < Xks)I(Xjs < Xks)

4



= 2

p∑
s=1

n∑
j=1

{
(n− 2j + 2)

j−1∑
i=1

Ẏ 2
(i)s

}
+ n(n− 1)

p∑
s=1

n∑
i=1

Ẏ 2
(i)s + 4

p∑
s=1

n∑
j=1

(
j−1∑
i=1

Ẏ(i)s

)2

,

and

J7 =

p∑
s=1

n∑
i=1

n∑
j=1

Ẏ 2
i I(Xis < Xjs) +

p∑
s=1

n∑
i=1

n∑
j=1

Ẏ 2
j I(Xis < Xjs) = n

p∑
s=1

n∑
i=1

Ẏ 2
(i)s.

Putting the above together, we complete the proof.

S.3. Proof of Lemma 1

It is easy to see that

E{I(X1s < X5s)I(X2s < X5s) | z1, z2}

= 1− |Fs(X1s)− Fs(X2s)|/2− Fs(X1s)/2− Fs(X2s)/2,

where Fs(·) is the cumulative distribution function of Xs for s = 1, . . . , p. Based on

this, we have

E{ψ(X1s, X3s, X5s)ψ(X2s, X4s, X5s) | z1, . . . , z4}

= {−|Fs(X1s)− Fs(X2s)| − |Fs(X3s)− Fs(X4s)|

+|Fs(X1s)− Fs(X4s)|+ |Fs(X2s)− Fs(X3s)|
}
/2

=
[
K1{Fs(X1s), Fs(X2s)}+K1{Fs(X3s), Fs(X4s)} (S.2)

−K1{Fs(X1s), Fs(X4s)} −K1{Fs(X2s), Fs(X3s)}
]
/2,

where

K1{Fs(X1s), Fs(X2s)} = 2E{ψ(X1s, X3s, X5s)ψ(X2s, X4s, X5s) | z1, z2}

= −|Fs(X1s)− Fs(X2s)| − Fs(X1s)− Fs(X2s) + F 2
s (X1s) + F 2

s (X2s) + 2/3,

5



is the double centered version of−|Fs(X1s)−Fs(X2s)| and satisfies that E[K1{Fs(X1s), Fs(X2s)} |
z1] = E[K1{Fs(X1s), Fs(X2s)} | z2] = 0. By the useful property of the double centered

distance, it can be shown that the projections of h̃ = 5h/3 are,

h̃(1)(z1) =

p∑
s=1

{
Ls(Y1, X1s) + 2CCov(Y | Xs)

}
/4,

h̃(2)(z1, z2) =

p∑
s=1

[
K0(Y1, Y2)K1{Fs(X1s), Fs(X2s)}+ 2CCov(Y | Xs)

+2Ls(Y1, X1s) + 2Ls(Y2, X2s)− Ls(Y1, X2s)− Ls(Y2, X1s)
]
/12,

h̃(3)(z1, z2, z3) =

p∑
s=1

3∑
(i,j,k)

{
K0(Yi, Yj)

[
2K1{Fs(Xis), Fs(Xjs)}

−K1{Fs(Xis), Fs(Xks)} −K1{Fs(Xjs), Fs(Xks)}
]

+2Ls(Yi, Xis)− Ls(Yi, Xjs)− Ls(Yi, Xks)

}
/48,

h̃(4)(z1, z2, z3, z4) =

p∑
s=1

4∑
(i,j,k,l)

{
K0(Yi, Yj) +K0(Yk, Yl)

}
×
[
2K1{Fs(Xis), Fs(Xjs)}+ 2K1{Fs(Xks), Fs(Xls)}

−K1{Fs(Xis), Fs(Xks)} −K1{Fs(Xis), Fs(Xls)}

−K1{Fs(Xjs), Fs(Xks)} −K1{Fs(Xjs), Fs(Xls)}
]
/192,

whereK0(Y1, Y2) = (Y1−EY )(Y2−EY ) and Ls(Y1, X1s) = E[K0(Y1, Y2)×K1{Fs(X1s),

Fs(X2s)} | z1]. Moreover, h̃(5)(z1, z2, z3, z4, z5) =
p∑

s=1

h̃s(1, 2, 3, 4, 5).

Under either H ′0 or H ′1, it is straightforward to verify that

ξ1 = var{h(1)(z1)} = O

[
var

{
p∑

s=1

Ls(Y1, X1s)

}]
= o(n−1S2).

To obtain the variance of h(2)(z1, z2), we first show that
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var

[
p∑

s=1

K1{Fs(X1s), Fs(X2s)}

]

=

p∑
s=1

p∑
t=1

cov [K1{Fs(X1s), Fs(X2s)}, K1{Ft(X1t), Ft(X2t)}]

=
1

4

p∑
s=1

p∑
t=1

E
([
K1{Fs(X1s), Fs(X2s)}+K1{Fs(X3s), Fs(X4s)}

−K1{Fs(X1s), Fs(X4s)} −K1{Fs(X2s), Fs(X3s)}
][
K1{Ft(X1t), Ft(X2t)}

+K1{Ft(X3t), Ft(X4t)} −K1{Ft(X1t), Ft(X4t)} −K1{Ft(X2t), Ft(X3t)}
])

=

p∑
s=1

p∑
t=1

E {ψ(X1s, X3s, X5s)ψ(X2s, X4s, X5s)ψ(X1t, X3t, X6t)ψ(X2t, X4t, X6t)} ,

which further equals

4

p∑
s=1

p∑
t=1

E[cov2{I(X1s < X2s), I(X1t < X3t) | X2s, X3t}]

= 4

p∑
s=1

p∑
t=1

BKR(Xs, Xt) ≥ 4

p∑
s=1

BKR(Xs, Xs) = 2p/45→∞, (S.3)

as p → ∞. Here BKR(Xs, Xt) =
∫ ∫
{Fst(u, v)− Fs(u)Ft(v)}2dFs(u)dFt(v) is Blum-

Kiefer-Rosenblatt coefficient between Xs and Xt introduced by Blum et al. (1961),

and Fst(·, ·), Fs(·) and Ft(·) denote the joint and marginal cumulative distributions of

Xs and Xt, respectively. Under Assumption 1, it directly follows that S2 → ∞ and

S2 �
p∑

s=1

p∑
t=1

BKR(Xs, Xt) ≥ p/90, as p→∞. Recalling the expression of h(2)(z1, z2),

we then calculate the difference between ξ2 and S2/100.

|ξ2 − S2/100| ≤ var

[ p∑
s=1

{Ls(Y1, X1s) + Ls(Y2, X2s)− Ls(Y1, X2s)/2

−Ls(Y2, X1s)/2}
]
/36 +

∣∣∣cov

[ p∑
s=1

K0(Y1, Y2)K1{Fs(X1s), Fs(X2s)},

+

p∑
s=1

{Ls(Y1, X1s) + Ls(Y2, X2s)− Ls(Y1, X2s)/2− Ls(Y2, X1s)/2}
]∣∣∣/6
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≤

[
var

{
p∑

s=1

Ls(Y1, X1s)

}
+ var

{
p∑

s=1

Ls(Y1, X2s)

}]
/23

+ (23/2S/3)

[
var

{
p∑

s=1

Ls(Y1, X1s)

}
+ var

{
p∑

s=1

Ls(Y1, X2s)

}]1/2
,

where the last inequality holds due to Hölder’s inequality. Consequently, under either

H ′0 or H ′1, we have |ξ2−S2/100| = o(S2). This, together with (Serfling, 1980, Lemma

5.2.1 A) and the fact that S2 →∞ as p→∞, implies

ξ2 = 100−1S2{1 + o(1)}, as p→∞.

Again, by Hölder’s inequality, we obtain

ξ3 ≤ (65/482)

(
16S2 + 8var

[
p∑

s=1

K0(Y1, Y2)K1{Fs(X1s), Fs(X3s)}

]

+4var

{
p∑

s=1

Ls(Y1, X1s)

}
+ 2var

{
p∑

s=1

Ls(Y1, X2s)

})

≤ (65/482)

(
16S2{1 + o(1)}+ 8var

[
p∑

s=1

K0(Y1, Y2)K1{Fs(X1s), Fs(X3s)}

])

≤ (65/482)

[
16S2{1 + o(1)}+ 8c

p∑
s=1

p∑
t=1

BKR(Xs, Xt)

]
≤ CS2,

where the second inequality follows from the condition (2.7) and the third inequality

holds by Assumption 1. Here and in what follows, the notations C and c are generic

constants, which may take different values at each appearance. Because 2ξ3/3 ≥ ξ2 =

100−1S2{1 + o(1)}, we have that ξ2 and ξ3 are of the same order.

Similarly, it can be shown that
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ξ4 ≤ (823/1922)

(
32S2 + 8var

[
p∑

s=1

K0(Y1, Y2)K1{Fs(X1s), Fs(X3s)}

]

+8var{K0(Y1, Y2)}var

[
p∑

s=1

K1{Fs(X1s), Fs(X3s)}

])

≤ (823/1922)

{
32S2 + 8c

p∑
s=1

p∑
t=1

BKR(Xs, Xt)

}
≤ CS2,

where the second inequality follows from (S.3) and Assumption 1. Because 3ξ4/4 ≥
ξ3 � S2, we also have that ξ3 and ξ4 are of the same order.

Using similar arguments those in the derivation of (S.3), it follows by Assumption

1 and Minkowski’s inequality that

ξ5 ≤ Cvar{
p∑

s=1

ψ(X1s, X3s, X4s)ψ(X2s, X5s, X6s)}

= 4C

p∑
s=1

p∑
t=1

BKR(Xs, Xt).

This, together with the inequality 4ξ5/5 ≥ ξ4, gives that ξ4 and ξ5 are of the same

order. Hence, the third, fourth and fifth terms in the Hoeffding decomposition are all

of smaller order.

By the definitions of C(n,m) and (m)m, we can easily see that

{C(n, 5)}−1C(5, c)C(n− 5, 5− c) = n−c{C(5, c)}2{(c)c}{1 + o(1)},

for 5 ≥ c ≥ 1. Under either H ′0 or H ′1, we apply the Hoeffding decomposition for

var(Tn,p) to obtain

var(Tn,p) = {n(n− 1)/2}−1S2{1 + o(1)}.

This completes the proof of Lemma 1.
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S.4. Proof of Theorem 2

Under H ′0, it is straightforward to show that h(1)(z1) =
p∑

s=1

{
L(Y1, X1s) + 2CCov(Y |

Xs)
}
/4 = 0. Then, the projection of h to two-dimensional sample spaces is

h(2)(z1, z2) =

p∑
s=1

K0(Y1, Y2)K1{Fs(X1s), Fs(X2s)}/20.

Let T̂n,p be the projection of Tn,p, where

T̂n,p = 10{n(n− 1)/2}−1
n∑

1≤i<j≤n

h(2)(zi, zj).

We can decompose Tn,p = T̂n,p + Tn,p − T̂n,p, where Tn,p − T̂n,p can still be written as

a U -statistics with kernel

g(z1, z2, z3, z4, z5) = h(z1, z2, z3, z4, z5)−
∑

1≤i1<i2≤5

h(2)(zi1 , zi2).

By the useful property of the double centered distance, it can be shown that the

projections of g are,

g(1)(z1) = 0,

g(2)(z1, z2) = 0,

g(3)(z1, z2, z3) = h(3)(z1, z2, z3)−
∑

1≤i1<i2≤3

h(2)(zi1 , zi2),

g(4)(z1, z2, z3, z4) = h(4)(z1, z2, z3, z4)−
∑

1≤i1<i2≤3

h(2)(zi1 , zi2)

−
∑

1≤i1<i2<i3≤4

h(3)(zi1 , zi2 , zi2).

Under the null hypothesis H ′0, var{g(1)(z1)} = var{g(2)(z1, z2)} = 0. By the Hoeffd-

ing’s variance formula in Lemma 1, var(T̂n,p) = O[n−2var{h(2)(z1, z2)}] and var(Tn,p−
T̂n,p) = o[n−2var{h(2)(z1, z2)}], which follows the fact that var{h(2)}, var{h(3)}, var{h(4)}
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and var{h(5)} are of the same order. We further obtain that

Tn,pvar−1/2(T̂n,p) = T̂n,pvar−1/2(T̂n,p) + oP (1).

From (Serfling, 1980, Lemma 2.5.1A), we have

var(T̂n,p) = {n(n− 1)/2}−1S2.

Hence we only need to show that

{n(n− 1)/2}1/2T̂n,p/S
D−→ N(0, 1),

where
D−→ denotes convergence in distribution. According to the definitions of T̂n,p

and h(2)(z1, z2), T̂n,p/S can also be written as

{n(n− 1)/2}−1
n∑

i<j

p∑
s=1

K0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}/(2S).

To prove the theorem, we only need to show

{n(n− 1)/2}−1/2
n∑

i<j

p∑
s=1

K0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}/(2S)
D−→ N(0, 1).

Write T̃n,k =
k∑

i=2

Zni, where

Zni =
i−1∑
j=1

p∑
s=1

K0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}/ {2n(n− 1)}1/2 .

Let Fi = σ{(x1,y1), . . . , (xi,yi)} be the σ-field generated by {(xj,yj), j ≤ i}. It is

easy to see that E(Zni | Fi−1) = 0 and it follows that {T̃n,k,Fk : 2 ≤ k ≤ n} is a zero

mean martingale. Let vni = E(Z2
ni | Fi−1), 2 ≤ i ≤ n, and Vn =

n∑
i=2

vni. The central

limit theorem will hold (Hall (1984)) if we can verify

Vn/var(T̃n,p)
pr−→ 1, (S.4)
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and for any ε > 0

n∑
i=1

S−2E{Z2
niI(Zni > εS) | Fi−1}

pr−→ 0, (S.5)

where
pr−→ denotes convergence in probability. It can be shown that vni = v

(1)
ni + v

(2)
ni ,

where

v
(1)
ni = {2n(n− 1)}−1

i−1∑
j=1

p∑
s=1

p∑
t=1

E[K2
0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}

K1{Ft(Xit), Ft(Xjt)} | zj],

and

v
(2)
ni = {n(n− 1)}−1

∑
1≤j<k≤i−1

p∑
s=1

p∑
t=1

E[K0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}

K0(Yi, Yk)K1{Ft(Xit), Ft(Xkt)} | zj, zk].

By Fubini’s theorem,

var

{
n∑

i=2

v
(1)
ni /var(T̃n,p)

}

=
{

2n(n− 1)S2
}−2

var

( n∑
j=1

p∑
s=1

p∑
t=1

(n− j)E[K2
0(Y, Yj)

K1{Fs(Xs), Fs(Xjs)}K1{Ft(Xt), Ft(Xjt)} | zj]

)
=

{
2n(n− 1)S2

}−2 n∑
j=1

(n− j)2var

( p∑
s=1

p∑
t=1

E[K2
0(Y, Yj)

K1{Fs(Xs), Fs(Xjs)}K1{Ft(Xt), Ft(Xjt)} | zj]

)
≤ c

{
n(n− 1)S2

}−2 n∑
j=1

(n− j)2E{V (x1,x2)
4}

= o(1)n−3
n∑

j=1

(n− j)2,
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where the first inequality follows from Assumption 1 and Hölder inequality, and the

second inequality holds due to Assumption 2. Together the fact
n∑

j=1

(n− j)2 = O(n3),

we obtain that

var

{
n∑

i=2

v
(1)
ni /var(T̃n,p)

}
= o(1).

As E(vni) = {2n(n− 1)}−1 (i−1)var

[
p∑

s=1

K0(Y1, Y2)K1{Fs(X1s), Fs(X2s)}
]
, it follows

immediately that E

{
n∑

i=2

v
(1)
ni /var(T̃n,p)

}
= 1. By Markov’s inequality,

n∑
i=2

v
(1)
ni /var(T̃n,p)

pr−→ 1.

Similar discussions can be performed on the term
n∑

i=2

v
(2)
ni /var(T̃n,p). It is essential to

obtain E{
n∑

i=2

v
(2)
ni /var(T̃n,p)} = 0 and

var

{
n∑

i=2

v
(2)
ni /var(T̃n,p)

}

=
{
n(n− 1)S2

}−2
var

( ∑
1≤j<k≤n

p∑
s=1

p∑
t=1

(n− k)E[K0(Y, Yj)

K1{Fs(Xs), Fs(Xjs)}K0(Y, Yk)K1{Ft(Xt), Ft(Xkt)} | zj, zk]

)
≤ c

{
n(n− 1)S2

}−2 n∑
j=1

(j − 1)(n− j)2

×E{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)}.

Thus, Assumption 2 and the fact
n∑

j=1

(j − 1)(n− j)2 = O(n4) together yield

n∑
i=2

v
(2)
ni /var(T̃n,p)

pr−→ 0.

In summary, (S.4) holds.

13



It remains to show (S.5). Since

0 ≤ E{Z2
niI(Zni > εS) | Fi−1} ≤ ε−2S−2E(Z4

ni | Fi−1),

we only need to prove that

n∑
i=1

E(Z4
ni) = o(S4). (S.6)

It is noted that for every integer m ≥ 4,(
m∑
i=1

xi

)4

=
m∑
i=1

x4i + 4
m∑
i 6=j

x3ixj + 3
m∑
i 6=j

x2ix
2
j + 6

m∑
i 6=j 6=k 6=i

x2ixjxk +
m∑

i 6=j 6=k 6=l 6=i

xixjxkxl.

Through simple calculation, we have

n∑
i=1

E(Z4
ni) ≤ cn−2E

[
p∑

s=1

K1{Fs(Xis), Fs(Xjs)}

]4

+Cn−1E2

[
p∑

s=1

K1{Fs(Xis), Fs(Xjs)}

]2
= cn−2E{V (x1,x2)

4}+ 4Cn−1S4.

Under Assumption 2, (S.6) follows immediately. This completes the proof.

S.5. Proof of Theorem 3

Denote the infeasible variance estimator for S2 by

Š2
n,p = {4cnn(n− 1)}−1

n∑
(i,j)

K0(Ẏi, Ẏj)
2

[
p∑

s=1

K1{Fs(Xis), Fs(Xjs)}

]2
,
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where Ẏi = Yi − Y , and cn = {(1 − n−1)2 + n−2}2. By Slutsky’s theorem, we only

need to prove

S2
n,p/Š

2
n,p − 1

pr−→ 0, (S.7)

Š2
n,p/S

2 − 1
pr−→ 0. (S.8)

We divide the proof into the following two steps.

Step 1: We first aim at proving (S.7).

Applying the triangle inequality and the boundedness of empirical distribution

function, we obtain

|S2
n,p − Š2

n,p|/S2 ≤ c∆̂1,

where

∆̂1 = {n(n− 1)}−1
n∑

i 6=j

p∑
s=1

{
|Fn,s(Xis)− Fs(Xis)|

+|Fn,s(Xjs)− Fs(Xjs)|
}
K0(Ẏi, Ẏj)

2/S2.

It is noted that ∆̂1 ≥ 0. To establish (S.7), it suffices to show E(∆̂1) = o(1).

Under Assumptions 1 and 2, it can be verified that

E(∆̂1 | x1, · · · ,xp) ≤ Cn−1
n∑

i=1

p∑
s=1

| Fn,s(Xis)− Fs(Xis) | S−2.

Due to Dvoretzky-Kiefer-Wolfowitz inequality (Kosorok, 2008, Theorem 11.6), we

have

n−1
n∑

i=1

p∑
s=1

|Fn,s(Xis)− Fs(Xis)| = OP

[
p{log(n)/n}1/2

]
,
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which yields

E(∆̂1) = O
[
{log(n)/n}1/2 pS−2

]
.

It is noted that

Cp = C

p∑
s=1

BKR(Xs, Xs) ≤ S2.

Then E(∆̂1) = o(1) is immediate.

Step 2: We turn to prove (S.8) in this step.

Without loss of generality, we assume E(Y ) = 0, because Ẏi is invariant under

location shifts. For any i 6= j, it follows by definition that Ẏi = (1−n−1)Yi−n−1Yj −
n−1

n∑
k 6∈{i,j}

Yk. Direct calculation yields that

K0(Ẏi, Ẏj) = {(1− n−1)2 + n−2}YiYj − n−1(1− n−1)(Y 2
i + Y 2

j )

− n−1(1− 2n−1)(Yi + Yj)
n∑

k 6∈{i,j}

Yk + n−2
n∑

k 6∈{i,j}

n∑
l 6∈{i,j}

YkYl. (S.9)

By the independence of Yi and Yj, these four terms on the right-hand sides of (S.9)

are uncorrelated with each other. Recalling (S.3) and the notation cn = {(1−n−1)2 +

n−2}2, we obtain

E(Š2
n,p)/S

2 = 1 + o(1). (S.10)

Again, it follows from (S.9) that

Š2
n,p/S

2 ≤ c(∆̂2 + ∆̂3 + ∆̂4),
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where ∆̂2, ∆̂3 and ∆̂4 are defined as follows,

∆̂2 = {n(n− 1)}−1
n∑

i 6=j

[
p∑

s=1

K1{Fs(Xis), Fs(Xjs)}

]2
K0(Yi, Yj)

2/S2,

∆̂3 = {n2(n− 1)}−1
n∑

i 6=j

n∑
k 6∈{i,j}

[
p∑

s=1

K1{Fs(Xis), Fs(Xjs)}

]2
|K0(Yi, Yj)K0(Yi, Yk)|/S2,

∆̂4 = {n3(n− 1)}−1
n∑

i 6=j

n∑
k 6∈{i,j}

n∑
l 6∈{i,j}

[
p∑

s=1

K1{Fs(Xis), Fs(Xjs)}

]2
|K0(Yi, Yj)K0(Yk, Yl)|/S2.

Since K1{Fs(Xis), Fs(Xjs)} is double centered, we have E[K1{Fs(Xis), Fs(Xjs)} |
X1s] = E[K1{Fs(Xis), Fs(Xjs)} | X2s] = 0. From (S.3), we obtain E[K1{Fs(X1s),

Fs(X2s)}K1{Ft(X1t), Ft(X2t)}] =
∫ ∫
{Fst(u, v)−Fs(u)Ft(v)}2dFs(u)dFt(v) = BKR(Xs, Xt).

These results, together with Assumptions 1 and 2, give

var(Š2
n,p/S

2) ≤ 4c2{var(∆̂2/S
2) + var(∆̂3/S

2) + var(∆̂3/S
2)}

≤ CE{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)}/E2{V (x1,x2)
2}

+E{V (x1,x2)
4}/[nE2{V (x1,x2)

2}] = o(1). (S.11)

The statement for (S.8) follows from (S.10), (S.11) and Slutsky’s theorem.

Combining the results in Step 1 and 2, the proof of ratio consistency is completed.

Moreover, based on the results in Theorem 2 and Slutsky’s theorem, we have under

the H ′0,

{n(n− 1)/2}1/2 Tn,p/Sn,p
D−→ N(0, 1).
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S.6. Proof of Theorem 4

Since Tn,p is a U -statistic, it follows by the proof of Lemma 1 that under H ′1,

{n(n− 1)/2}1/2 S−1[Tn,p −
p∑

s=1

CCov(Y | Xs)]

= {n(n− 1)/2}−1/2 (2S)−1
n∑

i<j

p∑
s=1

[K0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}

− Ls(Yi, Xis)− Ls(Yj, Xjs) + CCov(Y | Xs)] + oP (1).

Following the notation of Hall (1984), we denote

Hn(zi, zj) = {n(n− 1)/2}−1/2 (2S)−1
p∑

s=1

[K0(Yi, Yj)K1{Fs(Xis), Fs(Xjs)}

− Ls(Yi, Xis)− Ls(Yj, Xjs) + CCov(Y | Xs)].

By the above definition, it is not hard to verify that

E{Hn(z1, z2) | z1} = 0.

Under H ′1, we further have

(n2/2)E{Hn(z1, z2)
2} = 1 +O

[
var

{
p∑

s=1

Ls(Y1, X1s)

}
S−2

]
= 1 + o(1).

To establish the asymptotic normality of Tn,p, it suffices to verify the condition

(2.1) in Theorem 1 of Hall (1984), namely,

E{Gn(z1, z2)
2}+ n−1E{Hn(z1, z2)

4}
E2{Hn(z1, z2)2}

→ 0,

as n, p → ∞, where Gn(z1, z2) = E{Hn(z3, z1)Hn(z3, z2) | z1, z2}. Under Assump-
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tions 1 and 2, and following the proof of Lemma 1, we can show that

E{Gn(z1, z2)
2} ≤ Cn−4E{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)}/S4

+Cn−4var2

{
p∑

s=1

Ls(Y1, X2s)

}
/S4,

E2{Hn(z1, z2)
2} = 4n−4{1 + o(1)},

n−1E{Hn(z1, z2)
4} ≤ Cn−5E{V (x1,x2)

4}/S4

+Cn−4var2

{
p∑

s=1

Ls(Y1, X2s)

}
/S4.

By the boundness of distribution function and Assumption 2, it follows that

E{Gn(z1, z2)
2}/E2{Hn(z1, z2)

2} → 0, and

n−1E{Hn(z1, z2)
4}/E2{Hn(z1, z2)

2} → 0,

as n, p → ∞. Therefore, all assumptions in Theorem 1 in Hall (1984) are satisfied

with the kernel Hn(z1, z2) in his Equation (2.1). This completes the proof of this

theorem.

S.7. Fast Algorithms for ZCn,p and ZYSn,p

By applying the idea of Theorem 1, we introduce fast algorithms to calculate the

numerators of standardized ZC and ZYS statistics: σ̂1ZCn,p and σ̂2ZYSn,p. For any

s = 1, . . . , p, sort the n observation of {Xis : i = 1, . . . , n} to be X(1)s < . . . < X(n)s

and find the corresponding response Y(i)s associated with X(i)s. Denote Ẏi = Yi − Y ,

Ẏ(i)s = Y(i)s − Y , Ẋis = Xis − Xs and Ẋ(i)s = X(i)s − Xs, where Y = n−1
n∑

i=1

Yi and
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Xs = n−1
n∑

i=1

Xis. Observe that
n∑

i=1

Ẏi =
n∑

i=1

Ẋis = 0. Then we can express σ̂1ZCn,p as

σ̂1ZCn,p = {4(n)4}−1
p∑

s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(Xis −Xjs)(Xks −Xls)

= (n)−12

p∑
s=1

n∑
(i,j)

ẎiẎjẊisẊjs + (n)−14

p∑
s=1

n∑
(i,j,k,l)

ẎiẎjẊksẊls

−2(n)−13

p∑
s=1

n∑
(i,j,k)

ẎiẎjẊisẊks

= {(n)−12 + 2(n)−14 + 2(n)−13 }
p∑

s=1

(
n∑

i=1

ẎiẊis)
2

−{(n)−12 + 6(n)−14 + 4(n)−13 }
p∑

s=1

n∑
i=1

Ẏ 2
i Ẋ

2
is

+(n)−14

p∑
s=1

(
n∑

i=1

Ẏ 2
i )(

n∑
i=1

Ẋ2
is),

which only requires O(np) operations. By contrast, σ̂2ZYSn,p can be expressed

σ̂2ZYSn,p = {4(n)4}−1
p∑

s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(Xis −Xjs)(Xks −Xls)

= −(n)−12

p∑
s=1

n∑
(i,j)

ẎiẎj|Ẋis − Ẋjs| − (n)−14

p∑
s=1

n∑
(i,j,k,l)

ẎiẎj|Ẋks − Ẋls|

+2(n)−13

p∑
s=1

n∑
(i,j,k)

ẎiẎj|Ẋis − Ẋks|

= −{(n)−12 + 2(n)−14 + 2(n)−13 }
p∑

s=1

n∑
i=1

n∑
j=1

ẎiẎj|Ẋis − Ẋjs|

−{4(n)−14 + 2(n)−13 }
p∑

s=1

n∑
i=1

n∑
j=1

Ẏ 2
i |Ẋis − Ẋjs|

+(n)−14 (
n∑

i=1

Ẏ 2
i )

p∑
s=1

n∑
i=1

n∑
j=1

|Ẋis − Ẋjs|.
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Note that |Ẋis − Ẋjs| = 2(Ẋis − Ẋjs)I(Ẋis > Ẋjs) − (Ẋis − Ẋjs). Employing the

similar arguments to those for dealing with Tn,p, we obtain that

σ̂2ZYSn,p = −{2(n)−12 + 4(n)−14 + 4(n)−13 }
p∑

s=1

{
n∑

i=1

Ẏ(i)sẊ(i)s

i−1∑
j=1

Ẏ(j)s}

+ {2(n)−12 + 4(n)−14 + 4(n)−13 }
p∑

s=1

{
n∑

i=1

Ẏ(i)s

i−1∑
j=1

Ẏ(j)sẊ(j)s}

− {8(n)−14 + 4(n)−13 }
p∑

s=1

{
n∑

i=1

(i− 1)Ẏ 2
(i)sẊ(i)s −

n∑
i=1

Ẏ 2
(i)s

i−1∑
j=1

Ẋ(j)s}

+ {4n(n)−14 + 2n(n)−13 }
p∑

s=1

n∑
i=1

Ẏ 2
i Ẋis + 2(n)−14 (

n∑
i=1

Ẏ 2
i )

p∑
s=1

n∑
i=1

(i− 1)Ẋ(i)s

− 2(n)−14 (
n∑

i=1

Ẏ 2
i )

p∑
s=1

n∑
i=1

i−1∑
j=1

Ẋ(j)s,

which can be computed at order O{np log(n)}.

S.8. Further Discussion on Asymptotic Relative Ef-

ficiency

The condition p = o(min{
∑p

s=1 d
2
s,
∑p

s=1 ds}) or
∑p

s=1 ds = o(
∑p

s=1 d
2
s) is a sufficient,

but not necessary condition for our proposed test to be more powerful than the ZC and

ZYS tests. If the marginal variance of each covariate is at the same magnitude (not

necessarily the same), our proposed test may still have better power performances

than the ZC and ZYS tests. We consider the case where 0 < c1 ≤ ds ≤ c2 < ∞, for

bounded constants c1 and c2, and s = 1, . . . , p. Then we have the following inequalities

for asymptotic relative efficiency:

{
15/(2π2)

}1/2
c21/c

2
2 ≤ ARE(NEW,ZC) ≤

{
15/(2π2)

}1/2
c22/c

2
1,{

30(1−
√

3 + π/3)/π2
}1/2

c
3/2
1 /c

3/2
2 ≤ ARE(NEW,ZYS)

≤
{

30(1−
√

3 + π/3)/π2
}1/2

c
3/2
2 /c

3/2
1 .
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When c1 = c2, we can draw the same conclusions as Section 3.1 of the manuscript.

When c1 6= c2, ARE(NEW,ZC) and ARE(NEW,ZYS) depend on different combi-

nations of (c1, c2, q, p, βs, ds), for s = 1, . . . , p. It is worth noting that it is possible

to make the proposed test more powerful, provided that {15/(2π2)}1/2 c22/c21 > 1

and
{

30(1−
√

3 + π/3)/π2
}1/2

c
3/2
2 /c

3/2
1 > 1. To appreciate this, we assume that

βs = κI(1 ≤ s ≤ q), s = 1, . . . , p, for κ 6= 0, and q ∈ {1, . . . , p} satisfies

q/p→ c0 ∈ [0, 1).

Set d1 = . . . = dq = c1 and dq+1 = . . . = dp = c2. As p→∞, we have

ARE(NEW,ZC)→ {15/(2π2)}1/2{c0 + (c2/c1)
2(1− c0)}1/2,

ARE(NEW,ZYS)→ {30(1−
√

3 + π/3)/π2}1/2{c0 + (c2/c1)(1− c0)}1/2.

This implies that the proposed test can have power gain than the ZC and ZYS tests

if

c2
c1
≥ max

([
{15/(2π2)}−1 − c0

1− c0

]1/2
,
{30(1−

√
3 + π/3)/π2}−1 − c0

1− c0

)
.

Furthermore, we conduct new simulations to verify this finding. The covariates

xi = (Xi1, . . . , Xip)
T are generated from the following moving average model: Xis =

√
c1{ρ1Zis + ρ2Zi(s+1) + · · ·+ ρTZi(s+T−1)}, for s = 1, . . . , q,

Xis =
√
c2{ρ1Zis + ρ2Zi(s+1) + · · ·+ ρTZi(s+T−1)}, for s = q + 1, . . . , p,

(S.12)

for T = 8, where Zij are i.i.d from N(0, 1). We set c0 = q/p, c1 = 1 and

c2 = 2 max

([
{15/(2π2)}−1 − c0

1− c0

]1/2
,
{30(1−

√
3 + π/3)/π2}−1 − c0

1− c0

)
.

The sample size n = 80, and dimension p = 550. Other model settings are remained

the same as the Section 4 of manuscript. The empirical sizes and powers at the

significance level 5% are summarized in Table S.1. It is clear that the empirical sizes

of three tests are reasonably close to 5%. Our proposed test always has the highest
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power among the three, even when the covariates have bounded variances.

Table S.1: The empirical sizes and powers at the significance level 5%.
Normal Gamma

Model Hypothesis ZC ZYS NEW ZC ZYS NEW

Linear H0 0.054 0.050 0.045 0.055 0.059 0.059
Non-sparse H1 0.320 0.489 0.718 0.339 0.528 0.735

Sparse H1 0.214 0.319 0.470 0.233 0.328 0.497
Partially Linear H0 0.054 0.050 0.045 0.055 0.059 0.059

Non-sparse H1 0.300 0.519 0.686 0.324 0.533 0.716
Sparse H1 0.141 0.262 0.388 0.135 0.257 0.411

Nonlinear H0 0.054 0.050 0.045 0.055 0.059 0.059
Non-sparse H1 0.296 0.515 0.752 0.302 0.523 0.750

Sparse H1 0.312 0.503 0.687 0.288 0.495 0.697

S.9. Further Discussion on Conditions in Assump-

tion 2

We study the conditions imposed in Assumption 2 when the random vector x is

m-dependent. By the definition of V (x1,x2), it is straightforward to show that

E{V (x1,x2)
2} = 16

p∑
s=1

p∑
t=1

E[cov2{I(X3s < X1s), I(X3t < X2t) | X1s, X2t}]

≥ 16

p∑
s=1

E[cov2{I(X3s < X1s), I(X3s < X2s) | X1s}]

= 8p/45→∞,

E{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)}

= E([E{V (x1,x3)V (x2,x3) | x1,x2}]2) ≥ 0.
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Recall that Xs and Xt are independent provided that |s−t| > m. By the boundedness

of K1(·, ·) and Fs(·), we obtain

E{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)}

=

p∑
s1=1

s1+m∑
s2=s1−m

s2+m∑
s3=s2−m

s3+m∑
s4=s3−m

E[K1{Fs1(X1s1), Fs1(X2s1)}K1{Fs2(X2s2), Fs2(X3s2)}

×K1{Fs3(X3s3), Fs3(X4s3)}K1{Fs4(X4s4), Fs4(X1s4)}] ≤ 14pm3/3,

and

E{V (x1,x2)
4} =

p∑
s1=1

E[K1{Fs1(X1s1), Fs1(X2s1)}4]

+ 4

p∑
(s1,s2)

E[K1{Fs1(X1s1), Fs1(X2s1)}3K1{Fs2(X1s2), Fs2(X2s2)}]

+ 3

p∑
(s1,s2)

E[K1{Fs1(X1s1), Fs1(X2s1)}2K1{Fs2(X1s2), Fs2(X2s2)}2]

+ 6

p∑
(s1,s2,s3)

E[K1{Fs1(X1s1), Fs1(X2s1)}2K1{Fs2(X1s2), Fs2(X2s2)}

×K1{Fs3(X1s3), Fs3(X2s3)}]

+

p∑
(s1,s2,s3,s4)

E[K1{Fs1(X1s1), Fs1(X2s1)}K1{Fs2(X1s2), Fs2(X2s2)}

×K1{Fs3(X1s3), Fs3(X2s3)}K1{Fs4(X1s4), Fs4(X2s4)}]

= O
[
pm3 + E2{V (x1,x2)

2}
]
.

Then it follows that

E{V (x1,x2)V (x2,x3)V (x3,x4)V (x4,x1)}/E2{V (x1,x2)
2} ≤ 1575m3/(32p),

E{V (x1,x2)
4}/[nE2{V (x1,x2)

2}] = O{m3/(np) + 1/n},

which implies that Assumption 2 holds true for m = o(p1/3).
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S.10. Comparison with Maximum-type Tests

We make some numerical comparisons with the adaptive resampling test (ART)

by McKeague and Qian (2015) and its standardized version, as well as the scale-

invariance t test by Zhang and Laber (2015). To compare their power performances,

we consider three models:

Yi = xT

i β1 + εi, (S.13)

Yi = 3xT

i β3 + exp(xT

i β4/2) + exp(xT

i β2 − 1)εi, (S.14)

Yi = (xT

i β5) exp(4xT

i β2/5− 1/2) + exp(xT

i β5/
√

2q) + εi, (S.15)

where the generations of xi and zi are the same as Section 4. The definitions of

the coefficients in each model are also identical with Section 4. The error term εi

is generated from N(0, 1). We set ||β||2 = 0.03 and consider two configurations

of alternative hypothesis. (a) Non-sparse case: the total number of active covari-

ates q = [p0.7], where [x] denotes the largest integer not greater than x. (b) Sparse

case: the total number of active covariates q = [2p0.3]. We fix the significance level

α at 0.05 and (n, p) = (80, 550). The critical values of our proposed test are de-

termined by the asymptotically normal distribution. McKeague and Qian (2015)

used the double bootstrap to obtain the critical values. In our numerical study,

we follow Section 3 of McKeague and Qian (2015) to choose the tuning parameter

λn = max{
√
a log n, the upper α/(2p) quantile of N(0, 1)}, where a = 2 for ART and

a = 4 for standardized ART. To save computational cost due to the double boot-

strap, Zhang and Laber (2015) proposed a parametric bootstrap procedure to mimic

the limiting null distribution.

Table S.2 reports the empirical sizes and powers of three tests for linear model

(S.13). Since the proposed test, standardized ART and Zhang and Laber (2015)’s test

are all scale-invariance, their empirical sizes stay the same under different values of δ.

This property is not shared by the original ART. When δ is small, the empirical type-I

error rates of ART test are slightly inflated. A more careful selection of thresholding

value λn may be needed to avoid this size distortion. In terms of power, our sum-of-
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Table S.2: The empirical sizes and powers for linear model (S.13) at the significance
level 5%, where δ controls the degree of heterogeneity in terms of the covariate variances.
Throughout, we refer to our proposed test, and the tests proposed by McKeague and Qian
(2015) and Zhang and Laber (2015) as NEW, ART and ZL, respectively. STD-ART denotes
that the ART procedure is applied to the standardized covariates.

Error Hypothesis δ NEW ZL ART STD-ART

Normal H0 0.00 0.045 0.037 0.085 0.045
0.25 0.045 0.037 0.080 0.045
0.50 0.045 0.037 0.055 0.045
0.75 0.045 0.037 0.045 0.045
1.00 0.045 0.037 0.025 0.045

Non-sparse H1 0.00 0.613 0.266 0.505 0.285
0.25 0.914 0.580 0.740 0.615
0.50 0.996 0.859 0.780 0.880
0.75 1.000 0.954 0.735 0.970
1.00 1.000 0.986 0.690 0.990

Sparse H1 0.00 0.459 0.718 0.820 0.700
0.25 0.672 0.920 0.940 0.910
0.50 0.855 0.994 0.990 0.995
0.75 0.956 1.000 0.985 1.000
1.00 0.991 1.000 0.990 1.000

squares-type test outperforms the other two tests under the non-sparse H1. Since ART

variations and t test of Zhang and Laber (2015) are based on maximum-type statistics,

all of them achieve excellent power performances under the sparse H1, which are

superior to our test. Compared with the original ART, the standardized ART really

makes a difference, especially for dense alternatives with heteroscedastic covariates.

Moreover, the scale-invariance Zhang and Laber (2015)’s test and standardized ART

have similar power trends as δ increases. They are useful in sparse settings while ours

is powerful in dense ones.

Tables S.3 and S.4 summarize the results of all tests for models (S.14) and (S.15).

Similar to the phenomenon in the linear model, our scale-invariance test is still the

most powerful to detect dense signals of heteroscedastic covariates. When δ = 1, the

empirical powers of our proposed test arrive at 0.932 in model (S.14) and 0.816 in

model (S.15) under non-sparse H1 with normal errors. McKeague and Qian (2015)’s

ART tests and Zhang and Laber (2015)’s test show their advantages to deal with

sparse alternatives.
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Table S.3: The empirical sizes and powers for partially linear model (S.14) at the sig-
nificance level 5%, where δ controls the degree of heterogeneity in terms of the covariate
variances. Refer to the captions in Table S.2 for abbreviations.

Error Hypothesis δ NEW ZL ART STD-ART

Normal H0 0.00 0.045 0.037 0.085 0.045
0.25 0.045 0.037 0.080 0.045
0.50 0.045 0.037 0.055 0.045
0.75 0.045 0.037 0.045 0.045
1.00 0.045 0.037 0.025 0.045

Non-sparse H1 0.00 0.613 0.486 0.480 0.520
0.25 0.810 0.688 0.670 0.710
0.50 0.920 0.841 0.695 0.865
0.75 0.961 0.887 0.755 0.875
1.00 0.932 0.659 0.505 0.665

Sparse H1 0.00 0.406 0.621 0.590 0.630
0.25 0.517 0.723 0.670 0.745
0.50 0.619 0.812 0.645 0.815
0.75 0.734 0.867 0.680 0.870
1.00 0.843 0.922 0.705 0.940

Table S.4: The empirical sizes and powers for nonlinear model (S.15) at the significance
level 5%, where δ controls the degree of heterogeneity in terms of the covariate variances.
Refer to the captions in Table S.2 for abbreviations.

Error Hypothesis δ NEW ZL ART STD-ART

Normal H0 0.00 0.045 0.037 0.085 0.045
0.25 0.045 0.037 0.080 0.045
0.50 0.045 0.037 0.055 0.045
0.75 0.045 0.037 0.045 0.045
1.00 0.045 0.037 0.025 0.045

Non-sparse H1 0.00 0.468 0.221 0.320 0.210
0.25 0.649 0.287 0.295 0.295
0.50 0.750 0.370 0.295 0.365
0.75 0.789 0.419 0.270 0.445
1.00 0.816 0.447 0.280 0.470

Sparse H1 0.00 0.501 0.756 0.780 0.740
0.25 0.600 0.849 0.810 0.815
0.50 0.687 0.912 0.705 0.845
0.75 0.753 0.934 0.605 0.885
1.00 0.806 0.948 0.575 0.885
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S.11. Comparison under Heavy-tailed Covariates

Our test does not require any moment conditions on the covariates, and hence is ap-

plicable in the scenarios of generally distributed covariates including the heavy-tailed

ones. As suggested by a reviewer, we conduct some simulation studies under heavy-

tailed covariates. We generate the (p+ T − 1)-dimensional zi = (Zi1, . . . , Zi(p+T−1))
T

from the following two distributions: (i) the first q components of zi is independently

drawn from t(2) distribution, and others are from N(0, 1); (ii) the first q components

of zi is independently drawn from t(3) distribution, and others are from N(0, 1). In

these two scenarios, t(2) distribution has an infinite variance while t(3) has a finite

one. The error terms follow N(0, 1). We set δ = 0, (n, p) = (80, 550) and keep other

settings same as those in Section 4. The empirical sizes and powers of our proposed

test as well as the ZC and ZYS tests at the significance level α = 5% are reported

in Table S.5. The sizes of all three tests are satisfactory regardless of models and

covariate distributions. Under the alternatives, our scale-invariance test is the most

powerful to handle heavy-tailed covariates, even in the linear models. For example,

the empirical powers of our proposed test and the two competitors are 0.743, 0.470,

0.207 respectively under the non-sparse H1 in linear model (4.1) with t(2) covariates.

Table S.5: The empirical sizes and powers at the significance level 5%.
t(2) t(3)

Model Hypothesis ZC ZYS NEW ZC ZYS NEW

Linear H0 0.056 0.061 0.057 0.062 0.049 0.049
Non-sparse H1 0.207 0.470 0.743 0.335 0.548 0.734

Sparse H1 0.431 0.677 0.755 0.518 0.569 0.662
Partially Linear H0 0.056 0.061 0.057 0.062 0.049 0.049

Non-sparse H1 0.065 0.377 0.667 0.239 0.502 0.657
Sparse H1 0.187 0.410 0.455 0.304 0.414 0.487

Nonlinear H0 0.056 0.061 0.057 0.062 0.049 0.049
Non-sparse H1 0.181 0.496 0.722 0.297 0.559 0.753

Sparse H1 0.340 0.683 0.743 0.524 0.694 0.759
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