

Single-crystal elasticity of phase Egg AlSiO₃OH and δ -AlOOH by Brillouin spectroscopy

Baoyun Wang^{1,2,3,4}, Yanyao Zhang³, Suyu Fu³, Li Li^{1,4}, Wen Liang⁵, Maoshuang Song^{1,4*} and Jung-Fu Lin^{3*}

⁵ ¹State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry,
⁶ Chinese Academy of Sciences, Guangzhou 510640, China;

7 ²College of Earth and Planetary Sciences, University of Chinese Academy of Sciences,
8 Beijing, 100049, China;

9 ³Department of Geological Sciences, Jackson School of Geosciences, The University
10 of Texas at Austin, Austin, 78705 Texas, USA;

11 ⁴CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China

¹²Key Laboratory of High Temperature and High Pressure Study of the Earth's Interior,
¹³Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.

14 *Corresponding email: msong@gig.ac.cn and afu@jsg.utexas.edu

Abstract

17 The full elastic constants of phase Egg and δ -AlOOH have been determined by
 18 Brillouin scattering measurements at ambient condition. We find the phase Egg exhibits
 19 extremely anisotropic properties with azimuthal compressional wave anisotropy, AV_P
 20 =38.4% and shear wave splitting anisotropy, AV_S =22.1%, respectively, these values
 21 are higher than typical mantle minerals. Meanwhile, the anisotropy of δ -AlOOH is close
 22 to wadsleyite, but its aggregate velocity is faster than the majority of mantle minerals
 23 with the exception of stishovite and brigmanite, thus δ -AlOOH is a potential candidate
 24 for local positive abnormal seismic velocity in transition zone. In addition, the
 25 decomposition of phase Egg to δ -AlOOH and stishovite will lead to large velocity
 26 jumps of 17% for V_P and 18% for V_S based on present experimental elastic data at
 27 ambient condition, which is likely detectable by seismic observation in deep mantle of
 28 the earth.

29 **Keywords:** Phase Egg, δ -AlOOH, elasticity, anisotropy, Brillouin spectroscopy

30 **Introduction**

31 Hydrous phases (minerals) formed in wet subducted lithospheric slabs are
32 regarded as potential carriers to transport water into deep earth interior. Dehydration of
33 these hydrous phases can release substantial amount of water and significantly affect
34 the physical and chemical properties of the surrounding rocks, such as partial melting,
35 rheology and conductivity (Jacobsen, 2006; Ohtani, 2020). Based on advanced high-
36 pressure and high-temperature apparatuses, researchers have examined phase relations
37 on hydrous systems with various chemical compositions representing sedimentary,
38 basaltic and peridotitic layers (components) of subducted slabs and a number of
39 hydrous minerals have been identified (Iwamori, 2004; Litasov and Ohtani, 2003;
40 Schmidt and Poli, 1998). Among these hydrous minerals, phase Egg and δ -AlOOH are
41 two typical phases which exist in the sedimentary layer of subducted slabs or the
42 simplified $\text{Al}_2\text{O}_3+\text{H}_2\text{O}+\text{SiO}_2$ ternary system (Ono, 1998; Schmidt et al., 1998). Besides,
43 δ -AlOOH may even exist in basaltic and peridotitic layers (Suzuki et al., 2000).
44 Experimental studies on the phase stability of phase Egg show it remains stable at
45 depths of mantle transition zone (MTZ) along warm slab geotherm and then
46 decomposes to δ -AlOOH and stishovite at depth of the upmost lower mantle (25-30GPa)
47 (Fukuyama et al., 2017; Pamato et al., 2015; Sano et al., 2004). The δ -AlOOH is found
48 to survive in the lower mantle down to core-mantle boundary conditions and even be
49 stable along normal mantle geotherm (Duan et al., 2018; Ohtani et al., 2001; Sano et
50 al., 2008; Yuan et al., 2019). Therefore, phase Egg and δ -AlOOH could form a
51 continuous chain to transport water from MTZ to deep lower mantle in the process of
52 slab subduction. The natural nano-size inclusions of phase Egg, which was discovered
53 in ultradeep diamond (Wirth et al., 2007), provided the direct evidence for the existence
54 of phase Egg at depth of mantle transition zone.

55 Phase Egg with an ideal formula of AlSiO_3OH was firstly synthesized by
56 (Eggleton et al., 1978). It belongs to monoclinic system with space group $P2_1/n$

57 (Schmidt et al., 1998) and composed of layer arranged Si-octahedron and Al-
58 octahedron (Figures S1a and b). High-pressure X-ray diffraction studies show that the
59 compressibility of phase Egg is extremely anisotropic in three axis directions (Schulze
60 et al., 2018; Vanpeteghem et al., 2003), which is also supported by recent *first-*
61 *principles* calculation (Mookherjee et al., 2019). The δ -AlOOH is a synthetic high-
62 pressure polymorphism of diaspore (α -AlOOH) and boehmite (γ -AlOOH), which
63 adopts CaCl_2 -type structure with $P2_{1}nm$ space group (Figure S1c) (Suzuki et al., 2000).
64 In recent years, increasing attention has been to δ -AlOOH due to its wide P-T stability
65 field, pressure-induced hydrogen-bond symmetrization and formation of δ -phase
66 AlOOH–FeOOH– $\text{MgSiO}_2(\text{OH})_2$ – SiO_2 solid solution, which is of potential important
67 significance to water circulation and dynamic evolution in the Earth's deep interior
68 (Hsieh et al., 2020; Sano-Furukawa et al., 2018; Sano-Furukawa et al., 2009; Yuan et
69 al., 2019). Elasticity data of phase Egg and δ -AlOOH is essential to interpret seismic
70 (geophysical) observations and probe their possible existence and implication in the
71 Earth's deep interior. Although first-principle calculation have been performed to
72 calculate the elastic property of these two phases, few experimental study on their
73 elasticity has ever been reported even at ambient condition. To date, only one Brillouin
74 scattering study was performed on δ -AlOOH poly-crystalline aggregates (Mashino et
75 al., 2016). Meanwhile, no experimental elastic data have be published for the phase Egg
76 with the exception of buck moduli obtain from static compression X-ray diffraction
77 (Schulze et al., 2018; Vanpeteghem et al., 2003).

78 In this study, we performed Brillouin scattering measurements on single crystal
79 phase Egg and δ -AlOOH at ambient conditions. The full elastic tensors were extracted
80 from the acoustic velocity using the Christoffell's equation. We quantify the
81 compressional and shear wave velocities as well as the elastic anisotropy of phase Egg
82 and δ -AlOOH, which will refine our understanding of the seismic feature of these two
83 phases.

84 **Experimental methods**

85 **Synthesis and characterization of single crystals**

86 High-quality single crystals of Phase Egg and δ -AlOOH were synthesized at high
87 pressures and high temperatures using the Sakura 2500-ton multi-anvil apparatus at
88 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. To synthesize
89 single-crystal phase Egg, a grounded mixture of CaO, Al(OH)₃ and SiO₂ in 1:4:2 mole
90 ratio was used as starting material and sealed in an welded gold capsule. The synthesis
91 experiment was conducted at 17 GPa and 1400 °C with a duration of 20 hours (run
92 number U801). This experiment was initially intended to synthesize CaAl₄Si₂O₁₁, a Ca-
93 rich aluminosilicate (Irfune et al., 1994; Zhai and Ito, 2008), but the recovered product
94 turned out to be composed of single crystals of phase Egg with maximum dimensions
95 of 200 μ m and some fine powders. The chemical compositions of several crystals
96 determined by electron microprobe analysis (EMPA) are 50.5(1) wt% SiO₂ and 41.7(1)
97 wt% Al₂O₃, yielding a chemical formula of Al_{0.98(1)}Si_{1.01(1)}O₄H_{1.02(1)} with the H content
98 determined from the weight deficiency in total, which is close to the ideal formula of
99 phase Egg. Single-crystal X-ray diffraction measurements also confirm that the
100 synthesized crystals are phase Egg.

101 Single-crystal δ -AlOOH was synthesized by following the procedure reported by
102 Kawazoe et al., 2017. Reagent-grade Al(OH)₃ powder of high purity (99.99%) was used
103 as starting material and the synthesis experiment was conducted at 20 GPa and 1000 °C
104 with a duration of 22 hours (run number U795). The recovered product is composed of
105 crystals with a maximum dimension of about 300 μ m. X-ray diffraction and EPMA
106 measurements verified that the synthesized crystals are the pure phase of δ -AlOOH.

107 **Sample preparation and Brillouin scattering measurements**

108 To tightly constrain the elastic tensors of phase Egg (monoclinic, $P2_1/n$) and δ -
109 AlOOH (orthorhombic, $P2_1nm$), which possess 13 and 9 elastic constants respectively,
110 normally at least 3-4 platelets with different orientations are needed for Brillouin

111 spectroscopic measurements on single-crystal elasticity. We carefully checked the
112 synthesized crystals under microscope and selected a number of high-quality clean and
113 colourless crystals with homogeneous extinction for both phase Egg and δ -AlOOH.
114 With the selected single crystals of phase Egg, we prepared four double-polished
115 platelets with \sim 15 μ m thickness. The Miller indexes of the polished faces of the four
116 platelet, which were determined by traditional single crystal X-ray diffraction at the
117 University of Texas at Austin, are (8, 3, -5), (0, -1, -1), (45, -6, 13) and (2, -1, 2). All
118 four crystals displayed very similar lattice parameters and unit cell volumes, and the
119 average values are: $a = 7.1449(7)$, $b = 4.3295(4)$, $c = 6.9526(7)$, $\beta = 98.35(9)^\circ$, and V_0
120 = 201.79(4) \AA^3 , which are consistent with the values reported by previous studies
121 (Schulze et al., 2018; Vanpeteghem et al., 2003). The calculated density is 3.740(2)
122 g/cm³ with the measured unit-cell volume and the chemical formula mentioned above.

123 In case of δ -AlOOH, it was somehow difficult to prepare the platelets as the
124 synthesized crystals are often twin crystals, preventing us to obtain a platelet of single
125 crystal at some orientations. Fortunately, some twin crystals are large enough so as to
126 allow us to collect Brillouin scattering signals from one single-crystal domain. Finally,
127 we obtained three workable platelets with the Miller indexes (0, 0, 1), (2, 9, 2) and (10,
128 7, 3). The orientations of these platelets were determined by single-crystal X-ray
129 diffraction measurements with a beam size of 3 \times 4 μ m, which were performed at 13-
130 IDD beamline sector of GSECARS at APS. The average lattice parameters of these
131 three platelets are: $a = 4.7093$ (8), $b = 4.2271$ (1), $c = 2.8302$ (1) and $V_0 = 56.34(5)$ \AA^3 ,
132 and the calculated density is 3.536(1) g/cm³ with the measured lattice parameters and
133 the chemical formula AlOOH.

134 Brillouin scattering measurements were conducted at ambient conditions using a
135 Brillouin system at the Mineral Physics Laboratory, the University of Texas at Austin
136 (Fu et al., 2017; Fu et al., 2019; Zhang et al., 2021). In the Brillouin system, a single-
137 frequency 532 nm solid-state green laser (Coherent Verdi V2) was used as a excitation
138 light source and a JRS six-pass tandem Fabry–Pérot interferometer equipped with a
139 Perkin–Elmer photomultiplier detector was used to record the Brillouin spectra of the

140 sample. Samples (platelets) were loaded in a short-symmetrical diamond-anvil cell
141 without pressure transmitting medium. The laser beam was focused down to the sample
142 in a spot approximately 20 μm in diameter. In a symmetric forward scattering geometry,
143 sound (acoustic) velocities (v) were calculated from the measured Brillouin shifts (Δv)
144 through the equation (Whitfield et al., 1976):

145

$$v = \frac{\Delta v \cdot \lambda_0}{2 \sin(\theta/2)}$$

146 where v is the acoustic velocity, Δv is the measured Brillouin frequency shift, λ_0 is the
147 laser wavelength of 532 nm, and θ is the external scattering angle of 48.3° .

148 **Results and discussion**

149 **Phase Egg**

150 Brillouin scattering measurements were performed for each platelet of phase Egg
151 in 19 distinct directions at an interval of 10° over an angular range of 180°. One typical
152 Brillouin spectrum is shown in Figure 1a. In most cases, both compressional acoustic
153 mode (V_P) and shear acoustic modes (V_{s1} , V_{s2}) can be observed, but the V_P signal was
154 blocked by the strong V_s peak of diamond at some directions. The dispersion of
155 measured acoustic velocities with azimuthal angle for the four platelets of phase Egg
156 are depicted in Figure 2. Using the density from the single-crystal X-ray diffraction
157 measurements and the sound velocities as a function of azimuthal angle measured by
158 Brillouin scattering, we inverted the 13 independent elastic constants of phase Egg by
159 using a nonlinear least-squares fitting to the Chritoffel's equation (Every, 1980). In the
160 procedure of inversion, we used the C_{ij} values calculated by *first-principals* simulation
161 as the initial values (Mookherjee et al., 2019). All the elastic constants based on the
162 Cartesian coordinated system where the X -axis parallel to a^* -axis and Y -axis parallel to
163 b -axis are obtained after several fitting runs. The inverted results of elastic constants C_{ij}
164 for phase Egg are given in Table 1, together with the theoretical values (Mookherjee et
165 al., 2019). Our results are generally in agreement with those of Mookherjee et al.,
166 2019, but all of our principal C_{ij} are much lower than the theoretical values.

167 The principal elastic constants exhibit a relation of $C_{11} > C_{33} > C_{22}$, while the shear
168 elastic components holds a relation of $C_{55} > C_{66} > C_{44}$. These relations can be well
169 explained by the orientation of the hydrogen bond, which is mostly aligned along the
170 *b*-axis but is tilted to have a component along the *c*-axis of the crystal structure, and the
171 distortion of SiO_6 octahedron with the longer Si-O(4) bond lying in the *a-c* plane
172 (Schmidt et al., 1998; Schulze et al., 2018) (Fig. S1 a and b). The values of the principal
173 elastic constants with C_{11} being twice as much as C_{22} indicate that phase Egg has a
174 striking anisotropy in axial compressibility and *b*-axis is the most compressible
175 direction, in agreement with the observations by previous static compression
176 experiments (Schulze et al., 2018; Vanpeteghem et al., 2003).

177 The measured elastic constants of phase Egg allow us to evaluate its azimuthal
178 anisotropy of acoustic velocity. From 3D azimuthal imaging of velocity distribution
179 (Figure S2), it is noticed that the compressional-wave velocity varies from 7.68 km/s to
180 11.34 km/s. The fastest compressional-wave velocity propagates along the direction
181 that deviates 38° to *a*-axi in *a-c* plane, and slowest compressional-wave velocity
182 propagates along the *b*-axis direction. Similarly, the shear-wave velocity also exhibits
183 strong dependence on directions (anisotropy). The anisotropy factors of compressional-
184 wave and shear-wave velocities, $AV = 200 \times (V_{\max} - V_{\min}) / (V_{\max} + V_{\min})$, are calculated to
185 be $AV_P = 38.4\%$, $AV_{S1} = 21.3\%$ and $AV_{S2} = 21.2$, and the shear-wave splitting factor,
186 which is defined as $AV_S = 200 \times (V_{S1} - V_{S2}) / (V_{S1} + V_{S2})$, is calculated to be 22.1%. Using
187 the Voigt–Reuss–Hill averages, the aggregate properties such as adiabatic bulk and
188 moduli as well as the aggregate compressional-wave and shear-wave velocities are also
189 calculated and given in Table 1.

190 **δ-AlOOH**

191 Figure 1b show a representative Brillouin spectrum of δ-AlOOH. The measured
192 acoustic velocities as a function of azimuthal angle for the three δ-AlOOH platelets are
193 shown in Figure 3. The full 9 independent elastic constants of δ-AlOOH were inverted
194 by fitting all the velocity data of the three platelets using the Christoffel's equation and

195 the results are given in Table 1. Our values of the elastic constants are in good
196 agreement with the theoretical values using *first-principals* simulations (Tsuchiya and
197 Tsuchiya, 2009). We found the principal elastic constants hold the relation $C_{33} > C_{11} > C_{22}$
198 and C_{22} are much smaller than C_{33} and C_{11} . In accordance with this relation, the velocity
199 along the c -axis is faster than a -axis and b -axis by about 7.4% and 21.1%, respectively.
200 The relation of $C_{33} > C_{11} > C_{22}$ reflects the anisotropy in axial compressibility in the
201 crystal structure of δ -AlOOH which is consistent the fact that the O-H bond lie in the
202 a - b plane (see Figure S1c), hence a - and b -axes are more compressible than c -axis. The
203 anisotropic factors of δ -AlOOH are calculated and yield values of $AV_P = 19.1\%$, AV_{S1}
204 = 6.89 and $AV_{S2} = 6.56$. The shear-wave splitting factor is calculated to be $AV_s =$
205 12.65%. The calculated isotropic aggregate properties of δ -AlOOH are shown Table 1.
206 Interestingly, the aggregate V_P and V_S values in our study are higher by 5.2% and 8.8%
207 respectively than those determined by Brillouin scattering measurements on
208 polycrystalline aggregate of δ -AlOOH (Mashino et al., 2016). Previous study shown
209 the size of the polycrystalline aggregate sample influence significantly the obtained
210 velocity in Brillouin scattering measurements. For example, large reductions of
211 compressional and shear wave velocities were observed in the nanocrystalline MgO
212 (Gleason et al., 2011; Marquardt et al., 2011). In this sense, the discrepancy between
213 our results and Mashino's et al. (2016) probably also originated from the size effect of
214 polycrystalline δ -AlOOH, which deserved further study to clarify this issue in future.

215 **Implications**

216 Seismology is one of the primary methods for investigating water circulation in
217 the earth's interior. To date, many elasticity studies have been carried out on the major
218 water-bearing mantle minerals, such as olivine, wadsleyite and ringwoodite (Jacobsen
219 et al., 2008; Mao et al., 2008b; Mao et al., 2012). Although the amounts of hydrous
220 phase Egg and δ -AlOOH are not high with comparison to major mantle minerals, it is
221 also possible to detect them by seismic observations if they exhibit remarkable contrast
222 of seismic property to their surrounding rocks in subduction zone. We have compiled
223 the density, aggregate elastic moduli, aggregate acoustic velocities and anisotropy

224 factors of typical minerals in subducted slabs together with phase Egg and δ -AlOOH at
225 ambient condition (Fan et al., 2020; Fan et al., 2019; Jackson et al., 2006; Jiang et al.,
226 2009; Mao et al., 2015; Mao et al., 2008a; Mao et al., 2012; Sanchez-Valle et al., 2019;
227 Sinogeikin et al., 1998; Sinogeikin et al., 2004; Wang et al., 2014; Wu et al., 2016;
228 Zhang and Bass, 2016)(See Table S1). It is found that the density, elastic moduli and
229 acoustic velocities of phase Egg are quite close to that of ferropericlase with 6wt% iron,
230 but the phase Egg exhibits larger anisotropy of compressional-wave velocity (AV_P).
231 Actually, the AV_P of phase Egg is higher than that of all the other minerals. Therefore,
232 it is likely phase Egg is a potential candidate of seismic anisotropy of compressional-
233 wave velocity in subducting slabs. As for δ -AlOOH, its V_P are faster than all the other
234 major minerals in subducted slabs except stishovite and bidgmanite, and its V_S is close
235 to bidgmanite. Thus δ -AlOOH may result in high-velocity anomaly at depths of mantle
236 transition zone. As mentioned before, with pressure increasing, phase Egg will
237 decompose to δ -AlOOH and stishovite at the depth of the uppermost lower mantle
238 along slab geotherm through the reaction: $AlSi_3OH=\delta-AlOOH+SiO_2$. Based on the
239 elastic data obtained at ambient conditions in this study, the velocity contrast of this
240 reaction are determined to be 17% for V_P and 18% for V_S , respectively, which is likely
241 detectable by seismic observation in deep mantle of the earth.

242 It should to be stressed that above conclusions require to be further refined by
243 elasticity experiments when being applied to seismic observations in the deep earth's
244 interior. Pressure and temperature are two important thermal parameters which
245 influence the elasticity of materials. In particular, recent *first-principals* calculations
246 shows the evolution of elastic properties with pressure is abnormal due to the hardening
247 behavior of hydrogen bond. In the case of δ -AlOOH, the pressure-induced
248 symmetrization of hydrogen bond was observed and hardening effect of hydrogen-bond
249 symmetrization on elastic constants was unveiled by Brillouin scattering study on
250 polycrystalline aggregate and first-principals theoretical study (Mashino et al., 2016;
251 Tsuchiya and Tsuchiya, 2009). Meanwhile, pressure-induced transfer of hydrogen
252 between acceptor and donor was proposed by recent study (Mookherjee et al., 2019),

253 which is interpreted to affect significantly the elastic constants of phase Egg at high
254 pressure. Because the abnormal behaviors of hydrogen bond probably occurs in the
255 earth's interior for phase Egg and δ -AlOOH, further in-situ high-pressure and high-
256 temperature elasticity experiments are needed to explore the elastic behavior of these
257 two hydrous minerals under extreme conditions of the earth's deep interior.

258 **Acknowledgments**

259 We would like to thank Vincent Lynch for measuring the crystal orientations of
260 phase Egg. The single-crystal X-ray diffraction of δ -AlOOH were performed at 13-IDD
261 beamline of GSECARS. M. Song acknowledges financial support from the Strategic
262 Priority Research Program (B) of Chinese Academy of Sciences (Grant No.
263 XDB18000000) and the National Natural Science Foundation of China (Grants No.
264 41874107, 41574079).

265 **References**

266 Duan, Y., Sun, N., Wang, S., Li, X., Guo, X., Ni, H., Prakapenka, V.B., and Mao, Z.
267 (2018) Phase stability and thermal equation of state of δ -AlOOH: Implication for
268 water transportation to the Deep Lower Mantle. *Earth and Planetary Science
Letters*, 494, 92-98.

269 Eggleton, R.A., Boland, J.N., and Ringwood, A.E. (1978) HIGH-PRESSURE
270 SYNTHESIS OF A NEW ALUMINUM SILICATE - AL₅Si₅O₁₇(OH).
271 *Geochemical Journal*, 12(3), 191-194.

272 Every, A. (1980) General closed-form expressions for acoustic waves in elastically
273 anisotropic solids. *Physical Review B*, 22(4), 1746.

274 Fan, D., Fu, S., Lu, C., Xu, J., Zhang, Y., Tkachev, S.N., Prakapenka, V.B., and Lin,
275 J.-F. (2020) Elasticity of single-crystal Fe-enriched diopside at high-pressure
276 conditions: Implications for the origin of upper mantle low-velocity zones.
277 *American Mineralogist: Journal of Earth and Planetary Materials*, 105(3), 363-374.

278 Fan, D., Xu, J., Lu, C., Tkachev, S.N., Li, B., Ye, Z., Huang, S., Prakapenka, V.B., and
279 Zhou, W. (2019) Elasticity of single-crystal low water content hydrous pyrope at
280 high-pressure and high-temperature conditions. *American Mineralogist: Journal
281 of Earth and Planetary Materials*, 104(7), 1022-1031.

282 Fu, S., Yang, J., and Lin, J.-F. (2017) Abnormal elasticity of single-crystal
283 magnesiosiderite across the spin transition in Earth's lower mantle. *Physical
284 review letters*, 118(3), 036402.

285 Fu, S., Yang, J., Tsujino, N., Okuchi, T., Purevjav, N., and Lin, J.-F. (2019) Single-
286 crystal elasticity of (Al, Fe)-bearing bridgmanite and seismic shear wave radial

288 anisotropy at the topmost lower mantle. *Earth and Planetary Science Letters*, 518,
289 116-126.

290 Fukuyama, K., Ohtani, E., Shibasaki, Y., Kagi, H., and Suzuki, A. (2017) Stability field
291 of phase Egg, AlSiO_3OH at high pressure and high temperature: possible water
292 reservoir in mantle transition zone. *Journal of Mineralogical and Petrological
293 Sciences*, 112(1), 31-35.

294 Gleason, A.E., Marquardt, H., Chen, B., Speziale, S., Wu, J., and Jeanloz, R. (2011)
295 Anomalous sound velocities in polycrystalline MgO under non-hydrostatic
296 compression. *Geophysical Research Letters*, 38.

297 Hsieh, W.P., Ishii, T., Chao, K.H., Tsuchiya, J., Deschamps, F., and Ohtani, E. (2020)
298 Spin transition of iron in δ -(Al, Fe) OOH induces thermal anomalies in Earth's
299 lower mantle. *Geophysical Research Letters*, 47(4), e2020GL087036.

300 Irifune, T., Ringwood, A.E., and Hibberson, W.O. (1994) SUBDUCTION OF
301 CONTINENTAL-CRUST AND TERRIGENOUS AND PELAGIC
302 SEDIMENTS - AN EXPERIMENTAL-STUDY. *Earth and Planetary Science
303 Letters*, 126(4), 351-368.

304 Iwamori, H. (2004) Phase relations of peridotites under H_2O -saturated conditions and
305 ability of subducting plates for transportation of H_2O . *Earth and Planetary Science
306 Letters*, 227(1-2), 57-71.

307 Jackson, J.M., Sinogeikin, S.V., Jacobsen, S.D., Reichmann, H.J., Mackwell, S.J., and
308 Bass, J.D. (2006) Single-crystal elasticity and sound velocities of $(\text{MgO}_{0.94}\text{FeO}_{0.06})$ O
309 ferropericlase to 20 GPa. *Journal of Geophysical Research: Solid Earth*,
310 111(B9).

311 Jacobsen, S.D. (2006) Effect of water on the equation of state of nominally anhydrous
312 minerals. *Water in Nominally Anhydrous Minerals*, 62, 321-342.

313 Jacobsen, S.D., Jiang, F., Mao, Z., Duffy, T.S., Smyth, J.R., Holl, C.M., and Frost, D.J.
314 (2008) Effects of hydration on the elastic properties of olivine. *Geophysical
315 Research Letters*, 35(14).

316 Jiang, F., Gwanmesia, G.D., Dyuzheva, T.I., and Duffy, T.S. (2009) Elasticity of
317 stishovite and acoustic mode softening under high pressure by Brillouin scattering.
318 *Physics of the Earth and Planetary Interiors*, 172(3-4), 235-240.

319 Kawazoe, T., Ohira, I., Ishii, T., Ballaran, T.B., McCammon, C., Suzuki, A., and Ohtani,
320 E. (2017) Single crystal synthesis of δ -(Al, Fe) OOH. *American Mineralogist*,
321 102(9), 1953-1956.

322 Litasov, K., and Ohtani, E. (2003) Stability of various hydrous phases in CMAS
323 pyrolite-H₂O system up to 25 GPa. *Physics and Chemistry of Minerals*, 30(3),
324 147-156.

325 Mao, Z., Fan, D., Lin, J.-F., Yang, J., Tkachev, S.N., Zhuravlev, K., and Prakapenka,
326 V.B. (2015) Elasticity of single-crystal olivine at high pressures and temperatures.
327 *Earth and Planetary Science Letters*, 426, 204-215.

328 Mao, Z., Jacobsen, S., Jiang, F., Smyth, J., Holl, C., and Duffy, T. (2008a) Elasticity of
329 hydrous wadsleyite to 12 GPa: implications for Earth's transition zone.
330 *Geophysical Research Letters*, 35(21).

331 Mao, Z., Jacobsen, S.D., Jiang, F., Smyth, J.R., Holl, C.M., Frost, D.J., and Duffy, T.S.

332 (2008b) Single-crystal elasticity of wadsleyites, beta-Mg₂SiO₄, containing 0.37-
333 1.66 wt.% H₂O. *Earth and Planetary Science Letters*, 266(1-2), 78-89.

334 Mao, Z., Lin, J.-F., Jacobsen, S.D., Duffy, T.S., Chang, Y.-Y., Smyth, J.R., Frost, D.J.,
335 Hauri, E.H., and Prakapenka, V.B. (2012) Sound velocities of hydrous
336 ringwoodite to 16 GPa and 673 K. *Earth and Planetary Science Letters*, 331, 112-
337 119.

338 Marquardt, H., Gleason, A., Marquardt, K., Speziale, S., Miyagi, L., Neusser, G., Wenk,
339 H.R., and Jeanloz, R. (2011) Elastic properties of MgO nanocrystals and grain
340 boundaries at high pressures by Brillouin scattering. *Physical Review B*, 84(6).

341 Mashino, I., Murakami, M., and Ohtani, E. (2016) Sound velocities of δ -AlOOH up to
342 core-mantle boundary pressures with implications for the seismic anomalies in the
343 deep mantle. *Journal of Geophysical Research: Solid Earth*, 121(2), 595-609.

344 Mookherjee, M., Panero, W.R., Wunder, B., and Jahn, S. (2019) Anomalous elastic
345 behavior of phase egg, AlSiO₃(OH), at high pressures. *American Mineralogist*,
346 104(1), 130-139.

347 Ohtani, E. (2020) The role of water in Earth's mantle. *National Science Review*, 7(1),
348 224-232.

349 Ohtani, E., Litasov, K., Suzuki, A., and Kondo, T. (2001) Stability field of new hydrous
350 phase, δ -AlOOH, with implications for water transport into the deep mantle.
351 *Geophysical Research Letters*, 28(20), 3991-3993.

352 Ono, S. (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge
353 basalt compositions: Implications for water transport in subduction zones. *Journal
354 of Geophysical Research-Solid Earth*, 103(B8), 18253-18267.

355 Pamato, M.G., Myhill, R., Ballaran, T.B., Frost, D.J., Heidelbach, F., and Miyajima, N.
356 (2015) Lower-mantle water reservoir implied by the extreme stability of a hydrous
357 aluminosilicate. *Nature Geoscience*, 8(1), 75-79.

358 Sanchez-Valle, C., Wang, J., and Rohrbach, A. (2019) Effect of calcium on the
359 elasticity of majoritic garnets and the seismic gradients in the mantle transition
360 zone. *Physics of the Earth and Planetary Interiors*, 293, 106272.

361 Sano-Furukawa, A., Hattori, T., Komatsu, K., Kagi, H., Nagai, T., Molaison, J.J., dos
362 Santos, A.M., and Tulk, C.A. (2018) Direct observation of symmetrization of
363 hydrogen bond in δ -AlOOH under mantle conditions using neutron diffraction.
364 *Scientific reports*, 8(1), 1-9.

365 Sano-Furukawa, A., Kagi, H., Nagai, T., Nakano, S., Fukura, S., Ushijima, D., Iizuka,
366 R., Ohtani, E., and Yagi, T. (2009) Change in compressibility of δ -AlOOH and δ -
367 AlOOD at high pressure: A study of isotope effect and hydrogen-bond
368 symmetrization. *American Mineralogist*, 94(8-9), 1255-1261.

369 Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., Ohishi, Y., and
370 Kikegawa, T. (2008) Aluminous hydrous mineral δ -AlOOH as a carrier of
371 hydrogen into the core-mantle boundary. *Geophysical Research Letters*, 35(3).

372 Sano, A., Ohtani, E., Kubo, T., and Funakoshi, K.-i. (2004) In situ X-ray observation
373 of decomposition of hydrous aluminum silicate AlSiO₃OH and aluminum oxide
374 hydroxide δ -AlOOH at high pressure and temperature. *Journal of Physics and
375 Chemistry of Solids*, 65(8-9), 1547-1554.

376 Schmidt, M.W., Finger, L.W., Angel, R.J., and Dinnebier, R.E. (1998) Synthesis,
377 crystal structure, and phase relations of AlSiO_3OH , a high-pressure hydrous phase.
378 *American Mineralogist*, 83(7-8), 881-888.

379 Schmidt, M.W., and Poli, S. (1998) Experimentally based water budgets for
380 dehydrating slabs and consequences for arc magma generation. *Earth and*
381 *Planetary Science Letters*, 163(1-4), 361-379.

382 Schulze, K., Pamato, M.G., Kurnosov, A., Ballaran, T.B., Glazyrin, K., Pakhomova,
383 A., and Marquardt, H. (2018) High-pressure single-crystal structural analysis of
384 AlSiO_3OH phase egg. *American Mineralogist*, 103(12), 1975-1980.

385 Sinogeikin, S., Katsura, T., and Bass, J.D. (1998) Sound velocities and elastic properties
386 of Fe-bearing wadsleyite and ringwoodite. *Journal of Geophysical Research: Solid*
387 *Earth*, 103(B9), 20819-20825.

388 Sinogeikin, S.V., Zhang, J., and Bass, J.D. (2004) Elasticity of single crystal and
389 polycrystalline MgSiO_3 perovskite by Brillouin spectroscopy. *Geophysical*
390 *Research Letters*, 31(6).

391 Suzuki, A., Ohtani, E., and Kamada, T. (2000) A new hydrous phase $\delta\text{-AlOOH}$
392 synthesized at 21 GPa and 1000 C. *Physics and Chemistry of Minerals*, 27(10),
393 689-693.

394 Tsuchiya, J., and Tsuchiya, T. (2009) Elastic properties of $\delta\text{-AlOOH}$ under pressure:
395 First principles investigation. *Physics of the Earth and planetary interiors*, 174(1-
396 4), 122-127.

397 Vanpeteghem, C.B., Ohtani, E., Kondo, T., Takemura, K., and Kikegawa, T. (2003)
398 Compressibility of phase Egg AlSiO_3OH : Equation of state and role of water at
399 high pressure. *American Mineralogist*, 88(10), 1408-1411.

400 Wang, J., Bass, J.D., and Kastura, T. (2014) Elastic properties of iron-bearing
401 wadsleyite to 17.7 GPa: Implications for mantle mineral models. *Physics of the*
402 *Earth and Planetary Interiors*, 228, 92-96.

403 Whitfield, C.H., Brody, E.M., and Bassett, W.A. (1976) Elastic moduli of NaCl by
404 Brillouin scattering at high pressure in a diamond anvil cell. *Review of Scientific*
405 *Instruments*, 47(8), 942-947.

406 Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., and Kaminsky, F. (2007) Inclusions
407 of nanocrystalline hydrous aluminium silicate "Phase Egg" in superdeep diamonds
408 from Juina (Mato Grosso State, Brazil). *Earth and Planetary Science Letters*,
409 259(3-4), 384-399.

410 Wu, Y., Yang, J., Wu, X., Song, M., Yoshino, T., Zhai, S., Qin, S., Huang, H., and Lin,
411 J.F. (2016) Elasticity of single-crystal NAL phase at high pressure: A potential
412 source of the seismic anisotropy in the lower mantle. *Journal of Geophysical*
413 *Research: Solid Earth*, 121(8), 5696-5707.

414 Yuan, H., Zhang, L., Ohtani, E., Meng, Y., Greenberg, E., and Prakapenka, V.B. (2019)
415 Stability of Fe-bearing hydrous phases and element partitioning in the system
416 $\text{MgO}-\text{Al}_2\text{O}_3-\text{Fe}_2\text{O}_3-\text{SiO}_2-\text{H}_2\text{O}$ in Earth's lowermost mantle. *Earth and*
417 *Planetary Science Letters*, 524, 115714.

418 Zhai, S., and Ito, E. (2008) Phase relations of $\text{CaAl}_4\text{Si}_2\text{O}_11$ at high-pressure and high-
419 temperature with implications for subducted continental crust into the deep mantle.

420 Physics of the Earth and Planetary Interiors, 167(3-4), 161-167.
421 Zhang, J.S., and Bass, J.D. (2016) Single-crystal elasticity of natural Fe-bearing
422 orthoenstatite across a high-pressure phase transition. *Geophysical Research
423 Letters*, 43(16), 8473-8481.
424 Zhang, Y., Fu, S., Wang, B., and Lin, J.-F. (2021) Elasticity of a Pseudoproper
425 Ferroelastic Transition from Stishovite to Post-Stishovite at High Pressure.
426 *Physical Review Letters*, 126(2), 025701.

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453 **Tables**454 **Table 1.** Elastic properties of phase Egg and δ -AlOOH at ambient conditions.

455

	Phase Egg		δ -AlOOH	
	This study	Mookherjee et al. (2019)	This study	Tsuchiya et al. (2009)
ρ (g/cm ³)	3.740(2)	3.798	3.536(1)	3.383
C_{11} (GPa)	467.2(15)	504.7	375.9(9)	314
C_{22} (GPa)	220.8(8)	280.4	295.4(11)	306
C_{33} (GPa)	305.2(7)	401.0	433.5(12)	391
C_{44} (GPa)	109.8(4)	150.3	129.2(6)	117
C_{55} (GPa)	166.0(5)	174.0	133.4(7)	115
C_{66} (GPa)	139.6(5)	159.7	166.4(6)	152
C_{12} (GPa)	115.9(9)	98.6	49.7(9)	34
C_{13} (GPa)	164.3(9)	141.6	91.9(15)	95
C_{23} (GPa)	26.3(7)	87.9	52.8(21)	67
C_{15} (GPa)	3.2(6)	7.5		
C_{25} (GPa)	20.9(9)	13.5		
C_{35} (GPa)	21.2(4)	19.8		
C_{46} (GPa)	13.7(4)	18.6		
K_{Voigt} (GPa)	178.5(8)	204.7	166.0(13)	155.9
G_{Voigt} (GPa)	128.9(3)	154.0	146.5(3)	131.1
K_{Reuss} (GPa)	138.2(8)	188.2	159.8(13)	151.2
G_{Reuss} (GPa)	117.0(3)	148.4	144.0(3)	128.8
K_{VRH} (GPa)	158.3(8)	196.4	162.9(13)	153.5
G_{VRH} (GPa)	123.0(3)	151.2	145.2(3)	130.0
V_P (km/s)	9.28(2)	10.25	10.04(2)	9.83
V_S (km/s)	5.73(1)	6.32	6.41(2)	6.20

456

457 **Figure 1.** Representative Brillouin spectra of (a) Phase Egg, (b) δ -AlOOH. The V_S of
458 diamond are marked with D.

459

460 **Figure 2.** The measured velocities of single-crystal phase Egg as a function of the
461 azimuthal angle in crystallographic plane. Dash lines are calculated using the fitting
462 elastic value.

463

464 **Figure 3.** The measured velocities of single-crystal δ -AlOOH as a function of the
465 azimuthal angle in crystallographic plane. Dash lines are calculated using the fitting
466 elastic value.

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

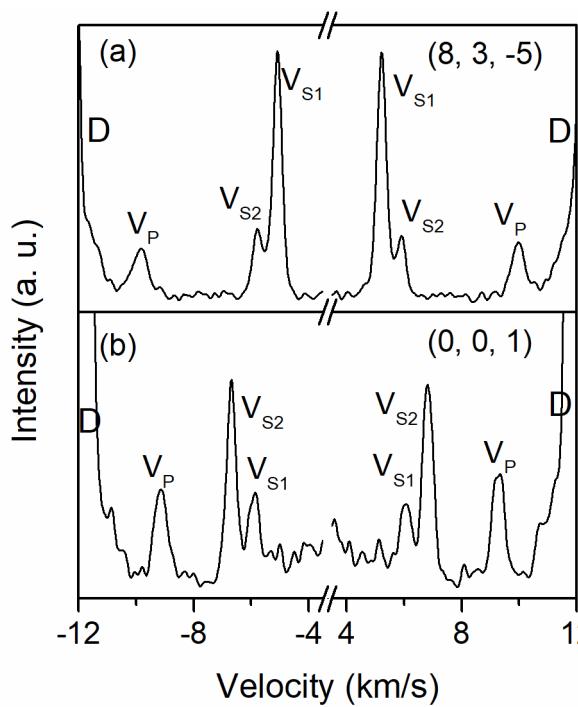
487

488

489

490

491


492

493

494

495

496 **Figure 1**

497

498

499

500

501

502

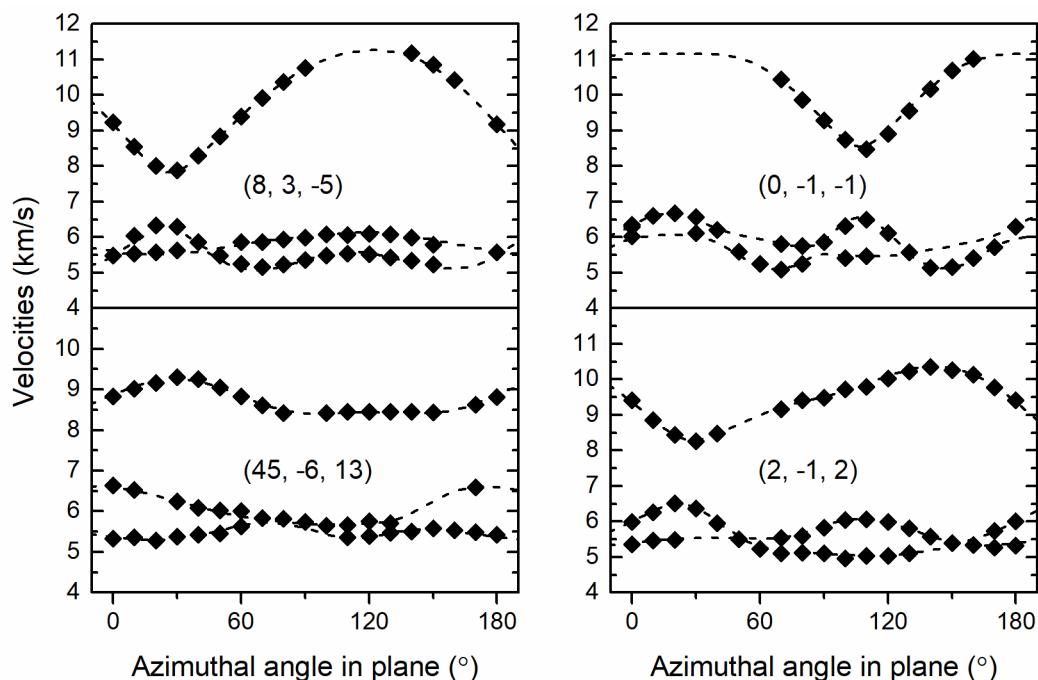
503

504

505

506

507


508

509

510

511 **Figure 2**

512

513

514

515

516

517

518

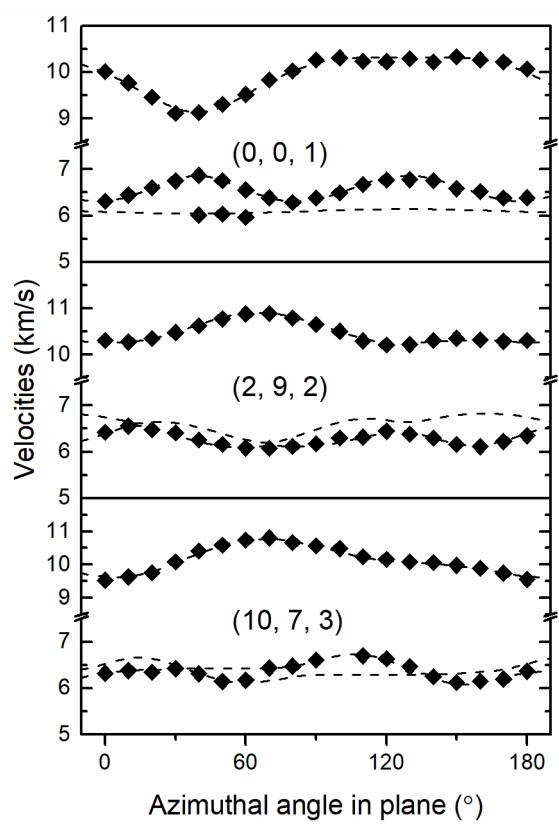
519

520

521

522

523



524

525

526 **Figure 3**

527

528

529

Table S1. Elastic property, seismic velocity and anisotropy of typical mantle minerals at ambient condition.

530

Mineral	Composition	ρ (g/cm ³)	K_s (GPa)	G (GPa)	V_p (km/s)	V_s (km/s)	AV_p	AV_s	Reference
Olivine	(Mg _{0.9} Fe _{0.1}) ₂ SiO ₄	3.343	129.6	77.8	8.35	4.82	24.3	18.0	Mao et al. (2015)
Enstatite	(Mg _{1.74} Fe _{0.16} Al _{0.05} Ca _{0.04} Cr _{0.02})(Si _{1.94} Al _{0.06})O ₆	3.288	112.5	75.9	8.06	4.80	14.0	13.7	Zhang et al. (2016)
Diopside	Ca _{0.99} Mg _{0.79} Fe _{0.21} Si _{2.01} O ₆	3.345	117.0	70.0	7.92	4.57	25.9	21.2	Fan et al. (2020)
Wadsleyite	(Mg _{0.915} Fe _{0.075}) ₂ SiO ₄	3.570	170.1	108.0	9.38	5.50	19.0	17.5	Wang et al. (2014)
Hydrous wadsleyite	0.84 wt.% H ₂ O	3.435	160.4	105.4	9.36	5.54	15.8	15.6	Mao et al. (2008)
Ringwoodite	(Mg _{0.91} Fe _{0.09}) ₂ SiO ₄	3.701	188.3	119.6	9.69	5.68	4.7	10.3	Sinogeikin et al. (1998)
Hydrous ringwoodite	(Mg _{1.633} Fe ²⁺ _{0.231} Fe ³⁺ _{0.026})Si _{1.00} H _{0.179} O ₄	3.649	175.0	106.0	9.31	5.39	4.6	10.4	Mao et al. (2012)
Majorite	(Ca _{0.39} Mg _{2.66})((Mg,Si) _{0.84} Al _{1.14})Si ₃ O ₁₂	3.460	159.0	87.1	8.92	5.02	0.3	0.7	Sanchez-Valle et al. (2019)
Pyrope	Mg _{3.006} Al _{1.995} Si _{3.005} O ₁₂ (900 ppmw H ₂ O)	3.557	168.6	92.3	9.05	5.09	0.9	2.1	Fan et al. (2019)
Bridgmanite	MgSiO ₃	4.106	253.6	175.0	10.89	6.53	7.6	15.4	Sinogeikin et al. (2004)
Ferropericlase	Mg _{0.94} Fe _{0.06} O	3.723	163.3	121.0	9.34	5.70	11.7	23.9	Jackson et al. (2006)
Stishovite	SiO ₂	4.301	308.2	228.1	11.93	7.28	25.6	34.2	Jiang et al. (2009)
NAL	Na _{0.71} Mg _{2.05} Al _{4.62} Si _{1.16} Fe ²⁺ _{0.09} Fe ³⁺ _{0.17} O ₁₂	3.870	213.1	132.1	10.02	5.84	14.7	15.1	Wu et al. (2016)
Phase Egg	Al _{0.981} Si _{1.008} O ₄ H _{1.022}	3.740	158.3	123.0	9.28	5.73	38.4	22.1	this study
δ -AlOOH	AlOOH	3.536	162.9	145.2	10.04	6.41	19.1	12.7	this study

531

532

533

534 **Figure S1.** (a) The structure of phase Egg. (b) The SiO_6 octahedron in phase Egg, the
535 length of Si-O bonds are shown (Schmidt et al., 1998). (c) The structure of δ -AlOOH.
536 The Al, Si and O atoms are shown in gray, blue and red, respectively. The H atoms are
537 small white spheres.

538

539 **Figure S2.** Upper hemisphere pole figures of compressional wave (V_P), shear wave
540 (V_{S1} , V_{S2}) and shear wave splitting (V_S) anisotropy of phase Egg.

541

542 **Figure S3.** Upper hemisphere pole figures of compressional wave (V_P), shear wave
543 (V_{S1} , V_{S2}) and shear wave splitting (V_S) anisotropy of δ -AlOOH.

544

545

546

547

548

549

550

551

552

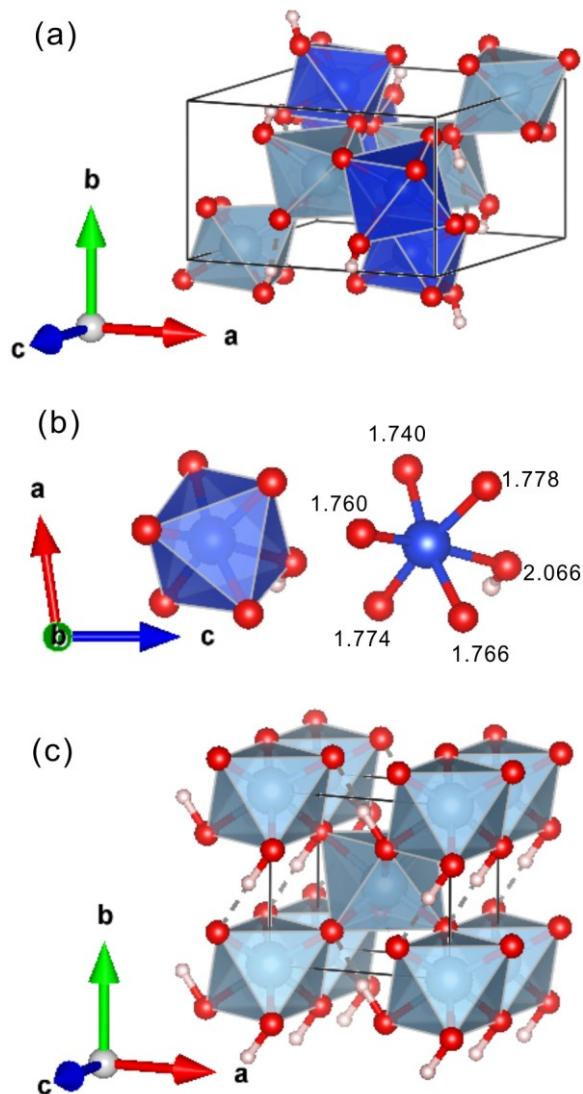
553

554

555

556

557


558

559

560

561

562 **Figure S1**

563

564

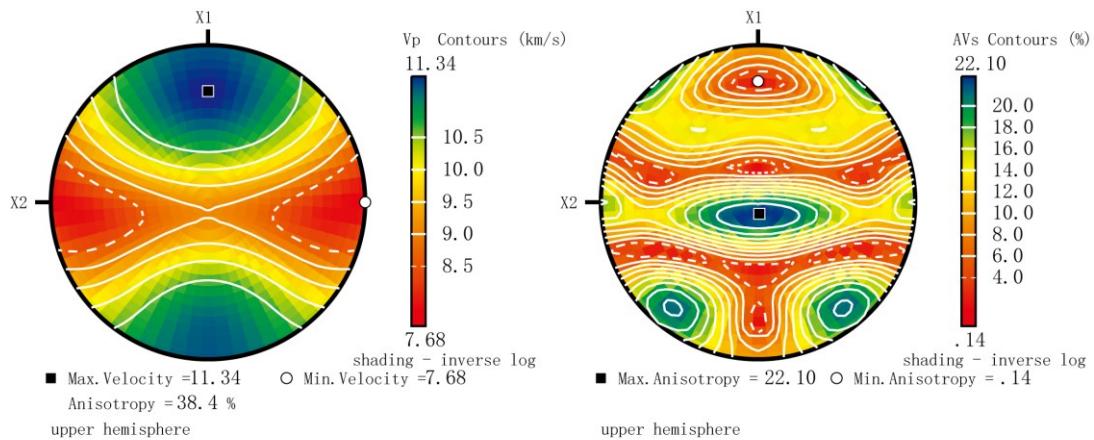
565

566

567

568

569


570

571

572

573

574 **Figure S2**

575

576

577

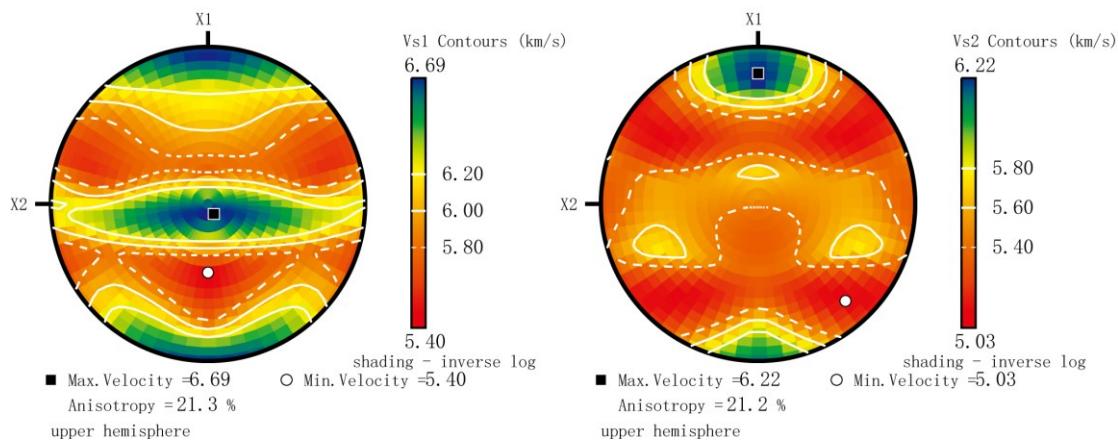
578

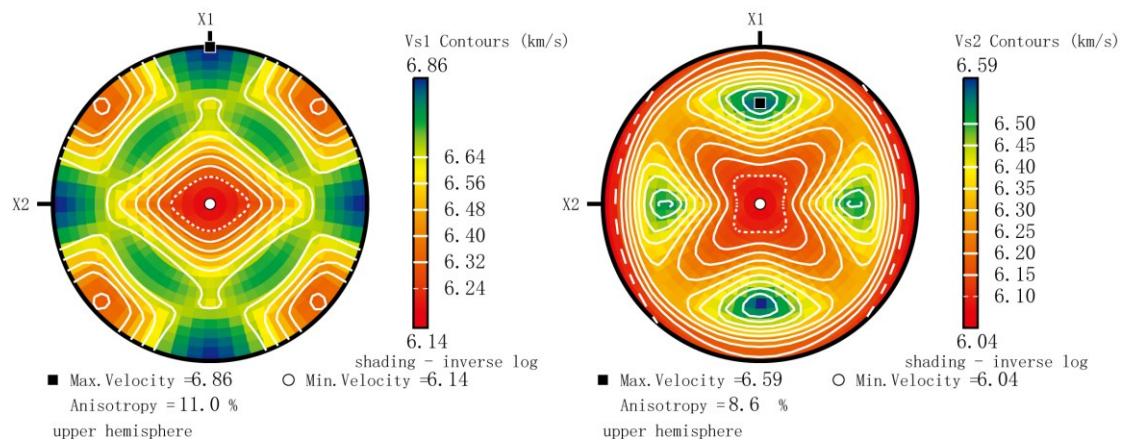
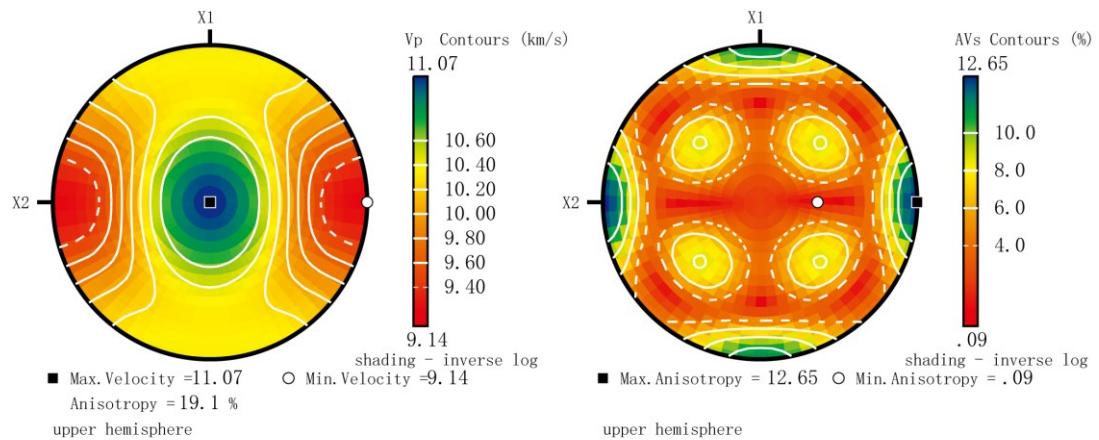
579

580

581

582


583



584

585

586

587

Figure S3