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Abstract— Equation Error and Output Error are common
formulations used in speed and parameter estimation for
induction machines. This paper presents a study of the
quality of the estimated speed and parameters using local
sensitivity analysis. We studied parameter conditioning as a
function of input signals and estimation methodology at
nominal speed. Simulation results are used to show that
output error formulation is better conditioned than equation
error for speed and parameter estimation using PWM and
six-step voltage inputs.

1. INTRODUCTION

Many speed and parameter estimation schemes used
in adaptive control, sensorless control, or self-
commissioning of induction motor drives are based on
equation error or output error methodologies for system
identification. To develop robust methods for speed and
parameter estimation, it is important to quantify the
information content about rotor speed and machine
parameters on measured signals. This is of particular
importance when we are limited only to electrical terminal
quantities such as stator voltages and currents, and
because of the natural tradeoff between input richness and
low harmonic content required for efficiency in electric
drives.

‘Output Error (OE) and Equation Error (EE) are the
most used formulations for parameter estimation in
dynamical systems [1]. Many speed and parameter
estimation techniques for induction machine described in
the literature are based on OE and EE approaches and
minimization of a least squares cost function [2]-[8]. Here
we present results of our work on local sensitivity analysis
for speed and parameter estimates obtained using OE and
EE approaches. The analysis results are based on local
sensitivity analysis of the mapping relating the measured
data to the parameter estimates. :

1. INDUCTION MACHINE MODELING

Different induction machine state variable
representations are possible depending on the selected
state variables. The selection of state variables and
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corresponding model parameterization is of great
importance when performing parameter estimation since
the sensitivity of the system output (stator current) to
different parameterization can vary significantly [10]. A
state variable representation of the electrical equations
using stator and totor currents as state variable is given by
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is the leakage coefficient, Ly =Lis+M  is the stator
inductance, Tr: L/R, is the rotor time constant, Ry is the
stator resistance, and (N is the rotor speed. We selected

this parameterization to compare our results with other
presented in literature .

111.  SPEED AND PARAMETER ESTIMATION
FOR INDUCTION MACHINES

In the output error approach, as shown in Fig. 1, the
model (1){2) is run in parallel with the system and the
parameters
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Fig. 1: Output Error Approach for System Identification.
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Fig. 2: Equation Error Approach for System Identification.
are estimated by minimizing a measure of the model
predlctlon error

e(¢) = y(¢) y 3

where y(¢>) is the N-vector of model predictions for-the
measurements, given by -
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and 'y is the N-vector of actual measurements. Notice that
prediction error e(¢) is a monlinear function of @. The
estimate of ¢ can be found by

O =argmin V(¢) @
¢
where V(¢)is a measure of model fit typically ileast )
squares
. | N
V(¢)-—||e(¢)|| =T 2@

For batch least squares estimation, the Gauss Newton

Method is typically used to compute the estimate ¢ .

To introduce the equation error approach, we need to
introduce the transfer function between the stator voltage
space vector and the current space vector. This is easily
derived using standard LTI systems theory applied to (1)-
(2)andis glvcn by:
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This transfer function has an associated differential
equation given by:

a’i, L di
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In the equation error approach, parameters on both sides
of (5) ae adjusted until their difference is minimized. Fig.
2 shows a block diagram for the equation error identifier,
the left-hand side of (5) is the parallel model and the
right-hand side is the series model. Differentiation of
stator voltages and currents is avoided by means of state
variable filters [1].
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To derive the associated optimization problem, (5)
can be re-written in a regression format as follows

y(t) I () f(¢) (6)
where:
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The equation error batch estimation problerh is given
by the following nonlinear least squares optimization
problem

(f)=argrn£n"yN _CNf(q))"2 )
where
c(ty) y(ty)
Cy = : and y = :
c(ty) y(ty)

Again, Gauss-Newton is the method of choice for batch
optimization.
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IV. SENSITIVITY ANALYSIS

In our context, sensitivity analysis refers to the
methodology of quantifying changes in the solution of a
problem by perturbations in the problem data [11]. One
methodology to quantify sensitivity is to view the relation
between problem and data as a mapping between two
normed spaced as illustrated in Fig. 3.
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Fig. 3. Parameter Estimation as a Mapping.
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In the scalar case, the relative change in ¢ can be

related to the relative change iny as follows

Do ®
¢ y

where

is the (relative) condition number of a) [11]. In the control

systems literature, (8) is called the senmsitivity function. A

large magnitude of Sl’ will denote an ill-conditioned
parameter while a small Si’ will denote a well-

conditioned parameter.

Let ¢= F(y) be the vector function relating data

and parameter estimate, then the sensitivity function can
be generalized for the vector case as follows

R R

where f; and @, are the ith component of F and

®

respectively, and "" is the 2norm. We can identify two

components in (9) which point out to potential sources of
ill conditioning in the estimated parameter. The first
component is the colinearity factor

y|[IV £,
o VL

N
which is associated to the conditioning of the Jacobian of
the parameter estimation mapping and a scaling factor
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This later one is associated with the relative scaling of the
i-th parameter to the remaining parameters. We consider
the colinearity factor to be the most important factor in
analyzing parameter conditioning. Since it is a measure of
the ill conditioning of the mapping Jacobian while ill
conditioning caused by scaling seems more artificial and
with little influence on numerical algorithms used for
estimation. This is a topic that needs further investigation.
For nonlinear least square estimation, let

0= FNLS(y) , be the parameter estimation map
implicitly defined by the optimization problems (4) or (7).
The Jacobian of nonlinear least square problem was
derived in [12] and is given by
A oF _
_ALS_:(J'*J) I*Jv (10)
dy
where Jis the Jacobian of the error.

V. SIMULATION RESULTS

A key issue in developing robust speed and parameter
estimation algorithms for induction motors is to
characterize the information content of measured signals.
We are conducting research to characterize the
information content of stator currents as a function of
input stator voltage and . operating conditions. Our
simulation study considers an induction motor fed by a
voltage source inverter. Here we present preliminary
results for the analysis of equation error and output error
approaches at nominal speed conditions for PWM, and
six-step voltage input. The condition number (9) and the
colinearity factor for cach parameter are presented in
Tables FIV. For each stator voltage the condition number
are computed for the speed and electrical parameters. The
results for output error are presented in Tables I to II and
the results for equation error are presented in Tables 111 to
Iv.

It is observed that for the OE error case we get from
little to moderate levels of ill-conditioning while
parameters in the EE case have much higher condition
numbers signaling significant illconditioning problems.
In fact, the condition numbers for the EE case are, for
most parameters, from one to two orders of magnitude
larger. In both cases, we can see that g, L, and T, are the
best-conditioned parameters while Rs and @ are the worst.
Another observation is that as the harmonic content of the
input signal increases, the conditioning of individual
parameter estimates improves as expected. This is an
expected result due to improved harmonic richness when
going from PWM to six-step voltage.

In [13], the subset selection method developed in [12]
was applied to the EE approach suggesting to estimate
only three parameters and rotor speed from available data
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and to fix the stator resistance to a prior value. This
resulted in -significant reduction in _sensitivity . and
improvement in estimation algorithm and sensorless
controller performance as shown in [4,13]. Here we
repeated the analysis for the OE and EE approach and the
results are presented in Tables V and VI for PWM and
Tables V1I and VIIII for six step.”

TABLE ]

SPEED AND PARAMETERS SENSITIVITIES FOR THE
INDUCTION MACHINE EXCITEDWITH PWM VOLTAGES (OE)

12.2748 0.0020
Ly " 2.1766 0.0039
T, 56.8011 0.0171
R, 36.4057 0.7669
2.3033 2.3028

TABLEII

SPEED AND PARAMETERS SENSITIVITIES FOR THE
INDUCTION MACHINE EXCITEDWITH SIX STEP VOLTAGES
(OE)

3.3389 0.00053
L, 1.8350 0.0033
7, 55.4492 0.0167
Ry 27.4672 0.5788
2.2849 2.2849

TABLE Il

SPEED AND PARAMETERS SENSITIVITIES FOR THE

INDUCTION MACHINE EXCITEDWITH PWM VOLTAGES (EE) -

70.8411 0.0113
Ly 66.8193 0.1195
T, 905.3600 22.8248
R 513.2742 10.8088
38.0503 38.0297

TABLE IV

SPEED AND PARAMETERS SENSITIVITIES FOR THE
INDUCTION MACHINE EXCITEDWITH 6 STEP VOLTAGES (EE)

55.7010 0.0089
L 55.5100 0.0993
T, 472.7416 11.9182
R 321.4566 6.7694
20.0037 19.9928

In these tables, we show the condition numbers for
the parameter estimates where one electrical parameter or
speed is fixed to a prior value for EE case and repeated for
OE. The results are quite interesting, in particular it is
important to point out that the resulting condition numbers
for the EE reduced order case (one parameter fixed) are of
the same order as those for the OE full case (all

_ parameters estimated). In other words, to get the same

level of well conditioning as found in the OE case with the
EE case, we had to fix one parameter to reduce problem
sensitivity.

An interesting issue with the Jacobian is how well the
Jacobian for the reduced order problem approaches the
stable part of the full Jacobian.-In [13] it is shown that the
goodness . of this approximation is dependent on the
existence of a gap between contiguous singular values. In
the analysis presented here, we can see the goodness of the
approximation by looking at how close are the singular
values of the reduced order Jacobian to the first four
singular values of the full order Jacobian. It can be argued
that these elements are associated with the most
identifiable directions in the parameter space. The best
approximation for both EE and OE is when the rotor speed
is known. Here all four singular values are well
approximated. When estimating speed together with the
electrical parameters, fixing the stator resistance results in
the best approximation. The significant improvement in
estimation due to fixing the stator resistance has been
pointed out in the literature [4,5,6,13]. Notice that when
we estimate speed together with the parameters the best
we can do is to approximate the first three singular values.

VI. CONCLUSIONS

This paper introduced a comparison between OE and
EE formulations for speed and parameter estimation.
Parameter estimates computed using the output error are
significantly better conditioned than those computed using
the equation error approach, It is also shown that the best-
conditioned case is to measure speed and estimate the
electrical parameters while when estimating rotor speed
with the electrical parameters fixing the stator resistance is
the best approach from a sensitivity point of view.

Further research is being done to investigate the
conditioning of the gpeed and parameter estimates as a
function of input frequency and to further understand the
use of condition number to analyze estimation problems
and development of robust estimation algorithms.
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