

Anomalous Elasticity of Anhydrous and Hydrous Rhyolitic Glasses up to 3 GPa

Jesse Gu¹, Suyu Fu¹, James E. Gardner¹, Shigeru Yamashita², Takuo Okuchi², Jung-Fu Lin¹

¹*Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78712, USA*

²*Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan*

7 Abstract

Acoustic velocities of anhydrous and hydrous rhyolitic glasses containing up to 5.90 wt.% total water concentration (H_2O_t) have been determined using Brillouin Light Scattering (BLS) spectroscopy up to 3 GPa in a diamond anvil cell at ambient temperature. In addition, Fourier-transform infrared (FTIR) spectroscopy was used to measure the speciation of H_2O in the glasses as a function of pressure. With increasing pressure, some molecular water (H_2O_m) converts to hydroxyl groups (OH^-) [in hydrous rhyolitic glasses](#) [in hydrous rhyolitic glasses](#). Most of this conversion occurs below ~ 1.5 GPa in glasses with > 4 wt.% H_2O_t whereas most of this conversion occurs above ~ 1 GPa in glasses with < 4 wt.% H_2O_t . Acoustic velocities in both anhydrous and hydrous glasses decrease with increasing pressure up to ~ 1 - 2 GPa before increasing with pressure. In this pressure range, the addition of H_2O_t decreases compressional and shear wave velocities (V_P , V_S), adiabatic bulk moduli (K_S), and shear moduli (G). This behavior is attributed to depolymerization of the silicate network due to incorporation of OH^- . Above ~ 1 - 2 GPa, however, acoustic velocities and elastic moduli in the hydrous glasses crossover and become larger than those in the dry glass [counterpart](#). At these pressures, [it is conceivable that](#) H_2O_m in interstitial sites prevents the compression of hydrous glasses and makes

23 them elastically “stiffer”. Our results indicate that H_2O_m and OH^- each play distinct roles in
24 altering the elastic properties of rhyolitic glasses at high pressures. We have modeled a~~A~~coustic
25 velocities in hydrous rhyolitic glasses for any given quantity of H_2O_t ~~can are predicted~~ up to 3
26 GPa at ambient temperature. Taking potential high-temperature effects into account, our results
27 ~~can could~~ be combined with seismic data to predict melt fractions or volatile contents in rhyolitic
28 melt reservoirs.

29 **Keywords:** hydrous glass, elasticity, velocity, water, rhyolite

30 **Introduction**

31 Igneous activity at Earth’s surface significantly affects society and also shapes the
32 physical and chemical properties of the crust (Carn et al. 2009). The role of “water” in igneous
33 processes is a topic of great interest due to the widespread occurrence of H_2O in Earth’s crust
34 and mantle (Mysen and Richet 2005). H_2O is present in magmas and quenched silicate glasses as
35 both molecular water (H_2O_m) and hydroxyl groups (OH^-), where OH^- depolymerizes the silicate
36 network (Stolper 1982a, 1982b). Even at low concentrations, incorporation of these H_2O species
37 has been shown to significantly alter the physical properties of glasses and melts, such as
38 acoustic velocities and elastic moduli (Malfait et al. 2011; Whittington et al. 2012), melting
39 temperature (Kushiro et al. 1968; Grove et al. 2012), density (Richet and Polian 1998; Ochs and
40 Lange 1999; Richet et al. 2000), viscosity (Hess and Dingwell 1996; Richet et al. 1996;
41 Whittington et al. 2000; Hui and Zhang 2007), chemical diffusivities (Behrens and Zhang 2001),
42 and electrical conductivity (Ni et al. 2011; Guo et al. 2016). These effects are manifested in
43 explosive volcanic eruptions, some of the largest of which involve felsic magmas. The intensity
44 of volcanic eruptions is largely governed by the viscosity of constituent magmas and,
45 correspondingly, the degree to which the magmas are polymerized. Paradoxically, H_2O

46 incorporated in silicate melts as OH⁻ depolymerizes the silicate network and decreases the
47 viscosity of respective melts, but still plays an important role in explosive eruptions (Shaw
48 1963). H₂O solubility decreases during magma ascension and results in the exsolution of species
49 into H₂O vapor, which expands rapidly at magmatic temperatures (Moore et al. 1995). This
50 process, in combination with the inherently high viscosity of felsic magmas, causes the
51 explosiveness of felsic, H₂O-rich magmas (Shaw 1972).

52 Felsic eruptions can occur when differentiation of partially melted lower crustal materials
53 produce melts with high silica contents (Borg and Clyne 1998). These melts have been reported
54 to contain as much as ~6-8 wt.% H₂O_t at ~200-400 MPa and ~400-600°C (Lowenstern 1994;
55 Wallace et al. 1999; Wallace 2005). Some of the largest felsic eruptions are supervolcanic
56 eruptions that formed the Long Valley and Yellowstone calderas (Bailey et al. 1976; Crosbeller
57 et al. 2012). Others felsic eruptions occur along subduction zones, like in the Andes, Japan, and
58 the Cascades (Wallace 2005; Kimura et al. 2015; Brandmeier and Wörner 2016). Although
59 seismic observations can give insight into pre-eruptive processes, the detection and estimation of
60 crustal melt volumes and volatile contents under extreme pressure-temperature (P-T) conditions
61 remains challenging (Flinders and Shen 2017; Flinders et al. 2018). Understanding the acoustic
62 velocities in glasses of relevant compositions and the role of different species of H₂O on altering
63 these velocities with depth can aid in constraining and interpreting melt fractions and volatile
64 contents of magmatic bodies observed from seismic studies. Furthermore, uncovering physical
65 properties, such as density and compressibility, of rhyolitic melts at depth is essential to our
66 interpretation of eruptive processes, such as melt buoyancy and melt migration.

67 Two previous studies have focused on the effect of H₂O on the elastic properties of
68 quenched haplogranitic and rhyolitic glasses at ambient pressure (Malfait et al. 2011;

69 Whittington et al. 2012). Other experimental studies have explored the elastic properties of
70 anhydrous silicate glasses of various compositions at high pressure (Meister et al. 1980; Suito et
71 al. 1992; Zha et al. 1994; Sanchez-Valle and Bass 2010; Yokoyama et al. 2010; Liu and Lin
72 2014; Clark et al. 2016). These studies have shown that silicate glasses exhibit anomalous elastic
73 properties with increasing pressure. In crystalline materials, acoustic velocities and elastic
74 parameters increase approximately linearly with pressure. In silicate glasses, however, these
75 properties decrease with pressure up to ~2-5 GPa, but then increase with pressure above a certain
76 transition pressure at around ~2-5 GPa. This behavior has been attributed to the anomalous
77 compression mechanisms in silicate glasses, whereby densification results from tightening and
78 distortion of inter-tetrahedral bond angles rather than by decreasing bond lengths (Clark et al.
79 2014; Wang et al. 2014). The minima in velocities and compressibility correspond to pressures at
80 which silicate glass reaches a packing limit. At higher pressures, densification occurs through
81 shortening of bond lengths and increasing Al and Si coordination. The pressure dependence of
82 the increasing coordination is dependent upon the composition and polymerization of the glass
83 (Lee et al. 2004, 2011; Lee and Stebbins 2009). Glasses with different H_2O_t and different degrees
84 of polymerization will have different transition pressures and behave differently in acoustic
85 velocities and elasticity above their transition pressures. At pressures relevant to this study (<3
86 GPa), however, the majority (>98%) of Al and Si remains in fourfold coordination in their local
87 configurations (Malfait et al. 2012). Therefore, Al and Si coordination are not expected to play a
88 major role on the velocities reported here.

89 The polymerization of hydrous rhyolitic melts and glasses may also change if the
90 proportion of OH^- to H_2O_m changes as a function of pressure and temperature. The relative
91 proportion of H_2O_m and OH^- have been shown to change at high pressures above ~1.0 GPa and

92 could alter the structures and physical properties of hydrous glasses and melts at higher pressures
93 (Ihinger et al. 1999; Hui et al. 2008; Malfait et al. 2012; Ardia et al. 2014; Helwig et al. 2016).
94 With increasing temperature, the ratio of OH⁻ to H₂O_m will increase, and OH⁻ will dominate at
95 magmatic temperatures (Keppler and Bagdassarov 1993; Nowak and Behrens 1995; Shen and
96 Keppler 1995). Because studying the properties of melts at high pressure and temperature
97 conditions remains challenging, silicate glasses have commonly been used as analogues for
98 silicate melts (Williams and Jeanloz 1998; Lee et al. 2008). Previous studies have shown that
99 quenched glasses retain the structure of their corresponding liquids (Seifert et al. 1981; Malfait et
100 al. 2014), which has been commonly used as justification for the analogue approach.

101 Despite previous efforts, the effects of H₂O_m and OH⁻ on the elasticity of anhydrous and
102 hydrous rhyolitic glasses at pressures above a few hundred megapascals have been poorly
103 studied. At these pressures, elasticity depends not only on H₂O_t, but also on how the different
104 species of H₂O alter the polymerization and structure of the glass. Due to the anomalous
105 behavior of silicate glasses and melts at depth, and the lack of literature data on the elastic
106 behavior of hydrous rhyolitic glasses and melts, it is essential to constrain these parameters at
107 high pressures. Here, we report acoustic velocities, elastic moduli, and H₂O speciation in both
108 anhydrous and hydrous rhyolitic glasses containing up to 5.90 wt.% H₂O_t, measured using
109 Brillouin Light Scattering (BLS) spectroscopy and FTIR spectroscopy in a diamond anvil cell
110 (DAC) up to 3 GPa. These observations are applied to correlate how the different species of H₂O
111 contribute to the observed changes in velocities of hydrous rhyolitic glasses at high pressures.
112 We also discuss how high temperatures relevant to conditions in magmatic reservoirs may alter
113 our results and interpretations by estimating potential high temperature effects on acoustic

114 velocities. Finally, we apply these results to help understand the seismic signatures of hydrous
115 rhyolitic melts in natural magma bodies at depth.

116 **Experimental Methods**

117 Rhyolitic glass samples were cored from a natural obsidian, which consisted of high-
118 silica rhyolitic glass and less than 1 vol.% microlites of Fe-Ti oxides (Gardner and Ketcham
119 2011). Two cores were placed in Au capsules, along with enough deionized water to ensure
120 H₂O-saturation at run conditions. The capsules were welded shut and then heated and weighed to
121 ensure that no leaks existed. The samples were then run in externally heated pressure vessels at
122 high P-T conditions for approximately 7 days in the Petrology Laboratory of the University of
123 Texas at Austin (Table 1). A third core was placed inside a Pt capsule, which was left open, and
124 was placed inside an externally heated pressure vessel and run at 0.5 MPa and 1150°C in Ar gas.
125 All samples were quenched rapidly, and the two runs at elevated pressures were weighed to
126 check for leaks. After quenching, sample compositions and homogeneity were evaluated by the
127 JEOL JXA-8200 Electron Microprobe in the Department of Geological Sciences at The
128 University of Texas at Austin (Table 2).

129 In total, three samples were synthesized: one anhydrous glass (AHRG), one glass with
130 3.28 wt.% H₂O_t (HRG-3), and one glass with 5.90 wt.% H₂O_t (HRG-6) (Table 1). FTIR analyses
131 of double-polished samples at ambient conditions were carried out on all glass samples in the
132 Department of Geological Sciences at The University of Texas at Austin to determine H₂O_t using
133 a Thermo Electron Nicolet 6700 spectrometer and Continuum IR microscope. Absorbances in
134 the near-infrared region at ~4500 cm⁻¹ and ~5200 cm⁻¹ were used to calculate H₂O_t at ambient
135 conditions following the procedures of Gardner and Ketcham (2011). Furthermore, ambient
136 pressure densities (ρ_0) for the glasses were determined from the partial molar volumes of oxide

137 components and H₂O at 300 K (Richet et al. 2000; Lin and Liu 2006). Archimedes' method with
138 toluene as the immersion liquid was used to confirm that the density of HRG-6 matched the
139 calculated density. The other two glass samples, AHRG and HRG-3, were not checked with this
140 method because of insufficient materials.

141 Two runs of micro-FTIR measurements were carried out on all glass samples in DACs at
142 the Institute for Planetary Materials, Okayama University in Misasa, Japan. Micro-FTIR
143 measurements were taken using a Jasco FTIR-6200 Fourier-transform spectrometer fitted with a
144 Jasco IRT-7000 microscope with Cassegrain optics (Chertkova and Yamashita 2015).

145 Transmitted light was received by a LN₂-cooled HgCdTe detector for both mid-infrared (MIR)
146 and near-infrared (NIR) measurements. Analytical procedures were similar to those described in
147 Chertkova and Yamashita (2015) except a CaF₂/Si beamsplitter was used for NIR measurements
148 while a KBr/Ge beamsplitter was used for MIR measurements. Glass sample platelets were
149 prepared by polishing both sides using 1-0.3 μ m 3M diamond films. In the first run, a DAC with
150 a pair of 600 μ m anvils was equipped with a 250 μ m thick Re gasket with a 300 μ m hole in the
151 center. One piece of AHRG that was 23 \pm 3 μ m thick and one piece of HRG-6 that was 28 \pm 3
152 μ m thick were simultaneously loaded into the DAC along with Ne and a ruby sphere as pressure
153 medium and pressure calibrant, respectively (Mao et al. 1986; Chijioke et al. 2005; Silvera et al.
154 2007). The MIR region from 1400-4000 cm⁻¹ was used in this run to measure H₂O_t and H₂O_m in
155 the glasses (Figure 1). OH⁻ contents were then calculated based on the difference between H₂O_t
156 and H₂O_m. In the second run, a DAC with a pair of 750 μ m anvils was equipped with a 500 μ m
157 thick Re gasket with a 650 μ m hole in the center. A 333 \pm 3 μ m thick piece of HRG-3 was
158 loaded into the DAC along with Ne and a ruby sphere. Due to the thickness of the sample, the
159 NIR region from 4000-6000 cm⁻¹ was used to measure H₂O speciation (Figure 1).

160 Three separate runs of BLS measurements were carried out up to 3 GPa in DACs
161 (Figure 2). Each DAC with a pair of 600 μm culets was equipped with a 250 μm thick Re gasket
162 with a 300 μm hole in the center. Glass samples with diameters of \sim 100 μm were double-
163 polished down to <70 μm thick using 1-0.3 μm 3M diamond films and placed in a sample
164 chamber with either Ne or 4:1 methanol:ethanol as the pressure medium (Figure 2). It has been
165 proposed that the use of noble gases pressure media could alter the compressibilities and
166 measured velocities in silicate glasses (Shen et al. 2011; Weigel et al. 2012; Clark et al. 2014;
167 Coasne et al. 2014), so 4:1 methanol:ethanol was used as the pressure medium in a separate run
168 to check for these effects. In two of the three runs, two samples were placed in the sample
169 chamber simultaneously, whereas only one sample was placed in the chamber in the third run. In
170 all runs, a ruby sphere was used as the pressure calibrant (Mao et al. 1986; Chijoike et al. 2005;
171 Silvera et al. 2007).

172 BLS measurements were taken at the Mineral Physics Laboratory of The University of
173 Texas at Austin. The Brillouin system is equipped with a 532 nm Coherent Verdi V2 laser and a
174 JRS six-pass tandem Fabry-Perot interferometer (Lu et al. 2013; Yang et al. 2014; Fu et al.
175 2017). The focused beam size at the sample position was \sim 30 μm . Spectra were collected at a
176 forward scattering geometry with an external angle of 48.1°. The system is calibrated monthly
177 using standard distilled water and silica glass (Lu et al. 2013). Acoustic velocities were
178 calculated from the measured frequency shift from:

$$179 V_{P,S} = \frac{\Delta v_B \lambda_0}{2 \sin(\theta/2)}$$

180 where $V_{P,S}$ is the measured compressional (V_P) or shear (V_S) velocity, Δv_B is the measured
 181 Brillouin shift, λ_0 is the laser wavelength (532 nm), and θ is the external scattering angle (48.1°).
 182 Representative Brillouin spectra of rhyolitic glasses at high pressure are shown in Figure 2.

183 **Data Analysis and Modelling**

184 Measured FTIR spectra were used to calculate H₂O speciation of the samples as a
 185 function of pressure via the Beer-Lambert law, which relates absorbance and thickness of a
 186 material to the concentration of the absorbing species within it (Newman et al. 1986; Ihinger et
 187 al. 1999; McIntosh et al. 2017), according to:

$$188 C_{H_2O_{t,m},OH} = \frac{M * A}{\rho * t * \varepsilon}$$

189 where $C_{H_2O_{t,m},OH}$ is the concentration of either H₂O_t, H₂O_m, or H₂O dissolved as OH⁻, M is the
 190 molar mass of the species of interest, A is the absorbance, ρ is density of the glass, t is thickness
 191 of the glass, and ε is the molar absorption coefficient of the FTIR band of interest (Figure 3).
 192 Density of glass samples as a function of pressure were determined from equation of state (EoS)
 193 fitting, which is discussed later. Because glass is elastically isotropic, the thickness of a sample at
 194 high pressure is determined from:

$$195 t = t_0 \sqrt[3]{\frac{\rho_0}{\rho}}$$

196 where t_0 is the sample thickness in μm at ambient pressure that was measured using an optical
 197 microscope (Amin et al. 2012). The MIR region was used to determine the H₂O speciation HRG-
 198 6. The area under the peaks at $\sim 1600 \text{ cm}^{-1}$ and $\sim 3500 \text{ cm}^{-1}$ were determined after a linear
 199 baseline was subtracted from the raw spectra (Newman et al. 1986). The species-dependent

200 method of determining H_2O_t from the band at $\sim 3500 \text{ cm}^{-1}$ was used along with molar absorption
 201 coefficients from Newman et al. (1986) and McIntosh et al. (2017). Because of the thickness of
 202 HRG-3, the bands in the MIR region were oversaturated. The $\sim 4500 \text{ cm}^{-1}$ and $\sim 5200 \text{ cm}^{-1}$ peaks
 203 in the NIR region were therefore used instead to determine H_2O speciation. However, the sample
 204 was bridged and crushed by the diamond anvils at $\sim 1.5 \text{ GPa}$, so no spectra were recorded above
 205 this pressure. Using published values for the molar absorption coefficients, the speciation of
 206 H_2O_m and OH^- were determined from the area under the peaks at $\sim 4500 \text{ cm}^{-1}$ and $\sim 5200 \text{ cm}^{-1}$
 207 after a flexicurve baseline was subtracted from the raw spectra (Figure 3) (Withers and Behrens
 208 1999). Throughout the pressure range in this study, no significant change was observed in the
 209 structure or shape of any of the absorbance bands corresponding to H_2O in silicate glasses
 210 (Figure 3).

211 Measured acoustic velocities from BLS were used to derive other elastic parameters,
 212 including bulk sound velocity (V_p), density (ρ), adiabatic bulk modulus (K_S), and shear modulus
 213 (G) (Sanchez-Valle and Bass 2010; Liu and Lin 2014). To derive elastic moduli, it is first
 214 necessary to determine the density of the glasses as a function of pressure. Assuming the glass
 215 samples behave elastically under compression, the density of the glasses at high pressures can be
 216 derived from:

$$217 \quad \rho - \rho_0 = \int_{P_0}^P \frac{1}{(V_p^2 - \frac{4}{3}V_s^2)} dP$$

218 where ρ is the density of the glass at high pressure, ρ_0 is the density of the glass at ambient
 219 pressure (0.1 MPa), and P is the pressure (Sanchez-Valle and Bass 2010; Liu and Lin 2014;
 220 Sakamaki et al. 2014). Once acoustic velocities and densities at corresponding pressures were
 221 determined, the elastic moduli, K_s and G , were determined from:

222
$$K_S = \rho(V_p^2 - \frac{4}{3}V_s^2)$$

223
$$G = \rho V_s^2$$

224 The derived elastic moduli were then fit with the fourth-order Eulerian finite-strain EoS (Birch
 225 1978). The fourth-order EoS was used rather than the commonly used third-order EoS because of
 226 the anomalous compressibility and non-linear change in K_S and G in silicate glasses with
 227 increasing pressure (Clark et al. 2014; Liu and Lin 2014). Fitted elastic moduli could then be
 228 used to fit measured acoustic velocities as a function of pressure up to 3 GPa. Once the fitted
 229 velocities were obtained, the effect of H_2O on velocities at any given pressure could be
 230 determined. To do so, modeled velocities were fit at fixed pressures as a function of H_2O_t at 0.15
 231 GPa increments up to 3 GPa with second-order polynomials. These polynomial fits allowed V_p
 232 and V_s for any given concentration of H_2O_t to be determined as a function of pressure (Figure 9).

233 **Results**

234 The pressure dependence of H_2O speciation was determined by fitting the measured
 235 species abundances to a second-order polynomial to minimize the residual sum of squares. With
 236 increasing pressure, H_2O_m in HRG-6 appears to be converted into OH^- ; HRG-6 contains $4.23 \pm$
 237 0.17 , 3.61 ± 0.34 , and 3.55 ± 0.34 wt.% H_2O_m and 1.58 ± 0.06 , 2.12 ± 0.25 , and 2.56 ± 0.44 wt.%
 238 H_2O as OH^- at ambient pressure, 1 GPa, and 2.84 GPa, respectively (Figure 4). However, this
 239 conversion may be superficial due to the large errors in our calculated species abundances. If
 240 present, this conversion mostly occurs below 1.5 GPa in HRG-6. In glasses with low H_2O_t (<4
 241 wt.%), the conversion from H_2O_m to OH^- has only been observed above 1 GPa in previous
 242 studies (Ihinger et al. 1999; Hui et al. 2008). This also appears to be the case for HRG-3 based on
 243 the fitted polynomial; HRG-3 contains and 1.70 ± 0.07 , 1.73 ± 0.07 , and 1.80 ± 0.07 wt.% H_2O_m
 244 and 1.58 ± 0.06 , 1.55 ± 0.06 , and 1.48 ± 0.06 wt.% H_2O as OH^- at ambient pressure, 0.69 GPa,

245 and 1.44 GPa, respectively (Figure 4). Therefore, the pressure dependence of H₂O speciation
246 varies with the H₂O_t in the glasses. With increasing H₂O_t, the conversion of H₂O_m to OH⁻ occurs
247 at lower pressures. It should be noted that although such a conversion occurs in both hydrous
248 glasses, OH⁻ and H₂O_m contents in HRG-3 remain nearly equal, whereas H₂O_m consistently
249 dominates in HRG-6 up to 3 GPa.

250 The addition of H₂O into rhyolitic glasses slows all V_P and V_S in hydrous glasses at
251 ambient pressure, consistent with previous studies (Figure 5) (Malfait et al. 2011; Whittington et
252 al. 2012). Compared to AHRG at ambient pressure, V_P (V_S) in HRG-3 and HRG-6 are reduced by
253 ~4.8% (~6.7%) and ~5.1% (~8.6%), respectively. The differences in velocities between HRG-6
254 and HRG-3 are much smaller than the differences between HRG-3 and AHRG. Therefore, the
255 effect of adding H₂O on V_P and V_S is reduced at higher H₂O_t. These results show a non-linear
256 relationship between H₂O_t and V_P or V_S , in contrast with previous studies that have observed
257 linear relationships between V_P or V_S and H₂O_t (Malfait et al. 2011; Whittington et al. 2012).

258 Measured V_P and V_S , along with calculated V_ϕ , show non-linear and negative changes
259 with pressure below ~1-2 GPa (Figure 6). Above ~1-2 GPa, both V_P and V_ϕ increase with
260 pressure. This “anomalous” change in velocities is consistent with previous studies (Suito et al.
261 1992; Sanchez-Valle and Bass 2010; Clark et al. 2014; Liu and Lin 2014). As H₂O_t content
262 increases, velocity profiles become “flatter” below ~1-2 GPa. In other words, the reductions in
263 velocities at the velocity minima with respect to those at ambient pressure decreases. The
264 pressure at which acoustic velocities reach their velocity minima is termed the “transition”
265 pressure (Liu and Lin 2014). In hydrous glasses, this “transition” occurs at ~1.5 GPa whereas it
266 occurs at ~2.5 GPa in AHRG. This “transition” pressure decreases with increasing H₂O_t and
267 appears to be closely related to the polymerization of the glasses; both hydrous glasses have

similar amounts of OH⁻, and therefore, similar degrees of polymerization. The decrease in transition pressure with increasing H₂O_t causes velocities to begin increasing at lower pressures in hydrous glasses. This results in a velocity crossover above the transition pressure where the velocities in hydrous glasses become higher than those in the dry glass. Within the pressure range in this study, V_P in HRG-6 becomes higher than both V_P in AHRG and in HRG-3. Based on the modeled velocities, the crossover in V_P between AHRG and HRG-3 occurs above 3 GPa. Similar crossovers occur in both V_ϕ and V_S , but at different pressures with respect to the crossovers in V_P . In V_S , these crossovers likely occur above 3 GPa based on the modeled velocities, whereas they occur at lower pressures (~0.5-1.5 GPa) in V_ϕ .

The derived densities of hydrous rhyolitic glasses are consistent with the patterns observed in hydrous haplogranitic glasses; the addition of H₂O decreases the density of rhyolitic glasses (Figure 7) (Ardia et al. 2014). At ambient pressure, the densities of AHRG, HRG-3, and HRG-6 are $2.353 \pm 0.010 \text{ g/cm}^3$, $2.318 \pm 0.010 \text{ g/cm}^3$, and $2.270 \pm 0.010 \text{ g/cm}^3$, respectively. The modelled elastic moduli of the glasses also show anomalous behavior at high pressure due to hydration (Figure 8). The addition of H₂O decreases elastic moduli non-linearly below ~1.5 GPa. At ambient pressure, measured $K_S (G)$ are 39.54 ± 0.30 (31.25 ± 0.21), 37.19 ± 0.42 (26.73 ± 0.22), and 36.57 ± 0.38 (25.01 ± 0.18) in AHRG, HRG-3, and HRG-6, respectively. Above ~1.5 GPa, bulk moduli in hydrous glasses exceed those in AHRG. This crossover also appears to occur in shear moduli at higher pressures above 3 GPa. Similar to the transitions in acoustic velocities, the transition pressure in elastic moduli decrease with increasing H₂O_t. Under pressure, the density differences between AHRG and hydrous glasses fluctuates in response to the elastic moduli (Figure 7). At ~1 GPa, the bulk moduli in the hydrous glasses begin to increase while the bulk moduli in AHRG is still decreasing with pressure, resulting in increasing

291 density differences. Above ~2 GPa, however, the increase in the bulk moduli in AHRG results in
292 the eventual decrease in the density differences.

293 Previous studies have reported that the use of noble gases (He or Ne) as pressure media
294 can significantly alter the observed elastic properties in silicate glasses (Shen et al. 2011; Weigel
295 et al. 2012; Clark et al. 2014; Coasne et al. 2014). These effects have been attributed to the
296 adsorption of noble gas molecules into interstitial sites in silicate glasses, which “stiffens” the
297 glass network, making it more incompressible. The divergence in our results are, however, much
298 smaller compared to those observed in silica glass with Ne as the pressure medium at similar
299 pressures (Figure 6) (Coasne et al. 2014). The glass compositions used, in addition to the
300 structure of the SiO₂ and basaltic glasses used in those respective studies may have played a role
301 in the observed changes in elasticity of glasses (Shen et al. 2011; Weigel et al. 2012; Coasne et
302 al. 2014; Clark et al. 2016). According to our velocity results using Ne and 4:1 methanol:ethanol,
303 respectively, we observed little change in velocities below ~2.5 GPa. Above ~2.5 GPa, velocities
304 from the run with Ne as the pressure medium begin to diverge from the velocities from the run
305 where 4:1 methanol:ethanol was used as the pressure medium. We note that using Ne as the
306 pressure medium may alter the elasticity of glasses at higher pressures in DAC studies, but does
307 not display any noticeable effects on rhyolitic glasses in the pressure range investigated here.

308 **Discussion**

309 **Effects of H₂O at Ambient Pressure**

310 At ambient pressure, the incorporation of H₂O species decreases acoustic velocities and
311 elastic moduli because dissolved H₂O is much more compressible than the surrounding silicate
312 network (Figure 5, 8) (Richet and Polian 1998). The reduction in velocities and elastic moduli as

313 a function of H_2O_t correlates well with the quantity of OH^- in hydrous glasses. Both hydrous
314 glasses contain similar quantities of OH^- and have velocities and elastic moduli that are closer to
315 each other than those between AHRG and HRG-3. While OH^- dominates H_2O speciation in
316 glasses with <4 wt.% H_2O_t , H_2O_m becomes the major species of H_2O in glasses with >4 wt.%
317 H_2O_t (Stolper 1982a; Ihinger et al. 1999). This complex variation in H_2O speciation as a function
318 of H_2O_t can partially explain the non-linear decrease in acoustic velocities (Malfait et al. 2011;
319 Whittington et al. 2012). The presence of large Ca and Fe cations may also contribute to the
320 differences between our results and those in haplogranitic glasses from Malfait et al. (2011). In
321 basaltic glasses, the incorporation of large Ca and Fe cations have been shown to reduce acoustic
322 velocities, most likely as a result of the disorder in local structure (Stebbins et al. 1997; Liu and
323 Lin 2014). Whereas our results are relatively consistent with previous results when H_2O_t is below
324 ~5 mol%, acoustic velocities diverge from and become lower than the results in hydrous
325 haplogranitic glasses from Malfait et al. (2011) with increasing H_2O_t (Figure 5). Large cation-
326 water interactions may cause these observed differences (Oglesby et al. 2002). We note that the
327 hydrous glasses in this study and in previous studies have similar concentrations of Ca and Fe
328 (Table 2). The divergence in velocities are thus attributed to the presence of the cations at high
329 concentrations of H_2O_t . Therefore, the largest differences in acoustic velocities between the
330 rhyolitic glasses and haplogranitic glasses are observed when H_2O_t is high.

331 Effects of H_2O at High Pressures

332 The anomalous pressure-dependence of sound velocities in silicate glasses has been
333 attributed to compression mechanisms. Rather than reducing bond lengths, glasses are
334 compressed by collapse of interstitial void spaces and tightening of bond angles between
335 bridging tetrahedra (Weigel et al. 2012; Clark et al. 2014; Wang et al. 2014). The transition at

336 which acoustic velocities change from decreasing with pressure to increasing with pressure has
337 been associated with a tetrahedral packing limit, above which the compression mechanism
338 changes in silicate glasses (Wang et al. 2014). The hydrous glasses in this study have different
339 transition pressures compared to that of AHRG; the transition pressure appears to decrease with
340 increasing H_2O_t (Figure 6). Both hydrous glasses have similar amounts of OH^- , and therefore,
341 similar degrees of polymerization, which can explain the similarity in the transition pressures.
342 Furthermore, the presence of H_2O_m in interstitial sites, and, to a lesser degree, some OH^- bonded
343 to cations, may contribute to this shift in transition pressure with increasing H_2O_t (Xue and
344 Kanzaki 2008; Xue 2009). The packing limit of hydrous glasses is reached at a lower pressure
345 because H_2O_m in interstitial sites prevents compression of the surrounding silicate network. As
346 the silicate network is compressed, some interstitial H_2O_m converts to OH^- . Even though the
347 quantity of H_2O_m is reduced in HRG-6 with pressure, the quantity of H_2O_m in HRG-6 is still
348 significantly higher than that in HRG-3 (Figure 4). As a result of the lower transition pressure
349 and the presence of interstitial H_2O_m , the acoustic velocities and the elastic moduli in the hydrous
350 glasses exceed those of AHRG at high pressure above ~ 1.5 GPa (Figure 6, 8). This crossover in
351 velocities and elastic moduli can be attributed to the presence of H_2O_m which causes hydrous
352 glasses to be more incompressible (Figure 8). The fact that a similar crossover in velocities is
353 observed in SiO_2 glass containing ~ 1 wt.% H_2O_t by Murakami (2018) indicates that glasses
354 become less compressible at high pressures, even with small quantities of H_2O_m .

355 The polymerization of the glasses also changes the pressure-dependence of velocities in
356 silicate glasses (Sakamaki et al. 2014). With increasing pressure, relatively depolymerized
357 glasses, such as diopside and enstatite glass, show “flat” velocity profiles with almost no
358 decrease in V_P , V_S , or V_ϕ (Sanchez-Valle and Bass 2010; Liu and Lin 2014; Sakamaki et al.

359 2014). This contrasts with polymerized silicate glasses that display a decrease in velocities with
360 pressure up to a transition after which velocities increase with pressure (Zha et al. 1994; Clark et
361 al. 2014). In the rhyolitic glasses in this study, the reduction in velocities at the velocity minima
362 decreases with increasing H_2O_t (Figure 6). In other words, the hydrous glasses, which have
363 higher OH^- contents and are less polymerized, show “flatter” pressure-dependent velocity
364 profiles.

365 **Potential High-Temperature Effects**

366 High-temperature behavior of glasses and melts remains poorly understood despite
367 efforts to determine the acoustic velocities of silicate melts at magmatic temperatures (Vo-Thanh
368 et al. 1996; Polian et al. 2002; Hushur et al. 2013). Hushur et al. (2013) reported acoustic
369 velocities of haplogranitic glasses and melts with varying sodium and potassium contents as a
370 function of temperature up to $\sim 800^\circ\text{C}$. Those measurements indicate that, in general, acoustic
371 velocities in haplogranites decrease with temperature, although the change is small (<5%). This
372 minor temperature dependence is consistent with the pattern of temperature dependence in
373 silicate glasses and melts as a function of composition (Vo-Thanh et al. 1996; Polian et al. 2002;
374 Schilling et al. 2003; Hushur et al. 2013). Previous Brillouin measurements on acoustic velocities
375 in SiO_2 glasses and melts show positive temperature dependencies whereas acoustic velocities in
376 basaltic glasses and melts show negative temperature dependencies (Polian et al. 2002; Schilling
377 et al. 2003; Yokoyama et al. 2010). Therefore, we expect that the acoustic velocities in felsic
378 glasses and melts to show little dependence on temperature.

379 In addition to the direct effect of temperature on acoustic velocities in dry glasses, it
380 should be noted that H_2O speciation in hydrous glasses is also impacted by temperature. At
381 magmatic temperatures ($\sim 650\text{--}800^\circ\text{C}$), the ratio of OH^- to H_2O_m will increase dramatically

382 compared to that at ambient temperatures (Keppler and Bagdassarov 1993; Nowak and Behrens
383 1995; Shen and Keppler 1995). That is, OH⁻ will dominate, with very little H₂O_m present in the
384 melt. As a result, melts at high temperatures will be much more compressible with lower bulk
385 moduli because of the greater abundance of OH⁻ depolymerizing the silicate network and with
386 little H₂O_m present in interstitial sites. Overall, therefore, hydrous melts at high temperatures and
387 ambient pressure are thus expected to show enhanced velocity reductions compared to their
388 respective anhydrous melts at 300 K.

389 **Implications**

390 By modeling acoustic velocities at different H₂O_t as a function of pressure, we can infer
391 how acoustic velocities of hydrous rhyolitic glasses will be altered for a given amount of H₂O_t at
392 high pressure and 300 K (Figure 9). On the other hand, reductions in V_P at ambient pressure
393 magmatic temperatures (~800 °C) can be estimated by taking into account the direct effect of
394 temperature on velocities and by assuming the incorporation of OH⁻ dominates the velocity
395 reductions at high temperatures for a given speciation of H₂O in haplogranitic melts (Nowak and
396 Behrens 1995; Hushur et al. 2013; Evans et al. 2016). The elastic behavior of felsic glasses at
397 simultaneous high P-T conditions remains unclear. Yokoyama et al. 2010 have explored the
398 behavior of SiO₂ glass at high P-T conditions up to 6 GPa and 800 K (~527 °C). Their results
399 indicate that the effects of temperature on acoustic velocities are enhanced at high pressures, yet,
400 their results conflict with ambient pressure and high-temperature measurements (Polian et al.
401 2002). Additionally, the effects likely are not large at pressures relevant to rhyolitic magmas
402 (~0.5 GPa). Due to the lack of dependable data, we disregard the effects of temperature at high
403 pressures. Our results therefore serve as lower bounds on the velocity reductions in rhyolitic
404 melts.

405 Combining the pressure and temperature effects determined above, ~~we can one could~~
 406 estimate V_P reductions at high pressures and temperatures with respect to average continental
 407 crust (Christensen and Mooney 1995). At a depth of ~15 km (0.5 GPa) and at temperatures of
 408 ~800 °C we expect anhydrous melts, melts containing 3.28 wt.% H_2O_t , and melts containing 5.90
 409 wt.% H_2O_t to show at least ~11.9%, ~22.6%, and ~28.8% reductions in V_P , respectively. These
 410 velocity reductions are in the range of maximum V_P reductions (8-30%) recorded with
 411 teleseismic studies of rhyolitic magmatic reservoirs beneath Long Valley caldera and
 412 Yellowstone at depths of 7-20 km (Dawson et al. 1990; Weiland et al. 1995; Huang et al. 2015;
 413 Flinders et al. 2018). Increasing melt fractions and volatile contents will both increase velocity
 414 reductions in magma chambers. Therefore, our results allow constraints to be placed on volatile
 415 contents only if regions where maximum reductions in V_P are observed correspond to melt-
 416 dominated regions. On the other hand, if previous constraints on volatile contents exist, then our
 417 results could be applied to constrain melt fractions.

418 **Acknowledgements**

419 J.-F. Lin and J.T. Gu acknowledge support from the NSF (EAR-1916941) Geophysics Program,
 420 NSF Research Experience for Undergraduate Students (REU), and the International Joint Usage
 421 Program at the Institute for Planetary Materials. J.E. Gardner acknowledges support from NSF
 422 grant EAR-1725186 and T. Okuchi acknowledges support from JSPS KAKENHI (17H01172).

423 **References**

424 Amin, S.A., Rissi, E.N., McKiernan, K., and Yarger, J.L. (2012) Determining the equation of state of
 425 amorphous solids at high pressure using optical microscopy. *Review of Scientific Instruments*.
 426 Ardia, P., Di Muro, A., Giordano, D., Massare, D., Sanchez-Valle, C., and Schmidt, M.W. (2014)
 427 Densification mechanisms of haplogranite glasses as a function of water content and pressure based
 428 on density and Raman data. *Geochimica et Cosmochimica Acta*, 138, 158–180.
 429 Bailey, R.A., Dalrymple, G.B., and Lanphere, M.A. (1976) Volcanism, structure, and geochronology of
 430 Long Valley Caldera, Mono County, California. *Journal of Geophysical Research*.
 431 Behrens, H., and Zhang, Y. (2001) Ar diffusion in hydrous silicic melts: Implications for volatile

432 diffusion mechanisms and fractionation. *Earth and Planetary Science Letters*, 192, 363–376.

433 Birch, F. (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high
434 pressures and 300°K. *Journal of Geophysical Research*, 83, 1257.

435 Borg, L.E., and Clyne, M.A. (1998) The petrogenesis of felsic calc-alkaline magmas from the
436 southernmost Cascades, California: origin by partial melting of basaltic lower crust. *Journal of
437 Petrology*.

438 Brandmeier, M., and Wörner, G. (2016) Compositional variations of ignimbrite magmas in the Central
439 Andes over the past 26 Ma — A multivariate statistical perspective. *Lithos*.

440 Carn, S.A., Paluster, J.S., Lara, L., Ewert, J.W., Watt, S., Prata, A.J., Thomas, R.J., and Villarosa, G.
441 (2009) The Unexpected Awakening of Chaitén Volcano, Chile. *Eos*.

442 Chertkova, N., and Yamashita, S. (2015) In situ spectroscopic study of water speciation in the
443 depolymerized $\text{Na}^{+}2\text{Si}^{4+}2\text{O}^{5-}$ melt. *Chemical Geology*.

444 Chijioke, A.D., Nellis, W.J., Soldatov, A., and Silvera, I.F. (2005) The ruby pressure standard to 150
445 GPa. *Journal of Applied Physics*.

446 Christensen, N.I., and Mooney, W.D. (1995) Seismic velocity structure and composition of the
447 continental crust: a global view. *Journal of Geophysical Research*.

448 Clark, A.N., Lesher, C.E., Jacobsen, S.D., and Sen, S. (2014) Mechanisms of anomalous compressibility
449 of vitreous silica. *Physical Review B - Condensed Matter and Materials Physics*, 90, 1–6.

450 Clark, A.N., Lesher, C.E., Jacobsen, S.D., and Wang, Y. (2016) Anomalous density and elastic properties
451 of basalt at high pressure: Reevaluating of the effect of melt fraction on seismic velocity in the
452 Earth's crust and upper mantle. *Journal of Geophysical Research: Solid Earth*, 121, 4232–4248.

453 Coasne, B., Weigel, C., Polian, A., Kint, M., Rouquette, J., Haines, J., Foret, M., Vacher, R., and Rufflé,
454 B. (2014) Poroelastic theory applied to the adsorption-induced deformation of vitreous silica.
455 *Journal of Physical Chemistry B*, 118, 14519–14525.

456 Crosweller, H.S., Arora, B., Brown, S.K., Cottrell, E., Deligne, N.I., Guerrero, N.O., Hobbs, L., Kiyosugi,
457 K., Loughlin, S.C., Lowndes, J., and others (2012) Global database on large magnitude explosive
458 volcanic eruptions (LaMEVE). *Journal of Applied Volcanology*.

459 Dawson, P.B., Evans, J.R., and Iyer, H.M. (1990) Teleseismic tomography of the compressional wave
460 velocity structure beneath the Long Valley Region, California. *Journal of Geophysical Research*,
461 11021.

462 Evans, B.W., Hildreth, W., Bachmann, O., and Scaillet, B. (2016) In defense of magnetite-ilmenite
463 thermometry in the Bishop Tuff and its implication for gradients in silicic magma reservoirs.
464 *American Mineralogist*.

465 Flinders, A.F., and Shen, Y. (2017) Seismic evidence for a possible deep crustal hot zone beneath
466 Southwest Washington. *Scientific Reports*, 7, 1–10.

467 Flinders, A.F., Shelly, D.R., Dawson, P.B., Hill, D.P., Tripoli, B., and Shen, Y. (2018) Seismic evidence
468 for significant melt beneath the Long Valley. *Geology*, 46, 799–802.

469 Fu, S., Yang, J., and Lin, J.F. (2017) Abnormal Elasticity of Single-Crystal Magnesiosiderite across the
470 Spin Transition in Earth's Lower Mantle. *Physical Review Letters*.

471 Gardner, J.E., and Ketcham, R.A. (2011) Bubble nucleation in rhyolite and dacite melts: Temperature
472 dependence of surface tension. *Contributions to Mineralogy and Petrology*.

473 Grove, T.L., Till, C.B., and Krawczynski, M.J. (2012) The Role of H_2O in Subduction Zone
474 Magmatism. *Annual Review of Earth and Planetary Sciences*, 40, 413–439.

475 Guo, X., Chen, Q., and Ni, H.W. (2016) Electrical conductivity of hydrous silicate melts and aqueous
476 fluids: Measurement and applications. *Science China Earth Sciences*, 59, 889–900.

477 Helwig, W., Soignard, E., and Tyburczy, J.A. (2016) Effect of water on the high-pressure structural
478 behavior of anorthite-diopside eutectic glass. *Journal of Non-Crystalline Solids*, 452, 312–319.

479 Hess, K.U., and Dingwell, D.B. (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian
480 model. *American Mineralogist*, 81, 1297–1300.

481 Huang, H.H., Lin, F.C., Schmandt, B., Farrell, J., Smith, R.B., and Tsai, V.C. (2015) The Yellowstone
482 magmatic system from the mantle plume to the upper crust. *Science*.

483 Hui, H., and Zhang, Y. (2007) Toward a general viscosity equation for natural anhydrous and hydrous
484 silicate melts. *Geochimica et Cosmochimica Acta*.

485 Hui, H., Zhang, Y., Xu, Z., and Behrens, H. (2008) Pressure dependence of the speciation of dissolved
486 water in rhyolitic melts. *Geochimica et Cosmochimica Acta*, 72, 3229–3240.

487 Hushur, A., Manghnani, M.H., William S, Q., and Dingwell, D.B. (2013) A high-temperature Brillouin
488 scattering study on four compositions of haplogranitic glasses and melts: High-frequency elastic
489 behavior through the glass transition. *American Mineralogist*, 98, 367–375.

490 Ihinger, P.D., Zhang, Y., and Stolper, E.M. (1999) The speciation of dissolved water in rhyolitic melt.
491 *Geochimica et Cosmochimica Acta*, 63, 3567–3578.

492 Keppler, H., and Bagdassarov, N.S. (1993) High-temperature FTIR spectra of H₂O in rhyolite melt to
493 1300°C. *American Mineralogist*, 78, 1324–1327.

494 Kimura, J.I., Nagahashi, Y., Satoguchi, Y., and Chang, Q. (2015) Origins of felsic magmas in Japanese
495 subduction zone: Geochemical characterizations of tephra from caldera-forming eruptions <5 Ma.
496 *Geochemistry, Geophysics, Geosystems*.

497 Kushiro, I., Yoder, H.S., and Nishikawa, M. (1968) Effect of Water on the Melting of Enstatite.
498 *Geological Society of America Bulletin*, 79, 1685–1692.

499 Lee, S.K., and Stebbins, J.F. (2009) Effects of the degree of polymerization on the structure of sodium
500 silicate and aluminosilicate glasses and melts: An ¹⁷O NMR study. *Geochimica et Cosmochimica
501 Acta*, 73, 1109–1119.

502 Lee, S.K., Cody, G.D., Fei, Y., and Mysen, B.O. (2004) Nature of polymerization and properties of
503 silicate melts and glasses at high pressure. *Geochimica et Cosmochimica Acta*, 68, 4189–4200.

504 Lee, S.K., Lin, J.-F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H. -k., Meng, Y., Hu, M.Y.,
505 Chow, P., and others (2008) X-ray Raman scattering study of MgSiO₃ glass at high pressure:
506 Implication for triclustered MgSiO₃ melt in Earth's mantle. *Proceedings of the National Academy
507 of Sciences*, 105, 7925–7929.

508 Lee, S.K., Yi, Y.S., Cody, G.D., Mibe, K., Fei, Y., and Mysen, B.O. (2011) Effect of network
509 polymerization on the pressure-induced structural changes in sodium aluminosilicate glasses and
510 melts: ²⁷Al and ¹⁷O solid-state NMR study. *Journal of Physical Chemistry C*, 116, 2183–2191.

511 Lin, C.C., and Liu, L.G. (2006) Composition dependence of elasticity in aluminosilicate glasses. *Physics
512 and Chemistry of Minerals*, 33, 332–346.

513 Liu, J., and Lin, J.F. (2014) Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate
514 glasses at high pressures. *Geophysical Research Letters*.

515 Lowenstern, J.B. (1994) Dissolved volatile concentrations in an ore-forming magma. *Geology*.

516 Lu, C., Mao, Z., Lin, J.F., Zhuravlev, K.K., Tkachev, S.N., and Prakapenka, V.B. (2013) Elasticity of
517 single-crystal iron-bearing pyrope up to 20GPa and 750K. *Earth and Planetary Science Letters*.

518 Malfait, W.J., Sanchez-Valle, C., Ardia, P., Médard, E., and Lerch, P. (2011) Compositional dependent
519 compressibility of dissolved water in silicate glasses. *American Mineralogist*, 96, 1402–1409.

520 Malfait, W.J., Verel, R., Ardia, P., and Sanchez-Valle, C. (2012) Aluminum coordination in rhyolite and
521 andesite glasses and melts: Effect of temperature, pressure, composition and water content.
522 *Geochimica et Cosmochimica Acta*, 77, 11–26.

523 Malfait, W.J., Seifert, R., and Sanchez-Valle, C. (2014) Letter. Densified glasses as structural proxies for
524 high-pressure melts: Configurational compressibility of silicate melts retained in quenched and
525 decompressed glasses. *American Mineralogist*.

526 Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-
527 hydrostatic conditions. *Journal of Geophysical Research*.

528 McIntosh, I.M., Nichols, A.R.L., Tani, K., and Llewellyn, E.W. (2017) Accounting for the species
529 dependance of the 3500 cm⁻¹ H₂O infrared molar. *American Mineralogist*, 102, 1677–1689.

530 Meister, R., Robertson, E.C., Werre, R.W., and Raspet, R. (1980) Elastic Moduli of Rock Glasses Under
531 Pressure to 8 Kilobars and Geophysical Implications. *Journal of Geophysical Research*, 85, 6461–
532 6470.

533 Moore, G., Vennemann, T., and Carmichael, I.S.E. (1995) Solubility of water in magmas to 2 kbar.

585 Suito, K., Miyoshi, M., Sasakura, T., and Fujisaw, H. (1992) Elastic Properties of Obsidian, Vitrious
586 SiO₂, and Vitreous GeO₂ Under High Pressure up to 6 GPa. In High-Pressure Research:
587 Application to Earth and Planetary Sciences Vol. 67, pp. 219–225.

588 Vo-Thanh, D., Polian, A., and Richet, P. (1996) Elastic properties of silicate melts up to 2350 K from
589 Brillouin scattering. *Geophysical Research Letters*, 23, 423–426.

590 Wallace, P.J. (2005) Volatiles in subduction zone magmas: Concentrations and fluxes based on melt
591 inclusion and volcanic gas data. *Journal of Volcanology and Geothermal Research*.

592 Wallace, P.J., Anderson, A.T., and Davis, A.M. (1999) Gradients in H₂O, CO₂, and exsolved gas in a
593 large-volume silicic magma system: Interpreting the record preserved in melt inclusions from the
594 Bishop Tuff. *Journal of Geophysical Research: Solid Earth*.

595 Wang, Y., Sakamaki, T., Skinner, L.B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M.L., and
596 Sutton, S.R. (2014) Atomistic insight into viscosity and density of silicate melts under pressure.
597 *Nature Communications*, 5, 1–10.

598 Weigel, C., Polian, A., Kint, M., Rufflé, B., Foret, M., and Vacher, R. (2012) Vitreous silica distends in
599 helium gas: Acoustic versus static compressibilities. *Physical Review Letters*, 109, 1–5.

600 Weiland, C.M., Steck, L.K., Dawson, P.B., and Korneev, V.A. (1995) Nonlinear teleseismic tomography
601 at Long Valley Caldera, using three-dimensional minimum travel time ray tracing. *Journal of
602 Geophysical Research: Solid Earth*, 20379–20390.

603 Whittington, A., Richet, P., and Holtz, F. (2000) Water and the viscosity of depolymerized
604 aluminosilicate melts. *Geochimica et Cosmochimica Acta*.

605 Whittington, A.C., Richet, P., and Polian, A. (2012) Water and the compressibility of silicate glasses: A
606 Brillouin spectroscopic study. *American Mineralogist*, 97, 455–467.

607 Williams, Q., and Jeanloz, R. (1998) Spectroscopic Evidence for Pressure-Induced Coordination Changes
608 in Silicate Glasses and Melts. *Science*, 239, 902–905.

609 Withers, A.C., and Behrens, H. (1999) Temperature-induced changes in the NIR spectra of hydrous
610 albitic and rhyolitic glasses between 300 and 100 K. *Physics and Chemistry of Minerals*, 27, 119–
611 132.

612 Xue, X. (2009) Water speciation in hydrous silicate and aluminosilicate glasses: Direct evidence from
613 ²⁹Si-1H and ²⁷Al-1H double-resonance NMR. *American Mineralogist*, 94, 395–398.

614 Xue, X., and Kanzaki, M. (2008) Structure of hydrous aluminosilicate glasses along the diopside-
615 anorthite join: A comprehensive one- and two-dimensional ¹H and ²⁷Al NMR study. *Geochimica et
616 Cosmochimica Acta*, 72, 2331–2348.

617 Yang, J., Mao, Z., Lin, J.F., and Prakapenka, V.B. (2014) Single-crystal elasticity of the deep-mantle
618 magnesite at high pressure and temperature. *Earth and Planetary Science Letters*, 392, 292–299.

619 Yokoyama, A., Matsui, M., Higo, Y., Kono, Y., Irihara, T., and Funakoshi, K.I. (2010) Elastic wave
620 velocities of silica glass at high temperatures and high pressures. *Journal of Applied Physics*, 107.

621 Zha, C.-S., Hemley, R.J., Mao, H., Duffy, T.S., and Meade, C. (1994) Acoustic velocities and refractive
622 index of SiO₂ glass to 57.5 GPa by Brillouin scattering. *Physical Review B*, 50, 13105–13112.

623