
Comparison of Parameter Conditioning in Output Error and Equation Error 
Approaches in Speed and Parameter Estimation in Induction Machines’ 

Miguel Vklez-Reyes, Senior Member, and Josk Ramos-Torres, Student Member 
Center for Power Electronic Systems 

Electrical and Computer Engineering Department 
University of Puerto Rico Mayagiiez Campus 

P.O. Box 9042, Mayagiiez, PR 00681-9042 
Ph. (787) 265-382 1, FAX (787) 83 1-7564 

e-mail: mvelez@ece.uprm.edu, jramos@ece.uprm.edu 

Abstruct- Equation Error and Output Error are common 
formulations used in speed and parameter estimation for 
induction machines. This paper presents a study of the 
quality of the estimated speed and parameters using local 
sensitivity analysis. We studied parameter conditioning as a 
function of input signals and estimation methodology at 
nominal speed. Simulation results are used to show that 
output error formulation is better conditioned than equation 
error for speed and parameter estimation using PWM and 
six-step voltage inputs. 

I. INTRODUCTION 

Many speed and parameter estimation schemes used 
in adaptive control, sensorless control, or self- 
commissioning of induction motor drives are based on 
equation error or output error methodologies for system 
identification. To develop robust methods for speed and 
parameter estimation, it is important to quantify the 
information content about rotor speed and machine 
parameters on measured signals. This is of particular 
importance when we are limited only to electrical terminal 
quantities such as stator voltages and currents, and 
because of the natural tradeoff between input richness and 
low harmonic content required for efficiency in electric 
drives. 

Output Error (OE) and Equation Error (EE) are the 
most used formulations for parameter estimation in 
dynamical systems [I] .  Many speed and parameter 
estimation techniques for induction machine described in 
the literature are based on OE and EE approaches and 
minimization of a least squares cost h c t i o n  [2]-[8]. Here 
we present results of our work on local sensitivity analysis 
for speed and parameter estimates obtained using OE and 
EE approaches. The analysis results are based on local 
sensitivity analysis of the mapping relating the measured 
data to the parameter estimates. 

11. INDUCTION MACHINE MODELING 

Different induction machine state variable 
representations are possible depending on the selected 
state variables. The selection of state variables and 

corresponding model parameterization is of great 
importance when performing parameter estimation since 
the sensitivity of the system output (stator current) to 
different parameterization can vary significantly [I  01. A 
state variable representation of the electrical equations 
using stator and rotor currents as state variable is given by 
~91: 

- x(t) = b, (t) 

T -  - 4 = [(T Ls Tr , y(t) = i s ,  and (T = (L&-M2)/I+ 
is the leakage coefficient, Ls =b,+M is the stator 
inductance, Tr= I.& is the rotor time constant, % is the 

stator resistance, and y is the rotor speed. We selected 
this parameterization to compare our results with other 
presented in literature . 

9.1 

111. SPEED AND PARAMETER DTIMATION 
FOR INDUCTION MACHINES 

In the output error approach, as shown in Fig. 1, the 
model (1)-(2) is run in parallel with the system and the 
parameters 
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Fig. 1 : Output Error Approach for System Identification. 
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Fig. 2: Equation Error Approach for System Identification. 
are estimated by minimizing a measure of the model 
prediction error 

A 

e (@)  = Y ($1 - Y (3) 

where y(@) is the Nvector of model predictions for the 
measurements, given by 

L( t ,  / @ I  

i c t ,  / @ )  
iw=[ i 1 

and y is the N-vector of actual measurements. Notice that 
prediction error e(+) is a mnlinear function of @. The 
estimate of @ can be found by 

@ = argmin V ( $ )  (4) 
0 

where V($)is a measure of model fit typically least 
squares 

For batch least squares estimation, the Gauss Newton 
Method is typically used to compute the estimate ($ . 

,. 

To introduce the equation error approach, we need to 
introduce the transfer function between the stator voltage 
space vector and the current space vector. This is easily 
derived using standard LTI systems theory applied to (1)- 
(2) and is given by: 

This transfer function has an associated differential 
equation given by: 

(5) 

In the equation error approach, parameters on both sides 
of (5) ae  adjusted until their difference is minimized. Fig. 
2 shows a block diagram for the equation error identifier, 
the left-hand side of (5) is the parallel model and the 
right-hand side is the series model. Differentiation of 
stator voltages and currents is avoided by means of state 
variable filters [ 11. 

To derive the associated optimization problem, ( 5 )  
can be re-written in a regression format as follows 

- 
Y (4 = cT ( 9  f(+) (6) 

where: 

dt i s  - j is  -vs j v ,  ’ 1 - 
d 2 i  d r  di(t), - - - - 

dt2 dt 
s -s -j- 

The equation error batch estimation problem is given 
by the following nonlinear least squares optimization 
problem 

Again, Gauss-Newton is the method of choice for batch 
optimization. 
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Iv. SENSITIVITY ANALYSIS 

In our context, sensitivity analysis refers to the 
methodology of quantifying changes in the solution of a 
problem by perturbations in the problem data [ I  I]. One 
methodology to quantify sensitivity is to view the relation 
between problem and data as a mapping between two 
normed spaced as illustrated in Fig. 3. 

n 
Parameter 
Estimates Parameter 

Estimation 

Fig. 3. Parameter Estimation as a Mapping. ,. 
In the scalar case, the relative change in 0 can be 

related to the relative change in y as follows 

where 

n 

is the (relative) condition number of 0 [ I  13. In the control 
systems literature, (8) is called the sensitivity function. A 

large magnitude of s: will denote an illconditioned 

parameter while a small s: will denote a well- 
conditioned parameter. 

Let 6 = F(y) be the vector function relating data 
and parameter estimate, then the sensitivity function can 
be generalized for the vector case as follows 

CN, = S y  - 141 l i iI  

where f; and Qiare the i-th component of F and 0 
respectively, andll.ll is the Znorm. We can identify two 
components in (9) which point out to potential sources of 
ill conditioning in the estimated parameter. The first 
component is the colinearity factor 

which is associated to the conditioning of the Jacobian of 
the parameter estimation mapping and a scaling factor 

ll+11 
sFi =m 

This later one is associated with the relative scaling of the 
i-th parameter to the remaining parameters. We consider 
the colinearity factor to be the most important factor in 
analyzing parameter conditioning. Since it is a measure of 
the ill conditioning of the mapping Jacobian while ill 
conditioning caused by scaling seems more artificial and 
with little influence on numerical algorithms used for 
estimation. This is a topic that needs further investigation. 

For nonlinear least square estimation, let 

6 = FNLs(y) , be the parameter estimation map 
implicitly defined by the optimization problems (4) or (7). 
The Jacobian of nonlinear least square problem was 
derived in [ 121 and is given by 

-- aFNLs - (JV*JT1 * JI (10) 
ay 

where J i s  the Jacobian of the error. 

v. SIMULATION RESULTS 

A key issue in developing robust speed and parameter 
estimation algorithms for induction motors is to 
characterize the information content of measured signals. 
We are conducting research to characterize the 
information content of stator currents as a function of 
input stator voltage and operating conditions. Our 
simulation study considers an induction motor fed by a 
voltage source inverter. Here we present preliminary 
results for the analysis of equation error and output error 
approaches at nominal speed conditions for PWM, and 
six-step voltage input. The condition number (9) and the 
colinearity factor for each parameter are presented in 
Tables I-IV. For each stator voltage the condition number 
are computed for the speed and electrical parameters. The 
results for output error are presented in Tables I to I1 and 
the results for equation error are presented in Tables 111 to 
Iv. 

It is observed that for the OE error case we get from 
little to moderate levels of illconditioning while 
parameters in the EE case have much higher condition 
numbers signaling significant illconditioning problems. 
In fact, the condition numbers for the EE case are, for 
most parameters, from one to two orders of magnitude 
larger. In both cases, we can see that 0, L, and TI are the 
bestconditioned parameters while & and 6& are the worst. 
Another observation is that as the harmonic content of the 
input signal increases, the conditioning of individual 
parameter estimates improves as expected. This is an 
expected result due to improved harmonic richness when 
going from PWM to six-step voltage. 

In [ 131, the subset selection method developed in [ 121 
was applied to the EE approach suggesting to estimate 
only three parameters and rotor speed from available data 
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and to fix the stator resistance to a prior value. This 
resulted in significant reduction in sensitivity and 
improvement in estimation algorithm and sensorless 
controller performance as shown in [4,13]. Here we 
repeated the analysis for the OE and EE approach and the 
results are presented in Tables V and VI for PWM and 
Tables VI1 and VIIII for six step. 

TABLE I 
SPEED AND PARAMETERS SENSITIVITIES FOR THE 

INDUCTION MACHINE EXCITEDWITH PWM VOLTAGES (OE) 

(T 

Ls 
Tr 

Rs 

Cdiaearity 
FacaOr 

12.2748 0.0020 
2.1766 0.0039 
56.801 1 0.0171 
36.4057 0.7669 

I I (“r 2.3033 I 2.3028 

TABLE I1 
SPEED AND PARAMETERS SENSITIVITIES FOR THE 

INDUCTION MACHINE EXCITEDWITH SIX STEP VOLTAGES 
(OE) 

Parameter Condition Colinearity 
Number F d W  

3.3389 0.00053 

27.4672 0.5788 

TABLE I11 
SPEED AND PARAMETERS SENSITIVITIES FOR THE 

INDUCTION MACHINE EXCITEDWITH PWM VOLTAGES (EE) 

Colinearity 
Fador 

70.841 1 0.01 13 
66.8193 0.1195 

905.3600 22.8248 
5 13.2742 10.8088 
38.0503 38.0297 

TABLE IV 
SPEED AND PARAMETERS SENSITIVITIES FOR THE 

INDUCTION MACHINE EXCITEDWITH 6 STEP VOLTAGES (EE) 

Colinearity 
Factor 

55.7010 0.0089 
55.5100 0.0993 

472.741 6 11.9182 
321.4566 6.7694 
20.0037 19.9928 

In these tables, we show the condition numbers for 
the parameter estimates where one electrical parameter or 
speed is fixed to a prior value for EE case and repeated for 
OE. The results are quite interesting, in particular it is 
important to point out that the resulting condition numbers 
for the EE reduced order case (one parameter fixed) are of 
the same order as those for the OE full case (all 
parameters estimated). In other words, to get the same 
level of well conditioning as found in the OE case with the 
EE case, we had to fix one parameter to reduce problem 
sensitivity. 

An interesting issue with the Jacobian is how well the 
Jacobian for the reduced order problem approaches the 
stable part of the full Jacobian. In [ 131 it is shown that the 
goodness of this approximation is dependent on the 
existence of a gap between contiguous singular values. In 
the analysis presented here, we can see the goodness of the 
approximation by looking at how close are the singular 
values of the reduced order Jacobian to the first four 
singular values of the full order Jacobian. It can be argued 
that these elements are associated with the most 
identifiable directions in the parameter space. The best 
approximation for both EE and OE is when the rotor speed 
is known. Here all four singular values are well 
approximated. When estimating speed together with the 
electrical parameters, fixing the stator resistance results in 
the best approximation. The significant improvement in 
estimation due to fixing the stator resistance has been 
pointed out in the literature [4,5,6,13]. Notice that when 
we estimate speed together with the parameters the best 
we can do is to approximate the first three singular values. 

VI. CONCLUSIONS 

This paper introduced a comparison between OE and 
EE formulations for speed and parameter estimation. 
Parameter estimates computed using the output error are 
significantly better conditioned than those computed using 
the equation error approach. It is also shown that the best- 
conditioned case is to measure speed and stimate the 
electrical parameters while when estimating rotor speed 
with the electrical parameters fixing the stator resistance is 
the best approach from a sensitivity point of view. 

Further research is being done to investigate the 
conditioning of the Teed and parameter estimates as a 
function of input frequency and to further understand the 
use of condition number to analyze estimation problems 
and development of robust estimation algorithms. 
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