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Abstract

The purpose of this paper is to present a general triangular array Central Limit
Theorem for U-statistics, where the kernel hg(x1,...,zx) and its dimension k& may
increase with the sample size. Some motivating examples are presented which require
such a general result. The examples include a class of Hodges-LLehmann estimators,
subsampling estimators, and combining p-values through data splitting. A result for the
so-called M-statistic is also presented, which is defined as the median of some kernel
computed over all subsets of the data of a given size. The conditions in the theorems

are verified in the motivating examples as well.
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1 Introduction

Suppose X,..., X, are i.i.d. according to a distribution P. Consider the U-statistic

Un(X1, . X)) = <:) 3 (X X5, (1.1)

where hy, is a symmetric kernel of order k = k,, (which may increase with n), and the sum
is taken over all (Z) combinations of k observations taken from the sample. We specifically
allow the order k = k,, of the kernel hy, to depend on n, as does the kernel itself. For cleaner
notation, we may just write k and hy rather than k,, and hy, , but we will allow £ to be fixed
as well as £ — oo as n — oo.

As is well-known, the asymptotic theory of U-statistics was developed in a landmark paper
by Hoeffding (1948). The classical result assumes the kernel is fixed and n — oo, and P is
fixed as well. The present paper provides general conditions to show asymptotic normality in
a general triangular array setup. The reason for such generality is to allow the kernel and its
order to vary with the sample size, as necessitated by certain applications. A uniform in P
result is given in Romano and Shaikh (2012), where the kernel is fixed.

When £ is allowed to vary with n, so that k£ = k,, — oo as n — oo, sufficient conditions for
asymptotic normality of such U-statistics appear in Mentch and Hooker (2016), who consider
inference for random forests. Unfortunately, their conditions never hold because they assume
conditions that cannot hold simultaneously (as will be explained later). We provide rigorous
sufficient conditions which are shown to hold in a variety of examples.

In addition, as an alternative to U, in (1.1), we will also consider the median statistic M,
defined by

M,(Xy,...,X,) = median {hy (X, ..., X))} , (1.2)

where the median is taken over all (’;) combinations of k£ observations taken from the sample.
(In this case, we may also allow the kernel to be asymmetric.)

The paper is organized as follows. Section 2 presents four motivating examples for the
results obtained. The main theorems are given in Section 3. The examples are revisited in
Section 4, where the conditions are verified. A conclusion is provided in Section 5. Proofs

are deferred to Section 6.

2 Some Motivating Examples

In this section, we mention some examples that will help fix ideas and to provide motivation

for the need of a general result.



Example 2.1. [Maximin Tests| Assume X7, ..., X, are independent (but not necessarily
i.i.d.) normal, with X; ~ N(u;,1). The problem is to test the null hypothesis Hy that all
w; = 0 against the (multi-directional) alternative that not all u; are zero. Of course, for
this problem there is no UMP (uniformly most powerful) level « test, but there is a UMPI
(uniformly most powerful invariant) level « test, which rejects for large values of 7 | X7
However, if it is believed that the indices ¢ for which p; # 0 is sparse, one can outperform
the UMPT test; see Arias-Castro et al. (2011). Indeed, one may wish to direct power against
alternatives for which there are not too many nonzero y;. One can formulate the problem
as follows. Fix ¢ = ¢, > 0 and k = k,, and determine the maximin level « test against
alternatives where at least k of the yu; satisfy p; > €. (Note we can similarly treat the case
where these alternatives may satisfy |u;| > €, but for expository reasons, we focus on the
case of positive alternatives.) We can apply standard arguments to determine the maximin
test, as in Lehmann and Romano (2005). Intuitively, the least favorable distribution places
equal mass at the (Z) points in the alternative parameter space, where each point (pq, .. ., t,)
satisfies exactly k of the components are € and the rest are zero. It is easily checked that the

maximin test rejects for large values of the U-statistic given in (1.1), where

hi(X1, .. Xp) = exp(e Y X;) . (2.1)

i=1
It is desired to study the asymptotic behavior of this test statistic (both for setting critical
values and approximating power) in situations were possibly & — oo and or € — 0 (as well as

letting the data distribution vary at time n). m

Example 2.2. [Class of Hodges-Lehmann Estimators] Suppose X7, ..., X, areii.d. according
to a symmetric distribution on the real line. Based on robustness considerations, the classical
Hodges-Lehmann estimator is defined as the median of all pairwise averages of observations.
Evidently, the Hodges-Lehmann estimator is an M-statistic (1.2) (with & = 2). More generally,
consider the statistic (1.2) with

k
hi(Xo, . X)) = k72X
=1

Let 0, = k='/2M,,. (Note, we could have equivalently defined the kernel with &~1/2 replaced
by k=1 so that the estimator is just M,,, but it is convenient for purposes of applying our results
to define the kernel as above so that it is of order one in probability.) As k varies, one might
consider this class of estimators as k ranges from k£ = 1 (the usual sample median) to k =n
(the sample mean), and the choice would balance efficiency and robustness considerations.
The purpose here is to provide a limit theorem for general k, while allowing the possibility

that k£ can increase with n. m



Example 2.3. [Subsampling Distribution] Suppose X7, ..., X, are i.i.d. P, where interest
focuses on a real-valued parameter &(P). Assume &y = én(Xl, ..., X,) is an estimator of
§(P). Fix 1 < k < nand let Sy,...,Sy be the N = (7) subsets of size k taken without
replacement from the data, ordered in any fashion. For a given hypothesized value of &,
say &, let J,(t, P) be the true c.d.f. of 7,(§, — &), evaluated at some generic ¢. Typically,
T, = v/n. Then, a subsampling estimator of J, (¢, P) is given by

Un(t) = %Z[ {Tk(ék(sz) — &) < t} (2.2)

(The usual subsampling estimator has &, in (2.2) replaced by én, though both are relevant
depending on the ultimate goal; see Chapter 2 in Politis et al. (1999).) Evidently, for each
t, Upn(t) is a U-statistic of degree k. In order to consistently estimate the true distribution
Jn(t, P), it is generally required that & — oo. Rather than consistency, we would like to
determine the limiting distribution of U, (t) — J,(t, P), appropriately normalized. m

Example 2.4. [Combining p-values Using Data Splitting] Data splitting, a technique which
involves partitioning a data set into disjoint “splits” or subsamples which can then be used
for various statistical tasks, has widespread application in the statistical literature. Typically,
one portion of the data is used for some form of selection (such as model fitting, dimension
reduction, or choice of tuning parameters), and then a second, independent portion of the
data is used for some further purpose such as estimation and model fitting. In addition, data
splitting can be used in prediction to assess the performance of models (where a portion
of the data has been used to select and/or fit a model and the remainder is used to assess
the performance of the selected model) or in inference to perform tests of significance after
hypotheses or test statistics have been selected. Data splitting has become a useful remedy
for data-snooping (giving valid inference after selection of a hypothesis), estimating nuisance
parameters, and avoiding over-fitting in prediction problems. The main complaint about
data splitting using one split of the data is that the choice of split is arbitrary (and random),
and the resulting inference violates the sufficiency principle, which says that inference in i.i.d.
problems should be invariant with respect to ordering. However, recent methods propose
combining p-values over multiple splits of the data; see Ruschendorf (1982), Meinshausen
et al. (2009), Vovk and Wang (2012) and DiCiccio and Romano (2019). For example, if p,, ;
is a p-value computed over some subsample 5; of the data, then one method of combining
these p-values is to take their average p, (which is a U-statistic) or perhaps their median.
Conservative methods that control the probability of a Type 1 error at level a would compare
the average p-value or median p-value with «/2. These methods are quite conservative in
nature in that the resulting rejection probability is way below the desired nominal level.

The purpose here is to exploit the U-statistic nature of the average of p-values in order to
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demonstrate an improved method over the conservative methods. m

3 Main Results

In this section, the main asymptotic normality theorem is developed for U-statistics with

growing kernel order, as well as the corresponding M-statistic.

3.1 A General U-statistic CLT Under Growing Kernel Order

Suppose Xi,...,X, are ii.d. P. Consider the U-statistic given in (1.1). where hy, is assumed
to be symmetric kernel of order k£ = k,,, and the sum is taken over all (Z) combinations of k
observations taken from the sample. We specifically allow the order k = k,, of the kernel Ay,
to depend on n, as does the kernel itself. For cleaner notation, we may just write k& and hy,
rather than k, and hy, , but we will allow % to be fixed as well as k — oo as n — oco. (Note
that, if hy were not symmetric in its arguments, it can always be symmetrized by further
averaging. So, for the purposes of the CLT, we will assume hy is symmetric.)
Define 0, = E(hi(Xy, ..., X%)), and

Cir = Var(hyx(X)) ,

where

hl,k(x) = E(hk(x7X27 7Xk>> - 9k .

All expecations and variance are computed under the probability distribution P generating
the data, noting that P = P, may also vary with n.
More generally, define for 1 < ¢ <k,

her(Xi, ..o Xe) = Elhie( Xy, .o, Xe) | Xa, oo, X — O

and
Cc,k - Va’r(h'c,k(Xla v 7XC)) ) (31)

so that (j is the variance of the kernel based on a sample of size k equal to the order of the
kernel.

Sufficient conditions for asymptotic normality of such U-statistics are given in Mentch
and Hooker (2016), but their result is not valid because their conditions can never hold
simultaneously. In particular, they assume (;, — 0, which as we will see fails for our
applications. Moreover, they assume the second moment of the kernel is uniformly bounded,
so that (., < C' < oo. But, by Theorem 1 in Hoeffding (1948), it follows that (i, < (er/k <



C/k — 0. Therefore, the conditions (;, < C and (3 - 0 are incompatible, and thus the
conditions in their theorem can never apply.

In some of our applications, the kernel will be uniformly bounded (such as when it is some
p-value), in which case the (. are also uniformly bounded as ¢, k, and n vary. In such case,
(1 is of order 1/k and tends to zero. However, the conditions in our theorem nevertheless

can be verified. As we will see in Corollary 3.1, the important condition is that £y, - 0.

Remark 3.1 (Simple Consistency). Under weak conditions, U, is consistent in the sense
U, — 6, 2 0. It suffices to show Var(U,) — 0. But, as is well-known, Var(U,) < k(. x/n. So
if the (i, are uniformly bounded (which follows if the kernels are uniformly bounded), and

k/n — 0, then consistency follows.

The theorem below applies in a triangular array setup, where n observations are i.i.d. P,.

Then, quanlities like Cc,k n (31) are computed under f)n Let
n n £ 1,k i) - .

Theorem 3.1. Assume the order k = k,, of the kernel hy, satisfies k*/n — 0. Further assume
that (. /kCix is bounded.

(i) Then,
%ﬁ“ S (3.3)
(7). Also, )
U =) 2 Un p, (3.4)
and so

k2
Un — Hk = OP <_Cl,k)
n

(i11) If, in addition, for all 6 > 0,

1
lim _/ hi(z)dPy(z) =0 (3.5)
%0 Qi J|ny p(2)|>6y/nCin

then
Vi (Un( X1, o, Xn) — 01) d

e 4 N(0, 1). (3.6)

This result also holds for the “incomplete” U-statistic which is the average of the kernels

computed over B,, randomly and uniformly chosen subsamples of the data provided n/B,, — 0.



Corollary 3.1. Under the above notation, if k*/n — 0, the kernel hy is uniformly bounded
(both as k and the data vary), and k(i - 0, then asymptotic normality (3.6) holds.

Remark 3.2. In some applications, the condition that k(i - 0 holds because k(i is of
strict order one. Of course, if k is fixed as in the classical case, all that is required for

asymptotic normality is (1 > 0.

3.2 Asymptotic Normality of the M-statistic

Suppose instead of using U,, as an estimator, where the kernel is averaged over all subsamples
of size k of the data, we are interested in using the median of the values of the kernel computed
on all subsamples of size k, i.e. M, defined in (1.2). which we refer to as an M-statistic. In
this section, we do not assume hy, is symmetric, and so the median is taken over all n!/(n —k)!
ordered indices i1, ..., 7; taken without replacement from 1,...,n. We would like to prove a
triangular array CLT for M, when k = k,, varies with n.

Suppose that hy has a c.d.f. F, and that 6, satisfies Fk(ék) =1/2.

Define

P i) = % S b ) > B+ 1) (3.7)

where the average is taken over all permutations of 1, ..., k. Also define
Cu(t) = Var[dx(X; 1)]

with
¢1,k<xat) = E[hk(an% 7Xk’t)] :

We will assume that the sequence {Fy} is asymptotically (as k = k,, — 00) equidifferen-

tiable relative to the sequence ék; that is, for any €, — 0,
Fk(ék + Ek) — Fk(ék) = EkF,(ék) —+ O(Gk) . (38)

We will apply (3.8) with the particular choice €, = 0y defined by

5 = G (0)R2 '
n

Note that fl,k is bounded in k, so that if we assume that k?/n — 0, then §; — 0. Then,
E (ilk (X1, ey Xis 5k)> = 1/2 = F(6k)01 + 0(6) - (3.9)

Finally, assume that £} (6;) — f(6), which is just some positive constant. (Note, f and 0
separately need not have meaning, but typically F} tends to some f and 0, — 5)



Theorem 3.2. Under the above setup, also assume that, k*/n — 0, k(1 (0) = 0 and for
any fized t

Cue(0at)/Crin(0) — 1 (3.10)

as n — 0o. Then,
n

o (Mn . ék) 4 N0, 1/f2(d)) .

4 Examples, revisited

Example 4.1. [Example 2.1, revisited.] Consider U, given by (1.1) with hy given by (2.1).
We verify the conditions for asymptotic normality under H,, though power can be studied

similarly. Letting Z denote a standard normal variable,

EU,) =E [exp(e\/EZ)} — exp (%k) .

Also,

Elhy (X1, Xo, ..., X,)|X1] = exp(eXy)E [e(Xy + - - + X)] = exp(eXy) exp [62(]&‘2— 1)]

Then ¢ , the variance of this last quantity, is given by
Ge = exple’(k — 1)]Varlexp(eX;)] = exple’(k — 1)] [Eexp(2eX;) — (E exp(eXl))ﬂ
= exple’(k — 1)][exp(2€”) — exp(e”)] = exp(e*k)[exp(e”) — 1] .
Similarly,
2
Ce = Var{exple(Xi+--- Xi)|]} = E [exp(Qe\/EZ)] - {E [exp(E\/EZ)} }
= exp(2e’k) — exp(e?k) = exp(e?k)[exp(e?k) — 1] .
We need to verify that the ratio (jx/(kCi k) is bounded. But,

Gk exp(e’k) — 1
Koy Flop(@) —1]

(4.1)

Of course, if k£ = 1, then the ratio (4.1) is always one, so the condition holds. Certainly, if both
k > 1 and € > 0 are fixed, then the ratio (4.1) is fixed. Also, if k is fixed but € = ¢, — 0, then
by L’Hospital’s rule, the ratio tends to 1 and so the condition holds. If ¥ — oo but €2k — 0
(so that also €2 — 0), then by Taylor approximation to the numerator and denominator, it is

easy to see that the condition holds as again the ratio tends to one. Actually, one just needs
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€%k remains bounded. Indeed, the numerator in (4.1) is then bounded, and the denominator
is easily seen to be bounded below by ke?. If ke — 0, then we already treated that case,
but if it is bounded away from 0 and oo, then the ratio (4.1) is bounded. Hence, it is only
required that 2k is bounded from above (unless & = 1, in which case the condition holds
regardless). Conversely, it is easy to check that if £ > 1 and ke* — oo, then the ratio (4.1) is
not bounded. Note, that if we are trying to detecting an alternative where k of the yu; are
equal to € and the rest are zero, then such alternatives are contiguous to the null. Finally,
asymptotic normality holds as long as € stays bounded from above (and so it can tend to

Z€ero).

Example 4.2. [Example 2.2, revisited.] Consider the generalized Hodges-Lehmann estimators
On = k~V/2M,, where M, is defined by (1.2) with

k
h(Xy, o X)) =k )X,
=1

For purposes of illustrating the Theorem, assume X, ..., X,, are i.i.d. normally distributed

with mean 0 and variance 1. So, assume k > 1. We have 6, = 0 and

ﬁk(xl,,xk,t)zl(u >t) .

Vk

Note (3.9) holds with f(f) = ¢(0) = 1/v/27, where ¢(-) is the standard normal density. Then,

&17k<x,t)zp{x+xg+...xk>t}:1_®<t kk R )

vk -1 k—1

(et =)

C1(0) = Var {@ ( kX_ 1)} =17,

where X ~ N(0,1). Note that, by Taylor approximation, for large k,

fl,k(t) =Var

and

X 1
2V 0)| = —— .
In fact,
1
. 2 _ -
fim ki = 5

Note that, since ¢ x(0) = O(1/k), 6 = O(y/k/n). Similarly by Taylor approximation,

k X
)

9

517k(6kt) = V(IT




= Var [cb (\/%ﬂ +O(82/k)

If k is fixed, 67/k — 0 and (3.10) holds easily. If k — oo, then k(4 (dxt) — 1/(27), since
kO(62/k) = o(1). Therefore, the condition (3.10) holds. Hence,

[ n d
%Mn — N(O, 27T)

L~ N(0,27) .
kr;

or equivalently

Therefore, when k is fixed,
Vb~ N(0, 27k72) . (4.2)

When k& — oo and k?/n — 0, since k77 — 1/(27), we have
Vb —5 N(0,1) .
In this case, énk is asymptotically efficient.

Example 4.3. [Example 2.3, revisited.] Consider the subsampling estimator U, (-) defined
in (2.2). Fix ¢, and note U,, = U,(t) has expectation 0, = Ji(t, P), where Ji(t, P) is the
true sampling distribution of Tk(fk — &) based on a sample of size k. Typical subsampling
arguments, as in Chapter 2 of Politis et al. (1999), show U, (t) — J,(t, P) -2+ 0. A more
detailed result would be to find the order of error in the difference, or even its limiting

distribution. To this end, we can simply write

The bias term [J,,(t, P) — Jx(t, P)] is nonrandom and can be analyzed separately (such as
by Edgeworth expansions). The U-statistic theory applies to the first term [U,(t) — 0],
whose analysis we now illustrate via Corollary 3.1. We specialize as follows. Assume
the X; are i.i.d. N(& 1) and én =n'>, X, Take {§ = 0 and 7, = /n. The kernel,
hi(z1, ... o) = T{k™1/? Zle z; <t} is clearly bounded. Then,

hig(x) = PLeTV2 (X0 + -+ X)) <X =2} — ®(t)

k T
() w0

(et )]

10

Then,

G x=Var




As k — oo, by Taylor approximation,

} +o(l/k) = ¢k(t) +o(1/k) .

G =Var [qb(t)\/%

Note the condition k(; ; — 0 easily holds as k(; , — ¢2(t) > 0. Therefore, we conclude that
if k2/n — 0 and k — oo, then

(U (t) — &(t)] -5 N(0,¢%(2)) -

>3

Example 4.4. [Example 2.4, revisited.] Consider the average p-value, p,, computed by
averaging p-values computed on subsamples of size k of the data. We show how to use the
basic results to derive its limiting distribution in a relatively simple example. We further
derive the limiting distribution of p,, under contiguous alternatives and compute the limiting
local power function. Though the methodology is offered in a simplified setting, it shows
the potential for such an approach more broadly. Specifically, we consider the context of
testing for a single mean. Obviously, this is a toy example as these methods are not needed
here. But this simple model admits simple expressions of asymptotic power, which facilitates
comparisons of methods. Moreover, it specifically shows, by comparison, that conservative
methods are way too conservative and result in tests with very low power.

Let Xy,..., X, beii.d. real-valued with unknown mean . The problem is to test the null
hypothesis Hy that the mean is 0 versus greater than 0. For the purposes here of studying
the power of tests combining splits of the data, further assume the underlying distribution is
N(u,1).

Let Xn,k,i be the average of the ith subsample of size k,. Also, let p,, 1; denote the p-value
based on this subsample; that is, p, 4 = 1 — (ID(\/EXTLM) The limiting power of the UMP

level v test against contiguous alternatives h//n is
1— (I)(Zlf()é — h)

when using the full data, and
1 —@(21-0 — V7h) (4.3)

when using a single subsample (or split) of size k satisfying k/n = 7. Assume k/n — 7 € (0, 1),
the fraction in the sample used for testing. Assume the number of splits or subsamples
N = (Z), so all possible splits are used. For r € (0,1). Consider the conservative procedure
(or family of procedures) which rejects Hy if the proportion of p-values (computed over all
splits) that are < ar is > r. (So, in the case r = 1/2, the procedure requires that at least
half of the p-values are < a/2; equivalently, twice the median p-value must be < «.). As

show in DiCiccio and Romano (2019), this procedure is level a. This is the exact or finite
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sample version of an asymptotic approach first suggested in Meinshausen et al. (2009). They
did not present any analytical expressions for power. In DiCiccio and Romano (2019), the
limiting power of this procedure for testing of Hy : 4 = 0 against contiguous alternatives

h/\/n was obtained and is given by

1-® —z1.V1—=T)=h| . (4.4)

1
F(Zl—ra

Note that (4.4) shows that, even asymptotically, the approach is conservative, i.e. when
h = 0, the limiting rejection probability is below «. It further implies that the limiting
power for small positive h can be less than « and loss of power results. By comparison, the
limiting power against h/+/n of a single split sample test by taking one sample of size k is
given by (4.3). Even with 7 < 1, the test based on a single subsample of size k has better
limiting power for small h than the conservative tests that combine p-values computed on
many subsamples of size k. On the other hand, for large enough h, (4.4) will be larger than
(4.3). In this case, the many split sample test is an improvement over the single sample test,
even though it conservatively controls the Type 1 error. But, the power is only larger for
values of the local parameter where the power is already near one.

By deriving the limiting distribution of the average (or median) p-value, we can construct an
asymptotically level o with greatly improved power. Indeed, we will see that the distribution
of p, is concentrated near 1/2 under Hy and so an appropriate critical value (sequence) will
be near 1/2 as well, in contrast to the conservative procedure which uses a critical value of
a/2 (based on either the mean or median p-value). Furthermore and perhaps surprisingly,
tests exploiting the U-statistic structure achieve the optimal limiting local power function of
the UMP level a test. The challenge is to derive the appropriate limiting distribution, so
that a better or less conservative critical value may be used.

Define the average p-value taken over all subsamples of size k to be

N N
1 X 1 _
Up(X1, ..., X)) = pn = v Z§ljpn,k,i =5 § 1= d(VEXuri)]

i=1
with N = (}). Evidently, p, is a U-statistic of the form (1.1).

Theorem 4.1. Let X, ..., X, be i.i.d according to a normal distribution with mean p and
variance one.

(i) If k is fivzed and p =0, then

F(n = ) % N0,k (4.5

Gy = Var [cp (\/%ﬂ (4.6)
12
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and X ~ N(0,1) and ®(-) is the standard normal c.d.f.
(i1) If k — oo and k/v/n — 0, then k¢ — 1/(47). Moreover, under Hy : p =0,

(iit). Consider the one-sided test which rejects Hy if \/n(Pn — 3) < zakr/Cip. Its limiting

power against contiguous alternatives h//n is
P(N(h, 1) > Zl—a) =1- cb(Zl_a — h) s
which is the same as the UMP level o test. The same is true if k+/Cyy is replaced by 1/47 in

the construction of the critical value of the test.

Remark 4.1. If k is fized, the average of the p-values computed over all splits of the data
remains asymptotically normal; however, the overall test is less powerful asymptotically than
the UMP test against local alternatives. A justification of this is implicit in the proof of
Theorem /. 1.

Despite testing on small portions of the data, using the average p-value has the same
limiting local power as the UMP test. Using the asymptotic normality of the p-value, the test
rejects for an average p-value below 1/2+ z, \/W . By contrast, the conservative method
rejects when the average or median p-value is below a/2, which can be quite substantially
lower than this threshold.

An asymptotically level « test can also be performed based on the median of the p-values,
by viewing the median p-value p,, as a median statistic M,, of the form (1.2). The power of

this method is as follows.

Theorem 4.2. Suppose that X4, ..., X,, are i.i.d. according to a normal distribution with
mean j and variance one. Suppose k — oo in such a way that k/\/n — 0. Then, under a

sequence of local alternatives h/+/n,

Vo = 1/2) % N (1)

where p,, is the median p-value computed over all splits. Consider the test which rejects Hy if
P < 1/2+ za\/k/_n. Then, the limiting power of the one sided test of Hy : p = 0 against
h/\/n is

1—®(z1_0—h) .

Note that the asymptotically level «v test rejects if the median is less than 1/2 + z,+\/k/n,
which can be substantially larger than «/2. For example, if & = .1, n = 100, and k = 10,
1/2 4 zo\/k/n = .0947 whereas /2 = .05. The asymptotic local power of this test based on

the median p-value using an appropriate (not conservative) critical value achieves that of the
optimal UMP test.
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5 Conclusion and Further Questions

In this paper, we considered a U-statistic sequence where the kernel size is growing with the
sample size. We developed conditions under which asymptotic normality results. At the
same time, we also considered the corresponding M-statistic, defined as the median of the
kernel computed over subsamples of the data. Other quantiles can be considered by similar
arguments. By way of four examples, we have demonstrated the utility of such results, and
verified the conditions. The problem was largely motivated by the problem of combining
p-values obtained by data splitting, where previous conditions from Mentch and Hooker
(2016) in the context of inference for random forests are too weak and do not apply. The toy
example suggests the statistical approach may be quite promising. The results in this paper

will allow further development of this area, where only conservative procedures are in use.

6 Proofs

PROOF OF THEOREM 3.1. To prove (i), follow for example the argument in van der Vaart
(1998), so that it suffices to show Var(U,)/Var(U,) — 1, where U, is defined in (3.2). Indeed,
Theorem 11.2 of van der Vaart (1998) applies not only for fixed k£ but when k = k,, — co. As
is well-known (and argued in the proof of Theorem 12.3 of van der Vaart (1998)),

Var(U,) = ﬁj () () (e (6.1)

where
qu = COV [hk(Xl, e 7X67Xc+17 e ,Xk), hk(Xl, P ,XC,Xk+1, . ,XQk_C)] s (62)

the covariance between the kernel based on two data sets with exactly ¢ variables in common.
By conditioning on X7, ..., X, it is readily seen that (3.1) and (6.2) agree. First note that
the ¢ = 1 term in (6.1) divided by Var(U,) = k2C, x/n tends to one, i.e.

k (n—k
AL LS T o 1
B m—Dim—2k+1)!

The last limit uses k?/n — 0 and can be seen by applying Stirling’s formula, taking logs and
using a Taylor’s expansion. What remains is to show that the sum from ¢ =2 to ¢ = k in
(6.1) divided by k?Cy x/n tends to 0. But,

k 2 (—k) (n—k)!

S s (@71(;2) (78 e - Yo [(ki)!} A gkl ok

k2 — k2
Zgl,k FCI,TL
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Zk—Q k_z'c( kl_,_l)cCck k 1
c=2 c! (n— ) c—1
< %QCl,k < ; aﬁn Cee/Cik s (6.3)
where
/{32
n = n—k+1"

Using the inequality (., < cCpx/k (see Hoeffding (1948)) gives that (6.3) is bounded above
by

C k 1 C k—1 C p Ek
Kk 1 K,k ; kk  €n — €

g e < g e = . ) 6.4
kGk (c=D'" = kG = "okGr 1—e€, (6.4)

The second factor in the last expression for (6.4) tends to zero since €, — 0. Thus, as long as
Cex/kC1k stays bounded, the result follows.

To prove (ii), note that the expression (3.4) has mean 0 and variance given by one minus
the left hand side of (3.3). Apply Chebychev. The rest of the proof is then trivial. m
PROOF OF COROLLARY 3.1. Since the hj are uniformly bounded, so are the (. Hence,
the condition in Theorem 3.1 ¢ 5/kC x is bounded, since k(; ; - 0. Moreover, the Lindeberg
condition ( 3.5) necessarily holds because n¢y , = (n/k) - k(;, — 00, so that the region of

integration in the integral is empty for large n. =

PrROOF OF THEOREM 3.2: For any fixed ¢,

n ~ ~
-1

Hence, this last expression has the same limit (if any) as

P{ m[%(ﬂ — E(Un(1))] < fFé(ék)} : (6.5)

where U, = U,(t) is a U-statistic with symmetric kernel hy(-;t) defined by

U, (t) = <Z) B S by, Xoys Git)

But, by Corollary 3.1,

n

U0~ B0 % N(0,1) .
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Using the assumption CNLk((Skt)/fk(O) — 1 and Slutsky’s theorem gives that the limiting value
of (6.5) is — @ (f(é)t). "

PrROOF OF THEOREM 4.1. We first apply Theorem 3.1 in the case where the order of the
kernel k is fixed. Define the kernel

he( X1, X)) =1 - o(VEX,) ,

which is the p-value of a test of Hy computed on a subsample of size k and X, = Zle X;/k.

For this choice of kernel,

xz

\/E—l—Y),

hp(z)=1—E (@(\/EXk)|X1 - :1:) —1— Eo(

where Y ~ N(0, (k — 1)/k). So, we can simplify
L
Vk

where Z ~ N(0,1) and Z is independent of Y. Therefore,

hig(z) =1— E[I{Z < +Y},

ha(z) = 1— @ (ﬁ)

and (; 4 is given in (4.6). By Theorem 3.1, it follows that, under Hy,

Vi~ 3) = 5 S0 = 5]+ orl) (6.6
and so (4.5) follows. To calculate the limiting distribution under the sequence of alternatives
when the mean is h/+/n, note that by contiguity, the approximation (6.6) holds as well; that
is, the term that goes to 0 in probability under h = 0 does so under general h as well. The
linear term does not have mean 1/2; but we can calculate by a Taylor expansion argument

(and noting that the moments in the error term are bounded) that

Z+h/\/ﬁ)} |

Ephp(X)]=1-FE {(D ( Ne

where Z ~ N(0,1). Then

Eplhas(X)] = % - \/f;/k—LflE [qb (\/%)} +0(1/n) .

—-1/2

But, using that the moment generating function of Z? is (1 — 2t)~1/2, one can calculate

16



and so

Eplh 1 (X)] = % - \/4?% +0(1/n)

Also, under u = h/+\/n,

Vary[hx(X)] = Var [cb ( \/%Zi_l + \/%)] = (o +o(n %)

By (6.6 ) and these calculations, it follows that, under h/\/n,

Vg~ 5) 5 N (—\/4@, k?gk) .
7

It now follows that the test that rejects if \/n(p, — %) < zqk+/Ci 1 has limiting power or

rejection probably under h/+/n given by

Pu{v/n(pn — %) < zaky/Gpt=1-0 (Zl““ N Jﬁ) |

We now show k(yx — (4m)~ ! as k — co. But,

k(i = kVar [cp (%)} = kVar [@(0) + \/%gb(o) + rk} :

where the error term can be ignored because it has a variance of order 1/k?. Hence,

1
k =k
Cl,k 9

w +0(1) — 1/47T .

Thus, as k — oo, the limiting power tends 1 — ®(z;_, — k), the same as the UMP test.

In the case k — oo at the same time n — oo, we can just apply Theorem 3.1 along with

the same calculations for fixed k. m

PROOF OF THEOREM 4.2. Here we follow the notation of Theorem 3.2 with
(X1, oo, Xpit) = 1 {1 — d(VEX,) > 0y + t} .

Then, 6y, is the median of the distribution of h; under h/+/n, or the median of the distribution
of 1 — ®(Z + hy/k/n) when Z is standard normal. Thus, a trivial calculation gives 6, =

1 — ®(hy/k/n). Then,
(517k(x;t) = Elhg(z, Xo, ..., Xy); t] ,

and

Gi(t) = Var[gx(X;1)] -
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Now,
dri(w;t) = {1 — O(VEXy) > 1 — ®(h/k/n) + t}
= P{O(Y + z/Vk) < ®(h\/k/n) — t} = P{Y + z/Vk < &' [®(h\/k/n) — t]}
where Y in normal with mean (k — 1)h/v/nk and variance (k — 1)/k. Hence,

@(hy/E/n) — 1] — a/vVE — (k- 1>WR]

Qzl,k(fﬁ;t) = [(D
(k—1)/k

Assume the null hypothesis A = 0, in which case 6, =1 /2. In this case,

- k =x
(bl,k(:c;()) =1—-9 ( mﬁ)

1 kx
=5\ 1 1ﬁ¢(0) +o(1/k) .
and so ( )
(0
WO/
as k — oo. Similarly, one can show that
2(21,
) = 2 oy

and so the conditions of Theorem 3.2 are met.

Therefore, we have that, under the null hypothesis

M, —1/2
vn /2 4,

12 4 N(0,1) .
k(9(0))? o1

Under the sequence of local alternatives, u = h/+/n, the median 6, is given by

fo—=1-— (h\/k:/n> = 1/2+ ¢(0)h/k/n + 0,(1/v/n) .
By similar arguments, the limiting local power of the test based on the median p-value is

1—<I>(21_a—h) . n
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