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Abstract. When considering multiple hypothesis tests simultaneously, standard
statistical techniques will lead to overrejection of null hypotheses unless the multi-
plicity of the testing framework is explicitly considered. In this article, we discuss
the Romano—Wolf multiple-hypothesis correction and document its implementa-
tion in Stata. The Romano—Wolf correction (asymptotically) controls the family-
wise error rate, that is, the probability of rejecting at least one true null hypothesis
in a family of hypotheses under test. This correction is considerably more powerful
than earlier multiple-testing procedures, such as the Bonferroni and Holm correc-
tions, given that it takes into account the dependence structure of the test statistics
by resampling from the original data. We describe a command, rwolf, that im-
plements this correction and provide several examples based on a wide range of
models. We document and discuss the performance gains from using rwolf over
other multiple-testing procedures that control the familywise error rate.
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1 Introduction

Advances in computational power and statistical programming languages such as Stata
mean that, typically, the testing of multiple hypotheses in an empirical analysis is easy
and quick to carry out. This often leads to a situation in which existing data sources or
experiments are used to examine a number of hypotheses. Although the computational
costs of such a situation are generally very low, there is a well-known statistical cost in
cases of multiple-hypothesis testing. Namely, as the number of hypotheses considered
in a given analysis grows, so too does the probability of falsely rejecting true null
hypotheses. Starting from Bonferroni (1935), there has been considerable development
of techniques that account for multiplicity in hypothesis testing.
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2 Multiple-hypothesis testing

In this article, we discuss the implementation of one such procedure, the Romano—
Wolf multiple-hypothesis correction, described in Romano and Wolf (2005a,b, 2016).
This procedure uses resampling methods, such as the bootstrap, to control the family-
wise error rate (FWER), that is, the probability of rejecting at least one true null hypoth-
esis in the family of hypotheses under test.! The procedure is noteworthy given that,
in addition to controlling the FWER, it offers considerably more power compared with
earlier multiple-hypothesis correction procedures, such as Holm (1979) and Bonferroni
(1935), where by “power” we mean the ability to correctly reject false null hypotheses.
What is more, the Romano—Wolf procedure is able to eliminate a key assumption of
previous resampling-based procedures such as the procedure described in Westfall and
Young (1993), namely, the so-called subset pivotality assumption. We provide a discus-
sion of the general nature of the multiple-hypothesis problem as well as a discussion of
several multiple-testing procedures in section 2 of this article; a more detailed overview
can be found in Romano, Shaikh, and Wolf (2010).

In this article, we focus on the control of the FWER, but this is certainly not the
only error rate that can be considered in multiple-hypothesis testing. For example, a
series of alternative procedures focus on controlling the false discovery rate, defined as
the expected proportion of true null hypotheses rejected among all hypotheses rejected.
Details of many such procedures, such as Benjamini and Hochberg’s (1995) procedure, as
well as earlier, less powerful techniques to control the FWER and their implementation in
Stata can be found in Newson and the ALSPAC Study Team (2003) and Newson (2010).
In general, false discovery-rate techniques are less conservative than FWER techniques,
and are particularly common in genetic or biochemical applications where often a huge
number of null hypotheses are considered (in the thousands or even tens of thousands).
An illustrative applied discussion is provided in Anderson (2008).

The Romano—Wolf procedure is increasingly used in a range of fields, given the
recognition of its relative power, computational efficiency, and generalizability. This
multiple-hypothesis correction can be found in settings as diverse as finance (Liu, Pat-
ton, and Sheppard 2015), early childhood interventions (Gertler et al. 2014), and the
evaluation of conditional cash transfers (Attanasio et al. 2014), to name but a few. Work
by List, Shaikh, and Xu (2019) intended for an applied audience details how to imple-
ment the general Romano—Wolf methodology for specific applications in experimental
economics. In line with the frequency of use of this procedure, this article provides
a program, rwolf, to allow for its implementation simply in Stata in a broad range
of circumstances.? Along with the theory underlying this program, we provide here
some demonstrations chosen to illustrate the broad range of situations to which the
Romano—Wolf multiple-hypothesis correction, and the rwolf command, is suited.

1. To be precise, the procedure only controls the FWER asymptotically, that is, as the sample size
goes to infinity while the family of hypotheses under test remains fixed. But this is also the case
for other multiple-testing procedures, such as the Bonferroni and Holm procedures, unless very
strict distributional assumptions hold. Hence, for convenience of terminology, in this article, we
will equate “control of the FWER” with “asymptotic control of the FWER”.

2. An earlier version of this program is available by Clarke (2016).
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In what remains of this article, we first provide a brief description of multiple-
hypothesis testing and the basic notation used here before defining corrections for mul-
tiple hypotheses, and the Romano—Wolf procedure in particular, in section 2. We then
define the syntax of the rwolf command in section 3 and provide several examples based
on both simulated and real datasets in section 4. We conclude in section 5.

2 Procedures

2.1 Multiple-hypothesis testing procedures and definitions

Consider inference for a generic parameter 6. In what follows, we will refer to data used
to estimate this parameter as X and the value estimated using these data as 8. When
a single null hypothesis H about # is tested against a single alternative hypothesis H’,
a decision rule can be defined based on the rate of a type I error, defined as

Prgo{reject H|H is true} (1)

The test could be a two-sided test, such as H: § = 0° versus H':  # 0°, or it could be
a one-sided test, such as H: 6 < 0° versus H': § > 6°. The quantity §° refers to the
null value of interest defined by the researcher and is often #° = 0. The type I error is
defined when the null hypothesis is true, and as such, Prgo refers to the probability of
(falsely) rejecting the null when #° is the actual value of the parameter. If the probability
in (1) is bounded above by a value «, then « is the significance level at the test. Often,
a particular value of « is chosen in advance, such as @ = 0.05, and the testing procedure
is designed to meet this criterion. Alternatively, to avoid somewhat arbitrary criteria,
one can report a p-value, here p, that fulfills (at least asymptotically)

Proo{p < a|f = 0°} < « (2)

for every 0 < a < 1 and is defined as the smallest value of « at which H would be
rejected. Smaller values of p provide more evidence in favor of the alternative hypoth-
esis H'.

The validity of this error rate of o assumes that a single null hypothesis is tested.
We now extend the setting to a family of S null hypotheses { H,}2_,, which are related
to parameters {f,}5_,, versus respective alternative hypotheses {H’}5_,. If the error
rate in (1) is only controlled at « one null hypothesis at a time, it is clear that the
probability of committing at least one type I error across the S null hypotheses will
generally exceed a.? Following Lehmann and Romano (2005b), we let I C {1,...,S}
denote the set of true null hypotheses, and the FWER is then defined as

FWER := Pr{reject at least one H, with s € I}

3. For example, many of Stata’s estimation, or e(), class of commands, such as regress and
ivregress, by default report two-sided hypothesis tests where §° = 0.

4. This is often illustrated with a simple example assuming 1) independence of individual p-values, ps,
2) equality instead of weak inequality in (2), and 3) all S null hypotheses being true, in which case
the probability of falsely rejecting at least one true null hypothesis is equal to 1 — (1 — a)®.
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To account for multiple-hypothesis testing, we seek to control the FWER at level a. By
definition, if all the null hypotheses are false, the FWER is equal to 0.

A traditional solution has been to implement the Bonferroni procedure, which con-
sists of rejecting any H, for which the corresponding p-value, ps, satisfies ps < a/S.
This procedure provides strong control® of the FWER (see, for example, Lehmann and
Romano [2005a, 350]); however, it often has low power to detect false null hypotheses,
particularly when the number of hypotheses is large. A procedure that has greater
power, while still maintaining control of the FWER was described in Holm (1979).
This is a stepdown procedure that begins by ordering the individual p-values such that
Pa) < pe) < - < ps), corresponding to hypotheses H(yy, Hs), ..., H(s); in this way,
the hypotheses are ordered according to their significance. H(qy is rejected if and only
if (iff) p(1) < /S, just as would be the case for Bonferroni. But if it is rejected, then
Hy) is rejected if poy < a/(S — 1), which is a more lenient criterion. The procedure
proceeds in this manner until at some step s, p(s) > /(S —s+1), and then it stops. (If
the stopping criterion is never met, the procedure rejects all S hypotheses.) The Holm
procedure rejects all hypotheses rejected by the Bonferroni procedure but potentially
also rejects other hypotheses.

Both the Bonferroni and the Holm procedures are easy to implement and only require
the list of individual p-values {ps}5_;. But this convenience comes at a (potentially)
severe loss in power. The two procedures achieve control of the FWER by assuming a
worst-case dependence structure among the p-values, which is close to the individual
p-values being independent of each other. If the FWER is controlled in the worst case, it
is always controlled. But if there is noticeable dependence among the p-values, it would
be possible to maintain control of the FWER while increasing power at the same time.

We now illustrate this point with a simple example. Let’s say there are S = 100
hypotheses under test, and one wants to control the FWER at level @ = 0.05. The
p-values ps are based on test statistics Ts that have a joint normal distribution with
common variance 1 and common pairwise correlation p. The mean of all test statistics
T, for which Hj is true is equal to 0. The tests are one-sided in the sense that

Ds = PY{Z > ts}

where Z ~ N (0,1) and t, is the observed realization of T,. We consider the following
single-step procedure: Reject Hy iff p, < ¢,, where ¢, is a common cutoff allowed to
depend on p. The Bonferroni procedure uses ¢, := 0.05/100 = 0.0005, irrespective of
p. But as a function of p, the following, less conservative, cutoffs suffice to guarantee
control of the FWER:

p 0 0.25 0.5 0.75 0.9 0.95 1
¢, 0.0005 0.0006 0.0012 0.0032 0.0089 0.0149 0.05

5. Strong control of the FWER means that the FWER will be no greater than « regardless of which of
the null hypotheses are true. This contrasts with weak control of the FWER, which refers to when
the FWER does not exceed « only in the case that all null hypotheses are true. Unless otherwise
noted, in the remainder of the article, control of the FWER is equated with strong control.
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(Apart from p = 0 and p = 1, the cutoffs ¢, need to be determined by numerical
simulations and are, therefore, subject to some small simulation error.) In particular,
when p = 1, all p-values are perfectly correlated, meaning that there really is only a
single shared hypothesis under test, in which case it is allowed to use the naive cutoff
o = 0.05 itself. In general, the larger is p, the larger is the cutoff c,, and thus, the easier
it becomes to reject false hypotheses, which increases power. Similar considerations
carry over to the more general case when pairwise correlations are not constant and to
stepwise procedures.

Hence, as described above, if there exists noticeable dependence among the p-values,
it would be possible to maintain control of the FWER while increasing power at the same
time. To this end, resampling-based multiple-testing procedures have been proposed in
the literature. By resampling from the observed data, one can mimic the true depen-
dence structure of the p-values (or, equivalently, among the test statistics) and thus
account for it (in an implicit fashion). An early such proposal goes back to Westfall and
Young (1993), who use the bootstrap to account for the dependence structure of the
p-values. This procedure (described in Westfall and Young [1993, algorithm 2.8] and
summarized in appendix A of this article), assumes a certain subset pivotality condition,
which is used in establishing FWER control. Roughly speaking, this condition means
the following: Take any nonempty, strict subset of hypotheses (out of all hypotheses
under test) and look at the random vector of corresponding test statistics. Then the
joint distribution of this random vector is unique in the sense that it does not depend
on whether the remaining hypotheses (not under test) are true or false. For a precise
definition, see Romano and Wolf (2005b, example 2).

Subset pivotality can be violated in certain applications and is thus undesirable,
because in such instances the Westfall-Young procedure only offers weak control of
the FWER. An example where this condition is violated is given by jointly testing the
entries of a correlation matrix. Take the case of independent and identically distributed
multivariate observations of dimension three. The multiple-testing problem concerns
the three (distinct) pairwise correlations

Hij:pij:O f0r1§2<]§3

where p;; denotes the correlation between components ¢ and j of any of the observations.
The individual test statistics are the sample correlations, denoted by p;;, and regularity
conditions are in place such that the (normalized) vector (p12, P13, p23)’ has an asymp-
totic normal distribution. Now assume that one is only interested in testing the subset
{H12, H13}. Then the asymptotic distribution of the vector (pi2, p13) depends on pag,
so it depends on whether the remaining hypothesis (not under test) Hag is true or false.
See Romano and Wolf (2005b, example 7) for further details.

Having said this, the procedure of Westfall and Young (1993) is available for Stata,
as provided in Reif (2017), with additional discussion in Jones, Molitor, and Reif (2019).

More recently, the Romano—Wolf multiple-hypothesis correction has been proposed,
as described in Romano and Wolf (2005a,b) as well as in the subsection below. This
procedure also uses resampling and stepdown procedures to gain additional power by
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accounting for the underlying dependence structure of the test statistics. However, and
crucially, this procedure does not require the subset pivotality condition and is thus
more broadly applicable than the Westfall-Young procedure.

2.2 The Romano-Wolf procedure(s)

Romano and Wolf (2005b) propose a procedure that controls the FWER at a given level «;
hence, this procedure leads to a decision to reject or not reject for each null hypothesis
Hj considered, for s = 1,...,S. In follow-up work, Romano and Wolf (2016) describe
how to compute p-values adjusted for multiple testing, which is a more flexible approach.
Having adjusted p-values, one immediately knows which hypotheses to reject for any
level «, as opposed to just for a specific level a. In other words, if one were to consider a
different level o compared with a prior analysis, one would have to rerun the procedure
of Romano and Wolf (2005b) with the new value of «; on the other hand, having
adjusted p-values at hand, no new analysis is needed. The rwolf command returns the
p-value adjustment documented in Romano and Wolf (2016), following Romano and
Wolf’s (2005b) Studentized StepM Procedure (algorithms 4.1-4.2). Here we describe the
algorithms implemented, before turning to the precise syntax in the following section.

Prior to describing the p-value adjustment algorithm implemented in rwolf, we
first describe the Romano and Wolf (2005b) procedure. The algorithm below is based
on a bootstrap procedure; by default, rwolf is based on the standard Efron (1979)
bootstrap (see Romano and Wolf [2005b, appendix B| for discussion). In section 4, we
discuss extensions to alternative bootstrap methods, such as the block bootstrap.®

6. The Romano—Wolf procedure can also be implemented using permutation methods rather than
bootstrap methods (Romano and Wolf 2005a); however, permutation tests of regression coefficients
can result in rates of type I error which exceed the nominal size, so these methods are likely not
ideal for such applications (DiCiccio and Romano 2017). Nevertheless, the rwolf command can be
used with permutation testing following a generalization of the procedures described in section 4.2.
That is, permutation tests can be used whenever the model exhibits a certain structure so that the
so-called randomization hypothesis holds, as described in section 15.2 of Lehmann and Romano
(2005Db).
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As above, suppose we wish to test S hypotheses, using data X. Each hypothesis
H, is associated with a parameter of interest 6, an estimator of this parameter 65, and
a corresponding standard error &,.” For notational convenience, we generally assume
that 69 =0, for s = 1,...,S. We assume further that the alternative hypotheses are
either all one-sided of the type H. : 6 > 0 or all two-sided of the type H. : 5 # 0.8 A
Studentized test statistic for Hy is given by”

0,
ts = - 3
o= 3)
Next consider M resampled data matrices of X, denoted by X7,..., X},. They give rise
to estimators, denoted by 0%, and corresponding standard errors, denoted by 7™,
form =1,..., M. For each resample m and for each hypothesis H,, a Studentized null
statistic is given by
. gxm _ @9
ts’m = 5/0_\:7,7‘“5 (4)
These statistics t¥"™ are centered around 0 given that the numerator consists of a re-
sample estimate minus the original estimate (rather than the null parameter), and as

such, the distributions of ¢*™ will form the null distributions for the procedure.'’

In case the alternative hypotheses are two-sided of the type H. : 6, # 0, it is
important to work with the absolute values of the test statistics. To keep the notation
uniform in the algorithm outlined below, in slight abuse of notation, we will use the
following convention in the two-sided case (but not in the one-sided case):

ts = |ts] and o=t

Finally, as above, we will relabel hypotheses in order of significance—but now based
on their test statistics ts instead of their p-values p,, as was done before by the Holm
procedure—such that H(y) refers to the hypothesis with the largest corresponding test
statistic [hereafter ¢(;)], and Hg) refers to that with the smallest [labeled ¢(g)]. In what
follows, we denote by max;”™ the largest value of the vector {ta;”, e ,t?g;l :

max; " = max{t%",...JE‘éT forj=1,...,Sandm=1,...,.M (5)

For a given j, we denote by ¢(1 — «,j) the empirical 1 — o quantile of the statistics

{maxt:j m=1- For example, in a case where one is testing S = 4 hypotheses, max;’;

7. In our terminology, a standard error of an estimator is an estimated standard deviation of the
estimator.

8. One-sided hypotheses of the type H : s < 0 can be accommodated as well by properly prepro-
cessing the data. Both one-sided options are implemented in the rwolf command.

9. This is assuming that each hypothesis test is of the form Hg : 8 = 0. If instead the test is for a
nonzero value, Hs : 05 = 69, (3) should be changed to
6 — 69

5=

Os

10. Equation (4) is also valid if the test is for a nonzero value, Hs : = 62, and needs not to be changed
in such a case.
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denotes the maximum value of {tz‘l (2)t(3)2 Ly }, max;;" denotes the maximum value

of the subvector {tfz), t’(“s), t’(“4)} (that is, the vector of test statistics corresponding to the

three least significant hypotheses only), and so on. At last, we simply have max tE”)" =
t 4) An important consequence is that ¢(1 — «, 7) is weakly decreasing in j; that is,
1—a,j)>cl—a,j+1),forj=1,...,8 —1.

Based on the above, the principal stepdown multiple-testing procedure at level «
(based on algorithm 3.1 from Romano and Wolf [2016]) can be summarized as follows.

1. For s =1,...,8, reject H, iff t() > ¢(1 — o, 1).

2. Denote by R; the number of hypotheses rejected. If Ry = 0, stop; otherwise, let
j=2.

3. For s = R; 1 +1,...,8, reject Hy) iff t(5y >¢(1 —a, Rj_1 +1).

4.  a. If no further hypotheses are rejected, stop.

b. Otherwise, denote by R; the number of hypotheses rejected so far, and then
let j = j + 1. Then return to step 3.

As was the case with the procedure of Holm (1979), this correction is a stepdown
procedure: ¢(1 — «, j) is weakly decreasing in j and, as such, the criterion for rejection
is more demanding for more significant hypotheses and becomes less demanding for less
significant hypotheses. Given that the null distributions based on max;"" ’; are based on
resamples of the original data, they implicitly account for the underlying dependence
structure of the test statistics, leading to potentially considerable gains in power over
the Holm procedure, which assumes a worst-case dependence structure.

The above algorithm leads to a decision whether to reject or not reject for each null
hypothesis Hy at a given significance level a. However, additionally and perhaps more
conveniently, a multiple-testing-adjusted p-value can be directly computed for each Hy,
as defined in the algorithm below. This algorithm is a generalization of a resample-based
p-value for a single null hypothesis, which can be defined as (Romano and Wolf 2016;
Davison and Hinkley 1997, 158).

_#{rm >ty +1

M+1 (6)

Note that other definitions exist.!! To generalize this to a situation where multiple
hypotheses are considered, rwolf implements the following algorithm to compute the
p-values using the distribution of max::jm, following algorithm 4.2 of Romano and Wolf
(2016).

11. Another (somewhat less conservative) common definition is

Either option can be implemented in the rwolf command, as described in section 3.
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1. Define .
aqj  #H{max;" >ty +1
Pay = M+ 1

2. Fors=2,...,85,

a. first let .
initial _ Fimaxy " >t +1
S M +1

b. and then enforce monotonicity by defining

adj _ initial , adj
p(s)J = max{p(s)"* »p(sil)}

3 The rwolf command

The Romano—Wolf multiple-hypothesis correction is implemented using the following
syntax, returning the adjusted p-values described above, as well as the unadjusted
p-values according to (6) [or (7), if noplusone is specified] for comparison.

rwolf depvars [zf] [m] [weight} [, indepvar (varlist) method (string)
controls(varlist) nulls(numlist) seed(#) reps(#) verbose strata(varlist)
cluster(varlist) onesided(string) bl(string) iv(warlist) otherendog(uvarlist)
indepexog noplusone nodots holm graph varlabels other_options
nobootstraps pointestimates(numlist) stderrs(numlist) stdests(varlist)

nullimposed]

where depvars refers to the multiple outcome variables that are being considered. There
are two ways for this command to be used. First, indepvar() and method() must be
specified if the complete Romano—Wolf procedure should be implemented including the
estimation of bootstrap replications and generation of adjusted p-values. Alternatively,
if the user is providing rwolf with precomputed bootstrap or permuted replications
of the estimated statistic and standard errors for each of their multiple-hypothesis
tests of interest, and only wishes for rwolf to calculate the adjusted p-values, then
nobootstraps, pointestimates (numlist), stderrs(numlist), and stdests(varlist)
should be indicated. pweights, aweights, fweights, and iweights are allowed; see
[U] 11.1.6 weight.

The first of these cases is provided for situations in which a single type of regression
model is implemented with a range of outcome variables. In this case, rwolf can take
care of the full procedure, including estimating the baseline models, and few details
are required. The latter case is provided for more complex situations, such as cases
where different models are used to test each hypothesis, where both dependent and
independent variables change across models, or where more complicated resampling
schemes are desired. Examples of each of these is provided in section 4.
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3.1 Options
Standard options

indepvar (varlist) indicates the independent (treatment) variable that is included in
multiple-hypotheses tests. This will typically be a single independent variable; how-
ever, it is possible to indicate various independent (treatment) variables that are
included in the same model. The Romano—Wolf procedure will be implemented,
efficiently returning p-values for each dependent variable of interest, corresponding
to each of the specified independent variables. This option must be specified unless
the nobootstraps option is indicated (see below).

method (string) indicates to Stata how each of the multiple-hypothesis tests (that is,
the baseline models) are performed. Any standard regression—based estimation com-
mands permitted by Stata may be specified, including logit, probit, ivregress,
regress, and areg; see help estimation commands for a full list of estimation
commands in Stata. The default is method(regress). If instrumental-variables
(1v) estimation is desired, method() must be specified with ivregress only, and
the iv() option below must be specified.

controls(wvarlist) indicates additional controls that should be included in regressions
of each depvar on the indepvar of interest. Any variable format accepted by wvarlist
is permitted, including time series operators and factor variables.

nulls (numlist) indicates the parameter values of interest (6 in section 2.2) used in each
test. A single scalar value should be indicated for each of the multiple hypotheses
tested, and these values should be listed in the same order as the variables listed as
depvars. If multiple indepvar () are specified, null parameters should be specified
grouped first by indepvar () and then by depvars. For example, if two independent
variables are considered with four dependent variables, first the four null parameters
associated with the first independent variable should be listed, followed by the four
null parameters associated with the second independent variable. By default, each
null hypothesis is assumed to be that the parameter is equal to 0.

seed (#) sets the seed to indicate the initial value for the pseudo-random-number gen-
erator. # may be any integer between 0 and 23! — 1.

reps(#) specifies to perform # bootstrap replications. The default is reps(100).
Where possible, a larger number (by a magnitude) of replications should be used for
more precise p-values. In IV models, a considerably larger number of replications is
highly recommended.

verbose requests additional output, including display of the initial (uncorrected) mod-
els fit. This will also generate a summary output message indicating the number
of hypotheses rejected in uncorrected models and when implementing the Romano—
Wolf procedure, as well as any dependent variables for which the null is rejected in
the Romano—Wolf procedure.
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strata(varlist) specifies the variables identifying strata. If strata() is specified, boot-
strap samples are selected within each stratum when forming the resampled null
distributions.

cluster (varlist) specifies the variables identifying resampling clusters. If cluster()
is specified, the sample drawn when forming the resampled null distributions is a
bootstrap sample of clusters. This option should always be specified when underlying
models require cluster-robust inference. cluster () does not cluster standard errors
in each regression; if desired, this can be specified using vce (cluster clustvar).

onesided(string) specifies to calculate p-values based on one-sided tests. The default
is p-values based on two-sided tests, corresponding to the null that each parameter is
equal to 0 (or to the values indicated in nulls()). string must be either positive,
in which case the null is that each parameter 8 > 0, or negative, in which case the
null is that each parameter 5 < 0.

bl(string) allows for the inclusion of baseline measures of the dependent variable as
controls in each model. If desired, these variables should be created with some
suffix, and the suffix should be included in the b1 () option. For example, if outcome
variables are called y1, y2, and y3, then variables y1_bl, y2_bl, and y3_bl could be
created with baseline values, and b1 (_bl) would be specified.

iv(varlist) is only necessary when method(ivregress) is specified. The 1vs for the
treatment variable of interest should be specified in iv(). At least as many instru-
ments as endogenous variables must be included.

otherendog(wvarlist) specifies additional endogenous variables if more than one en-
dogenous variable is required in ivregress models. By default, when the op-
tion method(ivregress) is specified, it is assumed that the variable specified in
indepvar (varlist) is an endogenous variable that must be instrumented. If this is
the case, the variable should not be entered again in otherendog().

indepexog should be specified if method(ivregress) is specified but indepvar() is
an exogenous variable. In this case, all endogenous variables must be specified in
otherendog(), and all instruments must be specified in iv().

noplusone calculates the resampled and Romano—Wolf adjusted p-values without
adding 1 to the numerator and denominator [that is, according to (7) rather
than (6)].

nodots suppresses replication dots in bootstrap resamples.

holm specifies to provide p-values corresponding to the Holm (1979) correction along
with the standard output. These will be included in the command output and stored
in the final column of the matrix e (RW) (described in section 3.2 below).

graph requests that a graph be produced showing the Romano—Wolf null distribution
corresponding to each variable examined. This graph shows the distribution of
max;’;n from (5) for each j in 1,...,S. Examples of such a graph are provided in
section 4.
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varlabels specifies to name panels on the graph of null distributions using their variable
labels rather than their variable names.

other_options are any additional options that correspond to the baseline regression
model. All options permitted by the indicated method are allowed.

Options specific to cases where resampled estimates are user provided

nobootstraps indicates that no bootstrap replications be generated by the rwolf com-
mand. In this case, each variable indicated in depvars must consist of M bootstrap
realizations of the statistic of interest corresponding to each of the multiple base-
line models. Additionally, for each variable indicated in depvars, the corresponding
standard errors for each of the M bootstrap replicates should be stored as another
variable, and these variables should be indicated as stdests(warlist). Finally, the
original estimates corresponding to each model in the full sample should be pro-
vided in pointestimates(numlist), and the original standard errors should be pro-
vided in stderrs (numlist). nobootstraps may not be specified if indepvar () and
method () are specified; for all standard implementations based on regression models,
indepvar () and method() should be preferred.

pointestimates (numlist) provides the estimated statistics of interest in the full sample
corresponding to each of the depvars indicated in the command. These estimates
must be provided in the same order as the depvars are specified. pointestimates()
may not be specified if indepvar() and method() are specified; for all standard
implementations based on regression models, indepvar () and method() should be
preferred.

stderrs (numlist) provides the estimated standard errors for each estimated statistic in
the full sample. These estimates must be provided in the same order as the depvars
are specified. stderrs() may not be specified if indepvar() and method() are
specified; for all standard implementations based on regression models, indepvar ()
and method () should be preferred.

stdests (varlist) contains variables consisting of estimated standard errors from each
of the M resampled replications. These standard errors should correspond to the
resampled estimates listed as each depvar and must be provided in the same order
as the depvars are specified. stdests() may not be specified if indepvar() and
method () are specified; for all standard implementations based on regression models,
indepvar() and method() should be preferred.

nullimposed indicates that resamples are centered around the null rather than the
original estimate. nullimposed is generally used only when permutations rather
than bootstrap resamples are performed.
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3.2 Stored results

rwolf is an e-class program and returns many elements in the e() list. It returns
scalars corresponding to each calculated Romano-Wolf p-value, which are available as
e (rw_depvar), where depvar refers to the name of each dependent variable. If multiple
independent variables are considered, a scalar for each p-value corresponding to each
independent—dependent variable pair will be returned as e (rw_depvar_indepvar). A ma-
trix is also returned as e (RW) providing the full set of Romano—Wolf-corrected p-values.
If the holm option is indicated, p-values according to Holm (1979) will be returned
in column 4 of this matrix. Again if multiple independent variables are considered, a
matrix named e (RW_indepvar) will be returned corresponding to each depuvar.

4 Some examples

4.1 Regression-based examples and performance

We begin by presenting a particularly simple case. Consider the following linear model,
in which 10 outcome variables y*® are regressed on a single independent variable, treat.
Superscript-s terms refer to each of the multiple outcomes, of which there are a total
of S, or their determinants. The data-generating process (DGP) is simulated as

yp = B3+ Btreat; +&f fors=1,...,10 ®

for observation i. For each outcome i, the 10 stochastic error terms &; are drawn from
a multivariate normal (MVN) distribution, following

0 1 p ... p
0 p 1 1)
ei~ N R .
0 p p ... 1

with p > 0, and the independent variable of interest, treat;, is generated as treat; :=
1;v,50.51, where 1 denotes the indicator function and U; ~ U(0,1). This is a highly
stylized setting, but it allows us to vary the correlation between the multiple outcome
variables of interest (y',%2,...,4'?) via the parameter p, as well as the impact of treat-
ment via the parameter 8;. In particular, we can examine both the empirical FWER
and the empirical proportion of false null hypotheses that get rejected (that is, power).
We can examine this performance not only for the Romano—Wolf procedure but also for
Holm’s procedure and for naive procedures that do not account for multiple testing.

We consider a series of simulations based on N = 100 observations. Each null
hypothesis is that 57 = 0, versus the two-sided alternative hypothesis 87 # 0. Across
simulations, we vary the number of models in £ =1,2,...,10 for which 5] = 0, as well

as p, the correlation between outcomes induced by the stochastic error terms. Below,
we document one such simulation and resulting multiple-hypothesis correction.
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In the simulation below, each of the 10 3 terms is equal to 0, and the correlation
between draws in the MVN distribution is set at p = 0.25. We follow the DGP described
above, where first we simulate treat; (as treat), and then we generate ¢; as a draw from
an MVN. This draw is generated using a transformation of independent normal draws
using a Cholesky decomposition of the desired covariance matrix and Stata’s matrix
score command to multiply row vectors.'?

set seed 130319

set obs 100
number of observations (_N) was O, now 100

. generate treat = runiform()>0.5
. foreach num of numlist 1(1)10 {
2. generate c num” = rnormal()
3.}
local r=0.25
#delimit ;

delimiter now ;

matrix corr = (1,’r",’r",’r",’r",’r",’r’,’r’,’r’,’r’
‘ri,i,r’,r7,r,r7,r’,r7,r7, e
‘ri,r7,1,’r7, e, 7,7, 7,7,
‘ri,r’,r7,1,° 7,7, 7,7, 7,
‘r',r’,’r’,’r’,1,°r7, 7, 7,7,
‘ri,’r’,r7,r,r’,1,°r 7,7, 7, e’
‘ri,r’,r7,r,r7, 7,1, 7,7,
‘r',r’,’r’,’r’,’r’,’r’,’r7,1,° 7,
‘ri,’r’,r7,r,r7, 7,7, 'r7,1, "
rY,rt, 7, e, e, e, e, 7,77, 1)

PPl A A

VVVVVVYVVYV.

. #delimit cr
delimiter now cr
. matrix corsim = cholesky(corr)

. foreach num of numlist 1(1)10 {

2. matrix eps num” = corsim[ num~,1..10]

3. matrix score epsilon'num” = eps num’

4. generate y num~ = 1 + Oxtreat + epsilon num-”
5.}

12. Further discussion of this is provided in Gould (1995). The use of the Cholesky decomposition is a
convenient way to generate a multivariate normal from a vector of uncorrelated random variables of
mean 0 and variance 1, given that an uncorrelated draw of a vector ¢ ~ A (0,I) can be transformed
following & := pu+Lc, resulting in a vector € ~ N (u, LL’). Thus if ¥ = LL/ is the desired covariance
matrix, the Cholesky decomposition can be taken to give L = Cholesky(X), and the resulting L can
be used to generate the correlated random draws with desired mean g and covariance matrix 3.
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. rwolf y1 y2 y3 y4 y5 y6 y7 y8 y9 y10, indepvar(treat) reps(1000) nodots holm
Bootstrap replications (1000). This may take some time.

Romano-Wolf step-down adjusted p-values

Independent variable: treat
Outcome variables: yl y2 y3 y4 y5 y6 y7 y8 y9 y10
Number of resamples: 1000

| Model Resample Romano-Wolf Holm
Outcome Variable | p-value p-value p-value p-value
+
yi 0.1142 0.1009 0.5534 0.8072
y2 0.8906 0.8931 0.9940 0.8931
y3 0.2750 0.2797 0.7872 1.0000
y4 0.0292 0.0280 0.1938 0.2517
y5 0.1914 0.1818 0.6883 1.0000
y6 0.8683 0.8741 0.9940 1.0000
y7 0.0137 0.0100 0.1009 0.0999
y8 0.8337 0.8372 0.9940 1.0000
y9 0.3849 0.3966 0.8382 1.0000
y10 0.1199 0.1149 0.5534 0.8042

Once we have simulated the N x S matrix Y in the above code, we apply the
Romano—Wolf stepdown correction. Here we are considering the S = 10 outcome vari-
ables y1-y10 and the single independent variable treat. We request that the command
perform 1,000 bootstrap repetitions, which, given the lack of other options, will be per-
formed by resampling observational units with replacement. By specifying the nodots
and holm options, we request that no dots be displayed on the Stata output to indicate
the degree to which the resample procedure has advanced, and we request for rwolf
to return p-values corrected using Holm’s (1979) procedure (which will be listed in the
final column of tabular output and saved in the returned e () list).

The command returns a list of p-values associated with each of the multiple out-
comes. The column Model p-value lists the analytical p-values coming directly from
the estimated regression model based, in each case, on the ¢ statistic and the (inverse)
cumulative distribution function of a ¢ distribution with appropriate degrees of freedom.
The column Resample p-value lists the resampling-based p-values as per (6), which
also do not correct for multiple testing. In the case of both of these uncorrected proce-
dures, despite the fact that all true 3; values were 0, many of the hypotheses that 81 =0
are rejected at o = 0.05. In particular, the variables y4 and y7 have p-values below 0.05
for both uncorrected procedures. The third column displays the Romano—Wolf adjusted
p-values, where we note that now no null hypothesis is rejected (even at o = 0.10).

The simulated example above provides one example of a multiple-hypothesis cor-
rection based upon a known DGP. To examine the performance of the rwolf command
(and the Romano—Wolf correction in this context) more generally, we can examine the
error rates and proportion of hypotheses correctly rejected when we vary the number of
values of 87 = 0 and the correlation between outcomes, p. We consider such an example
in tables 1 and 2 (which are in the spirit of tables 1-3 in Romano and Wolf [2005a]).
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The first table considers the proportion of times at least one null hypothesis is rejected
when the null hypothesis is actually true (the FWER), and the second table considers
the proportion of hypotheses that are correctly rejected when the null hypothesis is false
(the power of the tests).!?

In these tables, we consider 1) a series of models where all of the 5§ terms are equal
to 0 (presented in panel A of table 1), 2) a series where half of the 55 terms are equal
to 0 and the other half are equal to 0.5 (presented in panel B of table 1 when considering
FWERs and panel A of table 2 when considering power),'® and 3) a series where all of
the B terms are equal to 0.5 (presented in panel B of table 2). Case 1 is not considered
in table 2 given that all null hypotheses are true and so cannot be “correctly rejected”.
Similarly, case 3 is not considered in table 1 given that all null hypotheses are false and
so the FWER is trivially equal to 0 given that they cannot be “incorrectly rejected”.
Across columns, we vary the degree of correlation between outcomes, from p = 0 in
the first two columns, to p = 0.75 in the final two columns. The nominal levels for the
FWER are set at « = 0.05 and « = 0.10, respectively.

Table 1. Simulated error rates

p=0 p=0.25 p = 0.50 p=0.75
5% 10% 5% 10% 5% 10% 5% 10%

Panel A: All 8,=0

FWER uncorrected 0.396 0.642 0.365 0.602 0.281 0.492 0.197 0.341
FWER Holm 0.035 0.094 0.036 0.084 0.029 0.068 0.021 0.046
FWER Romano-Wolf 0.048 0.100 0.049 0.097 0.046 0.097 0.047 0.096

Panel B: Half 3,=0.5

FWER uncorrected 0.222 0.408 0.212 0.390 0.180 0.335 0.147 0.258
FWER Holm 0.024 0.065 0.028 0.061 0.025 0.052 0.025 0.049
FWER Romano-Wolf 0.029 0.067 0.033 0.067 0.034 0.075 0.040 0.083

NOTES: Error rates are documented familywise over all outcomes. Uncorrected error rates are
displayed at the top of each panel, where the proportion refers to the proportion of simulations
where at least one true null hypothesis was falsely rejected. Below, similar rates are displayed
when p-values are corrected using Holm’s and Romano—Wolf’s procedures. The correlation between
outcomes is varied across columns, and error rates at @ = 0.05 and o = 0.10 are displayed. The
number of repetitions is 1,000 per scenario, and the number of bootstrap resamples in each case is
equal to M = 5000.

Here we briefly discuss the performance of the rwolf command and note several
important features of the Romano—Wolf multiple-hypothesis correction. In particular,
we always present the performance criteria for three testing procedures: those corre-
sponding to the naive case, where no correction for multiple-hypothesis testing is made;
those corresponding to Holm’s procedure; and those corresponding to the Romano—Wolf
procedure.

13. The replication code of these results, and all results displayed in this article, is available at
http: // www.damianclarke.net / replication / multHypRWolf.zip.
14. Specifically, 611 = B% =...= ﬁ? =0, and 6? =p{=--= B%O =0.5.


http://www.damianclarke.net/replication/multHypRWolf.zip
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In panel A of table 1 (where all values for 85 = 0), it is clear in the uncorrected case
that the empirical FWERs greatly exceed nominal levels of « = 0.05 and 0.10. When
all outcomes are uncorrelated, these values are 0.396 and 0.642, respectively, suggesting
a large proportion of families in which a null hypothesis is incorrectly rejected, in line
with that predicted in theory.'® As the correlation between outcomes grows, these naive
values fall closer to the nominal levels but still considerably exceed desired error rates.

With the Holm correction, we observe that the FWER is controlled at both the 5%
and 10% levels. This is observed regardless of the degree of correlation considered,
between p = 0 and p = 0.75. Similar control is observed with the Romano—Wolf
procedure. Indeed, in each case the empirical FWER is very close to the desired nominal
rate of 0.05 or 0.10, respectively. In panel B of table 1 (where 5 of the 10 hypotheses
should not be rejected), we again observe that the FWER without multiple-hypothesis
correction still substantially exceeds desired error rates but is successfully controlled at
no more than o with both the Holm and Romano—Wolf procedures.

Table 2. Simulated rejection rates

p=0 p=0.25 p =0.50 p=0.75
5% 10% 5% 10% 5% 10% 5% 10%

Panel A: Half 3,=0.5

Rejected uncorrected 0.687 0.791 0.689 0.797 0.681 0.789 0.693 0.798
Rejected Holm 0.324 0.460 0.325 0.457 0.325 0.453 0.340 0.468
Rejected R-W 0.373 0486 0.382 0.492 0.401 0.519 0.469 0.594

Panel B: All 8,=0.5

Rejected uncorrected 0.683 0.792 0.689 0.794 0.681 0.788 0.694 0.797
Rejected Holm 0.384 0.547 0.406 0.558 0.409 0.552 0.432 0.564
Rejected R-W 0.416 0.558 0.436 0.576 0.458 0.593 0.519 0.651

NOTES: The rate of correctly rejected (false) null hypotheses is displayed, where rates refer to
the proportion of all hypotheses rejected across all simulations where the null hypothesis is false.
“Uncorrected” rejection rates are for cases where naive p-values are used for each test, “Holm”
rejection rates are based on Holm’s p-value correction, and “R—-W” rates are based on Romano—
Wolf’s p-value correction. The correlation between outcomes is varied across columns, and rejection
rates at « = 0.05 and a = 0.10 are displayed. The number of repetitions is 1,000 per scenario, and
the number of bootstrap resamples in each case is equal to M = 5000.

In table 2, we can examine the relative power of the Holm and Romano—Wolf pro-
cedures for rejecting false null hypotheses. In panel A of table 2, we return to the case
considered in panel B of table 1, here considering the power of the tests instead. In this
setting, the naive case of no multiple-hypothesis correction allows us to reject a large
proportion of false null hypotheses (at the cost of the FWER documented in table 1).

15. As discussed in section 2, where outcomes are uncorrelated, the probability of falsely rejecting at
least one hypothesis is 1 — (1 —a)®. In this case in particular, we would thus expect the proportion
to be 1 — (1 — 0.05)'% = 0.401 and 1 — (1 — 0.10)'° = 0.651 at the 5% and 10% levels, very close
to the empirically observed values.
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In the case of Holm and Romano—Wolf, we observe relatively similar rates of correct
rejection when the correlation between outcomes is 0, but as expected, as the correlation
between outcomes grows, the Romano—Wolf procedure substantially improves relative
to Holm’s procedure. For example, in the final column of panel A, we reject 59.4% of
false null hypotheses using the Romano—Wolf procedure versus only 46.8% using Holm’s
procedure, a 27% improvement in rejection rate. A similar pattern is observed in table 2,
panel B (where all null hypotheses are false). Initially, when the correlation between
outcomes is 0, Holm’s and Romano—Wolf’s procedures have similar power; however,
to the degree that p increases, the Romano—Wolf procedure becomes relatively more
powerful.

In table 2, we consider the relative power of testing procedures for rejecting false
null hypotheses with a particular value for 7, in this case, 8; = 0.5 for all cases where
B7 # 0. The relative power of these procedures will depend on the actual value of 55.
Below, in figure 1, we consider how these rates of rejection vary with g7 values. In the
figure, we consider the case corresponding to table 2 panel B (where all 57 # 0) and
where p = 0.5. We present values of 5§ varying from 0.01 to 1, in steps of 0.03. All
other details follow the DGP in (8).
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Figure 1. Comparative power to reject false null hypotheses.

NOTES: For each value of 81 in {0.01,0.04,0.07,...,0.97,1}, we conduct 1,000 simulations following the
DGP laid out in (8), where each 5 is set to the value indicated on the z axis and p = 0.5. In each
case, N = 100 observations are simulated, and we calculate p-values using the rwolf command with

200 bootstrap resamples.

For each value of 81, we run 1,000 simulations, in each case calculating the unad-
justed p-values, and the Holm and Romano—Wolf p-values using the rwolf command.
Across the 1,000 simulations, we examine the proportion of null hypotheses correctly
rejected. As expected, the power when not conducting any multiple-hypothesis correc-
tion is greatest (at the cost of exceeding the FWER if the null hypothesis were true). To
the degree that the correlation between outcomes approaches p = 1, the power of the
Romano—Wolf procedure will approach the power of the procedure with no multiple-
hypothesis correction.

Of interest is the relative performance of Romano—Wolf’s versus Holm’s correction.
Here, given that p = 0.5, the power of the Romano—Wolf correction dominates the power
of the Holm correction across each value for 5;. This difference is particularly notable
at values of 81 between 0.4 and 0.6, and all disappear as [3; becomes large, implying
sufficient power to reject all null hypotheses regardless of the correction procedure.
When f3; = 1, each of the procedures results in rejection rates of around 100%.
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The simulated examples based on rwolf displayed previously provide a standard
implementation where multiple outcome variables are regressed on a single indepen-
dent (treatment) variable, each using an ordinary least-squares regression. However,
the standard command syntax of rwolf allows for many extensions of this baseline
implementation. This includes the use of alternative estimation methods (for example,
IV regression, probit, and other Stata estimation commands), the implementation of
one-sided tests, or the use of alternative bootstrap routines (for example, block and
stratified bootstraps). To document several such extensions, we turn to an alternative
example below, modeled after a simple IV regression example based on system data, as
described in the help file of Stata’s ivregress. Here we extend to a case with multiple
outcomes and examine both a one- and a two-sided test.

We begin with a (default) two-sided test, where we follow the implementation of
the two-stage least-squares estimate from the ivregress help file.!6 We use the same
specification, where along with the outcome variable rent, we also consider three other
variables: popden, popgrow and hsng. We do not make any claim to causality or
consistency of the resulting estimates. These are simply shown as an illustration of the
rwolf command with an IV regression. In each case, the independent variable of interest
is hsngval, and this is instrumented with the variables indicated in the iv() option.
We include pcturban as an additional control. We use 10,000 bootstrap replications
(bootstrapping on observational units) and request a graph of the null distributions
used in testing be reported (as discussed below).

The setup and output of this Romano—Wolf correction is displayed below. In this
example, the p-values from the original IV models are quite low, suggesting evidence
against the null that each coefficient on the variable hsngval is 0. The Romano—Wolf
correction displayed in the final column results in inflated p-values (as designed), though
the adjusted p-values are still relatively low.

16. The implementation there is ivregress 2sls rent pcturban (hsngval = faminc i.region).
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. set seed 120113031

. use http://www.stata-press.com/data/r13/hsng, clear
(1980 Census housing data)

. rwolf rent popden popgrow hsng, indepvar(hsngval) method(ivregress)
> iv(faminc i.region) reps(10000) graph nodots

> controls(pcturban)

Bootstrap replications (10000). This may take some time.

Romano-Wolf step-down adjusted p-values

Independent variable: hsngval
Outcome variables: rent popden popgrow hsng
Number of resamples: 10000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
4
rent 0.0000 0.0157 0.0157
popden 0.0654 0.0848 0.0848
popgrow 0.0019 0.0119 0.0200
hsng 0.0236 0.0120 0.0515

Below, we document the same procedure but here conducting one-sided hypothesis
tests. In each case, the null hypothesis in these tests will be of the form Hy : 81 < 0,
versus the alternative Hj : 51 > 0, where (31 is the coefficient on hsngval in the second
stage of the IV regression. For the sake of illustration, we multiply the two outcomes by
—1, such that the sign on §; estimated in each IV regression is greater than 0. Along
with the syntax described previously, the implementation of one-sided tests requires the
use of the option onesided(). If onesided(negative) is specified, the null will be
Hy : 1 < 0; that is, negative values will provide more support for the null. On the
other hand, if onesided(positive) is specified, the null will be Hy : 51 > 0 in each
case, such that positive values will provide more support for the null.

. replace popden=-popden
(50 real changes made)

. replace hsng =-hsng
(50 real changes made)

. rwolf rent popden popgrow hsng, indepvar(hsngval) method(ivregress)
> iv(faminc i.region) reps(10000) graph onesided(negative) nodots

> controls(pcturban)

Bootstrap replications (10000). This may take some time.

Romano-Wolf step-down adjusted p-values

Independent variable: hsngval
Outcome variables: rent popden popgrow hsng
Number of resamples: 10000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
+
rent 0.0000 0.0001 0.0001
popden 0.0327 0.0189 0.0189
popgrow 0.0010 0.0009 0.0014

hsng 0.0118 0.0050 0.0099
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In each example, we specified the graph option to request as output the null distri-
butions used to calculate the p-value in each case. Examining these distributions allows
us to empirically observe how much more demanding the Romano—Wolf correction is
compared with an uncorrected test.

In figure 2 panel (a), we display these distributions in the two-sided case. Here the
histogram presents the absolute value of each (Studentized) estimate from the boot-
strap replications where the null is imposed, and the black dotted line presents an exact
half-normal distribution. The actual Studentized value of the regression coefficient is
displayed as a solid vertical line. In the top left panel, the first null distribution is consid-
erably more demanding than the theoretical distribution, given that it accumulates that
maximum coefficient estimated across each outcome. These null distributions become
increasingly less demanding in the top right and bottom left panels because previously
tested variables are removed from the pool to form the null distributions. Finally, in the
bottom right corner (for the least significant variable), the null distribution is based on
bootstrap replications from only this variable, and as such, the null distribution closely
approximates the theoretical half-normal distribution.

In figure 2 panel (b), we present the same null distributions but now based on
the one-sided tests. Here the histogram documents the maximum values across the
multiple variables in each bootstrap replication, and the black dotted line presents the
theoretical normal distribution. Once again, when we consider outcomes for which more
significant relationships are observed, the empirical distribution used to calculate the
corrected p-value is considerably more demanding than the black dotted distribution,
which would be used under no correction and a normality assumption. In the case of the
least significant variable (popden), these two distributions are similar given that the null
distribution is based only on Studentized regression estimates of the single regression
where this is the outcome variable.



D. Clarke, J. P. Romano, and M. Wolf 23

Variable rent Variable popgrow Variable rent Variable popgrow

EEN @4~ w4 @

\ \
ol 1\ @ \\ <4 A
\ \ o 7N S 7N
<] « \ F e
\ \ o / \ / \
\ \ \ - / \

o~ \ oY \ - / \ / \

\ N ’ \ a 5
~ S~ e N -7 S

o4 T ° e __ o{—— i od-—— ——
0 5 10 15 0 2 4 6 4 2 0 2 4 6 -4 2 0 2 4
pvalve - 00157 p-value = 00200 p-value = 0.0001 p-value = 0.0014

Variable hsng Variable popden Variable hsng Variable popden

@~ @~ @ < ~

N N P
< i © N @ "/ \
\ \ =4 > / \
< \ < \ SN ~ / \
\ g \ / \ \
\ A\ o / \ ! \
o \ o \ /) \ - /
\ J \ /
[ . - x y) \

° | T e ° | T oq{———= [ — © -  —
0 2 4 6 0 2 1 6 -4 -2 0 2 4 % 4 2 0 2 4
p-value = 0.0515 p-value = 0.0848 p-value = 00099 p-value = 0.0189

(a) Two-sided tests (b) One-sided tests

Figure 2. Null distributions for one- and two-sided tests with 1V models.

NOTES: Panel (a) documents the null distributions used to calculate the Romano—Wolf adjusted p-values
for each of the four outcome variables of interest in the ivregress command, using a two-tailed test
where the null is that 81 = 0 in each case. Panel (b) documents the null distributions for the same

regressions but now based on the one-tailed test where each null is that 8; < 0.

4.2 A nonstandard Studentized example

Each previous example has been based on the simple rwolf command syntax where
a single independent variable is regressed on multiple outcome variables. This is fre-
quently sufficient for a large number of implementations, such as cases where a single
experimental treatment is assigned, and various outcomes are measured. In this case,
the rwolf command can be implemented in one line and takes care of everything, in-
cluding the full process of bootstrap draws, estimation of regression coefficients and
standard errors, as well as the generation of null distributions and p-values. However,
Romano—Wolf p-values can also be calculated for more complex setups, if the user wishes
to pass the command the already-bootstrapped (or permuted) statistics and standard
errors that have been calculated from the underlying models of interest. We document
this flexibility in what remains of this section, using a bootstrap approach where our
statistics of interest are a series of correlations.

We use an example and data documented in Westfall and Young (1993), which was
also previously used to demonstrate the effectiveness of the Romano—Wolf procedure
in Romano and Wolf (2005a). Although we refer to this as a nonstandard example, it
is only nonstandard in the way it interacts with the syntax of rwolf, given that the
multiple tests are based on several independent variables and as such do not allow for
a single independent variable to be indicated using the indepvar () option.
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This example considers pairwise correlations between state-average standardized
Scholastic Aptitude Test (SAT) scores and several other state-level measures for the
48 mainland U.S. states plus Hawaii. These data—consisting simply of state-level mea-
sures of several variables of interest—are provided in table 6.4 of Westfall and Young
(1993, 197) as well as in the replication materials for this article. The variables consid-
ered are satdev (the residuals from a regression of state-level SAT scores on the square
root of the percent of students taking the exam in a given state), the student/teacher
ratio in the state, the teacher salary, the percent of the population that is black, and
the crime rate of each state.

In this case, the statistics of interest refer to simple correlations between pairs of
variables of interest, and p-values will be corrected for the fact that we are testing 10 hy-
potheses. To construct null distributions following (4) and (5), the rwolf command
requires an estimate of the original parameter of interest in each case (the pairwise cor-
relation) along with a standard error. These values are used to construct ¢, (as defined
in section 2.2) for each of the s multiple hypotheses and to order the hypotheses in terms
of their relative significance. The command additionally requires the results from M
bootstrap replicates, where a resampled estimate of each statistic and its standard error
is provided. We document such a case below, where in each of the multiple hypotheses
the parameter of interest is the correlation between variables p (which can be simply
calculated using corr in Stata) and its standard error, which, assuming normality, is
calculated as (Bowley 1928; Zar 2010)'7

-7
T )

To generate the various components that rwolf uses to implement the multiple-
hypothesis correction, we first open the data and define in locals varl and var2 the
corresponding pairs to be tested. The idea in these locals is that we wish to calculate
the correlation between the first variable listed in var1l and the first variable listed in
var2, the correlation between the second variable listed in varl and the second variable
listed in var2, and so forth, through the correlation between the last variable listed in
varl and the last variable listed in var2. We calculate these correlations one by one in
the foreach loop in the code below. We loop over elements of the local vari1, and we
take corresponding elements one by one from local var2 using Stata’s tokenize com-
mand.'® These correlations and standard errors from the original data are then saved,
respectively, as locals c‘i’ and s‘i’ to be later passed to the rwolf command. Finally,
we generate two series of 10 empty variables, rhol-rho10 and std1-std10, which will
later be populated by resample-based correlation estimates and their standard errors.

17. In appendix B, we document how this test can be implemented using regression rather than corre-
lation.

18. Using the tokenize command means that we can refer to the variables in var2 as ‘1°, ‘2’ ...,
€10’ in each iteration of the loop.
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. use "satgenerated", clear

. set seed 13032019

. local varl satdev salary black satdev satdev ratio ratio satdev salary ratio
. local var2 black crime crime ratio crime crime black salary black salary

. tokenize “var2-

. local i=1

. foreach var of varlist “varl” {
2. quietly corr “var” TTi’"~
3. local c i“=r(rho)
4. local s i =sqrt((1-r(rho)~2)/(x(N)-2))
5. local ++i
6. }

. foreach num of numlist 1/10 {
2. quietly generate rho num’=
3. quietly generate std num’=.
4. }

A bootstrap procedure is then implemented based on 5,000 resamples. We initially
expand the dataset to have 5,000 observations to store each of the bootstrap estimates;
however, prior to calculating the correlations and standard errors in each replicate,
we work only with the 49 state-level observations with SAT data. FEach replicate is
implemented in the main forvalues loop below. Within each of these 5,000 iterations,
we first issue a preserve command to later restore the data toward the end of each
iteration; this way, the bootstrap resample (bsample) begins with the original data in
each iteration. Within each loop, lines 7-12 calculate the bootstrap correlations and
corresponding standard errors, which are then filled in line by line in the variables
rhol-rho10 and std1-std10 at the end of each loop.

. local M=5000

. set obs "M~
number of observations (_N) was 49, now 5,000

. forvalues m=1/"M" {

2. preserve

3. quietly keep if sat!=.

4. bsample

5. tokenize “var2~

6. local s=1

7. foreach var of varlist “varl~” {

8. quietly corr “var” "°s”’

9. local cor’s” = r(rho)

10. local std s = sqrt((1-r(rho)~2)/(r(N)-2))
11. local ++s

12. }

13. restore

14. foreach s of numlist 1/10 {

15. quietly replace rho s’="cor s”” in "m~
16. quietly replace std*s"="stds”” in "m~
17.

18. }
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Once we have stored the original estimates plus their standard errors and have
variables containing resampled estimates along with their resampled standard errors,
we can simply request the multiple-hypothesis correction from rwolf, as laid out in
section 3. This is implemented below.

We pass to rwolf the varlist consisting of resampled estimates. The stdests (varlist)
option consists of bootstrap standard errors. Finally, the original correlations and stan-
dard errors from the (original) data are passed as numlists in pointestimates() and
stderrs(). The graph option requests that a graph be produced documenting the null
distributions used in each test, and noplusone requests that the p-value be calculated
following (7) rather than the standard (6).

. local allcorrs “cl” “c2” "c3” "c4” "cb” "c6” “c7” “c8” “c9” "cl0”

. local allserrs “sl1” "s2° "s3” "s4” "sb” "s6° “s7” “s8” "s9° “s10~

. #delimit ;

delimiter now ;

. rwolf rhol rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rholO,

> nobootstraps stdests(stdl std2 std3 std4 std5 std6 std7 std8 std9 std10)
> pointestimates( allcorrs”) stderrs(“allserrs”) graph noplusone;

Romano-Wolf step-down adjusted p-values

Outcome variables: rhol rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rhol0
Number of resamples: 5000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
+
rhol 0.0000 0.0040
rho2 0.0010 0.0062
rho3 0.0002 0.0066
rhod 0.0008 0.0434
rhob 0.0158 0.1704
rho6 0.1468 0.4130
rho7 0.1640 0.6026
rho8 0.4790 0.8490
rho9 0.8220 0.9712
rhol0 0.9798 0.9798

. #delimit cr
delimiter now cr

In this nonstandard implementation, no Model p-value is returned because rwolf
itself does not estimate the original correlations, simply working with the estimates
provided from the above code. In this case, we observe the Resample p-value (which
is not corrected for multiple-hypothesis testing), which is the results of comparing each
original estimate with the null distribution, and the Romano-Wolf p-value, where the
multiple-hypothesis correction has been implemented as indicated in section 2.2. These
results are similar to those observed in Romano and Wolf (2005a, table 4) and would
result in rejecting the same hypothesis if standard cutoffs (such as o = 0.01, a = 0.05,
or a = 0.10) were used.
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In figure 3, we present the graph of null distributions, based on (5), for each hypoth-
esis. As implied by the multiple-hypothesis testing algorithm, the null distributions
become less demanding while moving from the most significant variable (top left-hand
panel) to the least significant variable (left-hand panel in the final row).

Variable rhot
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Figure 3. Null distributions and original ¢ statistics from the SAT-deviation data.

NOTES:

Each panel documents the null distributions used to calculate the Romano—Wolf adjusted

p-values [following (5)] for each of the 10 outcome variables of interest. The histogram in each panel

plots the stepdown resampled null distribution, the dashed line represents the theoretical half-normal,

and the solid vertical line represents the original ¢ statistic corresponding to each correlation.

5 Conclusions

In this article, we described the Romano—Wolf multiple-hypothesis correction, a flexible
and versatile procedure to (asymptotically) control the FWER when testing a family of
hypotheses at the same time, which occurs frequently in applied work in economics,
finance, and many other fields. The article documented the rwolf command, which
returns (multiple-testing) adjusted p-values that a) do not suffer from inflated rates of
type I error and b) take into account the dependence structure of test statistics via
resampling. The latter feature, together with the stepwise nature of the procedure,
results in improved ability to correctly reject false null hypotheses (that is, power)
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compared with more traditional multiple-testing procedures, such as the Bonferroni
procedure and the Holm procedure.

We documented the syntax of the command and provided several illustrative ex-
amples, with both simulated data and real data. We documented how this command
can be easily used in cases where multiple dependent variables are regressed on a single
independent variable (in a broad class of regression models). In this case, implementing
the Romano—Wolf multiple-hypothesis correction in Stata is a one-line endeavor, be-
cause the command interacts directly with Stata’s estimation commands to implement
the p-value adjustment. We also documented a more complex case, where the statistics
of interest are not based on regression models and where multiple independent variables
are also considered.

We envision this code being used in a variety of circumstances where multiple-
hypothesis testing occurs, avoiding the well-known and undesirable pitfalls of the phe-
nomenon interchangeably called “data mining”, “cherry picking”, or “p-hacking”.

6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-4
. net install st00!! (to install program files, if available)
. net get st00!! (to install ancillary files, if available)
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A Westfall and Young’'s “Free Stepdown Resampling
Method”

For background related to the multiple-hypothesis testing procedures discussed in sec-
tion 2 of this article, we describe the stepdown resampling procedure of Westfall and
Young (1993) here. This procedure is described as algorithm 2.8 in Westfall and Young
(1993, 66-67), and we largely follow their notation but adapt it to fit the notation laid
out in section 2 of this article.

This procedure begins with S multiple hypotheses, each associated with its own
(unadjusted) p-value. These p-values are labeled such that p; < py <--- < pg. It then
proceeds as described below.

1. Begin with a counter, COUNT; = 0 for each s =1,...,5.

2. Using a bootstrap sample, generate a vector of analogous p-values, (p3, p3, ..., p%).
These will not necessarily follow the same ordering as the original p-values.
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3. Define the successive minimums:

a5 = Ds
qs—1 = min(gs,ps_1)
q5—o = min(gs_q,P5 o)
qi = min(g,p7)

4. If ¢ < ps, then increment COUNT, by one unit.
5. Repeat steps 24 N times, and compute ps = COUNT/N.

6. Enforce monotonicity using successive maximization:

adj o~
Pwya = D1
adj _ adj =~
Pwyo = max(pwy717p2)
adj _ ad]j ~
Pwy,s = ma‘x(pWY,thpS)
The adjusted p-values (p%{,l{(‘l, p%SJY PO ,p%{,l{( g) in the vector are the p-values corrected

for multiple-hypothesis testing, where subscript WY refers to the Westfall-Young pro-
cedure. These p-values provide strong control of the FWER under the assumption of
subset pivotality.

B Regression-based examples

Below, we replicate the example from section 4.2, except that here we estimate the
regressions rather than calculating correlations directly (see, for example, line 2 of the
first loop, and line 8 of the final principal loop). Given that ¢ statistics calculated from
each regression are identical to those calculated using the estimate of the correlation and
its standard error in (9), the Studentization can be similarly performed by regression.
This is documented below, where, apart from the regressions themselves, all other details
follow those described in section 4.2.

. use "satgenerated", clear

. set seed 13032019

. local varl satdev salary black satdev satdev ratio ratio satdev salary ratio
. local var2 black crime crime ratio crime crime black salary black salary

. tokenize “var2~

. local i=1

. foreach var of varlist “varl” {
2. quietly reg “var”~ “Ti””
3. local c i"=_b[ "i" "]
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4. local s i"=_se[ "i""]
5. local ++i
6. }
. foreach num of numlist 1/10 {
2. quietly generate rho num’=
3. quietly generate std num’=.
4. }
local N=5000
set obs "N~

number of observations (_N) was 49, now 5,000

. forvalues n=1/"N" {

2. preserve

3. quietly keep if sat!=.

4. bsample

5. tokenize “var2~

6. local xvar=1

7. foreach var of varlist “varl” {

8. quietly reg “var” ~“xvar ~

9. local btaxvar” = _b[ “xvar -]

10. local std xvar  =_se[ “xvar~ ]

11. local ++xvar

12. }

13. restore

14. foreach num of numlist 1/10 {

15. quietly replace rho'num’="bta'num”"~ in "n~
16. quietly replace std ' num'="std'num”~ in "n~
17.

18. }

local allcorrs “cl” "c2” "c3” "c4” "cb” "c6” “c7” c8” "c9” "cl0-
local allserrs “sl1” "s2” "s3° "s4” "sb” "s6” “s7° “s8” "s9° “s10~
. #delimit ;
delimiter now ;
. rwolf rhol rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rholO,
> nobootstraps stdests(stdl std2 std3 std4 std5 std6 std7 std8 std9 std10)
> pointestimates( allcorrs”) stderrs(“allserrs”) graph noplusone varlabels;

Romano-Wolf step-down adjusted p-values

Outcome variables: rhol rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rhol0
Number of resamples: 5000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
4
rhol 0.0000 0.0046
rho2 0.0010 0.0074
rho3 0.0016 0.0084
rho4 0.0054 0.0470
rhob 0.0268 0.1740
rho6 0.1428 0.3928
rho7 0.1350 0.5848
rho8 0.4844 0.8480
rho9 0.8242 0.9726
rhol0 0.9788 0.9788

. #delimit cr
delimiter now cr



