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Abstract

In this paper, we test for the effects of high-dimensional covariates on the
response. In many applications, different components of covariates usually ex-
hibit various levels of variation, which is ubiquitous in high-dimensional data.
To simultaneously accommodate such heteroscedasticity and high dimensional-
ity, we propose a novel test based on an aggregation of the marginal cumulative
covariances, requiring no prior information on the specific form of regression
models. Our proposed test statistic is scale-invariance, tuning-free and con-
venient to implement. The asymptotic normality of the proposed statistic is
established under the null hypothesis. We further study the asymptotic rel-
ative efficiency of our proposed test with respect to the state-of-art universal
tests in two different settings: one is designed for high-dimensional linear model
and the other is introduced in a completely model-free setting. A remarkable
finding reveals that, thanks to the scale-invariance property, even under the
high-dimensional linear models, our proposed test is asymptotically much more
powerful than existing competitors for the covariates with heterogeneous vari-
ances while maintaining high efficiency for the homoscedastic ones.
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1 Introduction

In regression analysis, it is of fundamental importance to infer whether a set of co-
variates x = (X1,...,X,)" € RP has any effect on a response Y € R!'. Consider the

null hypothesis

Hy: E(Y | x) = E(Y), almost surely. (1.1)

If Hy holds, it implies that x does not contribute to the conditional mean function
of Y. Thus there is no need to build a regression model for the conditional mean
function. In genomic studies, exploring whether a set of genes is predictive for certain
clinical outcomes can be formulated as the hypothesis in (1.1). See, for example, the
significant gene set selection in Subramanian et al. (2005), Efron and Tibshirani

(2007) and Zhong and Chen (2011).

Testing for the covariates effects has received much attention, and many tests have
been developed for low and fixed-dimensional covariates. By assuming E(Y | x) =
x"3, testing (1.1) is equivalent to checking whether 3 = 0. The classical F-test can
be used to infer the overall significance of linear regression coefficients. Moreover,
many model-specification tests are also designed to test (1.1), including the local
(Hardle and Mammen, 1993; Zheng, 1996; Guo et al., 2016) and global smoothing
tests (Stute, 1997; Stute et al., 1998; Escanciano, 2006). Without specifying a func-
tional form of E(Y | x), Wang and Akritas (2006) developed a test for covariate effects
in a completely nonparametric fashion. Shao and Zhang (2014) proposed a martin-
gale difference divergence in the setting of fixed dimension. However, these methods

do not target the case of high-dimensional covariates and suffer from the curse of
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dimensionality when the covariate dimension p diverges. In particular, Zhong and
Chen (2011) proved the power of F-test is adversely impacted by an increasing ratio
p/n even when p < n — 1, where n is the sample size. For the martingale difference
divergence that can capture any type of conditional mean dependence in the fixed
dimension, Zhang et al. (2018) showed that it can only measure the component-wise

linear dependence in high dimension.

In the case of high dimensional covariates, many tests have been proposed under
parametric model settings. For example, in high-dimensional linear regression models,
Goeman et al. (2006) considered a score test in an empirical Bayesian model. Zhong
and Chen (2011) proposed a simultaneous test for coefficients based on a U-statistic.
This work is further modified by Feng et al. (2013) with Wilcoxon scores, and by
Cui et al. (2018) with refitted cross-validation. In high-dimensional generalized linear
regression models, Goeman et al. (2011) extended the test of Goeman et al. (2006)
and derived its asymptotic distribution. Guo and Chen (2016) introduced a test that
is robust to a wide range of link functions. It is desirable to develop a test that can

accommodate the high-dimensionality without any parametric model assumptions.

Directly testing (1.1) without specifying any model structure is very challenging
in high dimensions. McKeague and Qian (2015) proposed an adaptive resampling
test (ART) using the maximum-type statistic on the slopes of marginal linear re-
gressions. The ART may effectively detect the presence of significant covariates
under working model: Y = fy + x'3 + &, where ¢ and x are uncorrelated, and
B = argmin,, E(Y — x"4)2. Thus, the ART procedure may be directly applied for
the hypothesis (1.1) under condition that 8 = 0 implies that E(Y | x) = E(Y).

Luedtke and van der Laan (2018) established theoretical properties of the standard-
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ized ART procedure under high-dimensional setting and further introduced a more
computationally tractable approach to the ART. Zhang et al. (2018) considered a

relatively weaker null hypothesis:

H):E(Y | X,)=FE(Y) almost surely, forall 1 <s<np. (1.2)

It is clear that Hy in (1.1) implies H} in (1.2), but not vice versa. In other words, the
distance between E(Y | x) and E(Y') cannot be fully captured by pairwise distances
between E(Y | X;) and E(Y), for s =1,...,p. However, Zhang et al. (2018) pointed
out that the difference between E(Y | X;) and E(Y') can be regarded as the marginal
effect of X, contributing to Y. From this point of view, the pairwise distances be-
tween E(Y | X;) and E(Y) are still informative in testing Hy in (1.1). The pairwise
comparison partly motivates us to develop a novel high-dimensional nonparametric

test for H| in (1.2).

In real applications, different components of covariates usually exhibit different
levels of variation. For example, in high-dimensional microarray data, the variation
of expression differs substantially from gene to gene (Nettleton et al., 2008). The
heterogeneous variances of covariates may affect the performances of the testing pro-
cedures, when the test statistics are not scale invariant. See, for example, McKeague
and Qian (2015) and its discussions and rejoinder for extensive discussions on this is-
sue. To deal with the issue, a widely used strategy is to standardize each covariate by
its corresponding standard deviation prior to implementing the aforementioned tests.
Examples include Zhong and Chen (2011), McKeague and Qian (2015) and Zhang

et al. (2018). This strategy however brings difficulties in theoretical justifications for



diverging p and requires implicitly the variances of all covariates be finite.

To accommodate the issues of heterogeneous covariates variances and high di-
mensionality, we introduce a novel test to detect the mean effects of high-dimensional
covariates on the response. Without any model assumptions, our test statistic is built
on cumulative covariance (Zhou et al., 2020), which utilizes the rank of covariates and
hence is scale-invariance. To illustrate the appealing features of our proposed test,
we compare it with two state-of-art tests: one is proposed by Zhong and Chen (2011)
and the other by Zhang et al. (2018). The first test is designed for high-dimensional
model and originates from the classical F-test that is known to be powerful when p
is fixed as n — oo. The second test is developed in a high-dimensional model-free
setting. The asymptotic properties of these two tests are universal (Paindaveine and
Verdebout, 2016), in the sense that p may go to infinity in an arbitrary rate as n
goes. This also applies to our proposed test. In what follows, we summarize our

contributions as well as the desirable properties of the new test.

e A direct implementation of the proposed test statistic according to its definition
has a computational complexity of order O(n’p), which is computationally ex-
pensive. By sorting the covariates in an increasing order, we provide an efficient
algorithm to reduce the computational cost of its numerator to O{nplog(n)}.
This algorithm can also be adapted to Zhong and Chen (2011)’s and Zhang
et al. (2018)’s test statistics to improve the computational efficiency of their
numerators. The denominators of three statistics can be calculated in O(n?p)
operations. Therefore, the overall computational complexities of three tests are

all of order O(n?p).



e We derive the universally asymptotic normality of our proposed test statistic
under the high-dimensional null hypothesis, without any assumption on relative
growth rate between p and n. No bootstrap or random permutation is required
to approximate the asymptotic null distributions. In this sense, our testing

procedure is tuning-free and distribution-free.

e We derive the asymptotic power function of our proposed test and carefully
study its asymptotic relative efficiency with respect to the tests proposed by
Zhong and Chen (2011) and Zhang et al. (2018) in high-dimensional linear
models. When each covariate has the same variance, we prove that the asymp-
totic relative efficiency of our proposal is near 0.872 with respect to Zhong and
Chen (2011), and 0.979 with respect to Zhang et al. (2018). However, under
the heterogeneous variances of covariates, the asymptotic relative efficiency can
even go to infinity as p goes to infinity. See Section 3 for detailed discussions.
This implies that our proposed test has little efficiency loss for homoscedastic

covariates, but substantial efficiency gain for heteroscedastic cases.

The rest of the paper is organized as follows. In Section 2, we introduce a new
conditional mean testing procedure based on the cumulative covariance, and derive
its asymptotic distribution under the null hypothesis and alternatives. Section 3
carefully studies the asymptotic relative efficiency of the proposed test with respect
to the tests in Zhong and Chen (2011) and Zhang et al. (2018). We assess the finite
sample performance of the proposed test through Monte Carlo simulations and a real
data application in Sections 4.1 and 4.2, respectively. A short discussion is given in

Section 5. All technical proofs and extra simulations are relegated to the supplement.



2 A New Test Procedure

For the purpose of comparison, we first review the tests proposed by Zhong and Chen
(2011) and Zhang et al. (2018). We will compare the asymptotic relative efficiency of

these two tests with our proposed procedure in Section 3.

2.1 Two existing tests allowing for universal (n, p)-asymptotics

Let x; = (Xi1,...,Xip)". Suppose we have a random sample {(x;,Y;),i = 1,...,n}
drawn independently from the joint distribution of (x,Y’). Throughout this paper,
we denote (n),, =n(n—1)...(n —m+ 1) and C(n,m) = (n)/{(n)m(n — M)p_m}

for 1 <m <mn, and
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(63) (6.5.k) (4.4,k:0) (4,3,k,1,7)
denote summations that are taken over all possible permutations of distinctive indices.

The test in Zhong and Chen (2011) is constructed through a modified F-statistic

under linear model assumption,

7C,p = {4(n)s51}~ ZZ (Y = V) (Vi = YI) (Xis — Xjo) (Xps — X3), (2.1

s=1 (i,5,k,l)

where 67 = [{2(n)2} ™ (Zn;)(Yi ~YPHAm T S {6k~ x,)"(x — %)} The test

(%,5,k,0)
statistic in Zhang et al. (2018) is built upon the martingale difference divergence



without model assumptions,

ZYS,, = {4(n)s5s}” Z Z (Y; = Y)) (Vi — YD) (1 Xss — X (2.2)

s=1 (i,5,k,0)
+ |st - Xk’s| - |Xzs - st| - |st - Xl8|)7

where 73 = [(n —1)3/{n(n — 3)*}] Z t21 Aij(s)Ay;(t) By, and Ay(s) and By; are the
U-centered versions of A;;(s) = |Xl-s — X, and Bj; = (Y; — Y;)%/2, respectively. See
more details in Zhang et al. (2018, Equation (7)). Zhong and Chen (2011, Theorem 3)
and Zhang et al. (2018, Theorem 2.2) established the asymptotic normality properties
for {n(n —1)/2}'/?ZC,,, and {n(n — 1)/2}*/2ZYS,,, when both the dimension and

the sample size go to infinity.

Both tests of Zhong and Chen (2011) and Zhang et al. (2018) require the existence
of the second moments of covariates and are not invariant under scale transformations,
which indicates their power performances heavily depend on the variance magnitudes
of covariates. In Sections 3 and 4, we will show the advantages of scale-invariance

property from both the asymptotic and the numerical perspectives.

In high-dimension setting, easy implementation is a desirable property for test-
ing. Therefore, we are interested in the computational complexity of these two tests.
Naively computing ZC,, , and ZYS,, , by (2.1) and (2.2) is very complicated. Our fast
algorithm given in the following Section 2.4 can be adapted to calculate the numer-
ators of ZC,,, and ZYS,, ,,, which have the computational complexity of O(np) and
O{nplog(n)}, respectively. The details of the adapted algorithms can be found in
Section S.7 of the supplement. The denominators of ZC,,, and ZYS, ,, namely o,

and 09, can be computed in O(n?p) operations.
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2.2 Cumulative covariance revisited

We next review the cumulative covariance that is introduced by Zhou et al. (2020).
Let X and Y denote two random variables. Under the assumption that the second

moment of Y is finite, the cumulative covariance CCov(Y | X) is defined as
CCov(Y | X) = E[cov®{Y,I1(X < X) | X}], (2.3)

where (X,Y) is an independent copy of (X,Y) and I(-) is an indicator function. The
cumulative covariance is non-negative and equals zero if and only if E(Y | X) = E(Y).
In this sense, the cumulative covariance can fully characterize the conditional mean
dependence. An appealing property of the cumulative covariance is that it keeps in-
variant with respect to arbitrary strictly monotone transformation of X. This invari-
ance property, however, is not shared by martingale difference divergence. Therefore,
the test proposed by Zhang et al. (2018), which is built upon martingale difference
divergence, requires the second moment of X be finite, while the CCov-based test

allows it to be infinity. We shall elaborate this in detail in the sequel.

2.3 The CCov-based test statistic in high dimension

To test Hy in (1.2), it is natural to use the summation of all marginal cumulative

covariances,

zp:CCOV(Y | Xs), (2.4)

s=1



which is non-negative and equals zero if and only if the pairwise differences between
E(Y | X;) and E(Y), for all s = 1,...,p, are identically zero. For simplicity, we
assume that all the components of x are continuous so that the probability of a tie

occurring in the data is zero. A natural estimator of (2.4) can be defined as

‘322 Z (Vi = V) {I(Xis < Xjo) = Fus( X3}

s=1 j=1 Li=1

where

V=n") Y, and F,,(X;s) =n"' Y I(Xj < Xj,).

i=1
This sample version appears straightforward, however, W, , involves several redun-
dant terms that bring in asymptotically non-negligible bias-terms in high dimension,
resulting in a fragile size performance for the test based on W, ,. The details of
bias-terms can be found in Appendix S.2. To formulate the CCov-based test in high

dimension, we consider instead

)5}—1 Z Z (}/Z _ Y})(Yk — H)'@D(Xisyst7X7“8)77Z)(XkS7Xl5’ er)v (25)

8:1 (i7j7k7l77‘)

where (X1, Xo, X3) = I(X; < X3) — [(X2 < X3). Proposition 1 in Appendix S.1
ensures that 7),, is an unbiased estimator of (2.4). Thus 7,,, is basically all we

need to test H{ in (1.2). For arbitrary strictly monotone transformations M;, we

have 1/1(X237 X]S? X ) Q/}(Xk& Xl57 er) - w{Ms<Xzs)> Ms<st); Ms(er)}w{Ms(st)u
M (X5), My(X,s)} fora, 4, k, 1, r =1,...,n. Consequently, the proposed test statistic

T, is automatically scale-invariance.
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2.4 Computational algorithm

Directly computing T}, , through (2.5) has a computational complexity of order O(n’p).
To reduce the computational burden, we provide a computationally efficient algo-
rithm to implement the proposed statistic 7, ,. First, for any s = 1,...,p, sort the
n observation of {Xj,:i=1,...,n} to be X(1), < ... < X(n),. Second, find the cor-
responding response Y{;), associated with X;),. Denote Y(i)s =Y — Y. After these

two preliminary steps, the following theorem shows how to compute 7, ,, efficiently.

Theorem 1. For a random sample {x;, Y;}I_, drawn from joint distribution of (x,Y"),

P n Jj—1 P n
Ty = {(n)s}7" [(n —2)(n-3)>_ Y (Z)’/(i)s)z +2) > {(nj —2n — 25 +2)
s=1 j=1 =1 s=1 j=1
) J—1 ) ]p n ’ Jj—1 )
Ve S Vi =S {02 —2nj —n 47— ) 33,
i=1 s=1 j=1 =1
p n P n
~nlnt =30+ 8)/3) 30D VL 4230 30 117
s=1 i=1 s=1 i=1

Theorem 1 guarantees that 7,,, can be computed in only O{nplog(n)} operations.

2.5 Asymptotic null distribution

To establish the asymptotic normality of our test statistic, we study Hoeffding de-
composition (Serfling, 1980) for the variance of T, ,, which is valid for diverging

p. Define ¢5(i7jakal7r) = (Y; - Y;)(Yk: - H)¢(Xi57XjS7X7’8)77ZJ(Xk:SaXl8aX?“S)/4 for

11



1,7, k,l,r=1,...,nand s =1,...,p, and symmetrize it by

hs(iaja kf,l,’l“) = {¢S(i’j’ ka l>T) + ¢s(i7 k’,j,l,’l“) + ¢s(ivlajv k’,’f’)
_’_gbs(raja ka l71) + ¢S(T7 k7j7lai) + ¢s(r7laja kal) + ¢s(i7ra ka l7])
+¢S(i7 ]{?,T,l,j) + qbs(i,l,T, k?]) + ¢S(i7j7 T7l7 k) + ¢s(i7r7j7l7 k)

+¢S(i7 l7j7lr7 k) + (bs(?:?j? k? r? l) + ¢3(i7 k’j”r? l) + ¢s<i7r7j7 k? l)}/15

P
Write h(i, j, k,1,7) = > he(i, j, k,1,7), for i,j,k,I,r = 1,...,n. Then, the statistic
s=1

T, has the following expression,
(3,9,k,L,r)

It is clear that T),, is actually a U-statistic of order five. This finding is very useful
in subsequent derivations. For ¢ = 1,...,5, let h()(zy,...,z.) = F{h(1,2,3,4,5) |
Z1,...,%.} be projections of h to lower-dimensional sample spaces, where z; = (x;, Y;)

is the 7-th observation.

To determine the asymptotic form of 7, ,, we study its variance decomposition

for high-dimensional data. Towards this end, we impose the following assumption.

Assumption 1. Assume that
0<c<var(Y |x) < EV{Y —E(Y |x)}*|x] <C < o, (2.6)

almost surely for some constants ¢ and C.

This assumption is also considered by Patilea et al. (2016) and Zhang et al. (2018)

12



to derive the asymptotic properties of their test statistics. Assumption 1 holds true
for any p when Y = E(Y | x) + o(x)e, where E(c | x) = 0, E(e* | x) > ¢; > 0,
E(e* | x) <) <o and 0 < ¢ < o(x) < C < oo. If the model error {Y — E(Y | x)}
and x are independent, and the fourth moments of the model error are bounded, then

(2.6) is trivially true.

Denote &, = var{h\9(z,,...,z.)}, for ¢ = 1,...,5. The following lemma states

the Hoeffding decomposition (Serfling, 1980) for the variance of T,, , as p — oo.

LEMMA 1. Suppose that Assumption 1 holds. Under H|,, we have & = 0, var(T,,,) =

{C(n,5)}! Zi:z C(5,¢)C(n — 5,5 — )& and the terms &, &3, & and &5 are of the

same order as p — oo. In particular, var(T,,) = {n(n —1)/2}1S?{1 + o(1)}, where

p
S? =47 var | Y Ko(Y1, Y2) Ki{Fy(X1,), Fu(Xa0)}|

s=1

Ko(Y1,Y2) = (V1= E(Y)H{Ya = E(Y)}, Ki{Fy(X1s), Fo(Xas)} = F2(Xos) + FZ(Xas) -
2max{Fs(X1s), Fs(Xos)} +2/3, and Fy(-) is the cumulative distribution function of

X fors=1,...,p.
Define
={n(n—1)/2}" I/QZZKO 0 Y5 K { Fs(Xis), Fi(Xs) /4
(4,4)

Based on Lemma 1, we derive that [{n(n —1)/2}'/ Thp— Tnvp]/S — 0 in probability
under H| in the supplement. Thus, it suffices to derive the asymptotic distribution

of T,,,,/S under the null.

p
Define V(x1,%x2) = > Ki{Fs(Xis), Fs(Xas)}. To establish the asymptotic nor-
s=1
13



mality of Tn,p /S, we use the martingale central limit theorem (Hall and Heyde, 2014,
CLT). The following assumption is imposed to facilitate the proof of martingale CLT

and is closely related to the typical condition (2.1) of Hall (1984).

Assumption 2. As p — oo and n — oo,

E{V (x1,%2)V (x2,%3)V (x3,X4) V (x4, %1 )}/ E*{V (x1,%2)*} = 0,

E{V(x1,%x2)*}/[nE*{V (x1,%2)*}] — 0.

Assumption 2 is presented in an abstract way and can be made more explicit under
specific dependence structures. To illustrate this, we consider the commonly encoun-
tered banded dependence structure, where the random vector x is m-dependent. In

Section S.9 of the supplement, it can be verified that

E{V (x1,%2)*} > 8p/45 — oo,
0 < E{V(x1,X2)V (X2, %x3)V (x3,%4)V (x4, %1)} = O(pm?),

E{V(x1,%2)*} = O [pm® + E*{V (x1,%2)*}] .

Assumption 2 is trivially satisfied if m = o(p'/3) for the divergent p. In particular,
if m is a fixed constant, the above conditions are fairly mild when p is divergent.
Moreover, there is no explicit relationship between p and n in Assumption 2. If the
coordinates of x are independent but not necessarily identically distributed, p can

grow to infinity freely as n — oo.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Under the null hypothesis Hy,

as n,p — oo, {n(n —1)/2}"/2 Thp/S converges in distribution to N(0,1).
14



To formulate a test procedure based on T, ,,, we need to provide a suitable variance

estimator for S2. We consider the following estimator,

n . . p 2
82, = {dean(n = D} D7 KoV ¥)? | 2 Ki{ (X)), Fus (X5}

(4.5) s=1
where V; = YV, - Y, F, s is the empirical distribution function of X and ¢, = {(1 —
n~')?* + n7?}? is a finite sample adjustment factor to reduce the bias of Sy . See
the proof of Theorem 3 for details. The variance estimator Si,p has a computational

cost of order O(n?p). In what follows, we derive the ratio-consistency of this variance

estimator.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then, we have the ratio con-
sistency that as n,p — 00, STZL,p/SQ converges in probability to 1. Consequently,
{n(n —1)/2}* Typ/Snp converges in distribution to the standard normal distribu-

tion under the H|.

Theorems 2 and 3 reveal that the asymptotic normality of our proposed statistic
under the null hypothesis holds with no restriction on relative growth rate between
p and n. Theorem 3 suggests that our proposed test rejects the null hypothesis H|,
in (1.2) at significant level a if {n(n — 1)/2}*/ Top/Snp > Za, Where z, is the 1 — «

quantile of standard normal.

15



2.6 Asymptotic distribution under alternatives

For the power analysis, we consider a class of alternatives H| satisfying

var {Z Ls(Yl,Xls)} =o(n~'S%) and var {Z Ls(Yl,XQS)} = 0(5?),

s=1

where Ly(u,v) = FE [Ko(u, Yo) K1 {Fs(v), FS(XQS)}:| . These two conditions are assumed
to describe a small difference between H and Hj in intuitive way. Thus, the under-
lying alternatives may be viewed as ‘local’ alternatives. Rigorous definition of local
alternatives perhaps may be arguably phrased in terms of contiguity, but this is be-
yond the scope of this paper. Under Hj, the variance of T),, defined in Lemma 1
remains valid. In the following theorem, we derive the asymptotic distribution of our

proposed test statistic under the alternatives, which allows for power evaluations.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Under Hi, as n,p — o0,

{n(n —1)/2}"? {Tn,p —> " CCov(Y | XS)} /8

s=1
converges in distribution to the standard normal.

Based on Theorems 3 and 4 as well as Slutsky’s theorem, the power of the proposed

test under Hj is

U, = {1+ 0(1)}® | —2, + {n(n — 1)/2}1/2iCC0V(Y 1 X,)/S] .

s=1

where ®(-) is the cumulative distribution function of N (0, 1), and z, denotes the 1 —«

16



quantile of N(0,1). The power of our test is in spirit controlled by

SNRxgw = {n(n — 1)/2}/ zp: CCov(Y | X,)/S,

s=1

which can be viewed as a signal to noise ratio.

3 Asymptotic Relative Efficiency

It is challenging to compare our test with the tests of Zhong and Chen (2011) and
Zhang et al. (2018) in a completely model-free context. We study the asymptotic
powers of these three tests under high-dimensional linear models, and anticipate that

similar conclusions can be drawn from nonlinear models. Let us consider the model
Y =x"0+¢, (3.1)

where 3 = (f1,...,06p)", x = (X1,...,X,)" ~ N(0,%), and ¢ is independent of x
with E(g) = 0 and var(e) = o2. To illustrate the implication of SNRxgw, we consider
a diagonal matrix ¥ = diag(dy, . .., d,). Following Theorem 1(3) in Zhou et al. (2020),

we can derive that
1/2 o
SNRyew = {15n(n - 1)/(47?204]))} / stﬁg,
s=1

By contrast, the asymptotic power of Zhong and Chen (2011)’s test depends on

SNRye — {n(n—1)/(204)}1/2Zdiﬁf(Za@)_l/Q.

17



From Shao and Zhang (2014, Theorem 1(3)) and Székely et al. (2007, Theorem 7(ii)),

the asymptotic power of Zhang et al. (2018)’s test is related to
12 P P ~1/2
SNRzys = [n(n 1)/{80'(1 - V3 + n/3)}] S d¥p ( S ds> .

s=1 s=1

Based on the signal to noise ratios of three tests, the asymptotic relative efficiency of

Zhong and Chen (2011)’s test with respect to our proposal is
12 P P 12, P _1
ARE(NEW, 2C) = {15/(2x%p)}'* (Yo a.82) (Yo &2) (Yo d262)
s=1 s=1 s=1
The asymptotic relative efficiency of Zhang et al. (2018)’s test with respect to ours is
12 , 2 b 12 , 2 -1
ARE(NEW, ZYS) = {30(1 3+ 7T/3)/(7r2p)} (Z dsﬁf) (Z d8> (Z d§/25§) .
s=1 s=1 s=1

To view a rough picture of the asymptotic power comparison, we consider three

scenarios in what follows.

3.1 Homoscedastic case: the marginal variance of each co-

variate is the same

In the homoscedastic case, d; = ... = d,. Direct computation shows ARE(NEW,ZC) ~
0.872 and ARE(NEW, ZYS) ~ 0.979. It follows that ARE(ZYS,ZC) ~ 0.891, which
is in line with Remark 2.6 in Zhang et al. (2018). These results imply that our pro-
posed test is asymptotically less powerful than Zhong and Chen (2011)’s test, which

is specially designed for the linear models. Both our proposed test and Zhang et al.
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(2018) ’s test are model-free, and perform comparably under the homoscedastic case.

3.2 Heteroscedastic case when the number of non-zero effects

is fixed

For simplicity, we assume that all non-zero coefficients S, have the same magnitude,
that is, s = kI(1 < s<gq),s=1,...,p, for K #0, g € {1,...,p} is fixed. In this

setting, if we assume the condition

p=o0 {min (Z d2, st> } : (3.2)

we have ARE(NEW,ZC) — oo and ARE(NEW,ZYS) — oo, as p — 0o. The condi-
tion (3.2) is a sufficient, but not necessary condition for our test to be more powerful
than Zhong and Chen (2011)’s test and Zhang et al. (2018) ’s test. In Section S.8 of
the supplement, we show that the proposed test may still have better power perfor-
mances when p = O {min (3}_7_, d%,>°"_, d5)}. The condition (3.2) is trivially true in
the case that different components of x have distinctive scales. Under this condition,
our test is substantially more powerful than both Zhong and Chen (2011)’s and Zhang

et al. (2018)’s tests. To further compare the asymptotic power performances of these

two tests under the heteroscedastic case, we further impose the condition

Zp:ds =0 (i d§> : (3.3)

This condition is also mild if the variance of each covariate differs much. Under this

assumption, we show the asymptotic power of Zhang et al. (2018)’s test is superior
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to that of Zhong and Chen (2011)’s test, which is also a totally new finding and have
not been discovered by Zhang et al. (2018). Therefore, the asymptotic powers of

three tests arranged in a descending order are those of our proposed test, Zhang et al.

(2018) ’s test and Zhong and Chen (2011)’s test.

Consider an explicit scenario satisfying (3.2) and (3.3): There is a parameter § > 0

not depending on the dimension p such that

dy=<s° fors=1,...,p,

where for two sequences {a,} and {bs}, we write a, < b, if there exist positive con-

stants ¢ and C' such that ¢ < liminf, a,/bs < limsup, a,/bs < C.

In the ultrahigh dimension setting logp =< n?, the signal to noise ratios of three

tests are respectively

SNRzc < (logp)l/ep_(1+25)/2, SNRzys =< (logp)l/ap_(prém, SNRyew =< (1ng)1/ep—1/2.

As the dimension p — o0, all the three tests will have trivial powers and cannot
distinguish the alternatives from the null. The statistical intuition behind this phe-
nomenon is that for fixed-dimensional signals, high dimensionality is a total curse and
the signal to noise ratios of three tests converge to zero. Even in this case, the conver-
gence rate of our proposed test is still slower than those of Zhong and Chen (2011)’s
and Zhang et al. (2018)’s tests. We can also give the explicit order of asymptotic

relative efficiency of these three tests in this case.

ARE(NEW, ZC) < p°, ARE(NEW, ZYS) = p*2, and ARE(ZYS, ZC) = p°/2.
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In terms of the asymptotic power, the performance of our proposed test is the best,
followed by Zhang et al. (2018)’s test. Zhong and Chen (2011)’s test is unfortunately

the worst among the three tests.

3.3 Heteroscedastic case when the number of non-zero effects

is diverging

Assume that s = kI(1 < s < gq),s =1,...,p, for k # 0, q(< p) is diverging. All

other settings are remained exactly the same as those in Section 4.2.

Suppose that ¢ < p” with 0 < 7 < 1. In the ultrahigh dimension setting of

log p < n? for some 0 < § < 1, the signal to noise ratios of three tests are respectively

SNRZC — (logp)1/9p7(1+25)—1/2—5’ SNRZYS — (1Ogp)1/9p7(1+36/2)_1/2_5/2, and

SNRyew =< (log P)l/ng(H(s)_l/Q-

(a) If the signals are dense, that is, in the order of ¢ = p” with 1/2 < 7 < 1,
all the signal to noise ratios SNRyc, SNRzys and SNRygw go to infinity as p — oo.

Therefore, these three tests have nontrivial power under Hj.

(b) If the signals are sparse, that is, in the order of ¢ = p™ with 0 < 7 < 1/2.
Apparently, 7(1 + 20) — 1/2 — § < 0 in SNRyz¢, which implies that Zhong and Chen
(2011)’s test may suffer from low power under the sparse alternatives even when
the covariate is homoscedastic, which is consistent with the fact that Zhong and
Chen (2011)’s test is designed to target dense alternatives. By contrast, Zhang et al.

(2018)’s test may break down for 0 < 7 < 1/3, since 7(1 +36/2) —1/2 —-4§/2 < 0
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in SNRzyg for all § > 0. Our proposed test has a nontrivial power as long as § >

(27)~1 - 1.

Moreover, no matter the signal is dense or sparse, the asymptotic relative efficiency

of these three tests are

ARE(NEW, ZC) = p=" ARE(NEW, ZYS) = p°=7/2 and ARE(ZYS, ZC) = p°1=7/2,

which implies that our proposed test is still asymptotically more powerful than Zhong

and Chen (2011)’s and Zhang et al. (2018)’s tests.

In summary, the aforementioned power analysis suggests that compared to Zhong
and Chen (2011)’s and Zhang et al. (2018)’s tests, our proposed test has a substan-
tial efficiency gain in heteroscedastic case while maintaining high power efficiency in

homoscedastic case. We shall verify this finding through numerical studies.

4 Numerical Studies

4.1 Simulation studies

We conduct simulations to evaluate the finite-sample performance of the proposed
test and compare it with the two universal (n, p)-asymptotic tests proposed by Zhong
and Chen (2011) and Zhang et al. (2018). In addition, we compare our proposal test
with the ART (McKeague and Qian, 2015) and its related test proposed by Zhang

and Laber (2015) in the supplement.
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Let us consider the following three models:

Yi = xB1+e (4.1)
Y; = 3x;B;+exp(x; 8,4/2) + exp(x; By — 1)ei, (4.2)
Y, = (XiTﬂ5>eXp(XiTBQ/\/§) + exp(x; B5/v/2q) + €, (4.3)
where x; = (X;1,...,X;,)" is generated from the following moving average model:
Xis = 85/2{P1Z¢s + p2Zi(ss1) + -+ p1i(srT-1) } (4.4)

for 6 >0, T =8and s =1,...,p. Here, z; = (Zi1,..., Zipsr—1))" is (p+ T — 1)-
dimensional standard normal. The coefficients {p;.}7_, are generated independently
from the uniform distribution on [0, 1] and are kept fixed once generated. The moving

average model (4.4) implies that 3 = cov(x;) = (0st)pxp, consists of

T
oy = (st)°/? Zpkpkﬂs_ﬂlﬂs —t| < T}, fors,t=1,...,p.
k=1

Therefore,

T
var(Xy) = sézpi, fors=1,...,p.
k=1

The parameter ¢ controls the degree of heteroscedasticity. We consider 6 = 0,0.25, 0.5,
0.75 and 1, where § = 0 indicates that all covariates are homogeneous. The error term
g; follows two different distributions: N(0,1) and the centralized gamma distribution

with shape parameter 1 and scale parameter 1, where the centralized gamma distri-
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bution is skewed to the right.

Under the null hypothesis H|), the coefficients in all three models are all zero.
Following Zhong and Chen (2011) and Zhang et al. (2018), we consider two config-
urations of alternative hypothesis. (a) Non-sparse case: the total number of active
covariates ¢ = [p*7 /2|, where [z] denotes the largest integer not greater than z. (b)
Sparse case: the total number of active covariates ¢ = [3p"?/2]. The coefficients are

defined as follows.

Bi: B =11Bll/vg, for j=1,....q,

By By =1, for 7 =1,

Bs: B =IBll/vg, for j=2,....[q/2] +1,
By B =IIBll/va, for j=la/2]+2,....q+1,
Bs: B =11Bll/vg, for j=2,....q+1,

where ||3]]* = 0.04. All other entries are identically 0. We choose n =80, 120 and
p = 550, 1116, according to p = [exp(n®*) + 230]. Model (4.1) is a linear regression
model where the first ¢ covariates have the same magnitude of signals. Model (4.2) is
a partially linear model with heteroscedastic errors while Model (4.3) is a nonlinear
model. The significance level « is fixed at 0.05 and all results are based on 1,000

Monte Carlo replications.

Table 1 reports the empirical sizes and powers of our proposed test as well as those
of Zhong and Chen (2011)’s and Zhang et al. (2018)’s tests for linear model (4.1).
The empirical sizes of all three tests are reasonably close to 5% under two different

error distributions. We display the kernel density estimates for the standardized test
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statistic T}, ,, for linear model (4.1) in Figure 1, which can be well approximated by
a standard normal distribution. This confirms the theoretical results in Theorem 3.
Since our proposed test is scale-invariance, its empirical sizes stay the same under
different values of 4. This property is not shared by Zhong and Chen (2011)’s or
Zhang et al. (2018)’s test. In terms of power, when J = 0, Zhong and Chen (2011)’s
test is an obvious winner, and Zhang et al. (2018)’s test is slightly better than our
proposed test. The differences among three tests are not remarkable. This echoes the
theoretical finding in Section 3 that our proposed test has little efficiency loss when
each covariate has the same variance. However, when ¢ is larger than zero, the story
becomes totally different. Our proposed test has the best performances, followed by
Zhang et al. (2018)’s test, and then Zhong and Chen (2011)’s test. When 6 = 1, the
empirical powers of our proposed test and the two competitors are 0.998, 0.133, 0.056
respectively under sparse H; with (n,p) = (120,1116) and normal errors. Under
this scenario, our proposed test significantly outperforms the competitors while the
empirical power of Zhong and Chen (2011)’s test is close to the significance level.
This implies that even under the linear models, our proposed test has substantial
efficiency gain compared with the two competitors for the heteroscedastic covariates,
in accordance with asymptotic power comparison in Section 3. Compared to non-

sparse alternatives, all three tests have power reductions under sparse ones.

Tables 2 and 3 summarize the results of all three tests for models (4.2) and (4.3).
The sizes of all three tests are satisfactory regardless of §, (n,p) and error distribu-
tions. Under alternatives, Zhong and Chen (2011)’s test and Zhang et al. (2018)’s test
gradually break down as d increases. By contrast, our proposed test remains valid

for a wide range of 6. When § = 1, the empirical powers of our test arrive at 0.922 in
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model (4.2) and 0.911 in model (4.3) under non-sparse H; with (n,p) = (120, 1116)
and normal errors. Similar to the phenomenon in linear model, our scale-invariance
test is still much more powerful for nonlinear models with heteroscedastic covariates.
Table 1: The empirical sizes and powers for linear model (4.1) at the significance level 5%,
where 0 controls the degree of heterogeneity in terms of the covariate variances. Throughout

our numerical studies, we refer to our proposed test, and the tests proposed by Zhong and
Chen (2011) and Zhang et al. (2018) as NEW, ZC and ZYS, respectively.

Normal error Gamma error
(n,p) Hypothesis ) 7C ZYS NEW 7ZC ZYS NEW
(80, 550) Hy 0.00 0.054 0.050 0.045 0.052 0.054 0.059

0.25 0.054 0.048 0.045 0.059 0.059 0.059

0.50 0.063 0.052 0.045 0.064 0.065 0.059

0.75 0.062 0.052 0.045 0.066 0.063 0.059

1.00 0.067 0.053 0.045 0.060 0.066 0.059

Non-sparse H; 0.00 0.772 0.735 0.718 0.783 0.757 0.735
0.25 0.665 0.830 0.934 0.688 0.834 0.933

0.50 0.422 0.833 0.996 0.458 0.846 0.991

0.75 0.240 0.771 1.000 0.260 0.783 1.000

1.00 0.140 0.627 1.000 0.152 0.638 1.000

Sparse H; 0.00 0.522 0488 0470 0.523 0.515 0.497
0.25 0.218 0.371 0.652 0.228 0.390 0.638

0.50 0.115 0.271 0.795 0.099 0.270 0.779

0.75 0.072 0.197 0.911 0.079 0.184 0.905

1.00 0.065 0.138 0.965 0.068 0.134 0.972

(120,1116) Hy 0.00 0.047 0.048 0.044 0.052 0.049 0.052
0.25 0.043 0.041 0.044 0.057 0.052 0.052

0.50 0.042 0.044 0.044 0.058 0.053 0.052

0.75 0.039 0.046 0.044 0.064 0.057 0.052

1.00 0.039 0.047 0.044 0.063 0.057 0.052

Non-sparse H; 0.00 0.849 0.814 0.797 0.842 0.811 0.794
0.25 0.731 0918 0.981 0.749 0.909 0.979

0.50 0.466 0.912 1.000 0.471 0.918 0.999

0.75 0.246 0.830 1.000 0.251 0.836 1.000

1.00 0.139 0.655 1.000 0.150 0.661 1.000

Sparse H 0.00 0.670 0.612 0.593 0.643 0.620 0.602
0.25 0.231 0.452 0.796 0.242 0.452 0.796

0.50 0.101 0.303 0.933 0.110 0.304 0.941

0.75 0.063 0.190 0.982 0.079 0.201 0.989

1.00 0.056 0.133 0.998 0.063 0.131 1.000
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Figure 1: Density curves of the asymptotic null distribution of our test statistic under
(n,p) = (80,550) (black dashed line) and (n,p) = (120,1116) (blue dashed line) compared
with the standard normal distribution (red solid line).

4.2 An application

We apply our proposed test to a gene expression data set. The cardiomyopathy mi-
croarray data comes from a study by Redfern et al. (2000), and has been analyzed by
several important researchers, including Segal et al. (2003), Hall and Miller (2009), Li
et al. (2012) and Shao and Zhang (2014). It contains 6,319 gene expression values from
30 mice. Redfern et al. (2000) reported that the overexpression of G protein-coupled
receptor Rol in hearts of adult mice would lead to a lethal dilated cardiomyopathy.
This finding helps geneticists look into the etiology of human disease. We test whether

the gene set contributes to expression level of Rol.

Figure 2 shows the standard deviation of each gene expression level, which ranges
from 17.34 to 18,437.96. This implies that the variation of gene differs substantially
from each other. We divide the whole dataset into two subsets with n; = 16 and
ny = 14. On the first subset, we follow Li et al. (2012) and Shao and Zhang (2014) to
screen out unimportant genes by marginally testing the conditional mean indepen-

dence between the expression levels of each gene and Rol. The Benjamini-Hochberg
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Table 2: The empirical sizes and powers for partially linear model (4.2) at the significance
level 5%, where 0 controls the degree of heterogeneity in terms of the covariate variances.
Refer to the captions in Table 1 for abbreviations.

Normal error Gamma error
(n,p) Hypothesis ) ZC ZYS NEW ZC ZYS NEW
(80, 550) Hy 0.00 0.054 0.050 0.045 0.052 0.054 0.059

0.25 0.054 0.048 0.045 0.059 0.059 0.059

0.50 0.053 0.052 0.045 0.064 0.065 0.059

0.75 0.062 0.052 0.045 0.066 0.063 0.059

1.00 0.067 0.053 0.045 0.060 0.066 0.059

Non-sparse H; 0.00 0.646 0.684 0.683 0.684 0.728 0.714
0.25 0487 0.690 0.814 0479 0.715 0.837

0.50 0.233 0.634 0.903 0.243 0.644 0.924

0.75 0.128 0.504 0.951 0.143 0.506 0.964

1.00 0.072 0.321 0.952 0.070 0.329 0.967

Sparse Hy 0.00 0.343 0.391 0.380 0.354 0.396 0.402
0.25 0.131 0.289 0.474 0.130 0.306 0.505

0.50 0.064 0.195 0.561 0.058 0.193 0.608

0.75 0.046 0.136 0.648 0.048 0.133 0.713

1.00 0.044 0.107 0.749 0.037 0.104 0.804

(120,1116) Hy 0.00 0.047 0.048 0.044 0.052 0.049 0.052
0.25 0.043 0.041 0.044 0.057 0.052 0.052

0.50 0.042 0.044 0.044 0.058 0.053 0.052

0.75 0.039 0.046 0.044 0.064 0.057 0.052

1.00 0.039 0.047 0.044 0.063 0.057 0.052

Non-sparse H; 0.00 0.669 0.700 0.691 0.687 0.747 0.733
0.25 0483 0.725 0.862 0.520 0.749 0.870

0.50 0.261 0.672 0.939 0.276 0.720 0.946

0.75 0.125 0.533 0.973 0.133 0.546 0.976

1.00 0.064 0.275 0.922 0.047 0.266 0.906

Sparse H; 0.00 0.450 0.479 0.468 0.478 0.523 0.523
0.25 0.159 0.339 0.600 0.162 0.381 0.639

0.50 0.068 0.211 0.727 0.064 0.233 0.751

0.75 0.055 0.148 0.830 0.047 0.151 0.846

1.00 0.050 0.109 0.903 0.045 0.099 0.906

procedure is applied to control the false discovery rate at 0.001. After the screening
procedure, the tests proposed by Zhong and Chen (2011) and Zhang et al. (2018) and

our proposal retain 145, 79 and 163 genes respectively.
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Table 3: The empirical sizes and powers for nonlinear model (4.3) at the significance level
5%, where § controls the degree of heterogeneity in terms of the covariate variances. Refer
to the captions in Table 1 for abbreviations.

Normal error Gamma error
(n,p) Hypothesis ) ZC ZYS NEW ZC ZYS NEW
(80, 550) Hy 0.00 0.054 0.050 0.045 0.052 0.054 0.059

0.25 0.054 0.048 0.045 0.059 0.059 0.059

0.50 0.053 0.052 0.045 0.064 0.065 0.059

0.75 0.062 0.052 0.045 0.066 0.063 0.059

1.00 0.067 0.053 0.045 0.060 0.066 0.059

Non-sparse H; 0.00 0.735 0.762 0.753 0.740 0.766 0.743
0.25 0.429 0.650 0.831 0.443 0.662 0.846

0.50 0.215 0.512 0.862 0.206 0.530 0.890

0.75 0.101 0.371 0.877 0.105 0.375 0.912

1.00 0.056 0.272 0.884 0.080 0.266 0.922

Sparse Hy 0.00 0.638 0.695 0.670 0.672 0.707 0.667
0.25 0.226 0.464 0.741 0.212 0.448 0.751

0.50 0.087 0.288 0.801 0.079 0.263 0.797

0.75 0.061 0.170 0.827 0.055 0.160 0.845

1.00 0.042 0.110 0.847 0.048 0.116 0.862

(120,1116) Hy 0.00 0.047 0.048 0.044 0.052 0.049 0.052
0.25 0.043 0.041 0.044 0.057 0.052 0.052

0.50 0.042 0.044 0.044 0.058 0.053 0.052

0.75 0.039 0.046 0.044 0.064 0.057 0.052

1.00 0.039 0.047 0.044 0.063 0.057 0.052

Non-sparse H; 0.00 0.794 0.816 0.805 0.804 0.820 0.803
0.25 0434 0.689 0.871 0.430 0.696 0.881

0.50 0.207 0.512 0.906 0.179 0.528 0.905

0.75 0.107 0.378 0.911 0.090 0.348 0.914

1.00 0.075 0.271 0.911 0.055 0.225 0.922

Sparse H; 0.00 0.732 0.767 0.744 0.733 0.764 0.740
0.25 0.199 0471 0.809 0.202 0.461 0.815

0.50 0.088 0.246 0.847 0.077 0.263 0.851

0.75 0.056 0.158 0.877 0.054 0.155 0.870

1.00 0.050 0.116 0.882 0.043 0.107 0.881

We then compare the power performances of these three tests. We randomly pick
6, 7, 8, 9 and 10 samples from the second subset of data and test the overall effects
of selected genes. Each testing procedure is repeated 1,000 times and the empirical

power is reported in Table 4. The powers of all tests gradually approach to one
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Figure 2: The standard deviation of each covariate.

as the sample size increases, and our proposed test outperforms both competitors

significantly, particularly when the sample size is small.

Table 4: The empirical powers for ZC, ZYS tests and our proposed test.
random samples ZC ZYS NEW

6 0.363 0.105 0.463
7 0.432 0.328 0.731
8 0.569 0.632 0.912
9 0.692 0.845 0.980
10 0.831 0.975 1.000

5 Discussion

In this paper, we develop a new test to examine the effects of high-dimensional co-
variates on the response without any model assumptions. Our test statistic is built on
the cumulative covariance, which has an explicit form and is completely free of tun-
ing parameters. The limiting distributions of our proposed test statistic are normal
under both the null hypothesis and the alternatives. Our asymptotic power analysis
and numerical studies show that even under the high-dimensional linear models, our

proposed test has substantial power improvement compared to the tests of Zhong and
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Chen (2011) and Zhang et al. (2018) in the heteroscedastic covariates setting, while
maintaining high efficiency in the homoscedastic cases. It is also important to remark
here that our proposed testing procedure can be easily generalized to multivariate
response case. For the multivariate response y € R (¢ > 1), where ¢ is allowed to be

large but finite, we can analogously define
E[cov{yT, [(X < X) | X}eov{y. I[(X < X)| X}],

where (X,y) is an independent copy of (X,y). This metric reduces to (2.3) in the

univariate case of ¢ = 1. The corresponding test statistic is further defined by

{4(n)s} Z Z (vi = ¥3)" (yr — YU (Xis, Xjs, X)WV (X, Xis, X))

821 (7;7j7k7l7r)

The computationally efficient algorithm and theoretical analysis for our test statistic
in (2.5) can be directly applied to the above statistic. It is also worth noting that
our test procedure is built on a sum-of-squares-based statistic and targets dense al-
ternatives. To enhance its power for sparse signals, we suggest to follow the ideas of
McKeague and Qian (2015), Fan et al. (2015), Chen et al. (2019) and Zheng et al.

(2019) to construct test statistics, which deserve further investigations.
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Supplement to “Testing the effects of high-dimensional

covariates via aggregating cumulative covariances”

S.1. Proposition 1 and Its Proof.

To justify the unbiasedness of T}, , in high dimension, we provide a simple and equiv-
alent expression for CCov(Y | X) in (2.3).

PROPOSITION 1. Let {()?1,32),@ =1,...5} be the five independent copies of (X,Y).
Assume that var(X) > 0, 0 < var(Y) < oo and X is continuous, then CCov(Y | X)

can be expressed as
E[(ﬁ - }/73)()/72 - i\//ll)w(jzlu j\(/?)u X5)1/}<)’227 ),\(/47 jz5):| /47 (S].)
where the function (-, -,-) is defined as

w(Xl,XQ,Xg) = I(Xl < X3> — ](XQ < X3)

In contrast to the standard version in (2.3), this expression in (S.1) plays an important
role in constructing a scale-invariance test statistic for high-dimensional conditional
mean independence without bias correction.

Proof. Using the equality cov{Y, (X < 2)} = E[(Yi — Ya){I(X) < 2) — [(Xs <
2)}]/2 for any z € R, we obtain

covH{Y, I(X <)} = E[(Yi - Ya)(Ys — Y){I(X, < z) — [(X, < 2)}
x{I1(X3 < x) — (X, < 2)}] /4.

By the law of iterated expectations, we complete the proof. 0



S.2. Proof of Theorem 1

It is noted that

n

Z (Yl o ?) {](Xis < XjS) - Fn,S(XjS)}

-1 Z Y Yk {I<Xzs < XJS) - I(st < XJS)}

i=1 k=1

forj=1,...,nand s =1,...,p. Define

=33 (0= Y (Ve = YD (Xie Xy, X)X, X, X),

8:1 (i7j7k:7l7r)

=Y > > > > (Vi = Y (Ve = Y)U(Xis, Xiio, Xis)(Xss Xis, Xis),

s=1 i=1 j=1 k=1 I=1

Ts=>"3 3 3 ) (Vi = V) (Y = Y (Xis, Xje, Xia)th (Xiy X, Xia),

s=1 i=1 j=1 k=1 I=1

J4 - Z Z Z Z<YZ o YJ)(YJ B Yk)zb(XlS’ XJS7 X )¢(XJ87 stv Xi8)7

s=1 i=1 j=1 k=1

I =3 33 S0 = V) = V(Ko Xy, X3 )X e, Xis, X5),

s—liljlkl

JG:ZZZZY V)22 (Xis, Xjs, Xiss),

slzljlkl

J7:ZZZY Y X1,37X]87X )

s=1 1=1 j=1

Then, after straightforward but laborious computations, we have

Wiy = n(N/d+Ja+ Js— 2]y — 2J5 — Jo/2 + 2.7),
T = {4(n)s} 1.

To derive an efficient algorithm for T;, ,, it suffices to analyze W, ,,, Ja, J3, Ju, J5, Js

and J7, respectively. For any s = 1,...,p, sort the n observations of this covariate

{Xis:i=1,...,n} to be X1), < ... < X)s. Next, find the corresponding response
2



Y(;)s associated with X;),. Denote Y(i)s = Yii)s — Y with Y =n~! > Y. Following
the computational algorithm in Section 3.2 of Zhu et al. (2010), we have

P n

Wap = n=’ Z Z (i Y(Z’)S)Q

s=1 j=1 i<j

Then, we turn to deal with the terms Jo, J3, Ju, Js, Jg and J7. Denote V; = Y;—Y;,

it can be shown that

n n n

J2 - Z Z Z (Y; - Yv])(”c - E)I(st < Xis)I(Xls < Xis)

s=1 i=1 j=1 k=1 I=1
p n n n

NN NN W = V) (Ve = YOI(Xy < X (X < X
s=1 i=1 j=1 k=1 I=1

1 1
P n n n

= ) > Y Y VYVI(Xje < Xi)I (X, < Xi)
s=1 i=1 j=1 k=1

p n n n

=203 Y NN VVRI(XGs < X (Xs < Xi)

s=1 i=1 j=1 k=1

Qn§§<§ms)2_%zz{j-l S,

s=1 j=1 =1 s=1 j=1

where the second equality follows from the fact that Y; = 0. Similarly, it follows
i=1
that

p n n p n n n

T3 o= 0?2 YOS V(X < Xj) —2n ) D VI Xis < Xipo)I(Xs < Xi)
s=1 i=1 j=1 s=1 k=1

=1 i= =1 i=1 j=1 k=

]

p n n n

+3nz Z Z YV (Xis < Xis)I(Xjs < Xis)
s=1

=1 i=1 j=1 k=1
P n n n n

+> SNV, < Xi) (X < Xiy)
s=1 i=1 j=1 k=1 I=1

P n Jj—

= {n2—2n(j—1)}z s

P n 7j—1 2
+3nzz < Y >
s=1 j=1

s=1 j=1 =1




+{(n—1D)n(2n —1) /6}223/()8

s=1 i=1

Moreover, we have

n n P n n n
Ji = nzp:ZZY;QI(XiS <Xj)+ ) ViVl (Xig < Xpa) I (Xjs < Xis)
s=1 =1 j=1 s=1 i=1 j=1 k=1
- nZZZYYIX < X)) — i ; iiyﬁ (Xis < Xpo) [(Xjs < Xpo)
s=1 i=1 j=1 s=1 i=1 j=1 k=1
D n 7—1 ) 2 P n 7—1
- ZZ(Zml)‘g) +ZZ{<n_j+1 Yv(fs}_nZZ{}/(] Z}/(’LS}.
s=1 j=1 i=1 s=1 j=1 =1 s=1 j=1

Similar calculation shows that

p n n n
J, = Z Z Z ZY,?I(XZ-S < Xp)I(Xjs < Xis)
s=1 i=1 j=1 k=1
p n n n
_9 Z Z Z Z ViVl (Xis < Xio) (X5 < Xs)
s=1 i=1 j=1 k=1
P n n

222 i YV (Xis < X ) [(Xjs < Xi)

s=1 i=1 j=1 k=1

_ g;ﬂ;{(z_l }—222{;—1ﬂy ZY>S}+§;§;<§%>S>Q-

Furthermore, it can be shown that

P n n n

Js = 2222)/2 (Xis < X5) +2) ) 3 VPI(Xiy < Xis)
1 1 1

_i_ljl s=1 i=1 j=1 k=1

—4 Z Z Z Z YIQI(Xzs < st)](st < st)

s=1 i=1 j=1 k=1

P m n n
+4Z Z Z ZYZY]-I(Xis < Ko ) 1 (Xjs < Xis)

s=1 i=1 j=1 k=1



P n

_ 2;j:1{n—2j+2 ZY()S}Jrn (n—1) zpjiy)swlzz:(z z)s>2

s=1 i=1 s=1 j=1 i=1
and
p n n ) P n n
5 5) ) RVEIEERED 3) 3) 9 AT IE SIS 9) 931 9
s=1 i=1 j=1 s=1 i=1 j=1 s=1 i=1
Putting the above together, we complete the proof. 0O

S.3. Proof of Lemma 1

It is easy to see that

E{I(X1, < X5)I(Xos < Xs,) | 21,25}
= 1—|F(Xus) — Fo(Xa,)|/2 = Fis(X1,)/2 = Fi(Xa2s)/2,

where F(+) is the cumulative distribution function of X for s = 1,...,p. Based on

this, we have

E{(Xus, Xas, Xos)0(Xos, Xas, Xss) | 21, -+, Za}
= {—[Fs(X1s) — Fo(Xas)| — |Fo(Xas) — F(Xys)|
| Fo(X1s) — Fo(Xus)| 4 |Fo(Xas) — Fo(X54)]}/2
= [K{Fi(X1s), Fo(Xas)} + K1 {Fi(Xs,), Fo(X4s)} (S.2)
— KO {Fu(Xas), Fo(Xas)} = Ko {F3(Xas), Fo(X30) 3] /2,

where

Kl{Fs(Xls)7 Fs(X2s)} = 2E{1/1(X137X35, X53>¢(X237X437X5s) ‘ Z, ZQ}
= _‘FS(X18> - (X25)| - (XIS) —FS(X25)+F5(X15) —I—Ff(ng) ""2/37



is the double centered version of —|Fy(X5)—Fs(Xas)| and satisfies that E[K7{Fs(X1s), Fs(X2s)} |
z1) = E[K 1 {Fs(Xis), Fs(Xas)} | z2] = 0. By the useful property of the double centered

distance, it can be shown that the projections of h= 5h/3 are,

W) = 3 {L0 X+ 2000y | X0 b

s=1
p

h(z1,2,) = Z[KO<YI7Y2)K1{FS(X15)7FS(XQS)}+QCCOV(Y|X$)

s=1

F2Lu(Va, X1,) + 2La(Ya, Xos) = La(Y¥i, Xas) = L3, X1,)] /12,

%(3)(Z1,Z2,Z3) = ZZ {KO i ] |:2K1{FS(XZ'S)7FS<XJS)}

s=1 (i j.k)

~ K {F(Xis), Ful(Xio)} = Ki{Fo(XG), Fu(Xa)}

+2L5<Y;; Xzs) - Ls(Y;7 st) - LS(Y;7 st)}/487

p

4
W92y, 7,20,20) = D D0 {Ko(¥i, V) + Ko(Yi, i) }

s=1 (i,5,k,0)

X[QKI{F( zs)an(st)}+2K1{F5(st)7Fs(Xls)}
_Kl{F( 5)7F5(st)} _Kl{Fs(Xis)st(Xls)}
_KI{F< )7F8(st>}_Kl{FS(st)7Fs(Xls)} /1927

where KO(}/h}/Q) = (}/l_EY)(}/Q_EY) and Ls(}/laXls) = E[KO(}/M}/Q)XKl{FS(XlS)v
~ P~
Fy(X24)} | z1]. Moreover, h®)(zy, 2,23, 24,25) = > hs(1,2,3,4,5).

Under either H{ or Hj, it is straightforward to verify that

var {Z Ly(Y7, Xls)}] =o(n"'S?).

s=1

& =var{hV(z;,)} = O

To obtain the variance of h®)(z;,z,), we first show that



var [ KI{FS<X18)JFS(X2S>}]

s=1
p

= 3 cov[Ki (X0, Fu(Xao) b, Ki{ F(Xoe), Fy(Xar) )]

s=1 t=1

= le Z Z E([KI{FS(XIS)J FS<X28)} + Kl{Fs(X3s)7 FS(X4S)}

s=1 t=1

— K {Fy(X1s), Fs(Xus)} — Ki{Fs(Xas), Fy(X36)}] [Ki{Fy(X1e), Fy(Xoe)}
+ K F(X3t), Fy (X))} — Ki{Fy(X1), Fy(Xar) } — K { Fi(Xoe), Ft(X:at)H)

p p
= Y > E{(Xus, X, Xao) ¥ (Xag, Xas, Xt (X1, Xar, X)) (Xor, Xag, Xer)

s=1 t=1

which further equals

p p
42 ZE[COVQ{](Xls < Xoo), I( Xy < Xap) | Xos, Xt}

s=1 t=1

- 4zp: ZP:BKR(XS,Xt) > 4zp: BKR(X,, X,) = 2p/45 — 00,  (S.3)

s=1 t=1 s=1
as p — oo. Here BKR(X,, X;) = [ [{Fu(u,v) — Fs(u)Fy(v) }2dFy(u)dF;(v) is Blum-
Kiefer-Rosenblatt coefficient between X and X; introduced by Blum et al. (1961),
and Fg(-,-), Fs(-) and F;(-) denote the joint and marginal cumulative distributions of
X and Xt, respectively. Under Assumption 1, it directly follows that S? — oo and
Z Z BKR(X,, X;) > p/90, as p — oo. Recalling the expression of h(?(z,,z),

s=1t=1
we then calculate the difference between & and S?/100.

p
|§2 - 82/]—00| S Var|:Z{Ls(}/la Xls) + Ls(}/Qu X28> - LS<Y17X28)/2

s=1

LY X)) |36+ eov | 3 Kalvi YRR 061, X

+ i{Ls<Yi7 Xls) + L5<Y27 XQS) - LS()/I7X28)/2 - Ls(}/% Xls>/2}] ’/6

s=1



< var{iLs(Yl,Xls)}—i—var{iLs(Yths)} /23
s=1 . s=1 . 1/2
L @83 [Var {Z LS(Yl,Xls)} + var {Z Ls(Yl,XQS)H ,

where the last inequality holds due to Hélder’s inequality. Consequently, under either
H} or H}, we have | — S?/100| = 0(S?). This, together with (Serfling, 1980, Lemma
5.2.1 A) and the fact that S? — oo as p — oo, implies

& =100"1S*{1+0(1)}, as p— oo.

Again, by Holder’s inequality, we obtain

& < (6°/48%) (1652 + 8var [zp: Ko(Y1, Yo) K {Fy(X1s), FS(ng)}]

s=1

+4var {Zp: L(Yr, Xls)} + 2var {i Ls(Y1, ng)} >

s=1 s=1

< (6°/48?%) (1652{1 + 0(1)} + 8var [Zp: Ko(Y1, Ya) K1 {Fs(X1s), FS(ng)}] >

s=1

< (6°/48?%) [1652{1 +o(1)} + 8czp: i BKR(X;, X;)

s=1 t=1

< Cs?,

where the second inequality follows from the condition (2.7) and the third inequality
holds by Assumption 1. Here and in what follows, the notations C' and c¢ are generic
constants, which may take different values at each appearance. Because 2£3/3 > & =

1007152{1 + o(1)}, we have that & and &; are of the same order.

Similarly, it can be shown that



&4

IN

(8%3/192?) (3252 + 8var [Xp: Ko(Y1, Yo K {F,(X1s), Fs(ng)}]

|

p p
< (8%3/192?) {3232 +8cY) > BKR(X,, Xt)} <082

s=1 t=1

+8var{ Ko(Y1, Ys) }var [Z K {F(X1s), Fs(X3s) }

s=1

where the second inequality follows from (S.3) and Assumption 1. Because 3§,/4 >

& < 5%, we also have that & and &, are of the same order.

Using similar arguments those in the derivation of (S.3), it follows by Assumption

1 and Minkowski’s inequality that

& < Ovar{) | ¥(Xis, Xao, Xao)th(Xag, Xsa, Xoo)}

s=1

= 4C zp: zp: BKR(X,, X;).

s=1 t=1

This, together with the inequality 4&5/5 > &4, gives that £ and &5 are of the same
order. Hence, the third, fourth and fifth terms in the Hoeffding decomposition are all

of smaller order.

By the definitions of C'(n,m) and (m),,, we can easily see that
{C(n.5)}71C(5,c)C(n —5,5—c) =n {C(5,¢)}*{(c)cH{1 + o(1)},

for 5 > ¢ > 1. Under either Hj or Hj, we apply the Hoeffding decomposition for

var(T,, ) to obtain
var(T,,,) = {n(n — 1)/2} 7152 {1 +o(1)}.

This completes the proof of Lemma 1. 0



S.4. Proof of Theorem 2

p
Under HJ, it is straightforward to show that h(V(z;) = Y {L(Yl,Xls) +2CCov(Y |
s=1
XS)} /4 = 0. Then, the projection of h to two-dimensional sample spaces is
p
W2 (zy, 25) = Z Ko(Y1, Y2) Ki{Fi(X1s), Fi(X2s)}/20.
s=1

Let fn,p be the projection of T;, ,, where

n

Top=10{n(n—1)/2}"" Y h¥(z,z)).

1<i<j<n
We can decompose T}, , = T, + T, — T n.p, Where T, , — T, , can still be written as
a U-statistics with kernel
(21,22, 23,24, 25) = h(21, 29, Z3, 24, Z5) — E h? (Ziy, Ziy)-
1<i1<12<bh

By the useful property of the double centered distance, it can be shown that the

projections of g are,

g(l)(zl> = O’
9 (z1,22) = 0,
9Nz, 20,25) = h¥(z1,29,23) — > 0P(zy,2),
1<1<12<3
9(4)(Z1,ZQ,Z3,Z4> = h( )(ZIJZ27Z37Z4 Z h Zluzzg)
1<i1<i2<3
— Z h(3) (ZZ‘17 Z;,, Zig)-
1<i1<i2<i3<4

Under the null hypothesis H}, var{g™"(z;)} = var{g®(z,,22)} = 0. By the Hoeffd-
ing’s variance formula in Lemma 1, Var(fn,p) = O[n~*var{h®(z,,z,)}] and var(T},, —
T,,) = o[n 2var{h(®(z,, 25)}], which follows the fact that var{h®}, var{h®}, var{n®}

10



and var{h®} are of the same order. We further obtain that

A~

T, var V(T ) = T, ,var—/*(T,,,) + op(1).
From (Serfling, 1980, Lemma 2.5.1A), we have
var(T,,,) = {n(n —1)/2} 715>
Hence we only need to show that
{n(n —1)/2}"°T,,/S 2 N(0,1),

where 2 denotes convergence in distribution. According to the definitions of T\n,p

and h®)(zy,2,), fn,p/S can also be written as

{n(n—1)/2}" ZZKO 0 Vi) K { Fo(Xis), Fi(Xs) }/(25).

i<j s=1

To prove the theorem, we only need to show

{n(n—1)/2}" I/QZZKO LY K {Fy(Xis), Fo(X5)}/(25) 2 N(0,1).

1<j s=1
_ k

Write Ty, = > Zyi, where
i=2

p

ZZKo L V) K {Fa(Xia), Fu(X50) Y/ {20(n — 1)},

7j=1 s=1

Let F; = o{(x1,¥1),.--,(x;,¥:)} be the o-field generated by {(x;,y;),j < i}. It is
easy to see that F(Z,; | Fi—1) = 0 and it follows that {fn,k,}"k :2 <k <n}isazero
mean martingale. Let v,; = E(Z2, | Fi_1), 2 <i <mn, and V, = i Uni- The central
limit theorem will hold (Hall (1984)) if we can verify =

V,/var(T,,) %5 1, (S.4)

11



and for any ¢ > 0
> STE{Z21(Zy > £8) | Fia} £ 0, (S.5)

where &5 denotes convergence in probability. It can be shown that v,; = v( ) 4@

ni

where
W = f2nln - D)X D0 DT BIKEYL ) KA(X), Fi(X,)
K R(Xa), R0} | 2],
and

(2) _ {n(n_l)}_ Z ZZEK() is ] Kl{F( )Fs(st)}

1<j<k<i—1 s=1 t=1

Ko(Yi, Vi) Ki{ Fi(Xit), Fi(Xie)} | 2, 2]

By Fubini’s theorem,

ar {Z U,%)/var(fn,p) }
i=2

= {2n(n—1)S*}" <i -y E[K{(Y,Y;)
KV {F(X0), F (X0 Y {FAX), (X)) | zj])
= {2n(n—1)S%}" ZTL—] var(ZZE[Kg(YY

Ky(F(X.), F <js>}Kl{Ft<Xt>,Ft<Xﬁ>}|zj1)

IN

c{n(n - 1)52}7 Z n— )2 E{V(x1,x2)*}

= o(L)n* (n—j)%,

J=1

12



where the first inequality follows from Assumption 1 and Hoélder inequality, and the

second inequality holds due to Assumption 2. Together the fact Z (n—7)%=0(n?),
=
we obtain that

ar {valli)/var(fn’p)} =o(1).

As E(vyp) = {2n(n — 1)} ' (i—1)var {Z: Ko(Y1, Yo) K1 {Fs(X1s), Fs(Xas)}| , it follows

immediately that F {Z v, /Var( p)} = 1. By Markov’s inequality,

Z v,%)/var(fmp) 21
i=2

n ~
Similar discussions can be performed on the term ) v,(i) /var(T,,,). It is essential to
i=2

obtain E{}_ v,(;)/var(ﬁl’p)} =0 and
i=2

{Zv /var( np}
= {n(n—-1)S*}" < > Ko(Y,Y;)

1<j<k<n s=1 t=1

K {Fo(Xo), Fo(Xs) HEO (Y, Vi) K { Fy(X0), Fy (X )} | szk])

c{nln =153 20 - D(n - j)*

XE{V(Xl, XQ)V(XQ, X3)V(X3, X4)V(X4, X1>}.

IN

Thus, Assumption 2 and the fact Y (j — 1)(n — j)* = O(n*) together yield
j=1

ng)/var(fmp) 0
=2

In summary, (S.4) holds.

13



It remains to show (S.5). Since
0 < E{Z}1(Zyi > €S) | Fie1} < e *ST°E(Zy; | Ficv),

we only need to prove that

n

> E(Zy) = o(SY). (S.6)

=1

It is noted that for every integer m > 4,

m 4 m m m m m
(Z xl> = Z xi + 4 Z i + 3 Z zias + 6 Z riziTy + Z T TR
=1 =1

i#j i#j i#j#hA i#jERAIA

Through simple calculation, we have

ZE(Z;‘;i) < en’E ZKl{Fs(Xis)st(st)}]

+Cn ' E? iKl{Fs(Xis),Fs(Xj )}]

s=1

= cn 2B{V(x,x)*} +4Cn~ 'S

Under Assumption 2, (S.6) follows immediately. This completes the proof. 0

S.5. Proof of Theorem 3

Denote the infeasible variance estimator for S? by

2

n P
Sg»p = {4C"n(n_ 1)}_12[(0(}/;73/]')2 ZKl{FS(XiS)’FS(XjS)} )
(1’7J) 8:1

14



where Y; = Y; = Y, and ¢, = {(1 — n~1)? + n~2}2. By Slutsky’s theorem, we only

need to prove

/82 —1 & oo, (S.7
/S7—1 %o, (S.8)

We divide the proof into the following two steps.
Step 1: We first aim at proving (S.7).

Applying the triangle inequality and the boundedness of empirical distribution

function, we obtain
2 &2 2 N
|Sn,p_Sn,p|/S < CAla

where

B
Il

nm—m*Z§j@%aw—aam

i#j s=1

me&a—mwm@mﬁun/ﬁ

It is noted that A; > 0. To establish (S.7), it suffices to show E(ﬁl) = o(1).

Under Assumptions 1 and 2, it can be verified that

EQA | x1,- ,x, <cn*122|pm i) — Fu(Xis) | S72

=1 s=1

Due to Dvoretzky-Kiefer-Wolfowitz inequality (Kosorok, 2008, Theorem 11.6), we

have

n! Z Z ’Fn,S(XiS> — Fy(Xis)| = Op [p{log(n)/n}lﬂ] )

i=1 s=1
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which yields
(A1) = O [{log(n)/n}'* ps 2]
It is noted that

p
Cp=C> BKR(X,, X,) < 5%

s=1

~

Then E(A;) = o(1) is immediate.
Step 2: We turn to prove (S.8) in this step.

Without loss of generality, we assume E(Y) = 0, because Y; is invariant under
location shifts. For any @ # j, it follows by definition that Y; = 1—-n"hHY,—n7tY, -

n~t > Y;. Direct calculation yields that
ke{i.j}

Ko(Y;,Y;) = {(L—n"P+n VY —n ' (1-n ) (¥ +Y))

— (1= YYi4Y) > Yid+n? ) ) WYL (S9)

ke{ij} ke{ig} 1{i,j}

By the independence of Y; and Yj, these four terms on the right-hand sides of (S.9)
are uncorrelated with each other. Recalling (S.3) and the notation ¢, = {(1—n"1)2+

n~2}?, we obtain
E(S%,)/S* =1+ o(1). (S.10)
Again, it follows from (S.9) that

SZﬁp/SQ < 0(32 + 23 + 34)7
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where 32, 33 and £4 are defined as follows,

Ay = {n(n—-1)}" Z [ZKl{F Fi( ys)}] Ko(Yi,Y;)?/ 8%,
i#j Ls=1

| Ko(Y;, ) Ko(Y:, Y)|/S7,

A, }zthF R0}

i#j kg{ij}

Ay = 1} Z Z Z [ZKl{F Fy(X; )}] | Ko(Y:, Y;) Ko (Y3, Y1)| /S”.

i#] kg{i,g} 1¢{i,g}

Since Ki{Fy(Xis), F5s(Xjs)} is double centered, we have E[K{Fs(Xis), Fs(Xjs)} |
Xis] = E[K{Fs(Xis), Fs( ]5)} | Xos] = 0. From (S.3), we obtain E[K{Fs(Xis),
Fy(Xos) Y K1 {Fy(X10), Fi(Xo)}] = [ [{Fst(u,v)—Fs(u) F;(v) }2dFy(u)dFy(v) = BKR(X;, X3).

These results, together with Assumptlons 1 and 2, give

var($2,/5%) < 4c*{var(As/S?) + var(D;/S?) + var(As/S?)}

S CE{V(Xl,XQ)V(XQ,Xg)V(X3,X4)V(X4,Xl)}/E2{V<X1,X2>2}
+E{V(X1,X2)4}/[TLE2{V(X1,X2)2}] =o(1). (S.11)

The statement for (S.8) follows from (S.10), (S.11) and Slutsky’s theorem.

Combining the results in Step 1 and 2, the proof of ratio consistency is completed.
Moreover, based on the results in Theorem 2 and Slutsky’s theorem, we have under
the H{,

{n(n—1)/2}"*T, /S0, 2 N(0,1).
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S.6. Proof of Theorem 4

Since T,,, is a U-statistic, it follows by the proof of Lemma 1 that under Hj,

{n(n—1)/2}'* ST, , =Y CCov(Y | X,)]

s=1

= {n(n—1)/2}7?(25)" ZZKO LY {F(Xis), Fy(Xjs)}

i<j s=1

— LYy, Xis) — Lo(Y;, X;5) + CCov(Y | X,)] + op(1).

Following the notation of Hall (1984), we denote

p

Hy(ziz,) = {n(n—1)/2}7"2 28) " S [Ko(¥:, V) Ky { Fu(Xi), Fu(X0)}

Ly(Y;, Xis) — Ls(Y;, X;s) + CCov(Y | Xy)].
By the above definition, it is not hard to verify that
E{Hn(zl,ZQ) | Zl} =0.

Under Hj, we further have

(n/2) E{H,(21,2:)"} = 1+ O — 1+ 0(1).

var {Zp: Ly(Yy, X1S)} 52

s=1

To establish the asymptotic normality of T, ,, it suffices to verify the condition
(2.1) in Theorem 1 of Hall (1984), namely,

E{G.(z1,22)*} + n"'E{H,(z1,22)"}
E?{H,(z1,2:)}

— 0,

as n,p — oo, where G,(z1,22) = F{H,(2z3,21)H,(23,22) | z1,22}. Under Assump-
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tions 1 and 2, and following the proof of Lemma 1, we can show that
E{G.(21,25)*} < On*E{V(x1,%)V (X2, %3)V(x3,%4)V(x4,%;)}/5*

p
+Cn " 4var? {Z Ls(Y7, XQS)} /S4,
s=1

E*{H,(z,,25)*} = 4n"*{1+0(1)},
n'E{H,(z1,25)'} < Cn°E{V(x,x3)*}/5*

p
+Cn~*var® {Z LS(YI,XQS)} /S*.
s=1
By the boundness of distribution function and Assumption 2, it follows that

E{G.(21,22)*}/E*{H,(z1,22)°} — 0, and
n ' E{H,(z1,2:)"}/E*{H,(2,,2,)*} — 0,

as n,p — oo. Therefore, all assumptions in Theorem 1 in Hall (1984) are satisfied
with the kernel H,(zi,22) in his Equation (2.1). This completes the proof of this

theorem. 0

S.7. Fast Algorithms for ZC, , and 7ZYS5, ,

By applying the idea of Theorem 1, we introduce fast algorithms to calculate the
numerators of standardized ZC and ZYS statistics: ,2C,,, and ,2YS,,,,. For any
s =1,...,p, sort the n observation of {X;s : 4 =1,...,n} to be Xp1), < ... < X(n)s
and find the corresponding response Y(;), associated with X(;),. Denote Y, =Y, — Y,

1./(1')5 = }/(Z)s — ?, Xis = X’L's — 75 and X(Z)S = X(z)s — 75, where 7 = n_l Z )/; and

i=1
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X, =n"1Y Xi,. Observe that > Y, = > X;s = 0. Then we can express 012C,,, as

i=1 i=1 i=1
512Cnp = {4(n)a}” Z Z (V; = Y3) (Y = V) (Xis — Xjo) (Xis — Xi)
s=1 (4,5,k,l)
= ZZYYX@SXJS—F Z Z YYstXls
s=1 (i,5) s=1 (i,5,k,0)
s=1 (i,5,k)
2 20 SOV
s=1 =1
P n
—{(n)z" +6(n); " +4(n)s "} > Y VKT
s=1 i=1
p n n
DY O YO XD,
s=1 i=1 i=1
which only requires O(np) operations. By contrast, 6:ZYS,,, can be expressed
522YS,, = {4(n)i}” Z Z Y, = Y) (Vi — V) (Xis — Xjo) (Xis — Xis)
s=1 (4,5,k,0)
= ZZYY|XZS Z Z ViV Xps — X
s=1 (i,5) s=1 (4,5,k,0)
Z Z VY| Xs — Xisl
s=1 (3,5,k)
= _{( ) +2( I}ZZZYY|XZS XJS|
s=1 =1 j=1
—{4(n) 1}2223/2\)@5
s=1 i=1 j=1
n p n n
SOV DY X - Xl
i=1 s=1 i=1 j=1
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Note that |Xzs — st’ = 2<X15 — X]S)I(XZS > st) — (Xzs — st). Employlng the

similar arguments to those for dealing with 7, ,, we obtain that

G22YSn, = —{2(n)y" +4(n); 1}2{21@)3& ZYU

+ {2(n);" +4(n) 1};{;1/ ZYU (s}

— {8(n) 1};{22—11@5 ZY ZX

+ {4n(n);' + 2n(n 1}ZZY2X18+2 ZW ZZz—l
- TS K

which can be computed at order O{nplog(n)}.

S.8. Further Discussion on Asymptotic Relative Ef-

ficiency

The condition p = o(min{>_? b dsy)or Y P ds=o(

but not necessary condition for our proposed test to be more powerful than the ZC and

d?) is a sufficient,

sls? sls

ZYS tests. If the marginal variance of each covariate is at the same magnitude (not
necessarily the same), our proposed test may still have better power performances
than the ZC and ZYS tests. We consider the case where 0 < ¢; < d; < ¢y < 00, for
bounded constants ¢; and ¢, and s = 1,...,p. Then we have the following inequalities

for asymptotic relative efficiency:

{15/(27%)}'* /2 < ARE(NEW, ZC) < {15/(27%)}'* &/,
1/2
{30(1 V31 7r/3)/7r2} A% )2 < ARE(NEW, ZYS)

< {00~ vB +mpaye} e
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When ¢; = ¢o, we can draw the same conclusions as Section 3.1 of the manuscript.
When ¢; # ¢, ARE(NEW,ZC) and ARE(NEW,ZYS) depend on different combi-
nations of (¢, 2, q,p, fs,ds), for s = 1,...,p. It is worth noting that it is possible
to make the proposed test more powerful, provided that {15/(272)}/* /2 > 1
and {30(1 — \/§+7r/3)/7r2}1/2 03/2 ci’/Q > 1. To appreciate this, we assume that
Bs=rkI(1<s<gq),s=1,...,p,for k #0, and ¢ € {1,...,p} satisfies

q/p — co €10,1).
Setdy=...=d;=cand dgy1 = ... = dp = c2. As p — 00, we have

ARE(NEW, ZC) — {15/(27*)Y%{co + (ca/c1)*(1 — ¢o) Y2,
ARE(NEW, ZYS) — {30(1 — V3 + 7/3) /7 }*{co + (co/e1) (1 — co) Y2

This implies that the proposed test can have power gain than the ZC and ZYS tests
if

C1 1—CQ 1—00

2 > max ([{15/(27r2)}—1 — ¢ 1/27 {30(1 — V3 +7/3)/m2} ! — Co) |

Furthermore, we conduct new simulations to verify this finding. The covariates

x; = (Xj1,...,X;p)" are generated from the following moving average model:

Xis = \/C_l{plzis + p2Zi(s+1) + -+ )OTZi(s+T—1)}> fors=1,...,q, (5.12)

Xis = el p1Zis + p2Zissr) + -+ priissr—1) ), for s =q+1,...,p,

for T' = 8, where Z;; are i.i.d from N(0,1). We set ¢y = ¢/p, ¢ = 1 and

¢y = 2max ({{15/(27#)}—1 — ¢ 1/2, {(30(1 — \/§+7r/3)/7r2}_1 _ Co) |

1—00 1_CO

The sample size n = 80, and dimension p = 550. Other model settings are remained
the same as the Section 4 of manuscript. The empirical sizes and powers at the
significance level 5% are summarized in Table S.1. It is clear that the empirical sizes
of three tests are reasonably close to 5%. Our proposed test always has the highest
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power among the three, even when the covariates have bounded variances.

Table S.1: The empirical sizes and powers at the significance level 5%.

Normal Gamma
Model Hypothesis 7ZC ZYS NEW ZC ZYS NEW
Linear Hy 0.054 0.050 0.045 0.055 0.059 0.059

Non-sparse H; 0.320 0.489 0.718 0.339 0.528 0.735

Sparse H; 0.214 0.319 0470 0.233 0.328 0.497

Partially Linear Hy 0.054 0.050 0.045 0.055 0.059 0.059
Non-sparse {3 0.300 0.519 0.686 0.324 0.533 0.716

Sparse H; 0.141 0.262 0.388 0.135 0.257 0.411

Nonlinear Hy 0.054 0.050 0.045 0.055 0.059 0.059
Non-sparse H; 0.296 0.515 0.752 0.302 0.523 0.750

Sparse H; 0.312 0.503 0.687 0.288 0.495 0.697

S.9. Further Discussion on Conditions in Assump-

tion 2

We study the conditions imposed in Assumption 2 when the random vector x is

m-dependent. By the definition of V' (x1,x3), it is straightforward to show that

B{V(x1,%)*} = 16i zp: Elcov?{I( X3, < X1,), [( X3 < Xoy) | X1, Xor}]

s=1 t=1

p
> 16 Eleov?{I(Xs, < X1,),1(X3, < Xa,) | X1,}]

s=1

= 8p/45 — oo,
E{V(x1,x%2)V(x2,x3)V (x3,%4)V (x4, X1) }
= B([E{V(x1,x3)V(x2,X3) | X1,%X2}]?) > 0.
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Recall that X and X are independent provided that |s—t| > m. By the boundedness
of Ki(+,-) and Fy(-), we obtain

E{V(Xl, X2)V (X2, X3)V (X3, X4)V (%4, %1) }

s1+m sat+m s3+m

Z Z Z Z Kl{Fsl X181) FS1(X2S1)}K1{F82(X252)7Fsz(X3S2)}

s1=1 82=81—m S3=82—M S4=83—Mm

XKl{FS:s (X383)7 FS3 (X483)}K1{F84 (X484)a F84 (X184)}] < 14pm3/37

and
E{V(Xl,X2)4} = Z Kl{F31 X151) FS1 (X251)}4]
+ 4 [Kl{FSI (X181)7 FSl (X281)}3K1{F52 <X182)7 F52 (XQSQ)}]
(s1,82)

+ 3 Z E[Kl{Fsl(Xlsl)vFSl(X2S1)}2K1{F82<X182)7FSQ(XQSz)}Q]

+ 6 Z E[Kl{Fsl(X181)7Fsl(X2S1>}2K1{F82(X152)7FSz(XQSz)}
XKl{FS:s (Xlss)? FSS (XZSs)}]
+ Z E[Kl{FS1(X151)7FS1(X281)}K1{F82(X152)7FSz(XQSz)}

(51,52,53,54)

><l(l{FS3 (X153), FSs (X253)}K1{F84 (X184)7 FS4(X254)}]
= O [pm’ + E*{V(xy,x2)}] .

Then it follows that

E{V (x1,%2)V (x2,%3)V (x3,X4)V (x4, x1) } /B> {V (x1,%2)?} < 1575m*/(32p),
E{V (x1,%2)"}/[nE*{V (x1,%2)"}] = O{m?*/(np) +1/n},

which implies that Assumption 2 holds true for m = o(p'/3).
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S.10. Comparison with Maximum-type Tests

We make some numerical comparisons with the adaptive resampling test (ART)
by McKeague and Qian (2015) and its standardized version, as well as the scale-
invariance ¢ test by Zhang and Laber (2015). To compare their power performances,

we consider three models:

Yi = %68 +&, (S.13)
Yi = 3% B3+ exp(x;8,4/2) + exp(x; B, — 1)ei, (S.14)
Yo = (x{Bs) exp(4x By/5 — 1/2) + exp(x; B5/v/24) + e, (S.15)

where the generations of x; and z; are the same as Section 4. The definitions of
the coefficients in each model are also identical with Section 4. The error term ¢;
is generated from N(0,1). We set ||3||> = 0.03 and consider two configurations
of alternative hypothesis. (a) Non-sparse case: the total number of active covari-

0-7), where [z] denotes the largest integer not greater than z. (b) Sparse

ates ¢ = [p
case: the total number of active covariates ¢ = [2p°3]. We fix the significance level
a at 0.05 and (n,p) = (80,550). The critical values of our proposed test are de-
termined by the asymptotically normal distribution. McKeague and Qian (2015)
used the double bootstrap to obtain the critical values. In our numerical study,
we follow Section 3 of McKeague and Qian (2015) to choose the tuning parameter
A\, = max{+/alog n, the upper a/(2p) quantile of N(0,1)}, where a = 2 for ART and
a = 4 for standardized ART. To save computational cost due to the double boot-
strap, Zhang and Laber (2015) proposed a parametric bootstrap procedure to mimic

the limiting null distribution.

Table S.2 reports the empirical sizes and powers of three tests for linear model
(S.13). Since the proposed test, standardized ART and Zhang and Laber (2015)’s test
are all scale-invariance, their empirical sizes stay the same under different values of 9.
This property is not shared by the original ART. When ¢ is small, the empirical type-I
error rates of ART test are slightly inflated. A more careful selection of thresholding

value )\, may be needed to avoid this size distortion. In terms of power, our sum-of-
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Table S.2:  The empirical sizes and powers for linear model (S.13) at the significance
level 5%, where 0 controls the degree of heterogeneity in terms of the covariate variances.
Throughout, we refer to our proposed test, and the tests proposed by McKeague and Qian
(2015) and Zhang and Laber (2015) as NEW, ART and ZL, respectively. STD-ART denotes
that the ART procedure is applied to the standardized covariates.
Error Hypothesis 6 NEW ZL ART STD-ART

Normal Hy 0.00 0.045 0.037 0.085 0.045

0.25 0.045 0.037 0.080 0.045

0.50 0.045 0.037 0.055 0.045

0.75 0.045 0.037 0.045 0.045

1.00 0.045 0.037 0.025 0.045

Non-sparse H; 0.00 0.613 0.266 0.505 0.285

0.25 0.914 0.580 0.740 0.615

0.50 0.996 0.859 0.780 0.880

0.75 1.000 0.954 0.735 0.970

1.00 1.000 0.986 0.690 0.990

Sparse H; 0.00 0.459 0.718 0.820 0.700

0.25 0.672 0.920 0.940 0.910

0.50 0.855 0.994 0.990 0.995

0.75 0.956 1.000 0.985 1.000

1.00 0.991 1.000 0.990 1.000

squares-type test outperforms the other two tests under the non-sparse H;. Since ART
variations and ¢ test of Zhang and Laber (2015) are based on maximum-type statistics,
all of them achieve excellent power performances under the sparse H;, which are
superior to our test. Compared with the original ART, the standardized ART really
makes a difference, especially for dense alternatives with heteroscedastic covariates.
Moreover, the scale-invariance Zhang and Laber (2015)’s test and standardized ART
have similar power trends as d increases. They are useful in sparse settings while ours

is powerful in dense ones.

Tables S.3 and S.4 summarize the results of all tests for models (S.14) and (S.15).
Similar to the phenomenon in the linear model, our scale-invariance test is still the
most powerful to detect dense signals of heteroscedastic covariates. When § = 1, the
empirical powers of our proposed test arrive at 0.932 in model (S.14) and 0.816 in
model (S.15) under non-sparse H; with normal errors. McKeague and Qian (2015)’s
ART tests and Zhang and Laber (2015)’s test show their advantages to deal with

sparse alternatives.
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Table S.3: The empirical sizes and powers for partially linear model (S.14) at the sig-
nificance level 5%, where § controls the degree of heterogeneity in terms of the covariate
variances. Refer to the captions in Table S.2 for abbreviations.
Error Hypothesis 0 NEW ZL ART STD-ART
Normal Hy 0.00 0.045 0.037 0.085 0.045
0.25 0.045 0.037 0.080 0.045
0.50 0.045 0.037 0.055 0.045
0.75 0.045 0.037 0.045 0.045
1.00 0.045 0.037 0.025 0.045
Non-sparse H; 0.00 0.613 0.486 0.480 0.520
0.25 0.810 0.688 0.670 0.710
0.50 0.920 0.841 0.695 0.865
0.75 0.961 0.887 0.755 0.875
1.00 0.932 0.659 0.505 0.665
Sparse Hj 0.00 0.406 0.621 0.590 0.630
0.25 0.517 0.723 0.670 0.745
0.50 0.619 0.812 0.645 0.815
0.75 0.734 0.867 0.680 0.870
1.00 0.843 0.922 0.705 0.940

Table S.4: The empirical sizes and powers for nonlinear model (S.15) at the significance
level 5%, where 0 controls the degree of heterogeneity in terms of the covariate variances.
Refer to the captions in Table S.2 for abbreviations.
Error Hypothesis 6 NEW ZL ART STD-ART

Normal Hy 0.00 0.045 0.037 0.085 0.045

0.25 0.045 0.037 0.080 0.045

0.50 0.045 0.037 0.055 0.045

0.75 0.045 0.037 0.045 0.045

1.00 0.045 0.037 0.025 0.045

Non-sparse H; 0.00 0.468 0.221 0.320 0.210

0.25 0.649 0.287 0.295 0.295

0.50 0.750 0.370 0.295 0.365

0.75 0.789 0.419 0.270 0.445

1.00 0.816 0.447 0.280 0.470

Sparse H; 0.00 0.501 0.756 0.780 0.740

0.25 0.600 0.849 0.810 0.815

0.50 0.687 0.912 0.705 0.845

0.75 0.753 0.934 0.605 0.885

1.00 0.806 0.948 0.575 0.885
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S.11. Comparison under Heavy-tailed Covariates

Our test does not require any moment conditions on the covariates, and hence is ap-
plicable in the scenarios of generally distributed covariates including the heavy-tailed
ones. As suggested by a reviewer, we conduct some simulation studies under heavy-
tailed covariates. We generate the (p + 7" — 1)-dimensional z; = (Z;1, ..., Zipir-1))"
from the following two distributions: (i) the first ¢ components of z; is independently
drawn from ¢(2) distribution, and others are from N (0, 1); (ii) the first ¢ components
of z; is independently drawn from #(3) distribution, and others are from N(0,1). In
these two scenarios, #(2) distribution has an infinite variance while ¢(3) has a finite
one. The error terms follow N(0,1). We set 6 = 0, (n,p) = (80,550) and keep other
settings same as those in Section 4. The empirical sizes and powers of our proposed
test as well as the ZC and ZYS tests at the significance level a = 5% are reported
in Table S.5. The sizes of all three tests are satisfactory regardless of models and
covariate distributions. Under the alternatives, our scale-invariance test is the most
powerful to handle heavy-tailed covariates, even in the linear models. For example,
the empirical powers of our proposed test and the two competitors are 0.743, 0.470,

0.207 respectively under the non-sparse H; in linear model (4.1) with #(2) covariates.

Table S.5: The empirical sizes and powers at the significance level 5%.

£(2) £(3)
Model Hypothesis 7C ZYS NEW ZC ZYS NEW
Linear Hy 0.056 0.061 0.057 0.062 0.049 0.049

Non-sparse H; 0.207 0.470 0.743 0.335 0.548 0.734

Sparse H; 0.431 0.677 0.755 0.518 0.569 0.662

Partially Linear Hy 0.056 0.061 0.057 0.062 0.049 0.049
Non-sparse H; 0.065 0.377 0.667 0.239 0.502 0.657

Sparse H 0.187 0.410 0.455 0.304 0.414 0.487

Nonlinear Hy 0.056 0.061 0.057 0.062 0.049 0.049
Non-sparse H; 0.181 0.496 0.722 0.297 0.559 0.753

Sparse Hi 0.340 0.683 0.743 0.524 0.694 0.759

28



REFERENCE

Blum, J.R., Kiefer, J., and Rosenblatt, M. (1961). “Distribution free tests of inde-
pendence based on the sample distribution function.” The Annals of Mathematical
Statistics, 32(2), 485-498.

Hall, P. (1984). “Central limit theorem for integrated square error of multivariate
nonparametric density estimators.” Journal of multivariate analysis, 14(1), 1-16.

Kosorok, M. (2008). Introduction to Empirical Processes and Semiparametric Infer-
ence. New York: Springer.

McKeague, LW. and Qian, M. (2015). “An adaptive resampling test for detecting
the presence of significant predictors (with discussions).” Journal of the American
Statistical Association, 110(512), 1422-1462.

Serfling, R.J. (1980). Approzimation theorems of mathematical statistics. New York:
Wiley.

Zhang, Y. and Laber, E.B. (2015). “Comment: an adaptive resampling test for de-
tecting the presence of signifficant predictors.” Journal of the American Statistical
Association, 110(512), 1451-1454.

Zhu, L.P.; Zhu, L.X., and Feng, Z.H. (2010). “Dimension reduction in regressions
through cumulative slicing estimation.” Journal of the American Statistical Asso-
ciation, 105(492), 1455-1466.

29



	HDCCovR2unblinded
	Introduction
	A New Test Procedure
	Two existing tests allowing for universal (n,p)-asymptotics
	Cumulative covariance revisited
	The CCov-based test statistic in high dimension
	Computational algorithm
	Asymptotic null distribution
	Asymptotic distribution under alternatives

	Asymptotic Relative Efficiency
	Homoscedastic case: the marginal variance of each covariate is the same
	Heteroscedastic case when the number of non-zero effects is fixed
	Heteroscedastic case when the number of non-zero effects is diverging

	Numerical Studies
	Simulation studies
	An application

	Discussion

	HDCCov_supp

