of Texas at Austin, Austin, TX 78712, USA

High-Pressure Experimental Study of

2	Tetragonal CaSiO ₃ -Pervoskite to 200 GPa
3	
4	Ningyu Sun ^{1,2} , Hui Bian ¹ , Youyue Zhang ¹ , Jung-Fu Lin ³ , Vitali B. Prakapenka ⁴ , Zhu
5	Mao ^{1,2*}
6	
7	¹ Laboratory of Seismology and Physics of Earth's Interior, School of Earth and
8	Planetary Sciences, University of Science and Technology of China, Hefei, Anhui
9	230026, China
10	² CAS Center for Excellence in Comparative Planetology, University of Science and
11	Technology of China, Hefei, Anhui 230026, China
12	³ Department of Geological Sciences, Jackson School of Geosciences, The University

⁴Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637,

13

14

1

Abstract

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

In this study, we have investigated the crystal structure and equation of state of tetragonal CaSiO₃-perovskite up to 200 GPa using synchrotron X-ray diffraction in laser-heated diamond anvil cells. X-ray diffraction patterns of the quenched CaSiO₃-pervoskite above 148 GPa exhibit much clearer splitting of cubic peaks 200, 211, and 220 which are used to characteristically resolve the tetragonal structure from the cubic phase. Together with systematic Rietveld refinement of potential space groups, the observation of a characteristic peak with 2θ around 10.0-10.2° (d-spacing of 1.92-1.88 Å) between 148 and 199 GPa at 300 K provides a direct evidence to confirm that tetragonal CaSiO₃-perovskite is stable in the I4/mcm structure. By using the Birch-Murnaghan equations, we have determined the equation of state of tetragonal CaSiO₃-perovskite, yielding the bulk modulus K_{0T} = 242(6) GPa with the pressure derivative of the bulk modulus, K_{0T} '=4 (fixed). Using literature results, modeled sound velocities at 580 K and lower-mantle pressures show differences in the compressional (V_P) and shear-wave velocity (V_S) between the cubic and tetragonal phase to be 3.1-3.7(1)% and 3.4-3.9(1)% at 24 GPa, respectively. Elevating pressure to 100 GPa leads to an increase in the differences in V_P and V_S between these two phases. V_S of the cubic phase is 7.8-8.7(2)% greater than the tetragonal CaSiO₃-perovskite at 100 GPa, while V_P is 4.5(1)% greater. Since addition of Ti can elevate the transition temperature, the phase transition from the tetragonal to cubic phase may have a seismic signature compatible with the observed mid-lower mantle discontinuity,. Future studies on the Ti effects on the density and velocity profiles of CaSiO₃-perovskite are crytically needed to provide tighter constaints on the geophysical consequence of the structural phase transition in the lower mantle.

42 Key words: tetragonal CaSiO₃-perovskite, equation of state, structure, high pressure

44

45

43

1. Introduction

46 CaSiO₃-perovskite is one of the most abundant silicate phases and the dominant host of Ca in the Earth's lower mantle (Anderson, 1989; Kesson et al., 1998; Murakami et 47 al., 2005; Ringwood, 1975). In the lower mantle, the volume percentage of 48 49 CaSiO₃-perovskite is estimated to be 5-8 vol.% but could be up to 22-29 vol.% in the subducting mid-ocean ridge basalts (MORBs) (e.g. Anderson, 1989; Harte, 2010; 50 51 Hirose et al., 2005; Wood, 2000). Recent high-pressure studies have found that shear-wave velocity of CaSiO₃-perovskite is substantially lower than the global 52 seismic model PREM (Dziewonski and Anderson, 1981; Gréaux et al., 2019; 53 54 Thomson et al., 2019). Enrichment of the recycled MORBs with the low-velocity CaSiO₃-perovskite could cause a seismic signature compatible with the large-low 55 shear velocity provinces (Kawai and Tsuchiya, 2014; Thomson et al., 2019). 56 Experimental studies on the structure and elastic properties of CaSiO₃ at high 57 pressures are thus important to understand the composition and structure of the lower 58 59 mantle (e.g. Komabayashi et al., 2007; Kurashina et al., 2004; Mao et al., 1989; Noguchi et al., 2013; Shim et al., 2000; Sun et al., 2016; Wang et al., 1996; Wood, 60 2000; Zhang et al., 2006). 61

62

63

64

65

66

CaSiO₃-perovskite has been reported to crystallize in the cubic structure at the expected pressure-temperature conditions of the lower mantle (e.g. Komabayashi et al., 2007; Noguchi et al., 2013; Shim et al., 2000; Sun et al., 2016). However, it can also accommodate a certain amount of minor elements such as Ti (Hirose and Fei,

2002; Kesson et al., 1998; Kesson et al., 1994; Nestola et al., 2018; Wood, 2000), which can elevate the phase transition temperature at lower-mantle pressures and may enable the tetragonal phase to exist in the cold subducting slabs (Thomson et al., 2019). The tetragonal to cubic phase transition with the presence of Ti which is likely to happen beyond 1000-km depth may explain the observed seismic reflections in the mid-lower mantle (Kudo et al., 2012; Thomson et al., 2019).

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

67

68

69

70

71

72

In contrast to the cubic phase, the crystal structure and equation of state (EoS) of tetragonal CaSiO₃-perovskite were not well constrained. The cubic to tetragonal phase transition was proposed to be caused by a second-order structure distortion, and four space groups, including P4/mmm, P4/mbm, I4/mmm and I4/mcm were predicted for the tetragonal phase (Shim et al., 2002; Stixrude et al., 2007). Three potential structures (P4/mbm, I4/mmm and I4/mcm) were caused by the octahedral rotations, whereas the tetragonal CaSiO₃ with the P4/mmm structure could be formed by elongating the c-axis of the cubic phase (Shim et al., 2002; Stixrude et al., 2007). In early experimental studies, P4/mmm was applied to analyze the lattice parameters and unit cell volume of tetragonal CaSiO₃, yielding a modified c/a ratio (Z=1) of 0.992-0.998 at 0-100 GPa (Ono et al., 2004; Shim et al., 2002). However, theoretical studies pointed out that the phase transition was second order in nature and should be caused by octahedral rotations (Stixrude et al., 1996; Stixrude et al., 2007). I4/mcm with the lowest calculated energy is theoretically supported to the structure for the tetragonal CaSiO₃ (Stixrude et al., 2007). In contrast to P4/mmm, I4/mcm has a modified c/a ratio increasing from 1.004 at 20 GPa to 1.023 at ~220 GPa (Jung and Oganov, 2005; Stixrude et al., 2007). I4/mcm was also preferred in a recent experimental study based on the Rietveld refinement results, which give better fits for the peak positions and intensities than other proposed space groups (Chen et al., 2018). Meanwhile, a few theoretical studies using first-principle calculations also suggested an orthorhombic structure for CaSiO₃ at high pressures and low temperatures (Akber-Knutson et al., 2002; Li et al., 2006; Magyari-Kope et al., 2002). In addition, the bulk modulus of tetragonal CaSiO₃-perovskite is highly uncertain, ranging from 223(6) GPa to 248(8) GPa with a fixed pressure derivative of the bulk modulus to be 4 (Chen et al., 2018; Gréaux et al., 2019; Ono et al., 2004; Shim et al., 2002; Thomson et al., 2019). The structure and EoS of tetragonal CaSiO₃-perovskite at high pressures thus require further investigation.

In this study, we have investigated the structure of CaSiO₃-perovskite using synchrotron X-ray diffraction in laser-heated diamond anvil cells (DACs). Our study has significantly extended the experimental pressure to 200 GPa. High-resolution XRD data allow us to provide direct constraints on the crystal structure, lattice parameters, and EoS of the tetragonal phase. These results provide a comprehensive understanding on the structure and EoS of tetragonal CaSiO₃-perovskite at high pressures.

2. Experiments

The starting material was $CaSiO_3$ wollastonite, purchased from Sigma-Aldrich Co. LLC. The polycrystalline starting material was ground into fine powder and mixed with 5 wt.% Pt as the pressure standard and laser absorber (Fei et al., 2007). The sample mixture was compressed by a DAC into ~10 μ m thick pellets. We further cut the sample foil into small pieces. A small sample piece was sandwiched between two NaCl layers, which were pre-loaded to each side of the DAC. NaCl used as the

pressure medium and thermal insulator was pre-dried for more than 5 hours at ~105°C to avoid any potential contamination of water in the air. The sample sandwiches were loaded into symmetric DACs with 75/300 μm beveled diamonds anvils. The high pressure and temperature XRD experiments were performed at the GeoSoilEnviroConsortium (GSECARS) of the Advanced Photon Source (APS), Argonne National Laboratory (ANL), with X-ray wavelength of 0.3344 Å. Previous studies have shown that cubic CaSiO₃-perovskite is stable up to 156 GPa and will transform into tetragonal phase after quench (e.g. Noguchi et al., 2013; Shim et al., 2000; Sun et al., 2016). Here we directly compressed the cell to ~160 GPa at 300 K and then performed laser heating. The diffraction patterns were collected at every 10-15 GPa from 1400 K to 2600 K up to 203 GPa. Assuming a Graybody radiation, the temperature was determined by fitting the thermal radiation spectrum using Planck radiation function (Prakapenka et al., 2008). Quenched diffraction patterns were collected after each heating cycle at high pressures.

3. Result

The starting CaSiO₃ wollastonite became amorphous at 160 GPa and 300 K. Heating the amorphous material immediately transformed CaSiO₃ to the cubic perovskite structure (Fig. 1). Continuing heating cubic CaSiO₃-perovskite up to 2600 K did not cause any notable change in the XRD patterns. Yet the quenched sample at 300 K and 148 GPa has exhibited an obvious splitting of XRD peaks at 12.0°, 14.7°, and 16.9° (wavelength = 0.3344 Å), respectively. In particular, we observed a new peak at ~10.0-10.2° in the quenched patterns, which was not reported or not clear in previous experimental studies (Fig. 2) (Chen et al., 2018; Ono et al., 2004; Shim et al., 2002; Thomson et al., 2019). Further analysis of the obtained XRD patterns revealed that

CaSiO₃ was stable in the cubic perovskite structure between 158 and 203 GPa at 1400-2600 K, but transformed to the tetragonal phase upon quenching. Calculated deviatoric stress at 300 K using collected diffraction patterns of Pt is less than 1.2 GPa at pressures up to 199 GPa (Fig. 1). We further performed the Rietveld refinement on the obtained diffraction patterns for both cubic and tetragonal CaSiO₃-perovskite phases (Fig. 2). Cubic CaSiO₃-perovskite phase was in the space group *Pm*3*m*. For the tetragonal phase, the *I*4/*mmm* structure was firstly excluded because of the absence of two characteristic peaks with *d*-spacing ~1.42 Å and 1.56 Å at 24-96 GPa (Chen et al., 2018; Shim et al., 2002; Ono et al., 2016). The result of full-profile Rietveld refinement analysis revealed that *I*4/*mcm* has the least-fitting residue of 5.4% compared to other two space groups, *P*4/*mmm* with a fitting residue of 10.0% and *P*4/*mbm* of 11.2% (Fig. 3 and Table 1) (Jung and Oganov, 2005; Shim et al., 2002).

Here we focused on the lattice parameters and EoS of tetragonal CaSiO₃-perovskite (Fig. 4). Experimental data of Sun et al. (2016) between 24 and 124 GPa at 300 K have been re-analyzed to better constrain the lattice parameters and pressure-volume relationship of the tetragonal phase at an extended pressure range. For *I*4/*mcm*, *c*-axis is longer than *a*-axis but is less compressible (Fig. 4). Both *a* and *c*-axis of tetragonal CaSiO₃-perovskite are more compressible than the lattice parameter of the cubic phase. The pressure-volume data were fitted using the Birch-Murnaghan EoS (Birch, 1938) (Fig. 4 and Table 2):

163
$$P = \frac{3}{2} K_{0T} \left[\left(\frac{V}{V_0} \right)^{-7/3} - \left(\frac{V}{V_0} \right)^{-5/3} \right] \cdot \left\{ 1 + \frac{3}{4} \left(K' - 4 \right) \left[\left(\frac{V}{V_0} \right)^{-2/3} - 1 \right] \right\},$$

where K_{0T} and V_0 are the isothermal bulk modulus and unit cell volume at the ambient conditions, respectively. K' is the pressure derivative of the bulk modulus. To have a

better comparison with previous experimental and theoretical results, we normalized the Z number of the tetragonal phase to 1. In the normalized unit cell, c equals that of the tetragonal CaSiO₃-perovskite with Z=4 divided by 2, while a equals the initial a divided by $\sqrt{2}$ (Chen et al., 2018; Jung and Oganov, 2005; Ono et al., 2004; Shim et al., 2002). With a fixed K' of 4, we obtained the modified $V_0 = 45.1(3)$ Å³ (Z=1) and $K_{0T} = 242(6)$ GPa.

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

166

167

168

169

170

171

4. Discussion

Due to the similarity in the XRD patterns between the cubic and tetragonal CaSiO₃, the stable structure of CaSiO₃ at high pressure-temperature conditions has been under debate for years (e.g. Chen et al., 2018; Jung and Oganov, 2005; Ono et al., 2004; Shim et al., 2002; Stixrude et al., 2007). Splitting of the cubic 200 peak was applied to determine the occurrence of the phase transition at high pressures (Chen et al., 2018; Komabayashi et al., 2007; Kurashina et al., 2004; Noguchi et al., 2013; Ono et al., 2004; Shim et al., 2002; Sun et al., 2016). Here, our obtained XRD patterns above 148 GPa showed a well-resolved splitting of the cubic 211 and 220 peaks after quench than patterns collected at relatively lower pressures in previous studies (Chen et al., 2018; Ono et al., 2004; Shim et al., 2002). Using the refined space groups and lattice parameters, we also calculated the full width at half maximum (FWHM) of the tetragonal 004+220, 204+312, and 224+400 peak pairs at high pressure and 300 K (Fig. 5). Across the cubic-tetragonal transition, the 200, 211, and 220 peaks of the cubic phase split into 004+220, 204+312, and 224+400 peaks, respectively, in the tetragonal structure. The FWHM of tetragonal peak pairs exhibit a substantial increase with pressure up to 200 GPa. It is thus easier to identify the presence of tetragonal CaSiO₃-perovskite from the XRD patterns above 148 GPa. Previous studies

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

mentioned that the observed splitting may be a result of the increased deviatoric stress inside the DAC, and a deviatoric stress of ~7 GPa is enough to induce the peak splitting at temperatures as high as 1550 K (Chen et al., 2018; Shim et al., 2002). Here we showed that the quenched patterns have a deviatoric stress less than 1.2 GPa up to 199 GPa (Singh, 1993; Sun et al., 2016) (Figure 1b). The peak splitting in the quenched pattern only can be caused by the phase transition but not the deviatoric stress (Chen et al., 2018; Shim et al., 2002). More importantly, we have observed the presence of an additional peak with 2θ at ~10.0-10.2° from 148 to 199 GPa at 300 K (d-spacing of 1.92-1.88 Å) (Fig. 2). Although Sun et al. (2016) did observe the 211 peak, their motivation is to determine the thermal EoS of cubic CaSiO₃-perovskite. The XRD data of the tetragonal phase were not carefully analyzed, and the 211 peak in Sun et al. (2016) was completely ignored. In this work, we carefully analyzed the XRD patterns of the tetragonal phase and performed the Rietveld refinement for potential structures. Based on the Rietveld refinement results, only I4/mcm can yield reasonable fit to this peak which was indexed as peak 211 and has the least full-profile refinement residue of 5.4% compared to P4/mmm and P4/mbm (Fig. 3). We also examined the XRD patterns of tetragonal CaSiO₃-perovskite in Sun et al. (2016) between 24 and 124 GPa at 300 K which also recorded the tetragonal 211 peak as a continuous ring (Fig. 2). Missing this important peak in previous experimental studies may be caused by a relatively low-resolution of the XRD patterns or over masking of the cake patterns (Chen et al., 2018; Ono et al., 2004; Shim et al., 2002). Rotation of the sample when collecting the XRD patterns also helps to reveal the 211 peak. We thus present the direct experimental evidence to confirm that CaSiO₃ is stable in the tetragonal I4/mcm

structure at high pressures and 300 K, consistent with theoretical predictions (Jung 216 and Oganov, 2005; Stixrude et al., 2007). Compared to the peak splitting, the presence 217 of peak 211 is a better indicator for the cubic to tetragonal phase transition. 218 219 Detailed comparison between the cubic and tetragonal phases has shown that, the 220 phase transition affects the bond length of the Si-O octahedra and leads to the 221 222 distortion of the nearby octahedra inside the X-Y plane (Jung and Oganov, 2005). Angles between two Si-O bonds within the X-Y plane decrease from 180° in the cubic 223 224 structure to 153° in the tetragonal structure at 163 GPa and 300 K, and exhibit a weak increase with pressure due to the enhanced distortion at higher pressures (Jung and 225 Oganov, 2005). Cubic CaSiO₃-perovskite has six equal Si-O bonds in length in an 226 227 octahedron (Fig. 6). Increasing temperature can cause a weak increase in the Si-O bond length of the cubic phase. Tetragonal CaSiO₃-perovskite has two different Si-O 228 bonds. The Si-O1 bond in the tetragonal structure is 1.9(1)% shorter than the Si-O2 229 bond but has a length similar to the cubic phase. Meanwhile, a-axis of the tetragonal 230 I4/mcm phase is $\sim 2.5\%$ shorter than that of the cubic phase because of the distortion 231 in structure. With Z=1, previous experimental studies reported a modified c/a value 232 less than 1 for the P4/mmm phase (Fig. 7) (Chen et al., 2018; Jung and Oganov, 2005; 233 Ono et al., 2004; Shim et al., 2002; Stixrude et al., 2007). For the I4/mcm structure, 234 235 c-axis is longer than a-axis, leading to a modified c/a ratio greater than 1. The modified c/a ratio of the tetragonal CaSiO₃-perovskite increases from ~1.003 at 24 236 GPa to \sim 1.012 at 199 GPa (Fig. 7). The modified c/a ratio showing here between 24 237 238 and 199 GPa is in general agreement with a recent experimental study and follows a similar trend with pressure as the theoretical predictions (Chen et al., 2018; Stixrude 239 et al., 2007). 240

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

The unit cell volume of the I4/mcm phase at a given pressure shown here is slightly smaller than that reported in previous studies using the P4/mmm structure (Ono et al., 2004; Shim et al., 2002). The difference is caused by using different sequence of peaks in two space groups to analyze the XRD pattern. If we also apply the P4/mmm structure for tetragonal CaSiO₃ by ignoring the 211 peak, the calculated unit cell volume is similar to that shown in previous studies (Fig. 4) (Ono et al., 2004; Shim et al., 2002). Above 45 GPa, the unit cell volume of the P4/mmm structure in Ono et al., (2004) are greater than other results, potentially due to large deviatoric stress with no pressure medium in the high-pressure experiments (Chen et al., 2018; Shim et al., 2002; Thomson et al., 2019). K_{0T} of the tetragonal CaSiO₃-perovskite with a fixed K_{0T} '=4 is highly uncertain, ranging from 223(6) GPa to 248(8) GPa in previous experimental studies (Chen et al., 2018; Gréaux et al., 2019; Ono et al., 2004; Shim et al., 2002; Thomson et al., 2019). Here, fitting the P-V data at a much larger pressure range up to 200 GPa yielded K_{0T} of 242(6) with a fixed K_{0T} '=4. For a better comparison, we re-analyzed the previous experimental P-V data using a self-consistent pressure scale of Fei et al., (2007) for a better comparison (Table 3) (Shim et al., 2002; Ono et al., 2004; Chen et al., 2018; Thomson et al., 2019; Jung and Oganov, 2005; Stixrude et al., 2007; Caracas et al., 2005). Previous experimental studies with a much lower K_{0T} could be caused by limited experimental pressure range at 300 K or the untransformed lower-pressure materials (Chen et al., 2018; Ono et al., et al., 2004; Thomson et al., 2019; Gréaux et al., 2019). K_{0T} of the tetragonal phase in Shim et al. (2002) is much greater than our and other literature results, potentially due to their limited experimental data points and narrow pressure range (Chen et al., 2018; Ono et al., et al., 2004). In addition, tetragonal CaSiO₃-perovskite

has a slightly lower K_{0T} than the cubic phase, although a few experimental studies reported a low K_{0T} of 208-237 GPa for the cubic phase (Gréaux et al., 2019; Kawai and Tsuchiya, 2014; Noguchi et al., 2013; Ricolleau et al., 2009; Shim et al., 2000; Shim et al., 2002; Wang et al., 1996; Zhang et al., 2006).

270

271

266

267

268

269

5. Geophysical implications

A recent experimental study showed that addition of Ti in CaSiO₃-perovskite could 272 273 elevate the phase transition temperature from the tetragonal to the cubic phase (Thomson et al., 2019). Ti-bearing tetragonal CaSiO₃-perovskite may exist in the cold 274 subducting slabs in the Earth's lower mantle (Ono et al., 2004; Thomson et al., 2019). 275 276 Here we modeled the sound velocity of tetragonal and cubic endmember 277 CaSiO₃-perovskite using our obtained EoS and literature results (Fig. 8) (Gréaux et al., 2019; Thomson et al., 2019). The modeling was performed at 580 K between 24 and 278 279 136 GPa following the phase boundary constrained by Kurashina et al. (2004). For the cubic phase, Thomson et al. (2019) and Gréaux et al. (2019) reported different bulk 280 and shear modulus as well as their pressure and temperature derivatives. Both of their 281 results were used to calculate the sound velocities of the cubic phase. Due to lack of 282 experimental constraints, some thermal parameters of tetragonal CaSiO₃, such as 283 284 dK/dT and dG/dT, were assumed to be the same as the cubic phase (Thomson et al., 2019; Gréaux et al., 2019). Uncertainties of the calculated sound velocities because of 285 using different literature elastic parameters were shown in shading in Fig. 8 (Gréaux 286 et al., 2019; Thomson et al., 2019). There is no density change across the phase 287 transition. The compressional (V_P) and shear-wave velocities (V_S) of tetragonal 288 CaSiO₃-perovskite are 3.1-3.7(1)% and 3.4-3.9(1)% lower than the cubic phase at the 289 290 top of the lower mantle, respectively (Fig. 8). Yet the difference in V_P and V_S between

the cubic and tetragonal phase increases to 4.5(1)% and 7.8-8.7(2)% at 100 GPa, respectively. Due to lack of experimental constraints on the influence of Ti on the phase boundary and thermal elastic properties of the tetragonal and cubic phases, our modeling can only provide a preliminary estimation on the influence of the phase transition of CaSiO₃ on the velocity profiles of the lower mantle. With the presence of Ti, the tetragonal to cubic phase transition may be seismically detectable in the mid-lower mantle.

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

291

292

293

294

295

296

297

In summary, the structure of CaSiO₃ has been studied up to 200 GPa by synchrotron XRD in laser-heated DACs. Quenching to 300 K leads to the transition of CaSiO₃ from the cubic to tetragonal structure. Compared to previous experimental results, here we have observed more distinct splitting of the cubic 200, 211, and 220 peaks after temperature quench between 148 and 199 GPa. More importantly, the observation of a characteristic peak 211 with 2θ around 10.0-10.2° allows us to confirm that CaSiO₃ at high pressures and 300 K is in the I4/mcm structure. We note that the I4/mcm tetragonal phase has a modified c/a ratio (Z=1) greater than 1, which increases from 1.002 at ~20 GPa to 1.012 at ~200 GPa. The obtained K_{0T} of the I4/mcm phase is smaller than that of the cubic CaSiO₃-perovskite. The comparison between tetragonal and cubic CaSiO₃-perovskite at 580 K is useful to estimate the influence of the phase transition on the sound velocity of the lower mantle, indicating the phase transition can cause substantial increase in the sound velocity. Future studies are expected to determine the effect of Ti on the thermoelastic parameters of tetragonal CaSiO₃-perovskite and provide new insights in understanding the composition and structure of the lower mantle.

316	Acknowledgement
317	Z. Mao acknowledges supports from the National Science Foundation of China
318	(41874101), Strategic Priority Research Program of the Chinese Academy of Sciences
319	(XDB18000000), Funds for leading talents of USTC (KY2080000061). J. F. Lin
320	acknowledges support from Geophysics Program of the National Science Foundation
321	(EAR-1916941). Portions of this work were performed at GeoSoilEnviroCARS (The
322	University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National
323	Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation –
324	Earth Sciences (EAR – 1634415) and Department of Energy- GeoSciences
325	(DE-FG02-94ER14466). This research used resources of the Advanced Photon
326	Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated
327	for the DOE Office of Science by Argonne National Laboratory under Contract No.
328	DE-AC02-06CH11357.
329	
330	
331	References
332	Akber-Knutson, S., Bukowinski, M.S.T., and Matas, J. (2002) On the structure and
333	compressibility of CaSiO ₃ perovskite. Geophysical Research Letters, 29(3),
334	doi:10.1029/2001GL013523
335	Anderson, D.L. (1989) Theory of the Earth. Blackwell Scientific Publications,
336	Oxford.
337	Birch, F. (1938) The effect of pressure upon the elastic parameters of isotropic solids,
338	according to Murnaghan's theory of finite strain. Journal of Applied Physics,
339	9(4), 279-288.
340	Brown, J.M., and Shankland, T.J. (1981) Thermodynamic parameters in the Earth as
341	determined from seismic profiles. Geophysical Journal of the Royal
342	Astronomical Society, 66(3), 579-596.
343	Caracas, R., Wentzcovitch, R., Price, G.D., and Brodholt, J. (2005) CaSiO ₃ Perovskite

- at Lower Mantle Pressures. Geophysical Research Letters, 32(6), doi:
- 345 10.1029/2004GL022144.
- Chen, H., Shim, S., Leinenweber, K., Prakapenka, V., Meng, Y., and Prescher, C.
- 347 (2018) Crystal structure of CaSiO₃ perovskite at 28-62 GPa and 300 K under
- Quasi-Hydrostatic stress conditions. American Mineralogist: Journal of Earth
- and Planetary Materials, 103(3), 462-468.
- Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary Reference Earth Model.
- Physics of the Earth and Planetary Interiors, 25(4), 297-356.
- Fei, Y.W., Ricolleau, A., Frank, M., Mibe, K., Shen, G.Y., and Prakapenka, V. (2007)
- Toward an internally consistent pressure scale. Proceedings of the National
- Academy of Sciences of the United States of America, 104(22), 9182-9186.
- 355 Gréaux, S., Irifune, T., Higo, Y., Tange, Y., Arimoto, T., Liu, Z.D., and Yamada, A.
- 356 (2019) Sound velocity of CaSiO₃ perovskite suggests the presence of basaltic
- 357 crust in the Earth's lower mantle. Nature, 565(7738), 218-221.
- Harte, B. (2010) Diamond formation in the deep mantle: the record of mineral
- inclusions and their distribution in relation to mantle dehydration zones.
- 360 Mineralogical Magazine, 74(2), 189-215.
- 361 Hirose, K., and Fei, Y.W. (2002) Subsolidus and melting phase relations of basaltic
- 362 composition in the uppermost lower mantle. Geochimica Et Cosmochimica
- 363 Acta, 66(12), 2099-2108.
- Hirose, K., Takafuji, N., Sata, N., and Ohishi, Y. (2005) Phase transition and density
- of subducted MORB crust in the lower mantle. Earth and Planetary Science
- 366 Letters, 237(1-2), 239-251.
- Jung, D.Y., and Oganov, A.R. (2005) Ab initio study of the high-pressure behavior of
- CaSiO₃ perovskite. Physics and Chemistry of Minerals, 32(2), 146-153.
- 369 Kawai, K., and Tsuchiya, T. (2014) P-V-T equation of state of cubic CaSiO₃
- perovskite from first-principles computation. Journal of Geophysical
- 371 Research-Solid Earth, 119(4), 2801-2809.
- Kesson, S.E., Fitz Gerald, J.D., and Shelley, J.M. (1998) Mineralogy and dynamics of
- a pyrolite lower mantle. Nature, 393(6682), 252-255.
- Kesson, S.E., Fitz Gerald, J.D., and Shelley, J.M.G. (1994) Mineral Chemistry and
- Density Subducted Basaltic Crust at Lower-Mantle Pressures. Nature,
- 376 372(6508), 767-769.
- Kirby, S.H., Stein, S., Okal, E.A., and Rubie, D.C. (1996) Metastable mantle phase

- transformations and deep earthquakes in subducting oceanic lithosphere.
- 379 Reviews of Geophysics, 34(2), 261-306.
- Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y., and Dubrovinsky, L.S. (2007) Phase
- transition in CaSiO₃ perovskite. Earth and Planetary Science Letters, 260(3-4),
- 382 564-569.
- Kudo, Y., Hirose, K., Murakami, M., Asahara, Y., Ozawa, H., Ohishi, Y., and Hirao, N.
- 384 (2012) Sound velocity measurements of CaSiO₃ perovskite to 133 GPa and
- implications for lowermost mantle seismic anomalies. Earth and Planetary
- 386 Science Letters, 349, 1-7.
- Kurashina, T., Hirose, K., Ono, S., Sata, N., and Ohishi, Y. (2004) Phase transition in
- Al-bearing CaSiO₃ perovskite: implications for seismic discontinuities in the
- lower mantle. Physics of the Earth and Planetary Interiors, 145(1-4), 67-74.
- 390 Li, L., Weidner, D.J., Brodholt, J., Alfe, D., Price, G.D., Caracas, R., and
- Wentzcovitch, R. (2006) Phase stability of CaSiO₃ perovskite at high pressure
- and temperature: Insights from ab initio molecular dynamics. Physics of the
- 393 Earth and Planetary Interiors, 155(3-4), 260-268.
- Magyari-Kope, B., Vitos, L., Grimvall, G., Johansson, B., and Kollar, J. (2002)
- Low-temperature crystal structure of CaSiO₃ perovskite: An ab initio total
- energy study. Physical Review B, 65(19), doi:10.1103/PhysRevB.65.193107.
- Mao, H.K., Chen, L.C., Hemley, R.J., Jephcoat, A.P., Wu, Y., and Bassett, W.A. (1989)
- 398 Stability and Equation of State of CaSiO₃-Perovskite to 134 Gpa. Journal of
- Geophysical Research-Solid Earth and Planets, 94(B12), 17889-17894.
- 400 Murakami, M., Hirose, K., Sata, N., and Ohishi, Y. (2005) Post-perovskite phase
- 401 transition and mineral chemistry in the pyrolitic lowermost mantle.
- 402 Geophysical Research Letters, 32(3), doi:10.1029/2004GL021956.
- Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D.G., Pamato, M.G.,
- Alvaro, M., Peruzzo, L., Gurney, J.J., Moore, A.E., and Davidson, J. (2018)
- CaSiO₃ perovskite in diamond indicates the recycling of oceanic crust into the
- 406 lower mantle. Nature, 555(7695), 237-241.
- Noguchi, M., Komabayashi, T., Hirose, K., and Ohishi, Y. (2013) High-temperature
- 408 compression experiments of CaSiO₃ perovskite to lowermost mantle
- 409 conditions and its thermal equation of state. Physics and Chemistry of
- 410 Minerals, 40(1), 81-91.
- Ono, S., Ohishi, Y., and Mibe, K. (2004) Phase transition of Ca-perovskite and

- stability of Al-bearing Mg-perovskite in the lower mantle. American
- 413 Mineralogist, 89(10), 1480-1485.
- Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P.,
- Rivers, M.L., and Sutton, S.R. (2008) Advanced flat top laser heating system
- for high pressure research at GSECARS: application to the melting behavior
- of germanium. High Pressure Research, 28(3), 225-235.
- Ricolleau, A., Fei, Y.W., Cottrell, E., Watson, H., Deng, L.W., Zhang, L., Fiquet, G.,
- Auzende, A.L., Roskosz, M., Morard, G., and Prakapenka, V. (2009) Density
- 420 profile of pyrolite under the lower mantle conditions. Geophysical Research
- 421 Letters, doi:10.1029/2008GL036759.
- Ringwood, A.E. (1975) Composition and petrology of the Earth's mantle. xvi, 618 p. p.
- 423 McGraw-Hill, New York,.
- Shim, S.H., Duffy, T.S., and Shen, G.Y. (2000) The stability and P-V-T equation of
- state of CaSiO₃ perovskite in the Earth's lower mantle. Journal of Geophysical
- 426 Research-Solid Earth, 105(B11), 25955-25968.
- Shim, S.H., Jeanloz, R., and Duffy, T.S. (2002) Tetragonal structure of CaSiO₃
- perovskite above 20 GPa. Geophysical Research Letters, 29(24),
- 429 doi:10.1029/2002GL016148,.
- 430 Singh, A.K. (1993) The Lattice Strains in a Specimen (Cubic System) Compressed
- Nonhydrostatically in an Opposed Anvil Device. Journal of Applied Physics,
- 432 73(9), 4278-4286.
- 433 Stixrude, L., Cohen, R.E., Yu, R.C., and Krakauer, H. (1996) Prediction of phase
- transition in CaSiO₃ perovskite and implications for lower mantle structure.
- 435 American Mineralogist, 81(9-10), 1293-1296.
- Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., and Fumagalli, P. (2007) Phase
- stability and shear softening in CaSiO₃ perovskite at high pressure. Physical
- 438 Review B, 75(2), doi: 10.1103/PhysRevB.75.024108.
- 439 Sun, N.Y., Mao, Z., Yan, S., Wu, X., Prakapenka, V.B., and Lin, J.F. (2016)
- Confirming a pyrolitic lower mantle using self-consistent pressure scales and
- new constraints on CaSiO₃ perovskite. Journal of Geophysical Research-Solid
- Earth, 121(7), 4876-4894.
- Thomson, A., Crichton, W., Brodholt, J., Wood, J., Siersch, N., Muir, J., Dobson, D.P.,
- and Hunt, S. (2019) Seismic velocities of CaSiO₃ perovskite can explain
- LLSVPs in Earth's lower mantle. Nature, 572, 643-647.

446	Wang, Y.B., Weidner, D.J., and Guyot, F. (1996) Thermal equation of state of CaSiO ₃
447	perovskite. Journal of Geophysical Research-Solid Earth, 101(B1), 661-672.
448	Wood, B.J. (2000) Phase transformations and partitioning relations in peridotite under
449	lower mantle conditions. Earth and Planetary Science Letters, 174(3-4),
450	341-354.
451	Zhang, Y.G., Zhao, D.P., Matsui, M., and Guo, G.J. (2006) Equations of state of
452	CaSiO ₃ Perovskite: a molecular dynamics study. Physics and Chemistry of
453	Minerals, 33(2), 126-137.
454	
455	

Table 1. Atomic position of tetragonal CaSiO₃-perovskite (Z=4) at 163 GPa and 300

457 K

456

Tetragonal I4/mcm			
Cell (Å) (4.471/4.471/6.384)			
Ca	0.5	0	0.25
Si	0	0	0
O	0	0	0.25
O	0.310	0.190	0

458 459

Table 2. Pressure-volume data of tetragonal $CaSiO_3$ -perovskite at high pressures and 300 K

460 461

P (GPa)	a (Å)	c (Å)	$V(Å^3)$
21.5(4)*	4.904(2)	6.947(3)	167.0(2)
24.9(6)*	4.882(3)	6.926(4)	165.1(3)
30.2(5)*	4.875(2)	6.920(3)	164.4(2)
38.4(7)*	4.837(1)	6.868(3)	160.7(1)
43.6(11)*	4.822(3)	6.823(5)	158.7(3)
52.0(13)*	4.776(2)	6.796(3)	155.0(2)
57.0(15)*	4.753(4)	6.747(5)	152.4(4)
59.9(15)*	4.743(2)	6.741(3)	151.7(2)
63.4(16)*	4.741(2)	6.731(3)	151.3(2)
69.9(17)*	4.717(3)	6.701(4)	149.1(3)
84.4(21)*	4.673(1)	6.651(2)	145.2(1)
93.4(24)*	4.643(2)	6.621(3)	142.7(2)
98.1(26)*	4.621(4)	6.585(5)	140.6(4)
124.0(30)*	4.565(3)	6.503(5)	135.5(3)
148.3(36)	4.502(3)	6.433(5)	130.4(3)
148.4(36)	4.500(3)	6.430(5)	130.2(3)
159.2(38)	4.481(2)	6.400(4)	128.5(2)
163.3(40)	4.471(2)	6.384(3)	127.6(2)
171.4(41)	4.460(2)	6.374(3)	126.8(2)
172.6(41)	4.461(1)	6.378(2)	126.9(1)
179.2(43)	4.449(3)	6.356(2)	125.8(2)
193.1(48)	4.428(3)	6.333(5)	124.2(3)
199.2(47)	4.415(2)	6.315(4)	123.1(2)

^{*}Sun et al. (2016)

465

Table 3. EoS of the tetragonal CaSiO₃-perovskite under self-consistent pressure scales

	This study	Shim 2002	Ono 2004	Chen 2018	Thomson 2019	Jung 2005*	Stixrude 2007*	Caracas 2005*
K _{0T} (GPa)	242 (5)	259 (5)	235 (9)	228(6)	224(4)	219.04	252	249
<i>K</i> '	4#	4#	4#	4#	4#	4.08	4.1	4.09
V_0 (Å ³)	45.1(3)	$45.58^{\rm f}$	45.9 (4)	46.2(1)	46.10(6)	46.89	44.00	44.537

[#]fixed

467 468

469

471

472

473

474

475

476

466

Figure caption

Figure 1. (a) Experimental pressure-temperature conditions of CaSiO₃-perovskite.

Blue: cubic CaSiO₃-perovskite; red: tetragonal CaSiO₃-perovskite; solid circles: this

study; open circles: Sun et al. (2016); diamonds: Noguchi et al. (2013); squares:

Kurashina et al. (2004); grey lines: typical lower mantle geotherm and a

representative cold slab geotherm, respectively (Brown and Shankland, 1981; Kirby et

al., 1996); dashed black lines: phase boundary between the cubic and tetragonal

phases based on previous experimental results (Kurashina et al., 2004; Noguchi et al.,

2013; Sun et al., 2016); (b) potential deviatoric stress (absolute value) under 300 K.

478

479

480

481

482

483

484

485

486

487

488

477

Figure 2. XRD and Rietveld refinement results of CaSiO₃-perovskite at high pressures.

(a) Representative XRD patterns of CaSiO₃-perovskite at high pressures and

temperatures. Red line: cubic CaSiO₃-perovskite at 170 GPa and 2500 K; blue line:

tetragonal CaSiO₃-perovskite at 163 GPa and 300 K; (b) Cake patterns of tetragonal

CaSiO₃-perovskite at 163 GPa and 300 K, respectively. The characteristic 211 peak at

 2θ around 10° in the I4/mcm tetragonal phase is shown as a continuous ring; (c) Full

profile Rietveld refinement results of tetragonal and cubic CaSiO₃-perovskite. Cross:

experimental XRD pattern; black line: refined results; red: tetragonal phase; blue:

cubic phase; vertical ticks: peaks of tetragonal CaSiO₃-perovskite, Pt and NaCl,

respectively. X-ray wavelength is 0.3344 Å.

^{*}theoretical results, under 0 K

489	
490	Figure 3. Rietveld refinement analysis of tetragonal CaSiO ₃ -perovskite. Crosses:
491	experimental XRD pattern; red line: refinement results of I4/mcm with a residue of
492	5.4%; blue line: refinement results of $P4/mbm$ with a residue of 11.2%; purple line:
493	refinement results of P4/mmm with a residue of 10.0%; black lines: refinement
494	residue; vertical ticks: peak positions of Pt, NaCl, and tetragonal CaSiO ₃ , respectively.
495	
496	Figure 4. Pressure-volume relationship of tetragonal CaSiO ₃ -perovskite at high
497	pressures and 300 K. Red circles and line: the I4/mcm phase in this study; green: the
498	P4/mmm phase (Shim et al., 2002); blue: the P4/mmm phase (Ono et al., 2004);
499	orange: the I4/mcm phase in Chen et al. (2018); grey: this study assuming a P4/mmm
500	tetragonal phase; black: calculated volume of the cubic CaSiO ₃ -perovskite at 300 K
501	(Sun et al., 2016)
502	
503	Figure 5. Modeled peak widths of the tetragonal phase at high pressures. Orange:
504	tetragonal peak 004+220 from splitting of the cubic 200 peak after quenched; red:
505	tetragonal peak 204+312 from splitting of the cubic 211 peak after quenched; blue:
506	tetragonal peak 224+400 from splitting of the cubic 220 peak after quenched.
507	
508	Figure 6. Bond length of CaSiO ₃ -perovskite. Grey cicles: length of the Si-O1 bond of
509	the tetragonal phase; grey diamonds: length of the Si-O2 bond of the tetragonal phase;
510	brown, orange, purple, blue, and red circles: Si-O bond length of the cubic phase at
511	1400 K, 1600 K, 1800 K, 2100 K, and 2500 K, respectively.
512	

514	
515	Figure 7. Lattice parameters of tetragonal CaSiO ₃ -perovskite. (a) Variation of a and c
516	axis of tetragonal CaSiO ₃ -perovskite with pressure at 300 K. Blue: c-axis; red: a-axis;
517	(b) The modified <i>c/a</i> ratio of tetragonal CaSiO ₃ -perovskite at high pressures and 300
518	K. Red: this study; green: Shim et al. (2002); blue: Ono et al. (2004); orange: Chen et
519	al. (2018); purple: Stixrude et al. (2007).
520	
521	Figure 8. Modeled compressional (V_P) and shear-wave velocities (V_S) of
522	CaSiO ₃ -perovskite at high pressures and 580 K. Solid lines: tetragonal phase; dashed
523	lines: cubic phase; red: V_P ; blue: V_S ; bold dashed and solid lines: calculated using the
524	elastic parameters from this work and Gréaux et al. (2019); thin dashed and solid lines
525	calculated using the elastic parameters from this work and Thomson et al.
526	(2019). Density was assumed to be the same for both phases due to the second-order
527	phase transition. Vertical ticks represent the calculation errors using standard error
528	propagation from the used parameters.
529	
530	
531	
532	