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Abstract

The purpose of this paper is to present a general triangular array Central Limit

Theorem for U -statistics, where the kernel hk(x1, . . . , xk) and its dimension k may

increase with the sample size. Some motivating examples are presented which require

such a general result. The examples include a class of Hodges-Lehmann estimators,

subsampling estimators, and combining p-values through data splitting. A result for the

so-called M -statistic is also presented, which is defined as the median of some kernel

computed over all subsets of the data of a given size. The conditions in the theorems

are verified in the motivating examples as well.
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1 Introduction

Suppose X1, . . . , Xn are i.i.d. according to a distribution P . Consider the U-statistic

Un(X1, ..., Xn) =

(
n

k

)−1∑
hk(Xi1 , ..., Xik) (1.1)

where hk is a symmetric kernel of order k = kn (which may increase with n), and the sum

is taken over all
(
n
k

)
combinations of k observations taken from the sample. We specifically

allow the order k = kn of the kernel hkn to depend on n, as does the kernel itself. For cleaner

notation, we may just write k and hk rather than kn and hkn , but we will allow k to be fixed

as well as k →∞ as n→∞.

As is well-known, the asymptotic theory of U -statistics was developed in a landmark paper

by Hoeffding (1948). The classical result assumes the kernel is fixed and n→∞, and P is

fixed as well. The present paper provides general conditions to show asymptotic normality in

a general triangular array setup. The reason for such generality is to allow the kernel and its

order to vary with the sample size, as necessitated by certain applications. A uniform in P

result is given in Romano and Shaikh (2012), where the kernel is fixed.

When k is allowed to vary with n, so that k = kn →∞ as n→∞, sufficient conditions for

asymptotic normality of such U -statistics appear in Mentch and Hooker (2016), who consider

inference for random forests. Unfortunately, their conditions never hold because they assume

conditions that cannot hold simultaneously (as will be explained later). We provide rigorous

sufficient conditions which are shown to hold in a variety of examples.

In addition, as an alternative to Un in (1.1), we will also consider the median statistic Mn

defined by

Mn(X1, . . . , Xn) = median {hk(Xi1 , . . . , Xik)} , (1.2)

where the median is taken over all
(
n
k

)
combinations of k observations taken from the sample.

(In this case, we may also allow the kernel to be asymmetric.)

The paper is organized as follows. Section 2 presents four motivating examples for the

results obtained. The main theorems are given in Section 3. The examples are revisited in

Section 4, where the conditions are verified. A conclusion is provided in Section 5. Proofs

are deferred to Section 6.

2 Some Motivating Examples

In this section, we mention some examples that will help fix ideas and to provide motivation

for the need of a general result.
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Example 2.1. [Maximin Tests] Assume X1, . . . , Xn are independent (but not necessarily

i.i.d.) normal, with Xi ∼ N(µi, 1). The problem is to test the null hypothesis H0 that all

µi = 0 against the (multi-directional) alternative that not all µi are zero. Of course, for

this problem there is no UMP (uniformly most powerful) level α test, but there is a UMPI

(uniformly most powerful invariant) level α test, which rejects for large values of
∑n

i=1X
2
i .

However, if it is believed that the indices i for which µi 6= 0 is sparse, one can outperform

the UMPI test; see Arias-Castro et al. (2011). Indeed, one may wish to direct power against

alternatives for which there are not too many nonzero µi. One can formulate the problem

as follows. Fix ε = εn > 0 and k = kn, and determine the maximin level α test against

alternatives where at least k of the µi satisfy µi ≥ ε. (Note we can similarly treat the case

where these alternatives may satisfy |µi| ≥ ε, but for expository reasons, we focus on the

case of positive alternatives.) We can apply standard arguments to determine the maximin

test, as in Lehmann and Romano (2005). Intuitively, the least favorable distribution places

equal mass at the
(
n
k

)
points in the alternative parameter space, where each point (µ1, . . . , µn)

satisfies exactly k of the components are ε and the rest are zero. It is easily checked that the

maximin test rejects for large values of the U -statistic given in (1.1), where

hk(X1, . . . , Xk) = exp(ε
k∑
i=1

Xi) . (2.1)

It is desired to study the asymptotic behavior of this test statistic (both for setting critical

values and approximating power) in situations were possibly k →∞ and or ε→ 0 (as well as

letting the data distribution vary at time n).

Example 2.2. [Class of Hodges-Lehmann Estimators] SupposeX1, . . . , Xn are i.i.d. according

to a symmetric distribution on the real line. Based on robustness considerations, the classical

Hodges-Lehmann estimator is defined as the median of all pairwise averages of observations.

Evidently, the Hodges-Lehmann estimator is an M-statistic (1.2) (with k = 2). More generally,

consider the statistic (1.2) with

hk(X1, . . . , Xk) = k−1/2
k∑
i=1

Xi .

Let θ̂n,k = k−1/2Mn. (Note, we could have equivalently defined the kernel with k−1/2 replaced

by k−1 so that the estimator is just Mn, but it is convenient for purposes of applying our results

to define the kernel as above so that it is of order one in probability.) As k varies, one might

consider this class of estimators as k ranges from k = 1 (the usual sample median) to k = n

(the sample mean), and the choice would balance efficiency and robustness considerations.

The purpose here is to provide a limit theorem for general k, while allowing the possibility

that k can increase with n.
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Example 2.3. [Subsampling Distribution] Suppose X1, . . . , Xn are i.i.d. P , where interest

focuses on a real-valued parameter ξ(P ). Assume ξ̂n = ξ̂n(X1, . . . , Xn) is an estimator of

ξ(P ). Fix 1 < k < n and let S1, . . . , SN be the N =
(
n
k

)
subsets of size k taken without

replacement from the data, ordered in any fashion. For a given hypothesized value of ξ,

say ξ0, let Jn(t, P ) be the true c.d.f. of τn(ξ̂n − ξ0), evaluated at some generic t. Typically,

τn =
√
n. Then, a subsampling estimator of Jn(t, P ) is given by

Un(t) =
1

N

N∑
i=1

I
{
τk(ξ̂k(Si)− ξ0) ≤ t

}
(2.2)

(The usual subsampling estimator has ξ0 in (2.2) replaced by ξ̂n, though both are relevant

depending on the ultimate goal; see Chapter 2 in Politis et al. (1999).) Evidently, for each

t, Un(t) is a U -statistic of degree k. In order to consistently estimate the true distribution

Jn(t, P ), it is generally required that k → ∞. Rather than consistency, we would like to

determine the limiting distribution of Un(t)− Jn(t, P ), appropriately normalized.

Example 2.4. [Combining p-values Using Data Splitting] Data splitting, a technique which

involves partitioning a data set into disjoint “splits” or subsamples which can then be used

for various statistical tasks, has widespread application in the statistical literature. Typically,

one portion of the data is used for some form of selection (such as model fitting, dimension

reduction, or choice of tuning parameters), and then a second, independent portion of the

data is used for some further purpose such as estimation and model fitting. In addition, data

splitting can be used in prediction to assess the performance of models (where a portion

of the data has been used to select and/or fit a model and the remainder is used to assess

the performance of the selected model) or in inference to perform tests of significance after

hypotheses or test statistics have been selected. Data splitting has become a useful remedy

for data-snooping (giving valid inference after selection of a hypothesis), estimating nuisance

parameters, and avoiding over-fitting in prediction problems. The main complaint about

data splitting using one split of the data is that the choice of split is arbitrary (and random),

and the resulting inference violates the sufficiency principle, which says that inference in i.i.d.

problems should be invariant with respect to ordering. However, recent methods propose

combining p-values over multiple splits of the data; see Ruschendorf (1982), Meinshausen

et al. (2009), Vovk and Wang (2012) and DiCiccio and Romano (2019). For example, if p̂n,i

is a p-value computed over some subsample Si of the data, then one method of combining

these p-values is to take their average p̄n (which is a U -statistic) or perhaps their median.

Conservative methods that control the probability of a Type 1 error at level α would compare

the average p-value or median p-value with α/2. These methods are quite conservative in

nature in that the resulting rejection probability is way below the desired nominal level.

The purpose here is to exploit the U -statistic nature of the average of p-values in order to
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demonstrate an improved method over the conservative methods.

3 Main Results

In this section, the main asymptotic normality theorem is developed for U -statistics with

growing kernel order, as well as the corresponding M -statistic.

3.1 A General U-statistic CLT Under Growing Kernel Order

Suppose X1, . . . , Xn are i.i.d. P . Consider the U-statistic given in (1.1). where hk is assumed

to be symmetric kernel of order k = kn, and the sum is taken over all
(
n
k

)
combinations of k

observations taken from the sample. We specifically allow the order k = kn of the kernel hkn
to depend on n, as does the kernel itself. For cleaner notation, we may just write k and hk

rather than kn and hkn , but we will allow k to be fixed as well as k →∞ as n→∞. (Note

that, if hk were not symmetric in its arguments, it can always be symmetrized by further

averaging. So, for the purposes of the CLT, we will assume hk is symmetric.)

Define θk = E(hk(X1, ..., Xk)), and

ζ1,k = Var(h1,k(X)) ,

where

h1,k(x) = E(hk(x,X2, ..., Xk))− θk .

All expecations and variance are computed under the probability distribution P generating

the data, noting that P = Pn may also vary with n.

More generally, define for 1 ≤ c ≤ k,

hc,k(X1, . . . , Xc) = E[hk(X1, . . . , Xk)|X1, . . . , Xc]− θk

and

ζc,k = Var(hc,k(X1, . . . , Xc)) , (3.1)

so that ζk,k is the variance of the kernel based on a sample of size k equal to the order of the

kernel.

Sufficient conditions for asymptotic normality of such U -statistics are given in Mentch

and Hooker (2016), but their result is not valid because their conditions can never hold

simultaneously. In particular, they assume ζ1,k 9 0, which as we will see fails for our

applications. Moreover, they assume the second moment of the kernel is uniformly bounded,

so that ζk,k ≤ C <∞. But, by Theorem 1 in Hoeffding (1948), it follows that ζ1,k ≤ ζk,k/k ≤
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C/k → 0. Therefore, the conditions ζk,k ≤ C and ζ1,k 9 0 are incompatible, and thus the

conditions in their theorem can never apply.

In some of our applications, the kernel will be uniformly bounded (such as when it is some

p-value), in which case the ζc,k are also uniformly bounded as c, k, and n vary. In such case,

ζ1,k is of order 1/k and tends to zero. However, the conditions in our theorem nevertheless

can be verified. As we will see in Corollary 3.1, the important condition is that kζ1,k 9 0.

Remark 3.1 (Simple Consistency). Under weak conditions, Un is consistent in the sense

Un − θn
P−→ 0. It suffices to show Var(Un)→ 0. But, as is well-known, Var(Un) ≤ kζk,k/n. So

if the ζk,k are uniformly bounded (which follows if the kernels are uniformly bounded), and

k/n→ 0, then consistency follows.

The theorem below applies in a triangular array setup, where n observations are i.i.d. Pn.

Then, quantities like ζc,k in (3.1) are computed under Pn. Let

Ûn =
kn
n

n∑
i=1

h1,k(Xi) . (3.2)

Theorem 3.1. Assume the order k = kn of the kernel hk satisfies k2/n→ 0. Further assume

that ζk,k/kζ1,k is bounded.

(i) Then,
nVar(Un)

k2ζ1,k
→ 1 . (3.3)

(ii). Also,

(Un − θk)− Ûn√
k2

n
ζ1,k

P−→ 0 (3.4)

and so

Un − θk = OP

(
k2

n
ζ1,k

)
.

(iii) If, in addition, for all δ > 0,

lim
n→∞

1

ζ1,k

∫
|h1,k(x)|>δ

√
nζ1,k

h21,k(x)dPn(x) = 0 , (3.5)

then √
n (Un(X1, ..., Xn)− θk)√

k2ζ1,k

d−→ N(0, 1). (3.6)

This result also holds for the “incomplete” U-statistic which is the average of the kernels

computed over Bn randomly and uniformly chosen subsamples of the data provided n/Bn → 0.
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Corollary 3.1. Under the above notation, if k2/n→ 0, the kernel hk is uniformly bounded

(both as k and the data vary), and kζ1,k 9 0, then asymptotic normality (3.6) holds.

Remark 3.2. In some applications, the condition that kζ1,k 9 0 holds because kζ1,k is of

strict order one. Of course, if k is fixed as in the classical case, all that is required for

asymptotic normality is ζ1,k > 0.

3.2 Asymptotic Normality of the M-statistic

Suppose instead of using Un as an estimator, where the kernel is averaged over all subsamples

of size k of the data, we are interested in using the median of the values of the kernel computed

on all subsamples of size k, i.e. Mn defined in (1.2). which we refer to as an M -statistic. In

this section, we do not assume hk is symmetric, and so the median is taken over all n!/(n−k)!

ordered indices i1, . . . , ik taken without replacement from 1, . . . , n. We would like to prove a

triangular array CLT for Mn when k = kn varies with n.

Suppose that hk has a c.d.f. Fk and that θ̃k satisfies Fk(θ̃k) = 1/2.

Define

h̃k(x1, ..., xk; t) ..=
1

k!

∑
I
{
hk(xi1 , ..., xik) > θ̃k + t

}
, (3.7)

where the average is taken over all permutations of 1, ..., k. Also define

ζ̃1,k(t) = Var[φ̃1,k(X; t)]

with

φ̃1,k(x; t) = E[h̃k(x,X2, ..., Xk; t)] .

We will assume that the sequence {Fk} is asymptotically (as k = kn →∞) equidifferen-

tiable relative to the sequence θ̃k; that is, for any εk → 0,

Fk(θ̃k + εk)− Fk(θ̃k) = εkF
′(θ̃k) + o(εk) . (3.8)

We will apply (3.8) with the particular choice εk = δk defined by

δk =

√
ζ̃1,k(0)k2

n
.

Note that ζ̃1,k is bounded in k, so that if we assume that k2/n→ 0, then δk → 0. Then,

E
(
h̃k (X1, ..., Xk; δk)

)
= 1/2− F ′k(θ̃k)δk + o(δk) . (3.9)

Finally, assume that F ′k(θ̃k)→ f(θ̃), which is just some positive constant. (Note, f and θ̃

separately need not have meaning, but typically F ′k tends to some f and θ̃k → θ̃.)
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Theorem 3.2. Under the above setup, also assume that, k2/n → 0, kζ1,k(0) 9 0 and for

any fixed t

ζ̃1,k(δnt)/ζ̃1,k(0)→ 1 (3.10)

as n→∞. Then, √
n

ζ̃1,k(0)k2

(
Mn − θ̃k

)
d−→ N(0, 1/f 2(θ̃)) .

4 Examples, revisited

Example 4.1. [Example 2.1, revisited.] Consider Un given by (1.1) with hk given by (2.1).

We verify the conditions for asymptotic normality under H0, though power can be studied

similarly. Letting Z denote a standard normal variable,

E(Un) = E
[
exp(ε

√
kZ)

]
= exp

(
ε2k

2

)
.

Also,

E[hk(X1, X2, . . . , Xn)|X1] = exp(εX1)E [ε(X2 + · · ·+Xk)] = exp(εX1) exp

[
ε2(k − 1)

2

]
.

Then ζ1,k, the variance of this last quantity, is given by

ζ1,k = exp[ε2(k − 1)]V ar[exp(εX1)] = exp[ε2(k − 1)]
[
E exp(2εX1)− (E exp(εX1))

2]
= exp[ε2(k − 1)][exp(2ε2)− exp(ε2)] = exp(ε2k)[exp(ε2)− 1] .

Similarly,

ζk,k = V ar {exp[ε(X1 + · · ·Xk)]} = E
[
exp(2ε

√
kZ)

]
−
{
E
[
exp(ε

√
kZ)

]}2

= exp(2ε2k)− exp(ε2k) = exp(ε2k)[exp(ε2k)− 1] .

We need to verify that the ratio ζk,k/(kζ1,k) is bounded. But,

ζk,k
kζ1,k

=
exp(ε2k)− 1

k [exp(ε2)− 1]
. (4.1)

Of course, if k = 1, then the ratio (4.1) is always one, so the condition holds. Certainly, if both

k > 1 and ε > 0 are fixed, then the ratio (4.1) is fixed. Also, if k is fixed but ε = εk → 0, then

by L’Hospital’s rule, the ratio tends to 1 and so the condition holds. If k →∞ but ε2k → 0

(so that also ε2 → 0), then by Taylor approximation to the numerator and denominator, it is

easy to see that the condition holds as again the ratio tends to one. Actually, one just needs
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ε2k remains bounded. Indeed, the numerator in (4.1) is then bounded, and the denominator

is easily seen to be bounded below by kε2. If kε2 → 0, then we already treated that case,

but if it is bounded away from 0 and ∞, then the ratio (4.1) is bounded. Hence, it is only

required that ε2k is bounded from above (unless k = 1, in which case the condition holds

regardless). Conversely, it is easy to check that if k > 1 and kε2 →∞, then the ratio (4.1) is

not bounded. Note, that if we are trying to detecting an alternative where k of the µi are

equal to ε and the rest are zero, then such alternatives are contiguous to the null. Finally,

asymptotic normality holds as long as εk stays bounded from above (and so it can tend to

zero).

Example 4.2. [Example 2.2, revisited.] Consider the generalized Hodges-Lehmann estimators

θ̂n,k = k−1/2Mn, where Mn is defined by (1.2) with

hk(X1, . . . , Xk) = k−1/2
k∑
i=1

Xi .

For purposes of illustrating the Theorem, assume X1, . . . , Xn are i.i.d. normally distributed

with mean 0 and variance 1. So, assume k > 1. We have θ̃k = 0 and

h̃k(x1, . . . , xk; t) = I

(
x1 + · · ·xk√

k
> t

)
.

Note (3.9) holds with f(θ̃) = φ(0) = 1/
√

2π, where φ(·) is the standard normal density. Then,

φ̃1,k(x, t) = P

{
x+X2 + · · ·Xk√

k
> t

}
= 1− Φ

(
t

√
k

k − 1
− x√

k − 1

)
,

ζ̃1,k(t) = V ar

[
Φ

(
t

√
k

k − 1
− X√

k − 1

)]
and

ζ̃1,k(0) = V ar

[
Φ

(
X√
k − 1

)]
:= τ 2k ,

where X ∼ N(0, 1). Note that, by Taylor approximation, for large k,

τ 2k ≈ V ar

[
X√
k − 1

φ(0)

]
=

1

2π(k − 1)
.

In fact,

lim
k→∞

kτ 2k =
1

2π
.

Note that, since ζ̃1,k(0) = O(1/k), δk = O(
√
k/n). Similarly by Taylor approximation,

ζ̃1,k(δkt) = V ar

[
Φ

(
δkt

√
k

k − 1
− X√

k − 1

)]

9



= V ar

[
Φ

(
X√
k − 1

)]
+O(δ2k/k)

If k is fixed, δ2k/k → 0 and (3.10) holds easily. If k → ∞, then kζ̃1,k(δkt) → 1/(2π), since

kO(δ2k/k) = o(1). Therefore, the condition (3.10) holds. Hence,√
n

τ 2kk
2
Mn

d−→ N(0, 2π)

or equivalently √
n

kτ 2k
θ̂n,k

d−→ N(0, 2π) .

Therefore, when k is fixed, √
nθ̂n,k

d−→ N(0, 2πkτ 2k ) . (4.2)

When k →∞ and k2/n→ 0, since kτ 2k → 1/(2π), we have

√
nθ̂n,k

d−→ N(0, 1) .

In this case, θ̂n,k is asymptotically efficient.

Example 4.3. [Example 2.3, revisited.] Consider the subsampling estimator Un(·) defined

in (2.2). Fix t, and note Un = Un(t) has expectation θk = Jk(t, P ), where Jk(t, P ) is the

true sampling distribution of τk(ξ̂k − ξ0) based on a sample of size k. Typical subsampling

arguments, as in Chapter 2 of Politis et al. (1999), show Un(t) − Jn(t, P )
p−→ 0. A more

detailed result would be to find the order of error in the difference, or even its limiting

distribution. To this end, we can simply write

Un(t)− Jn(t, P ) = [Un(t)− θk]− [Jn(t, P )− Jk(t, P )] .

The bias term [Jn(t, P )− Jk(t, P )] is nonrandom and can be analyzed separately (such as

by Edgeworth expansions). The U -statistic theory applies to the first term [Un(t) − θk],

whose analysis we now illustrate via Corollary 3.1. We specialize as follows. Assume

the Xi are i.i.d. N(ξ, 1) and ξ̂n = n−1
∑

iXi. Take ξ0 = 0 and τn =
√
n. The kernel,

hk(x1, . . . , xk) = I{k−1/2
∑k

i=1 xi ≤ t} is clearly bounded. Then,

h1,k(x) = P
{
k−1/2(X1 + · · ·+Xk) ≤ t|X1 = x

}
− Φ(t)

= Φ

(
t

√
k

k − 1
− x√

k − 1

)
− Φ(t) .

Then,

ζ1,k = V ar

[
Φ

(
t

√
k

k − 1
− X√

k − 1

)]
.
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As k →∞, by Taylor approximation,

ζ1,k = V ar

[
φ(t)

X√
k − 1

]
+ o(1/k) =

φ2(t)

k
+ o(1/k) .

Note the condition kζ1,k 9 0 easily holds as kζ1,k → φ2(t) > 0. Therefore, we conclude that

if k2/n→ 0 and k →∞, then√
n

k
[Un(t)− Φ(t)]

d−→ N(0, φ2(t)) .

Example 4.4. [Example 2.4, revisited.] Consider the average p-value, p̄n, computed by

averaging p-values computed on subsamples of size k of the data. We show how to use the

basic results to derive its limiting distribution in a relatively simple example. We further

derive the limiting distribution of p̄n under contiguous alternatives and compute the limiting

local power function. Though the methodology is offered in a simplified setting, it shows

the potential for such an approach more broadly. Specifically, we consider the context of

testing for a single mean. Obviously, this is a toy example as these methods are not needed

here. But this simple model admits simple expressions of asymptotic power, which facilitates

comparisons of methods. Moreover, it specifically shows, by comparison, that conservative

methods are way too conservative and result in tests with very low power.

Let X1, . . . , Xn be i.i.d. real-valued with unknown mean µ. The problem is to test the null

hypothesis H0 that the mean is 0 versus greater than 0. For the purposes here of studying

the power of tests combining splits of the data, further assume the underlying distribution is

N(µ, 1).

Let X̄n,k,i be the average of the ith subsample of size k,. Also, let p̂n,k,i denote the p-value

based on this subsample; that is, p̂n,k,i = 1− Φ(
√
kX̄n,k,i). The limiting power of the UMP

level α test against contiguous alternatives h/
√
n is

1− Φ(z1−α − h)

when using the full data, and

1− Φ(z1−α −
√
τh) (4.3)

when using a single subsample (or split) of size k satisfying k/n = τ . Assume k/n→ τ ∈ (0, 1),

the fraction in the sample used for testing. Assume the number of splits or subsamples

N =
(
n
k

)
, so all possible splits are used. For r ∈ (0, 1). Consider the conservative procedure

(or family of procedures) which rejects H0 if the proportion of p-values (computed over all

splits) that are ≤ αr is ≥ r. (So, in the case r = 1/2, the procedure requires that at least

half of the p-values are ≤ α/2; equivalently, twice the median p-value must be ≤ α.). As

show in DiCiccio and Romano (2019), this procedure is level α. This is the exact or finite
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sample version of an asymptotic approach first suggested in Meinshausen et al. (2009). They

did not present any analytical expressions for power. In DiCiccio and Romano (2019), the

limiting power of this procedure for testing of H0 : µ = 0 against contiguous alternatives

h/
√
n was obtained and is given by

1− Φ

[
1√
τ

(z1−rα − z1−r
√

1− τ)− h
]
. (4.4)

Note that (4.4) shows that, even asymptotically, the approach is conservative, i.e. when

h = 0, the limiting rejection probability is below α. It further implies that the limiting

power for small positive h can be less than α and loss of power results. By comparison, the

limiting power against h/
√
n of a single split sample test by taking one sample of size k is

given by (4.3). Even with τ < 1, the test based on a single subsample of size k has better

limiting power for small h than the conservative tests that combine p-values computed on

many subsamples of size k. On the other hand, for large enough h, (4.4) will be larger than

(4.3). In this case, the many split sample test is an improvement over the single sample test,

even though it conservatively controls the Type 1 error. But, the power is only larger for

values of the local parameter where the power is already near one.

By deriving the limiting distribution of the average (or median) p-value, we can construct an

asymptotically level α with greatly improved power. Indeed, we will see that the distribution

of p̄n is concentrated near 1/2 under H0 and so an appropriate critical value (sequence) will

be near 1/2 as well, in contrast to the conservative procedure which uses a critical value of

α/2 (based on either the mean or median p-value). Furthermore and perhaps surprisingly,

tests exploiting the U -statistic structure achieve the optimal limiting local power function of

the UMP level α test. The challenge is to derive the appropriate limiting distribution, so

that a better or less conservative critical value may be used.

Define the average p-value taken over all subsamples of size k to be

Un(X1, ..., Xn) = p̄n =
1

N

N∑
i=1

p̂n,k,i =
1

N

N∑
i=1

[1− Φ(
√
kX̄n,k,i)] ,

with N =
(
n
k

)
. Evidently, p̄n is a U -statistic of the form (1.1).

Theorem 4.1. Let X1, ..., Xn be i.i.d according to a normal distribution with mean µ and

variance one.

(i) If k is fixed and µ = 0, then√
n

k
(p̄n −

1

2
)
d−→ N(0, kζ1,k) , (4.5)

where

ζ1,k = V ar

[
Φ

(
X√

2k − 1

)]
(4.6)
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and X ∼ N(0, 1) and Φ(·) is the standard normal c.d.f.

(ii) If k →∞ and k/
√
n→ 0, then kζ1,k → 1/(4π). Moreover, under H0 : µ = 0,√

n

k
(p̄n −

1

2
)
d−→ N(0,

1

4π
) ,

(iii). Consider the one-sided test which rejects H0 if
√
n(p̄n − 1

2
) < zαk

√
ζ1,k. Its limiting

power against contiguous alternatives h/
√
n is

P (N(h, 1) > z1−α) = 1− Φ(z1−α − h) ,

which is the same as the UMP level α test. The same is true if k
√
ζ1,k is replaced by 1/4π in

the construction of the critical value of the test.

Remark 4.1. If k is fixed, the average of the p-values computed over all splits of the data

remains asymptotically normal; however, the overall test is less powerful asymptotically than

the UMP test against local alternatives. A justification of this is implicit in the proof of

Theorem 4.1.

Despite testing on small portions of the data, using the average p-value has the same

limiting local power as the UMP test. Using the asymptotic normality of the p-value, the test

rejects for an average p-value below 1/2+zα
√
k/(4πn). By contrast, the conservative method

rejects when the average or median p-value is below α/2, which can be quite substantially

lower than this threshold.

An asymptotically level α test can also be performed based on the median of the p-values,

by viewing the median p-value p̃n as a median statistic Mn of the form (1.2). The power of

this method is as follows.

Theorem 4.2. Suppose that X1, ..., Xn are i.i.d. according to a normal distribution with

mean µ and variance one. Suppose k →∞ in such a way that k/
√
n→ 0. Then, under a

sequence of local alternatives h/
√
n,√
2πn

k
(p̃n − 1/2)

d−→ N(h, 1) ,

where p̃n is the median p-value computed over all splits. Consider the test which rejects H0 if

p̃n < 1/2 + zα
√
k/n. Then, the limiting power of the one sided test of H0 : µ = 0 against

h/
√
n is

1− Φ(z1−α − h) .

Note that the asymptotically level α test rejects if the median is less than 1/2 + zα
√
k/n,

which can be substantially larger than α/2. For example, if α = .1, n = 100, and k = 10,

1/2 + zα
√
k/n = .0947 whereas α/2 = .05. The asymptotic local power of this test based on

the median p-value using an appropriate (not conservative) critical value achieves that of the

optimal UMP test.
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5 Conclusion and Further Questions

In this paper, we considered a U -statistic sequence where the kernel size is growing with the

sample size. We developed conditions under which asymptotic normality results. At the

same time, we also considered the corresponding M -statistic, defined as the median of the

kernel computed over subsamples of the data. Other quantiles can be considered by similar

arguments. By way of four examples, we have demonstrated the utility of such results, and

verified the conditions. The problem was largely motivated by the problem of combining

p-values obtained by data splitting, where previous conditions from Mentch and Hooker

(2016) in the context of inference for random forests are too weak and do not apply. The toy

example suggests the statistical approach may be quite promising. The results in this paper

will allow further development of this area, where only conservative procedures are in use.

6 Proofs

Proof of Theorem 3.1. To prove (i), follow for example the argument in van der Vaart

(1998), so that it suffices to show Var(Un)/Var(Ûn)→ 1, where Ûn is defined in (3.2). Indeed,

Theorem 11.2 of van der Vaart (1998) applies not only for fixed k but when k = kn →∞. As

is well-known (and argued in the proof of Theorem 12.3 of van der Vaart (1998)),

Var(Un) =
k∑
c=1

(
n

k

)−1(
k

c

)(
n− k
k − c

)
ζc,k , (6.1)

where

ζc,k = Cov [hk(X1, . . . , Xc, Xc+1, . . . , Xk), hk(X1, . . . , Xc, Xk+1, . . . , X2k−c)] , (6.2)

the covariance between the kernel based on two data sets with exactly c variables in common.

By conditioning on X1, . . . , Xc, it is readily seen that (3.1) and (6.2) agree. First note that

the c = 1 term in (6.1) divided by Var(Ûn) = k2ζ1,k/n tends to one, i.e.

k

(n
k)

(
n−k
k−1

)
ζ1,k

k2

n
ζ1,k

=
(n− k)!(n− k)!

(n− 1)!(n− 2k + 1)!
→ 1 .

The last limit uses k2/n→ 0 and can be seen by applying Stirling’s formula, taking logs and

using a Taylor’s expansion. What remains is to show that the sum from c = 2 to c = k in

(6.1) divided by k2ζ1,k/n tends to 0. But,

∑k
c=2

(
n
k

)−1(k
c

)(
n−k
k−c

)
ζc,k

k2

n
ζ1,k

≤

∑k
c=2

1
c!

[
k!

(k−c)!

]2
(n−k)!
n!

(n−k)!
(n−2k+c)!ζc,k

k2

n
ζ1,n
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≤
∑k

c=2
k2c

c!
1

(n−k+1)c
ζc,k

k2

n
ζ1,k

≤
k∑
c=2

1

c!
εc−1n ζc,k/ζ1,k , (6.3)

where

εn =
k2

n− k + 1
.

Using the inequality ζc,k ≤ cζk,k/k (see Hoeffding (1948)) gives that (6.3) is bounded above

by

ζk,k
kζ1,k

k∑
c=2

1

(c− 1)!
εc−1n ≤ ζk,k

kζ1,k

k−1∑
j=1

εjn =
ζk,k
kζ1,k

· εn − ε
k
n

1− εn
. (6.4)

The second factor in the last expression for (6.4) tends to zero since εn → 0. Thus, as long as

ζk,k/kζ1,k stays bounded, the result follows.

To prove (ii), note that the expression (3.4) has mean 0 and variance given by one minus

the left hand side of (3.3). Apply Chebychev. The rest of the proof is then trivial.

Proof of Corollary 3.1. Since the hk are uniformly bounded, so are the ζk,k. Hence,

the condition in Theorem 3.1 ζk,k/kζ1,k is bounded, since kζ1,k 9 0. Moreover, the Lindeberg

condition ( 3.5) necessarily holds because nζ1,k = (n/k) · kζ1,k → ∞, so that the region of

integration in the integral is empty for large n.

Proof of Theorem 3.2: For any fixed t,

P

{√
n

ζ̃1,k(0)k2

(
Mn − θ̃k

)
≤ t

}
= P

{
Mn ≤ θ̃k + δkt

}

= P


(
n

k

)−1∑
h̃k (Xi1 , ..., Xik ; δkt) ≤ 1/2


= P


√

n

ζ̃1,k(0)k2n

(
n

k

)−1∑(
h̃k(Xi1 , ..., Xik ; δkt)− [1/2F ′k(θ̃k)δk + o(δk)

)
≤ tF ′k(θ̃k)


Hence, this last expression has the same limit (if any) as

P

{√
n

ζ̃1,k(0)k2n
[Un(t)− E(Un(t))] ≤ tF ′k(θ̃k)

}
, (6.5)

where Un = Un(t) is a U-statistic with symmetric kernel h̃k(·; t) defined by

Un(t) =

(
n

k

)−1∑
h̃k(Xi1 , . . . , Xik ; δkt) .

But, by Corollary 3.1, √
n

k2ζ̃1,k(δkt)
[Un(t)− E(Un(t))]

d−→ N(0, 1) .
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Using the assumption ζ̃1,k(δkt)/ζ̃k(0)→ 1 and Slutsky’s theorem gives that the limiting value

of (6.5) is → Φ
(
f(θ̃)t

)
.

Proof of Theorem 4.1. We first apply Theorem 3.1 in the case where the order of the

kernel k is fixed. Define the kernel

hk(X1, ..., Xk) = 1− Φ(
√
kX̄k) ,

which is the p-value of a test of H0 computed on a subsample of size k and X̄k =
∑k

i=1Xi/k.

For this choice of kernel,

h1,k(x) = 1− E
(

Φ(
√
kX̄k)|X1 = x

)
= 1− EΦ(

x√
k

+ Y ) ,

where Y ∼ N(0, (k − 1)/k). So, we can simplify

h1,k(x) = 1− E[I{Z <
x√
k

+ Y }] ,

where Z ∼ N(0, 1) and Z is independent of Y . Therefore,

h1,k(x) = 1− Φ

(
x√

2k − 1

)
and ζ1,k is given in (4.6). By Theorem 3.1, it follows that, under H0,

√
n(p̄n −

1

2
) =

k√
n

n∑
i=1

[h1,k(Xi)−
1

2
] + oP (1) (6.6)

and so (4.5) follows. To calculate the limiting distribution under the sequence of alternatives

when the mean is h/
√
n, note that by contiguity, the approximation (6.6) holds as well; that

is, the term that goes to 0 in probability under h = 0 does so under general h as well. The

linear term does not have mean 1/2, but we can calculate by a Taylor expansion argument

(and noting that the moments in the error term are bounded) that

Eh[h1,k(X)] = 1− E
[
Φ

(
Z + h/

√
n√

2k − 1

)]
,

where Z ∼ N(0, 1). Then

Eh[h1,k(X)] =
1

2
− h/

√
n√

2k − 1
E

[
φ

(
Z√

2k − 1

)]
+O(1/n) .

But, using that the moment generating function of Z2 is (1− 2t)−1/2, one can calculate

E

[
φ

(
Z√

2k − 1

)]
=

1√
2π
· (1− 1

2k
)1/2 ,
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and so

Eh[h1,k(X)] =
1

2
− h√

4πkn
+O(1/n) .

Also, under µ = h/
√
n,

V arh[h1,k(X)] = V ar

[
Φ

(
Z√

2k − 1
+

h/
√
n√

2k − 1

)]
= ζ1,k + o(n−1/2) .

By (6.6 ) and these calculations, it follows that, under h/
√
n,

√
n(p̄n −

1

2
)
d−→ N

(
−
√

k

4π
h, k2ζ1,k

)
.

It now follows that the test that rejects if
√
n(p̄n − 1

2
) < zαk

√
ζ1,k has limiting power or

rejection probably under h/
√
n given by

Ph{
√
n(p̄n −

1

2
) < zαk

√
ζ1,k} = 1− Φ

(
z1−α −

h√
4πkζ1,k

)
.

We now show kζ1,k → (4π)−1 as k →∞. But,

kζ1,k = kV ar

[
Φ

(
Z√

2k − 1

)]
= kV ar

[
Φ(0) +

Z√
2k − 1

φ(0) + rk

]
,

where the error term can be ignored because it has a variance of order 1/k2. Hence,

kζ1,k = k
1

2π(2k − 1)
+ o(1)→ 1/4π .

Thus, as k →∞, the limiting power tends 1− Φ(z1−α − h), the same as the UMP test.

In the case k →∞ at the same time n→∞, we can just apply Theorem 3.1 along with

the same calculations for fixed k.

Proof of Theorem 4.2. Here we follow the notation of Theorem 3.2 with

hk(X1, ..., Xk; t) = I
{

1− Φ(
√
kX̄k) > θ̃k + t

}
.

Then, θ̃k is the median of the distribution of hk under h/
√
n, or the median of the distribution

of 1 − Φ(Z + h
√
k/n) when Z is standard normal. Thus, a trivial calculation gives θ̃k =

1− Φ(h
√
k/n). Then,

φ̃1,k(x; t) = E[hk(x,X2, ..., Xk); t] ,

and

ζ̃1,k(t) = Var[φ̃1,k(X; t)] .
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Now,

φ̃1,k(x; t) = Ph{1− Φ(
√
kX̄k) > 1− Φ(h

√
k/n) + t}

= P{Φ(Y + x/
√
k) < Φ(h

√
k/n)− t} = P{Y + x/

√
k < Φ−1[Φ(h

√
k/n)− t]} ,

where Y in normal with mean (k − 1)h/
√
nk and variance (k − 1)/k. Hence,

φ̃1,k(x; t) = Φ

[
Φ−1[Φ(h

√
k/n)− t]− x/

√
k − (k − 1)h/

√
kn√

(k − 1)/k

]

Assume the null hypothesis h = 0, in which case θ̃k = 1/2. In this case,

φ̃1,k(x; 0) = 1− Φ

(√
k

k − 1

x√
k

)

=
1

2
−
√

k

k − 1

x√
k
φ(0) + o (1/k) .

and so
ζ̃1,k(0)

(φ(0))2/k
→ 1

as k →∞. Similarly, one can show that

ζ1,k(t) =
φ2(z 1

2
−t)

k
+ o(1/k) ,

and so the conditions of Theorem 3.2 are met.

Therefore, we have that, under the null hypothesis

√
n
M̃n − 1/2√
k(φ(0))2

d−→ N(0, 1) .

Under the sequence of local alternatives, µ = h/
√
n, the median θ̃k is given by

θ̃k = 1− Φ
(
h
√
k/n

)
= 1/2 + φ(0)h

√
k/n+ op(1/

√
n) .

By similar arguments, the limiting local power of the test based on the median p-value is

1− Φ (z1−α − h) .
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