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PERMUTATION TESTING FOR DEPENDENCE IN TIME SERIES
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Given observations from a stationary time series, permutation tests allow one to construct exactly level 𝛼 tests under the null
hypothesis of an i.i.d. (or, more generally, exchangeable) distribution. On the other hand, when the null hypothesis of interest is
that the underlying process is an uncorrelated sequence, permutation tests are not necessarily level 𝛼, nor are they approximately
level 𝛼 in large samples. In addition, permutation tests may have large Type 3, or directional, errors, in which a two-sided test
rejects the null hypothesis and concludes that the first-order autocorrelation is larger than 0, when in fact it is less than 0. In
this article, under weak assumptions on the mixing coefficients and moments of the sequence, we provide a test procedure for
which the asymptotic validity of the permutation test holds, while retaining the exact rejection probability 𝛼 in finite samples
when the observations are independent and identically distributed. A Monte Carlo simulation study, comparing the permutation
test to other tests of autocorrelation, is also performed, along with an empirical example of application to financial data.
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1. INTRODUCTION

In this article, we investigate the use of permutation tests for detecting dependence in a time series. When testing
the null hypothesis that the underlying time series consists of i.i.d. observations, permutation tests can be con-
structed that control the probability of a Type 1 error exactly, for any choice of test statistic. Typically, the choice
of test statistic is the first-order sample autocorrelation, or some function of many of the sample autocorrelations.
However, significant problems of error control arise, stemming from the fact that zero autocorrelation and inde-
pendence are actually quite different. It is crucial to carefully specify the null hypothesis of interest, whether it
is the case that the observations are i.i.d. or that the observations have zero autocorrelation. For example, if the
null hypothesis specifies that the autocorrelation is zero and one uses the sample first-order autocorrelation as a
test statistic when applying a permutation test, then the Type 1 error can be shockingly different from the nominal
level, even asymptotically. Nevertheless, one might think it reasonable to reject based on such a permutation test,
since the test statistic appears ‘large,’ relative to the null reference permutation distribution. However, even if one
views the null hypothesis as specifying that the time series is i.i.d., a rejection of the null hypothesis based on the
sample autocorrelation is inevitably accompanied by the interpretation then that the true underlying autocorrela-
tion is non-zero. Indeed, one typically makes the further claim that this correlation is positive (negative), when
the sample autocorrelation can be large and positive (large and negative). When the true autocorrelation is zero
and there is a large probability of a Type 1 error, then lack of Type 1 error control also implies lack of Type 3, or
directional, error control. That is, there can be a large probability that one declares the underlying correlation to
be positive when it is in fact negative.
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2 ROMANO AND TIRLEA

Assume X1, … ,Xn are jointly distributed according to some strictly stationary, infinite dimensional distribution
P, where the distribution P belongs to some family Ω. Consider the problem of testing H ∶ P ∈ Ω0, where Ω0

is some subset of stationary processes. For example, we might be interested in testing that the underlying P is a
product of its marginals, that is, the underlying process is i.i.d.

The problem of testing independence in time series and time series residuals is fundamental to understanding the
stochastic process under study. A frequently used analog for testing independence is that of testing the hypothesis

Hr ∶ 𝜌(1) = · · · = 𝜌(r) = 0, (1.1)

for some fixed r, where 𝜌(k) is the kth-order autocorrelation. Examples of such tests include those proposed by
Box and Pierce (1970) and Ljung and Box (1978). However, such tests assume that the data-generating model
is parametric or semi-parametric and, in particular, follows an ARIMA model. This assumption is, in general,
violated for arbitrary P, and so these tests will not be exact for finite samples or asymptotically valid, as will be
shown later.

We propose a non-parametric testing procedure for the hypothesis

H(k) ∶ 𝜌(k) = 0, (1.2)

based on permutation testing, whence we may construct a testing procedure for the hypothesis Hm using multiple
testing procedures. Later, we will also consider this joint testing of many autocorrelations simultaneously in a
multiple testing framework.

To review the testing procedure in application to this problem: let Sn be the symmetric, or permutation,
group of order n. Then, given any test statistic Tn(X) = Tn(X1, … ,Xn), for each element 𝜋n ∈ Sn, let T̂𝜋n

=
Tn

(
X𝜋n(1), … ,X𝜋n(n)

)
. Let the ordered values of the T̂𝜋n

be

T̂
(1)
n ≤ … ≤ T̂

(n!)
n . (1.3)

Fix a nominal level 𝛼 ∈ (0, 1), and let m = n!− [𝛼n!], where [x] denotes the largest integer less than or equal to x.

Let M+(x) and M0(x) be the number of values T̂
(j)
n (x) which are greater than and equal to T̂

(m)
n (x) respectively. Let

a(x) = 𝛼n! − M+(x)
M0(x)

. (1.4)

Define the permutation test 𝜙(X) to be equal to 1, a(X), or 0, according to whether Tn(X) is greater than, equal to,
or less than T (m)

n (X) respectively. Additionally, define the permutation distribution

R̂
Tn

n (t) ∶= 1
n!

∑
𝜋n∈Sn

I
{

T̂𝜋n
≤ t

}
. (1.5)

Let [n] = {1, … , n}. We observe that, for Πn ∼ Unif(Sn), independent of the sequence {Xi, i ∈ [n]}, and
XΠn

=
(
XΠn(1), … ,XΠn(n)

)
, the permutation distribution is the distribution of Tn

(
XΠn

)
conditional on the sequence

{Xi, i ∈ [n]}. Also, accounting for discreteness, the permutation test rejects if the observed test statistic Tn exceeds

the 1 − 𝛼 quantile of the permutation distribution R̂
Tn

n .
Under the randomization hypothesis that the joint distribution of the Xi is invariant under permutation, the

permutation test 𝜙 is exact level 𝛼 (see Lehmann and Romano, 2005, Theorem 15.2.1), but problems may
arise when the null hypothesis H(k) ∶ 𝜌(k) = 0 holds true, but the sequence X is not independent and identi-
cally distributed. Indeed, the distribution of an uncorrelated sequence is not invariant under permutations, and
the randomization hypothesis does not hold (the randomization hypothesis guarantees finite-sample validity of
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PERMUTATION TESTING FOR DEPENDENCE IN TIME SERIES 3

the permutation test; see Lehmann and Romano, 2005, Section 15.2). Such issues may hinder the use of per-
mutation testing for valid inference, but we will show how to restore asymptotic validity to the permutation
test.

For instance, consider the problem of testing H(1) ∶ 𝜌(1) = 0, for some sequence {Xi, i ∈ [n]} ∼ P, where
𝜌(1) = 0. If the sequence is not i.i.d., the permutation test may have rejection probability significantly different
from the nominal level, which leads to several issues. If the rejection probability is greater than the nominal level,
we may reject the null hypothesis, and conclude that there is non-zero first order autocorrelation, whereas in fact
we have autocorrelation of some higher order, or some other unobserved dependence structure. A further issue is
that of Type 3, or directional, error, in a two-sided test of H(1). In this situation, one runs the risk of rejecting the
null and concluding, for instance, that the first-order autocorrelation is larger than 0, when in fact it is less than 0.
To illustrate this, if there exists some distribution Pn of the sequence {Xi, i ∈ [n]} with first-order autocorrelation
𝜌(1) = 0 but rejection probability equal to 𝛾 ≫ 𝛼, by continuity it follows that there exists some distribution Qn

of the sequence with first-order autocorrelation 𝜌(1) < 0, but two-sided rejection probability almost as large as
𝛾 . Under such a distribution, with probability almost 𝛾∕2, not only would we reject the null, but we would also
falsely conclude that the first-order sample autocorrelation is greater than 0, when in fact the opposite holds. We
will later show that 𝛾 may be arbitrarily close to 1; see Example 3.3 and Remark 3.3. There are also issues if the
rejection probability under the null is much smaller than the nominal level. In this case, again by continuity, we
would have power significantly less than the nominal level even if the alternative is true, that is, the test would
be biased. The strategy to overcome these issues is essentially as follows: assuming stationarity of the sequence
{Xi, i ≥ 1}, we wish to show that the permutation distribution based on some test statistic is asymptotically pivotal,
that is, does not depend on the distribution of the Xi, in order for the critical region of the associated hypothesis
test to not depend on parameters of the distribution of the Xi. We then wish to show that the limiting distribution
of the test statistic under H(1) is the same as the permutation distribution, so that we may perform (asymptotically)
valid inference. Without this matching condition, we may not claim that a permutation test is asymptotically
valid, despite being exact under the additional assumption of independence of the sequence. The main technical
challenge in analyzing the ‘random’ permutation distribution stems from the fact that, under weak dependence
assumptions, the rationale for permuting no longer applies as it did in the case of the sequence being independent
and identically distributed.

Significant work has been done on these issues in the context of other problems. Neuhaus (1993) discovers the
idea of studentizing test statistics to allow for asymptotically valid inference in the permutation testing setting,
Janssen (1997) compares means by appropriate studentization in a permutation test, Janssen and Pauls (2003)
give general results about permutation testing, Chung and Romano (2013) consider studentizing linear statistics
in a two-sample setting, Omelka and Pauly (2012) compare correlations by permutation testing, and DiCiccio
and Romano (2017) consider testing correlation structure and regression coefficients. In the context of time series
data, Nichols and Holmes (2002) discuss the application of permutation testing to neuroimaging data, and Ptitsyn
et al. (2006) consider the application of permutation testing as a method of testing for periodicity in biological
data. In a more theoretical setting, Jentsch and Pauly (2015) use randomization methods to test equality of spectral
densities, and Ritzwoller and Romano (2020) consider permutation testing in the setting of dependent Bernoulli
sequences.

In the broader context of testing for serial correlation in time series, Francq et al. (2005) consider testing for
autocorrelation of errors in ARMA models, Lobato et al. (2002) and Escanciano and Lobato (2009) provide
improvements to the Box–Pierce test, Shao (2011) constructs a test using the bootstrap of the null hypothesis of
white noise, and Zhu (2016) improves the Ljung–Box test in application to ARMA models by bootstrapping.

The goal of this article is to provide a framework for the use of permutation testing as a valid method for test-
ing the hypothesis H(k) ∶ 𝜌(k) = 0, which retains the exactness property under the assumption of independence of
the Xi, but is also asymptotically valid for a large class of weakly dependent stationary sequences. In particular,
throughout this article, we consider the problem of testing H(1) ∶ 𝜌(1) = 0, for {Xi, i ∈ [n]} a weakly depen-
dent sequence, and with test statistic a possibly studentized version of the sample autocorrelation 𝜌̂n = 𝜌̂n(1),
where
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4 ROMANO AND TIRLEA

𝜌̂n(k) ≡ 𝜌̂n(X1, … ,Xn; k) =
1

n−k

∑n−k
i=1

(
Xi − Xn

)(
Xi+k − Xn

)
𝜎̂

2
n

. (1.6)

𝜎̂
2
n is the sample variance, given by

𝜎̂
2
n =

1
n

n∑
i=1

(Xi − Xn)2, (1.7)

and Xn = 1

n

∑n
i=1Xi. We note that Xn and 𝜎̂

2
n are permutation invariant. Unless otherwise stated, we consider the

problem of testing H(1) ∶ 𝜌1 = 0, where 𝜌1 is the first-order autocorrelation, and 𝜌̂n refers to the first-order sample
autocorrelation.

There are several different notions of weak dependence (see Bradley, 2005 for a discussion thereof). Throughout
this article, we focus on the notions of m-dependence and 𝛼-mixing.

Section 2 provides several useful preliminary definitions and results. The main results are given in Section 3,
in which we give conditions for the asymptotic validity of the permutation test when {Xi, i ∈ [n]} is a stationary,
𝛼-mixing sequence, satisfying fairly standard technical moment and mixing conditions. For example, the results in
this section are applicable to a large class of stationary ARMA processes. These results should be compared with
those of Section S.2 of the Supporting Information, which provides analogous results for m-dependent sequences
under weaker moment conditions. The technical arguments for Sections S.2 and 3 are rather distinct, though the
results in both sections allow one to construct valid permutation tests of correlations by appropriate studentization.
Section 4 provides a framework for using individual permutation tests for different order autocorrelations in a
multiple testing setting. Section 5 provides simulations illustrating the results. Section 6 gives an application of
the testing procedure to financial data. The proofs are quite lengthy due to the technical requirements needed to
prove the results; consequently, all proofs are deferred to the Supporting Information.

2. PRELIMINARIES

We establish notation and definitions which will be used in Section 3, in addition to providing a useful central
limit theorem. We begin with a brief discussion of 𝛼-mixing. Let {Xn, n ∈ Z} be a stationary sequence of random
variables, adapted to the filtration {n}. Let n = 𝜎

(
Xr ∶ r ≥ n

)
. For n ∈ N, let 𝛼X(n) be Rosenblatt’s 𝛼-mixing

coefficient, defined as

𝛼X(n) = sup
A∈0, B∈n

|P(A ∩ B) − P(A)P(B)| . (2.1)

We say that {Xn} is 𝛼-mixing if 𝛼X(n) → 0 as n → ∞.
In Section 3, to obtain an asymptotically valid permutation testing procedure, it is necessary to compare the true

limiting sample distribution to the permutation distribution. To this end, we provide the following result, which
follows from a straightforward application of Ibragimov’s central limit theorem (Ibragimov, 1962) and the delta
method.

Theorem 2.1. Let X1, … ,Xn be a strictly stationary sequence, with variance 𝜎2 > 0, and first-order autocorrela-
tion 𝜌1, such that one of the following two conditions holds.

(i) {Xi, i ∈ [n]} is m-dependent, for some m ∈ N, and E
[
X4

1

]
< ∞.

(ii) {Xi, i ∈ [n]} is 𝛼-mixing, and, for some 𝛿 > 0, we have that

E

[||X1
||4+2𝛿

]
< ∞, (2.2)

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. (2021)
DOI: 10.1111/jtsa.12638



PERMUTATION TESTING FOR DEPENDENCE IN TIME SERIES 5

and the 𝛼-mixing coefficients 𝛼X(⋅) satisfy ∑
n≥1

𝛼X(n)
𝛿

2+𝛿 < ∞. (2.3)

Let 𝜌̂n be the sample first-order autocorrelation. Let

𝜅2 = Var
(
X2

1

)
+ 2

∑
k≥2

Cov
(
X2

1 , X2
k

)
𝜏2

1 = Var
(
X1X2

)
+ 2

∑
k≥2

Cov(X1X2, XkXk+1)

𝜈1 = Cov
(
X1X2, X2

1

)
+

∑
k≥2

Cov
(
X2

1 , XkXk+1

)
+

∑
k≥2

Cov
(
X1X2, X2

k

)
. (2.4)

Let

𝛾2
1 = 1

𝜎4

(
𝜏2

1 − 2𝜌1𝜈1 + 𝜌2
1𝜅

2
)
. (2.5)

Suppose that 𝜅2, 𝜏2
1 , 𝛾

2
1 ∈ (0, ∞). Then, as n → ∞,

√
n
(
𝜌̂n − 𝜌1

) d
→ N

(
0, 𝛾2

1

)
. (2.6)

A similar result to Theorem 2.1 has been shown in Francq et al. (2005). It is provided here to make clear
the limiting distribution of the sample first-order autocorrelation. With this result in hand, we have an explicit
basis with which to compare the limiting sample distribution and the permutation distribution. It will be use-
ful to consider estimators of the asymptotic variance 𝛾2

1 in Theorem 2.1. To this end, we provide the following
definition.

Definition 2.1. Let {Xi, i ∈ N} be a stationary sequence of random variables. For i ∈ N, let Yi =(
Xi − Xn

)(
Xi+1 − Xn

)
, and let Zi =

(
Xi − Xn

)2
. Let {bn, n ∈ N} be a non-decreasing sequence of natural

numbers. Let

K̂
2

n =
1
n

n∑
i=1

(
Zi − Zn

)2
+ 2

n

bn∑
j=1

n−j∑
i=1

(
Zi − Zn

)(
Zi+j − Zn

)
T̂

2

n =
1
n

n−1∑
i=1

(
Yi − Yn

)2
+ 2

n

bn∑
j=1

n−j−1∑
i=1

(
Yi − Yn

)(
Yi+j − Yn

)
𝜈̂n =

1
n

n−1∑
i=1

(
Yi − Yn

)(
Zi − Zn

)
+ 1

n

bn∑
j=1

n−j−1∑
i=1

(
Zi − Zn

)(
Yi+j − Yn

)
+

+ 1
n

bn∑
j=1

n−j∑
i=1

(
Yi − Yn

)(
Zi+j − Zn

)
. (2.7)

Let

𝛾̂
2
n =

1

𝜎̂
4
n

[
T̂

2

n − 𝜌̂n𝜈̂n + 𝜌̂
2
nK̂

2

n

]
. (2.8)
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6 ROMANO AND TIRLEA

In Section 3, we will show consistency of the estimator 𝛾̂n under standard moment and mixing conditions on
the sequence {Xi, i ∈ N}. Having established this notation, we may begin to consider the problem of testing for
serial correlation for a broad class of 𝛼-mixing sequences.

3. PERMUTATION DISTRIBUTION FOR α-MIXING SEQUENCES

We consider the problem of testing the null hypothesis

H(1) ∶ 𝜌1 = 0, (3.1)

where 𝜌1 = 𝜌(X; 1) is the first-order autocorrelation, in the setting where the sequence {Xi, i ∈ [n]} is station-
ary and 𝛼-mixing. When the distribution of (X1, … ,Xn) is invariant under permutation, that is, the sequence is
exchangeable, the randomization hypothesis holds, and so one may construct permutation tests of the hypothe-
sis H0 with exact level 𝛼. Note that in the case of 𝛼-mixing, exchangeability and independence are equivalent
conditions.1 An implication of this result is that any permutation testing procedure will retain the exactness prop-
erty under the additional assumption of independence of the Xi, and this is the only condition under which the
randomization hypothesis holds.

However, if the realizations of the sequence are not independent, the test may not be valid even asymptotically,
that is, the rejection probability of such a test need not be 𝛼 for finite samples or even near 𝛼 in the limit as
n → ∞. Hence the goal is to construct a testing procedure, based on some appropriately chosen test statistic,
which has asymptotic rejection probability equal to 𝛼, but which also retains the finite sample exactness property
under the assumption of independence of the Xi. It is therefore important to analyze the asymptotic properties of
the permutation distribution.

We wish to consider a permutation test based on the first-order sample autocorrelation, 𝜌̂n. Our strategy is as
follows: to determine the limiting behavior of the permutation distribution, R̂n, we will show that an appropri-
ately studentized version of the first-order sample autocorrelation has permutation distribution asymptotically not
depending on the underlying process {Xn, n ∈ N}, and that, under the null hypothesis H(1) ∶ 𝜌1 = 0, the test
statistic has asymptotic distribution equal to that of the permutation distribution.

We proceed as follows, in the spirit of Noether (1950). Suppose, for now, that the sequence {Xn, n ∈ N} is
uniformly bounded. For Πn ∼ Unif(Sn), observing that the permutation distribution based on some test statistic
Tn

(
X1, … ,Xn

)
is the empirical distribution of Tn

(
XΠn(1), … , XΠn(n)

)
conditional on the data {Xi, i ∈ [n]}, we

may condition on the data and apply the central limit theorem of Wald and Wolfowitz (1943), checking that appro-
priate conditions on the sample variance are satisfied. This allows us to obtain a convergence result for a distribution
very closely related to that of the permutation distribution, but with additional centering and scaling factors.

We are now in a position to use a double application of Slutsky’s theorem for randomization distributions (Chung
and Romano, 2013, Theorem 5.2), thus obtaining the following result.

Theorem 3.1. Let {Xn, n ∈ N} be a stationary, bounded, 𝛼-mixing sequence. Suppose that∑
n≥1

𝛼X(n) < ∞. (3.2)

The permutation distribution of
√

n𝜌̂n based on the test statistic 𝜌̂n = 𝜌̂(X1, … ,Xn), with associated group of
transformations Sn, the symmetric group of order n, satisfies

sup
t∈R

|||R̂n(t) − Φ(t)||| p
→ 0, (3.3)

as n → ∞, where Φ(t) is the distribution of a standard Gaussian random variable.

1 A proof of this statement is given in Lemma S.3.1.
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PERMUTATION TESTING FOR DEPENDENCE IN TIME SERIES 7

We now wish to remove the boundedness constraint of Theorem 3.1 and extend its result to the setting of sta-
tionary, 𝛼-mixing sequences with uniformly bounded moments of some order. To do this, we require the following
lemma.

Lemma 3.1. For each N, n ∈ N, let GN, n ∶ R → R be an non-decreasing random function such that, for each N,
and for all t ∈ R, as n → ∞,

GN, n(t)
p
→ gN(t), (3.4)

where, for each N, gN ∶ R → R is a function. Suppose further that, as N → ∞, for each t ∈ R,

gN(t) → g(t), (3.5)

where g ∶ R → R is continuous. Then, there exists a sequence Nn → ∞ such that, for all t ∈ R, as n → ∞,

GNn , n(t)
p
→ g(t). (3.6)

We may proceed to extend Theorem 3.1 as follows. Let {Xi, i ≥ 1} be an 𝛼-mixing sequence, with summable
𝛼-mixing coefficients, and let GN, n(t) be the permutation distribution, evaluated at t, of the truncated sequence

Yi =
(
Xi ∧ N

)
∨ (−N), based on the test statistic

√
n𝜌̂n. Let gN = g = Φ, where Φ is the distribution of a standard

Gaussian random variable. By Theorem 3.1, the conditions of Lemma 3.1 are satisfied, so we apply Lemma 3.1
to find an appropriate sequence of truncation parameters Nn.

Then, for Πn ∼ Unif(Sn), and Yi =
(
Xi ∧ Nn

)
∨ (−Nn), we relate the first-order sample autocorrelation

𝜌̂n

(
XΠn(1), … ,XΠn(n)

)
to the truncated first-order sample autocorrelation 𝜌̂n

(
YΠn(1), … ,YΠn(n)

)
. Bounding the dif-

ference of these two autocorrelations in probability using Doukhan (1994), Section 1.2.2, Theorem 3, and applying
Slutsky’s theorem for randomization distributions once more, we obtain the following result.

Theorem 3.2. Let {Xn, n ∈ N} be a stationary, 𝛼-mixing sequence, with mean 0 and variance 1. Suppose that,
for some 𝛿 > 0, ∑

n≥1

𝛼X(n)
𝛿

2+𝛿 < ∞, (3.7)

and

E

[||X1
||8+4𝛿

]
< ∞. (3.8)

Then, the permutation distribution of
√

n𝜌̂n based on the test statistic 𝜌̂n = 𝜌̂n(X1, … ,Xn), with associated group
of transformations Sn, the symmetric group of order n, satisfies

sup
t∈R

|||R̂n(t) − Φ(t)||| p
→ 0, (3.9)

where Φ(t) is the distribution of a standard Gaussian random variable.

We have shown that the permutation distribution is asymptotically Gaussian, with mean and variance not
depending on the underlying process, and that the result holds irrespective of whether or not the null hypothesis
H(1) holds. This result may be interpreted as follows. Under the action of a random permutation, for large values
of n, one would expect that the first-order sample autocorrelation of the sequence {Xn, n ∈ N} behaves similarly

to the case of Xi
i.i.d.∼ F, where F is the marginal distribution of the Xi, since the dependence between consecutive
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8 ROMANO AND TIRLEA

terms in the permuted sequence will be very weak, on account of the large sample size and the localized depen-
dence structure of the original sequence. However, the same is not true of the asymptotic distribution of the test
statistic. Indeed, under the null hypothesis, the asymptotic distribution of

√
n𝜌̂n is also Gaussian with mean 0, but

with variance not necessarily equal to 1. Therefore it is not possible to claim asymptotic validity of the permutation
test based on this test statistic.

Since, clearly, in the context of Theorem 2.1, 𝛾2
1 = 1 does not hold in general, a permutation test based on

the test statistic
√

n𝜌̂n will not be asymptotically valid. However, note that, under the additional restriction of
independence, 𝛾2

1 = 1 always, hence, as is consistent with the test being exact under independence, the permutation
test will also be asymptotically valid in this case. One could conclude that the permutation test based on the above
test statistic is not asymptotically valid in general.

Alternatively, one could adapt the test statistic above in some fashion, to resolve the issue of (asymptotically)
mismatched variances in the permutation distribution and distribution of the test statistic. In particular, a natural
way to adapt the test statistic is to studentize it by some estimator of 𝛾2

1 , motivated by the heuristics that, under
permutations, all dependence structure in the sequence will be broken, and the estimator will behave as if it were
computed from an i.i.d. sample. Therefore, despite the limiting distribution of

√
n𝜌̂n being different, in general,

from the case when Xi
i.i.d.∼ F, where F is the marginal distribution of the Xi, under appropriate studentization, the

limiting behaviors will be the same.
To this end, we now consider a permutation test based on some studentized version of the test statistic

√
n𝜌̂n.

Provided we can find a weakly consistent estimator 𝛾̂2
n = 𝛾̂

2
n

(
X1, … ,Xn

)
of 𝛾2

1 , such that, for Πn a random per-

mutation independent of the sequence {Xi, i ∈ [n]}, we also have that 𝛾̂2
n

(
XΠn(1), … ,XΠn(n)

)
= Var

(
X1

)2 + op(1),
we may apply Slutsky’s theorem for randomization distributions to studentize the test statistic and construct an
asymptotically valid permutation test.

Lemma 3.2. Let {Xn, n ∈ N} be a stationary, 𝛼-mixing sequence, with variance 𝜎2 > 0 such that, for some 𝛿 > 0,

E

[||X1
||8+4𝛿

]
< ∞, (3.10)

and ∑
n≥1

𝛼X(n)
𝛿

2+𝛿 < ∞. (3.11)

Let 𝛾2
1 be as defined in (2.5). Let bn = o

(√
n
)

be such that bn → ∞ as n → ∞. Let 𝛾̂2
n be as in (2.8). Then, as

n → ∞,

𝛾̂
2
n

p
→ 𝛾2

1 . (3.12)

Lemma 3.3. In the setting of Lemma 3.2, let Πn ∼ Unif(Sn), independent of the sequence {Xn, n ∈ N}. For
i ∈ N, let

Ỹ i =
(

XΠn(i) − Xn

)(
XΠn(i+1) − Xn

)
Z̃i =

(
XΠn(i) − Xn

)2
. (3.13)

Let

K̂
2

n =
1
n

n∑
i=1

(
Z̃i − Z̃n

)2
+ 2

n

bn∑
j=1

n−j∑
i=1

(
Z̃i − Z̃n

)(
Z̃i+j − Z̃n

)
wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. (2021)
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PERMUTATION TESTING FOR DEPENDENCE IN TIME SERIES 9

T̂
2

n =
1
n

n−1∑
i=1

(
Ỹ i − Ỹn

)2
+ 2

n

bn∑
j=1

n−j−1∑
i=1

(
Ỹ i − Ỹn

)(
Ỹ i+j − Ỹn

)
𝜈̂n =

1
n

n−1∑
i=1

(
Ỹ i − Ỹn

)(
Z̃i − Z̃n

)
+ 1

n

bn∑
j=1

n−j−1∑
i=1

(
Z̃i − Z̃n

)(
Ỹ i+j − Ỹn

)
+

+ 1
n

bn∑
j=1

n−j∑
i=1

(
Ỹ i − Ỹn

)(
Z̃i+j − Z̃n

)
. (3.14)

Let

𝛾̂
2
n =

1

𝜎̂
4
n

[
T̂

2

n − 𝜌̂n𝜈̂n + 𝜌̂
2
nK̂

2

n

]
. (3.15)

We have that, as n → ∞,

𝛾̂
2
n

p
→ 1. (3.16)

Combining the results of Lemmas 3.2 and 3.3 with Slutsky’s theorem for randomization distributions, we may
conclude the following.

Theorem 3.3. Let {Xn, n ∈ N} be a strictly stationary, 𝛼-mixing sequence, with variance 𝜎2 and first-order
autocorrelation 𝜌1, such that, for some 𝛿 > 0,

E

[||X1
||8+4𝛿

]
< ∞, (3.17)

and ∑
n≥1

𝛼X(n)
𝛿

2+𝛿 < ∞. (3.18)

Let 𝜅2, 𝜏2
1 , 𝜈1 and 𝛾2

1 be as in Theorem 2.1. Suppose that 𝜅2, 𝜏2
1 , 𝛾

2
1 ∈ (0, ∞). Let bn = o

(√
n
)

be such that

bn → ∞ as n → ∞. Let 𝛾̂2
n be as in (2.8).

(i) We have that, as n → ∞, √
n
(
𝜌̂n − 𝜌1

)
𝛾̂n

d
→ N (0, 1) . (3.19)

(ii) Let R̂n be the permutation distribution, with associated group of transformations Sn, the symmetric group of
order n, based on the test statistic

√
n𝜌̂n∕𝛾̂n. Then, as n → ∞,

sup
t∈R

|||R̂n(t) − Φ(t)||| p
→ 0, (3.20)

where Φ is the standard Gaussian c.d.f.
Remark 3.1. Under the assumptions set out in Theorem 3.3, in particular as a result of (3.20), the level 𝛼

permutation test of the null H(1) ∶ 𝜌1 = 0 based on the test statistic
√

n𝜌̂n∕𝛾̂n is asymptotically valid.

J. Time Ser. Anal. (2021) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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10 ROMANO AND TIRLEA

Remark 3.2. Note that, under the stronger assumption of m-dependence of the sequence {Xi, i ∈ N}, we have
that the summability condition (3.18) on the 𝛼-mixing coefficients holds for any 𝛿 > 0, and so the result of
Theorem 3.3 also holds in this case. However, one may obtain an analogous result to that of Theorem 3.3 with
weaker moment conditions; see Section S.2 of the Supporting Information for further details.

We now illustrate the application of Theorem 3.3 to the class of stationary ARMA processes, as well as to a
class of stationary m-dependent sequences.

Example 3.1. (ARMA process). Let {Xi, i ∈ Z} satisfy the equation

p∑
i=0

BiXt−i =
q∑

k=0

Ak𝜖k, (3.21)

where the 𝜖k are independent and identically distributed, and E𝜖k = 0, that is, X is an ARMA(p, q) process. Let X
have first-order autocorrelation 𝜌 = 0. Let

P(z) ∶=
p∑

i=0

Biz
i. (3.22)

If the equation P(z) = 0 has no solutions inside the unit circle {z ∈ C ∶ |z| ≤ 1}, there exists a unique stationary
solution to (3.21). By Mokkadem (1988), Theorem 1, if the distribution of the 𝜖k is absolutely continuous with
respect to Lebesgue measure on R, and also that, for some 𝛿 > 0,

E

[||𝜖1
||8+4𝛿

]
> 0, (3.23)

we have that the sequence {Xi, i ∈ N} satisfies the conditions of Theorem 3.3, as long as 𝛾2
1 , as defined in (2.5),

is finite and positive. Therefore, asymptotically, the rejection probability of the permutation test applied to such a
sequence will be equal to the nominal level 𝛼.

Example 3.2. (AR(2) process). We specialize Example 3.1 to the case of an AR(2) process with first-order
autocorrelation equal to 0. Suppose that the strictly stationary sequence {Xi, i ≥ 1} satisfies, for all t > 2, the
equation

Xt = 𝜙Xt−1 + 𝜌Xt−2 + 𝜖t, (3.24)

where the 𝜖t are as in Example 3.1. The first-order autocorrelation of X is given by

𝜌(1) = 𝜙

1 − 𝜌
. (3.25)

Hence, for X to be such that 𝜌(1) = 0, we must have that 𝜙 = 0. In particular, it follows that {X2i, i ≥ 1} and
{X2i−1, i ≥ 1} are independent and identically distributed stationary AR(1) processes with parameter 𝜌. By the
same argument as in Example 3.1, the requisite 𝛼-mixing condition is satisfied, and so, in order for the result of
Theorem 3.3 to apply, it suffices to show that 𝜏2

1 , 𝜅
2, and 𝜈1, as defined in (2.7), are finite and non-zero. If so, since

𝜌(1) = 0, we have that 𝛾2
1 = 𝜏2

1∕𝜎
4, and so the variance condition on 𝛾2

1 is automatically satisfied. We begin by
noting that, for i odd,

Cov
(
X1, Xi

)
= 𝜌

i−1
2 Var(X1), (3.26)

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. (2021)
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and similarly for the covariance between X2 and Xi, for i even. Also, note that E
[
X1

]
= 0. Simple calculations

show that

Var
(
X1X2

)
= Var

(
X1

)2

Cov
(
X1X2, XkXk+1

)
= 𝜌k−1Var

(
X1

)2
, k ≥ 2. (3.27)

It follows that 𝜏2
1 ∈ (0, ∞). Similarly, we have that 𝜈1 = 0, and

Cov
(
X2

1 , X2
k

)
=

{
𝜌k−1Var

(
X4

1

)
, if k ∈ 2N,

0, otherwise.
(3.28)

It follows that 𝛾2
1 ∈ (0, ∞), and so the result of Theorem 3.3 holds in this case.

Example 3.3. (Products of i.i.d. random variables). Let {Zn, n ∈ N} be mean zero, i.i.d., non-constant random
variables, such that

E

[||Z1
||8+4𝛿

]
< ∞. (3.29)

Fix m ∈ N, and, for each i, let

Xi =
i+m−1∏

j=i

Zj. (3.30)

We observe that the sequence {Xi, i ≥ 1} is stationary and m-dependent, and that, by Fubini’s theorem, the Xi have
uniformly bounded (8 + 4𝛿) moments. It now suffices to show that 𝜅2 and 𝜏2

1 are finite and strictly greater than 0,
and 𝛾2

1 , as defined in (2.5), is finite and strictly greater than zero. Let Mk be the k th moment of Z1, k ≥ 1. Simple
calculations show that

Var
(
X1X2

)
= M2

2Mm−1
4

Cov
(
X1X2, XkXk+1

)
= 0, k ≥ 2. (3.31)

Hence

𝜏2
1 = M2

2Mm−1
4 ∈ (0, ∞).

Additionally, we have that

𝜅2 = Mm
4 − M2m

2 ∈ (0, ∞)
𝜈1 = 0.

Hence we have that 𝛾2
1 = Mm−1

4 ∕M2(m−1)
2 ∈ (0, ∞). It follows that we may apply the result of Theorem 3.2, and

conclude that the rejection probability of the permutation test based on the test statistic
√

n𝜌̂n∕𝛾̂n converges to 𝛼

as n → ∞.

Remark 3.3. Example 3.3 also provides an illustrative example of the need for studentization in the permutation
test. Indeed, in the setting of Example 3.3, for r ∈ N odd, let

Zi = Gr
i , (3.32)

J. Time Ser. Anal. (2021) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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12 ROMANO AND TIRLEA

where {Gi, i ∈ Z} are independent standard Gaussian random variables. Hence

𝛾2
1 =

(
E
[
G4r

i

]
E
[
G2r

i

]2

)m−1

=
(

(4r − 1)!!
((2r − 1)!!)2

)m−1

.

By Theorems 2.1 and 3.2, it follows that the asymptotic rejection probability of the level 𝛼 two-sided permutation
test, based on the test statistic

√
n𝜌̂n, converges to

2

(
1 − Φ

((
((2r − 1)!!)2

(4r − 1)!!

) m−1
2

z1−𝛼∕2

))
,

as n → ∞, where z1−𝛼∕2 is the 𝛼∕2 quantile of the standard normal distribution. It follows that this rejection
probability can be arbitrarily close to 1 for large values of n, m and r. Therefore, by continuity, there exists a
distribution Qn of (X1, … ,Xn) such that 𝜌(1) < 0, but the two-sided permutation test based on

√
n𝜌̂n would reject

H(1), with probability arbitrarily close to 1∕2, and conclude that the first-order sample autocorrelation is greater
than zero, when, in fact, the opposite is true. ***

Remark 3.4. In this section, we have only considered a permutation test of the hypothesis H(1) ∶ 𝜌(1) = 0.
However, analogously, one may prove a similar result for a permutation testing procedure for the hypothesis
H(k) ∶ 𝜌k = 𝜌(k) = 0, where k ∈ N is fixed. Indeed, note that the sequence {Ỹ i ∶ i ≥ 1}, where Ỹ i = XiXi+k is
𝛼-mixing, with 𝛼-mixing coefficients given by 𝛼𝜉(n) = 𝛼X(n − k).

Furthermore, for Πn a random permutation independent of the Xi, under appropriate moment conditions for the
Xi, we also have that

1√
n

n−1∑
i=1

XΠn(i)XΠn(i+1)
d
= 1√

n

n−k∑
i=1

XΠn(i)XΠn(i+k) + op(1), (3.33)

since, for any fixed element 𝜎 ∈ Sn, Πn𝜎
d
= Πn. Hence, defining an appropriate estimator of the variance of 𝜌̂n(k),

we may similarly construct an asymptotically valid permutation test under the hypothesis H(k). To be precise, let

Yi =
(

Xi − Xn

)(
Xi+k − Xn

)
, and let Zi =

(
Xi − Xn

)2
. Let

T̂
2

n, k =
1
n

n−1∑
i=1

(
Yi − Yn

)2
+ 2

n

bn∑
j=1

n−j−k∑
i=1

(
Yi − Yn

)(
Yi+j − Yn

)
𝜈̂n, k =

1
n

n−1∑
i=1

(
Yi − Yn

)(
Zi − Zn

)
+ 1

n

bn∑
j=1

n−j−k∑
i=1

(
Zi − Zn

)(
Yi+j − Yn

)
+

+ 1
n

bn∑
j=1

min{n−j, n−k}∑
i=1

(
Yi − Yn

)(
Zi+j − Zn

)
. (3.34)

Let K̂
2

n and 𝜅2 be defined as in Definition 2.1 and Theorem 2.1 respectively. Let

𝛾̂
2
n, k =

1

𝜎̂
4
n

(
T̂

2

n, k − 2𝜌̂n(k)𝜈̂k + 𝜌̂n(k)2K̂
2

n

)
, (3.35)
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where 𝜌̂n(k) is the sample k th order autocorrelation. Let

𝜏2
k = Var

(
X1Xk+1

)
+ 2

∑
j≥2

Cov
(
X1Xk+1, XjXj+k

)
𝜈k ∶= Cov

(
X1Xk+1, X2

1

)
+

∑
j≥2

Cov
(
X2

1 , XjXj+k

)
+

∑
j≥2

Cov
(

X1Xk+1, X2
j

)
, (3.36)

and let

𝛾2
k = 1

𝜎4

(
𝜏2

k − 2𝜌k𝜈k + 𝜌2
k𝜅

2
)
. (3.37)

Assume that 𝜏2
k , 𝜅

2 ∈ R+ and 𝛾2
k ∈ R+. Under the same conditions on the sequence {Xn, n ∈ N} as in

Theorem 3.3, by an identical argument to the one given in the case k = 1, we will have that the permutation dis-
tribution based on the test statistic

√
n𝜌̂n(k)∕𝛾̂n, k, with associated group of transformations Sn, will satisfy (3.20),

and the test statistic will satisfy a central limit theorem analogous to (3.19).

Having developed a permutation testing framework, we further derive an array version of Theorem 3.3, to
provide a procedure under which one may compute the limiting power of the permutation test under local
alternatives.

Theorem 3.4. For each n ∈ N, let
{

X(n)
i , i ∈ [n]

}
, be stationary sequences of random variables. Suppose that

the X(n)
i are bounded, uniformly in i and n, and that∑

n≥1

sup
r≥n+1

𝛼X(r) (n) < ∞. (3.38)

The permutation distribution of
√

n𝜌̂n, based on the test statistic 𝜌̂n = 𝜌̂n

(
X(n)

1 , … ,X(n)
n

)
, with associated group

of transformations Sn, the symmetric group of order n, satisfies, as n → ∞,

sup
t∈R

|||R̂n(t) − Φ(t)||| p
→ 0. (3.39)

We may view Theorem 3.4 as an extension of Theorem 3.1. Analogously, we may extend Theorem 3.2, and
Lemmas 3.2 and 3.3, and hence the result of Theorem 3.3 holds for triangular arrays of stationary, 𝛼-mixing
sequences, replacing the condition (3.17) with

sup
n≥1

E

[|||X(n)
1
|||8+4𝛿

]
< C, (3.40)

and the condition (3.18) with ∑
n≥1

max
r≥n+1

𝛼X(r) (n)
𝛿

2+𝛿 < ∞. (3.41)

In particular, it follows that we may apply the result of Theorem 3.4 to triangular arrays of stationary sequences,
where instead of (3.19), we have the result √

n
(
𝜌̂n − 𝜌n

)
𝛾̂n

d
→ N(0, 1), (3.42)

where 𝜌n, and 𝛾̂n are defined analogously to Theorem 3.3.
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14 ROMANO AND TIRLEA

It follows that we may compute the power function of the permutation test under appropriate sequences of
limiting local alternatives.

Example 3.4. (AR(1) process) Consider a triangular array of AR(1) processes, given by

X(n)
i = 𝜌nX(n)

i−1 + 𝜖
(n)
i , i ∈ {2, … , n}, (3.43)

where 𝜌n = h∕
√

n, for some fixed constant h ∈ (0, 1), and the 𝜖(n)i form a triangular array of independent standard
Gaussian random variables. For each n, the autoregressive process defined in (3.43) has a unique stationary solu-

tion, in which
(

X(n)
1 , … ,X(n)

n

)
follows a multivariate Gaussian distribution, with mean 0 and covariance matrix

given by

Cov
(

X(n)
i , X(n)

j

)
=

𝜌|i−j|
n

1 − 𝜌2
n

. (3.44)

Consider the problem of testing H(1) ∶ 𝜌1 = 0 against the alternative 𝜌1 > 0, using the permutation test described
in Theorem 3.4.

By Theorem 1 of Mokkadem (1988), we have that condition (3.41) is satisfied for example, 𝛿 = 1∕2, and, since
the X(n)

i have uniformly bounded second moment and are normally distributed, we also have that condition (3.40)
is satisfied.

Hence, letting 𝜙n denote the permutation test conducted on the sequence
{

X(n)
i , i ∈ [n]

}
, we may apply the

analogous result of Theorem 3.4 to the triangular array of AR processes, whence, by an application of Slutsky’s
theorem, we obtain that √

n𝜌̂n

𝛾̂n

− h
𝛾 (n)

d
→ N(0, 1), (3.45)

and that the local limiting power function satisfies, for z1−𝛼 the upper 𝛼 quantile of the standard Gaussian
distribution,

E𝜌n
𝜙n → 1 − Φ

(
z1−𝛼 − lim

n→∞

h
𝛾 (n)

)
, (3.46)

and (
𝛾 (n)

)2 = 1
𝜎4

n

[(
𝜏 (n)

)2 − 2𝜌n𝜈
(n)
1 + 𝜌2

n

(
𝜅(n))2

]
, (3.47)

where (
𝜅(n))2 = Var

((
X(n)

1

)2
)
+ 2

∑
k≥2

Cov

((
X(n)

1

)2
,

(
X(n)

k

)2
)

(
𝜏 (n)

)2 = Var
(

X(n)
1 X(n)

2

)
+ 2

∑
k≥2

Cov
(

X(n)
1 X(n)

2 , X(n)
k X(n)

k+1

)
(3.48)

𝜈
(n)
1 ∶= Cov

(
X(n)

1 X(n)
2 ,

(
X(n)

1

)2
)
+

∑
k≥2

Cov

((
X(n)

1

)2
, X(n)

k X(n)
k+1

)
+

+
∑
k≥2

Cov

(
X(n)

1 X(n)
2 ,

(
X(n)

k

)2
)
. (3.48)
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Example 7.16 of van der Vaart (1998) establishes local asymptotic normality of the local alternative sequence to
the null model corresponding to h = 0. Hence, by contiguity of the sequence of alternatives, it follows that, as
n → ∞, 𝛾 (n) → 1, and so, as n → ∞,

E𝜌n
𝜙n → 1 − Φ

(
z1−𝛼 − h

)
. (3.50)

Remark 3.5. We observe that, in the setting of Example 3.4, the one-sided studentized permutation test is locally
asymptotically uniformly most powerful (LAUMP; see Lehmann and Romano, 2005, Definition 13.3.3). Indeed,
by Example 7.16 and Theorem 15.4 in van der Vaart (1998), coupled with the result of Lemma 13.3.2 in Lehmann
and Romano (2005), we observe that the optimal local power of a one-sided test, against the alternatives 𝜌n =
h∕

√
n, in the setting of Example 3.4, is

𝛽∗ = 1 − Φ
(
z1−𝛼 − h

)
.

Since this is exactly the power in (3.50), it follows that the studentized permutation test is LAUMP.

Remark 3.6. Note that, more generally, the same argument applies when computing the limiting local power of
the studentized permutation test with respect to contiguous alternatives. Indeed, if contiguity can be established for
some sequence of alternatives {Pn, n ∈ N} with first-order autocorrelations 𝜌1, n = h∕

√
n, by a similar argument

to the one presented in Example 3.4, we will have that the convergence of 𝛾̂2
n to 𝛾2

1 (in probability) also holds under
the contiguous sequence of alternatives. Hence the limiting power of the one-sided level 𝛼 studentized permutation
test, under the contiguous sequence of alternatives, will also be given by

EPn
𝜙n → 1 − Φ

(
z1−𝛼 −

h
𝛾1

)
,

as n → ∞.

4. MULTIPLE AND JOINT HYPOTHESIS TESTING

We outline multiple testing procedures which may be applied to test the hypotheses H(k), as defined in (1.2),
simultaneously. While we make use of the standard Bonferroni method of combining p-values, we argue such an
approach is not overly conservative. We develop a method for testing joint null hypotheses of the form

Hr ∶ 𝜌(1) = 𝜌(2) = · · · = 𝜌(r) = 0.

It is desirable to perform such a test in a multiple testing framework, that is, in the case of rejection of the null
hypothesis, we often wish to accompany this rejection with inference on which of the individual hypotheses H(k)

do not hold. To this end, it is necessary to construct a procedure allowing for valid inference, in the sense that the
family-wise error rate (FWER) is controlled at the nominal level 𝛼. In general, we may apply the canonical Bon-
ferroni correction; that is, given marginal p-values p̂1, … , p̂r and a nominal level 𝛼, we reject the null hypothesis
Hr if mini p̂i ≤ 𝛼∕r, and assert that the hypothesis H(k) does not hold for any k such that p̂k ≤ 𝛼∕r. Under the further
assumption of independence of p-values, we may use multiple testing procedures such as the Šidák correction,

which rejects any H(k) for which p̂k ≤ 1 − (1 − 𝛼)
1
r .

This procedure is marginally more powerful than the canonical Bonferroni procedure, but may not control the
FWER at the nominal level 𝛼 if there is negative dependence between the p̂k. To understand the dependence
structure between sample autocorrelations, and their corresponding permutation p-values, we have the following
result.
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Theorem 4.1. In the setting of Theorem 3.3, let r ∈ N, r > 1. For k ∈ [r], let 𝜌k be the kth-order autocorrelation,
and let 𝜌̂k be the kth-order sample autocorrelation. Let Σ ∈ R(r+1)×(r+1) = (𝜎ij)ri, j=0 be such that

𝜎ij =
⎧⎪⎨⎪⎩

Var(X1X1+i) + 2
∑
l>1

Cov(X1X1+i, XlXl+i), i = j

Cov(X1X1+i, X1X1+j) +
∑
l>1

[
Cov(X1X1+i, XlXl+j) + Cov(X1X1+j, XlXl+i)

]
, i ≠ j.

Let A ∈ R(r+1)×r be given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 𝜌1

𝜎4
… … … − 𝜌r

𝜎4

1

𝜎2
0 … … 0

0 1

𝜎2
0 … 0

⋮ ⋮ ⋮ ⋮ ⋮

0 … … … 1

𝜎2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, as n → ∞,

√
n

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
𝜌̂1

⋮

𝜌̂r

⎞⎟⎟⎟⎠ −
⎛⎜⎜⎜⎝
𝜌1

⋮

𝜌r

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

d
→ N

(
0, ATΣA

)
.

Remark 4.1. We observe that, in the i.i.d. setting, the sample autocorrelations are asymptotically independent.
Indeed, in this case, we have that Σ, as defined in (4.1), is diagonal, and, for i ≠ j, for all l ∈ {0, … , r}, AliAlj = 0.
Therefore, for i, j ∈ [r], i ≠ j,

(
ATΣA

)
ij
=

r∑
l, s=0

AliAsj𝜎ls =
r∑

l=0

AliAlj𝜎ll = 0.

By Remark 4.1 and the uniform convergence of the permutation distribution R̂n in Theorem 3.3, we have that,
for 1 ≤ k ≤ r, leaving the dependence of p̂k on n implicit,

p̂k = 1 − Φ
(
𝜌̂n(k)
𝛾̂n, k

)
+ op(1),

where 𝛾̂n, k is as defined in (3.35). It follows that, in some settings, such as the i.i.d. setting, the marginal p-values are
asymptotically independent. Therefore we may use the Šidák correction if, for instance, we use the null hypothesis
Hr as a portmanteau test of independence of realizations. However, more generally, using the Bonferroni cutoff of
𝛼∕r is only marginally larger than the Bonferroni-Šidák correction, and it applies irrespective of the asymptotic
dependence structure of the marginal p-values. Indeed, since, by Theorem 4.1 and Remark 4.1, any method must at
least account for possibility of asymptotic independence, it follows that the cutoff should be at least as large as the
Šidák correction. But since the Bonferroni correction is not much larger than the Šidák correction, there does not
appear to be much gain, in terms of power, in devising a method that precisely accounts for the joint dependence
among the marginal p-values. Despite this, we may use a step-down procedure, such as that of Holm (1979), to
obtain a larger power.

We illustrate the application of the canonical Bonferroni procedure in Section 6, in application to historical
log-return data.
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Table I. Monte Carlo simulation results for null rejection probabilities for tests of 𝜌(1) = 0, in an m-dependent Gaussian product
setting

m n 10 20 50 80 100 500 1000

0 Stud. Perm. 0.0511 0.0489 0.0465 0.0452 0.0500 0.0488 0.0525

Unst. Perm. 0.0503 0.0511 0.0493 0.0470 0.0494 0.0480 0.0527

Ljung–Box 0.0534 0.0544 0.0474 0.0488 0.0516 0.0488 0.0482

Box–Pierce 0.0198 0.0365 0.0407 0.0448 0.0484 0.0480 0.0478

1 Stud. Perm. 0.0654 0.0578 0.0611 0.0586 0.0582 0.0532 0.0534

Unst. Perm. 0.1010 0.1249 0.1388 0.1512 0.1553 0.1692 0.1749

Ljung–Box 0.0888 0.1390 0.1873 0.2084 0.2102 0.2359 0.2651

Box–Pierce 0.0342 0.1057 0.1737 0.2001 0.2039 0.2341 0.2645

2 Stud. Perm. 0.0718 0.0638 0.0661 0.0615 0.0683 0.0608 0.0582

Unst. Perm. 0.1288 0.1588 0.2041 0.2189 0.2327 0.2580 0.2721

Ljung–Box 0.0999 0.1912 0.2975 0.3420 0.3494 0.4425 0.4645

Box–Pierce 0.0455 0.1555 0.2841 0.3319 0.3410 0.4414 0.4638

3 Stud. Perm. 0.0714 0.0708 0.0638 0.0713 0.0706 0.0647 0.0566

Unst. Perm. 0.1411 0.1716 0.2332 0.2582 0.2748 0.3269 0.3364

Ljung–Box 0.1000 0.2056 0.3404 0.4026 0.4310 0.5644 0.6034

Box–Pierce 0.0451 0.1693 0.3252 0.3946 0.4233 0.5634 0.6033

Table II. Monte Carlo simulation results for null rejection probabilities for tests of 𝜌(1) = 0, in an 𝛼-mixing setting

Distribution n 10 20 50 80 100 500 1000

AR(2), N(0, 1) innov. Stud. Perm. 0.0418 0.0215 0.0399 0.0420 0.0448 0.0464 0.0480

Unst. Perm. 0.0594 0.0901 0.1212 0.1403 0.1372 0.1541 0.1658

Ljung–Box 0.2101 0.2360 0.2570 0.2492 0.2537 0.2527 0.2607

Box–Pierce 0.1283 0.1972 0.2411 0.2399 0.2468 0.2516 0.2603

AR(2) Prod., N(0, 1) innov. Stud. Perm. 0.0385 0.0370 0.0332 0.0375 0.0382 0.0350 0.0366

Unst. Perm. 0.0555 0.0648 0.0836 0.0923 0.0939 0.1136 0.1181

Ljung–Box 0.0938 0.0878 0.1012 0.1151 0.1189 0.1674 0.1708

Box–Pierce 0.0493 0.0658 0.0913 0.1081 0.1138 0.1653 0.1705

AR(2), U[−1, 1] innov. Stud. Perm. 0.0496 0.0243 0.0390 0.0433 0.0444 0.0470 0.0464

Unst. Perm. 0.0628 0.0940 0.1276 0.1412 0.1395 0.1569 0.1572

Ljung–Box 0.2272 0.2464 0.2545 0.2539 0.2522 0.2530 0.2522

Box–Pierce 0.1403 0.2051 0.2394 0.2434 0.2445 0.2517 0.2517

AR(2), t9.5 innov. Stud. Perm. 0.0432 0.0218 0.0385 0.0423 0.0437 0.0531 0.0459

Unst. Perm. 0.0582 0.0902 0.1182 0.1346 0.1362 0.1581 0.1634

Ljung–Box 0.2050 0.2316 0.2567 0.2522 0.2524 0.2654 0.2590

Box–Pierce 0.1206 0.1941 0.2416 0.2436 0.2455 0.2638 0.2579

5. SIMULATION RESULTS

Monte Carlo simulations illustrating our results are given in this section. Tables I and II tabulate the rejection
probabilities of one-sided tests for the permutation tests, in addition to those of the Ljung–Box and Box–Pierce
tests. The nominal level considered is 𝛼 = 0.05. The simulation results confirm that the permutation test is valid,
in that, in large samples, it approximately attains level 𝛼. The simulation results also confirm that, by contrast,
both the Ljung–Box and Box–Pierce tests perform extremely poorly in non-i.i.d. settings.
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As a review, the Ljung–Box and Box–Pierce tests are used to test for independence of residuals in fitting ARMA
models. This is done by a portmanteau test of the null hypothesis Hr, as defined in (1.1), which is tested under
the assumption that the residuals follow a Gaussian white noise process. For each k ∈ N, let 𝜌̂k be the sample kth
order autocorrelation. The one-sided Ljung–Box test compares the test statistic

Q̂LB, n = n(n + 2)
r∑

k=1

𝜌̂
2
k

n − k
(5.1)

to the quantiles of a 𝜒2
r distribution, with rejection occurring for large values of Q̂LB, n. Similarly, the one-sided

Box–Pierce test compares the test statistic

Q̂BP, n = n
r∑

k=1

𝜌̂
2
k (5.2)

to the quantiles of a 𝜒2
r distribution, with rejection occurring for large values of Q̂BP, n. In the case of r = 1, both

the one-sided Ljung–Box and Box–Pierce tests compare the test statistic

Q̂n = Cn𝜌̂
2
1 (5.3)

to the quantiles of a𝜒2
1 distribution, with rejection in both tests occurring for large values of Q̂n. The Ljung–Box and

Box–Pierce tests primarily differ in their scaling in this case; namely, the Ljung–Box test takes Cn = n(n+2)∕(n−1)
in (5.3), while the Box–Pierce test uses Cn = n.

In this simulation, we consider both m-dependent (in Table I) and 𝛼-mixing (in Table II) processes. Table I
gives the null rejection probabilities for sampling distributions of the form described in Example 3.3, in the case
of Gaussian products, where the values of m are listed in the first column. Note that m = 0 corresponds to the
setting where the Xi are independent standard Gaussian random variables.

Table II gives the null rejection probabilities for processes of the form described in Example 3.2, with 𝜌 = 0.5.
We include one additional example in the second row of Table II. The sample distribution in this row is as follows.
{X2i, i ∈ [n∕2]} and {X2i−1, i ∈ [n∕2]} are independent and identically distributed sequences, with

X2i = Y2iY2(i+1), (5.4)

for Y as in Example 3.2, with 𝜙 = 0 and 𝜌 = 0.5, and standard Gaussian innovations.
For each situation, 10,000 simulations were performed. Within each simulation, the permutation test was

calculated by randomly sampling 2000 permutations.
The results of the simulation are further illustrated in Figures 1 and 2. Figure 1 shows kernel density estimates2

of the distributions of the test statistic and the permutation distribution in the m-dependent setting described above.
Figure 2 provides QQ plots of the simulated p-values against the theoretical quantiles of a U[0, 1] distribution, also
in the m-dependent setting. These figures further confirm the asymptotic validity of the permutation test procedure
in the m-dependent setting.

We observe several computational choices to be made when applying the permutation testing framework in
practice. By the results of Lemmas 3.2 and 3.3, for large values of n, the estimate 𝛾̂

2
n will be strictly positive

with high probability. However, for smaller values of n, it may be the case that a numerically negative value of
𝛾̂

2
n is observed, either when computing the test statistic or the permutation distribution. A trivial solution to this

issue is the truncate the estimate at some sufficiently small fixed lower bound 𝜖 > 0. Note that, for appropriately
small choices of 𝜖, that is, 𝜖 < 𝛾2

1 , the results of Lemmas 3.2 and 3.3 still hold, that is, inference based on this

2 These were obtained using the density function in R, using the default Gaussian kernel.
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Figure 1. Kernel density estimates of the densities of the test statistic and permutation distribution in the m-dependent case. In
the case of the permutation distribution, the KDE of the permutation distribution, pooled across simulations, is provided. The

kernel used for the KDE is a Gaussian kernel

choice of studentization is still asymptotically valid. In practice, however, the suitability of a choice of 𝜖 for a
particular numerical application is affected by the distribution of the Xi. For the above simulation, a constant value
of 𝜖 = 10−6 was used.

A further choice is that of the truncation sequence {bn, n ∈ N} used in the definition of 𝛾̂2
n. Any sequence

{bn} such that, as n → ∞, bn → ∞ and bn = o
(√

n
)

is theoretically justified by Theorem 3.3, although, in a

specific setting, some choices of {bn} will lead to more numerical stability than others. In practice, several choices
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Figure 2. QQ plots of the sample p-values obtained from one-sided permutation tests, in the m-dependent Gaussian product
setting
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Figure 3. Monte Carlo simulation results for rejection probabilities of the studentized permutation tests of 𝜌(1) = 0, in the
setting of Example 3.4, for different values of h and n

Table III. Monte Carlo simulation results for null rejection probabilities for tests of 𝜌(1) = 0, using the test of Shao (2011), in
an m-dependent Gaussian product setting

m n 10 20 50 80 100 500 1000

0 0.2256 0.1664 0.1142 0.0932 0.0932 0.0714 0.0512
1 0.1930 0.1240 0.1000 0.0726 0.0816 0.0678 0.0668
2 0.1888 0.1090 0.0658 0.0516 0.0646 0.0516 0.0642
3 0.1792 0.0996 0.0514 0.0400 0.0466 0.0386 0.0436

of {bn} were implemented, but were found to make little difference to the rejection probabilities observed. In the
simulations above, {bn} was taken to be bn = [n1∕3] + 1, where [x] denotes the integer part of x.

We also provide Monte Carlo simulation results for the local limiting power of the one-sided studentized permu-
tation test with local alternatives of the form described in Example 3.4. The nominal level considered is 𝛼 = 0.05.
For each situation, 10,000 simulations were performed. Within each simulation, the permutation test was calcu-
lated by randomly sampling 2000 permutations. Figure 3 shows the null rejection probabilities for different values
of h.

We observe that, for large values of n, the sample rejection probabilities are very close to the theoretical rejection
probabilities computed in Example 3.4.

We also provide Monte Carlo simulation results illustrating a comparison between the studentized permu-
tation test and the bootstrap-assisted test of Shao (2011). Table III tabulates the rejection probabilities of this
bootstrap-assisted test in the m-dependent Gaussian products case, presented in Section 5 of the main article. The
nominal level considered is 𝛼 = 0.05. For each situation, 5000 simulations were performed. Within each simula-
tion, the bootstrap distribution was calculated by using M = 500 bootstrap samples, as in the original article, and
the block size used was bn = [

√
n ]. Note that the sequences in the m-dependent Gaussian products case satisfy

𝜌(k) = 0 for all k, and so a direct comparison of the rejection probabilities of both tests is suitable.
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Figure 4. Monte Carlo simulation results for rejection probabilities of the tests 𝜌(1) = 0 using the bootstrap-assisted test of
Shao (2011), in the setting of Example 3.4, for different values of h and n

We observe that the rejection probabilities obtained in Table III are comparable to those obtained for the per-
mutation test based on the studentized sample autocorrelation only for large values of n, with the permutation test
having simulated rejection probabilities slightly closer to the nominal level 𝛼 = 0.05. For smaller values of n, the
bootstrap-assisted test does not reject the null with probability close to the nominal level 𝛼 = 0.05. For example,
for m = 0 and n = 10, Table III shows a rejection probability of 0.2256, while Table I in the main article shows a
rejection probability of 0.0511 for the permutation test in this case.

We additionally provide Monte Carlo simulation results for the local limiting power of the one-sided
bootstrap-assisted test with local alternatives of the form described in Example 3.4. The nominal level considered
is 𝛼 = 0.05. For each situation, 5000 simulations were performed. Within each simulation, the bootstrap-assisted
test was calculated using M = 500 bootstrap samples, and the block size used was bn = [

√
n ]. Figure 4 shows

the null rejection probabilities for different values of n and h. We observe that the power of the bootstrap-assisted
test against these local alternatives is significantly lower than that of the permutation test; indeed, it appears that
the rejection probabilities of the bootstrap-assisted test converge to values significantly below the theoretical max-
imal limiting rejection probabilities, for moderate to large values of n. Since, as illustrated in Table III, the Type 1
error is not controlled by the bootstrap-assisted test for smaller values of n, and this thereby artificially increases
the power since the test is rejecting too frequently.

6. APPLICATION TO FINANCIAL DATA

We describe an application of the permutation test to financial stock data.
Under the assumption that a certain version of the Efficient Market Hypothesis holds true (see Fama, 1970;

Malkiel, 2003 for details), we have that the daily log-returns of a stock Rt, that is, for St the stock price at time t,

Rt = log(St) − log(St−1),
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Figure 5. Plots of the daily log-returns Rt against time. The top plot shows log-returns for the S&P 500 index, and the bottom
plot shows log-returns for Apple stock. In both plots, t = 0 corresponds to the first day of trading after 1 January 2010, that is,

1 April 2010
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Figure 6. Plots of the sample autocorrelations 𝜌̂k against time. The top plot shows sample autocorrelations for the S&P 500
index, and the bottom plot shows sample autocorrelations for Apple stock. The dotted blue lines show 95% confidence intervals

under the assumption that the sequence is a Gaussian white noise process
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Table IV. The marginal p-values obtained using the permutation test for the S&P 500 index and Apple stock data

k 1 2 3 4 5 6 7 8 9 10

SPX 0.1675 0.8665 0.4035 0.8305 0.0340 0.9340 0.6025 0.4100 0.4975 0.3610
AAPL 0.3375 0.5145 0.1255 0.3435 0.4715 0.6310 0.3845 0.0120 0.6470 0.4895

are serially uncorrelated. Stronger versions of the Efficient Market Hypothesis assert that the daily log-returns
either form a martingale sequence, or are independent. It follows that a test of the lack of correlation of observed
daily log-returns can provide evidence for, or against, these versions of the Efficient Market Hypothesis.

We illustrate such portmanteau tests performed on daily closing prices for the S&P 500 index (SPX) and Apple
(AAPL) stock. In particular, the hypothesis Hr, for r = 10, where Hr is as in (1.1), was tested using the studentized
permutation tests described in Section 3, with a Bonferroni correction. The results of these tests were compared
to the corresponding results of the Ljung–Box test when applied to the data. The test was performed using closing
price data, obtained from Yahoo! Finance, between the dates of 1 January 2010 and 31 December 2019. In both
cases, days for which data were unavailable, such as weekends and holidays, were omitted. Plots of the log-returns
are shown in Figure 5, and plots of the sample autocorrelations are shown in Figure 6. In both cases, the permutation
distribution was approximated using 2000 random permutations. In addition, the summation parameter used in
the studentization term 𝛾̂n used was bn = [n1∕3] + 1. The p-values obtained are shown in Table IV.

We observe that, marginally, in the case of the S&P 500 index, the p-value for k = 5 was significant, and, in the
case of Apple stock, the marginal p-value for k = 8 was significant. However, in both cases, none of the p-values
is significant at the 𝛼 = 5% level when adjusted using a Bonferroni correction, and so we may conclude that
there is no significant evidence in the data for the daily log-returns to indicate deviation from the Efficient Market
Hypothesis.

By contrast, the p-values obtained using the Ljung–Box test, for all 10 lags simultaneously, were 0.0010 (in the
case of the S&P 500 index), and 0.0827, in the case of Apple stock. While the results in the case of Apple stock
are consistent with those of the permutation test, in the case of the S&P 500 index, we observe that the Ljung–Box
test rejects the null hypothesis at the 𝛼 = 5% level. However, in light of the results of the permutation test and the
simulation results in Section 5, this should not cast doubt on our conclusion that no significant deviation from the
Efficient Market Hypothesis is observed.

7. CONCLUSIONS

When the fundamental assumption of exchangeability does not necessarily hold, permutation tests are invalid
unless strict conditions on underlying parameters of the problem are satisfied. For instance, the permutation test
of 𝜌(1) = 0 based on the sample first-order autocorrelation is asymptotically valid only when 𝜎2, the marginal
variance of the distribution, and 𝛾2

1 , where 𝛾2
1 is as defined in (2.5), are equal. Hence rejecting the null must be

interpreted correctly, since rejection of the null with this permutation test does not necessarily imply that the true
first-order autocorrelation of the sequence is non-zero. We provide a testing procedure that allows one to obtain
asymptotic rejection probability 𝛼 in a permutation test setting. A significant advantage of this test is that it has
the exactness property, absent from the Ljung–Box and Box–Pierce tests, under the assumption of i.i.d., as well
as achieving asymptotic level 𝛼 in a much wider range of settings than the aforementioned tests. An analogous
testing procedure permits for asymptotically valid inference in a test of the kth order autocorrelation.

Correct implementation of a permutation test is crucial if one is interested in confirmatory inference via hypoth-
esis testing; indeed, proper error control of Type 1, 2 and 3 errors can be obtained for tests of autocorrelations
by basing inference on test statistics which are asymptotically pivotal. A framework has been provided for a test
of serial lack of correlation in time series data, where tests for 𝜌(j) = 0 are conducted simultaneously for a large
number of values of j, while maintaining error control with respect to the family-wise error rate.

In this article, a test of lack of serial autocorrelation of data was presented. In the context of other work on
testing autocorrelation in time series, such as that of Francq et al. (2005), future work will expand on the ideas
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presented, to provide an analogous permutation testing procedure to test the lack of serial correlation in the errors
of a large class of models.
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