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Abstract 16 

The full elastic constants of phase Egg and δ-AlOOH have been determined by 17 

Brillouin scattering measurements at ambient condition. We find the phase Egg exhibits 18 

extremely anisotropic properties with azimuthal compressional wave anisotropy, AVP 19 

=38.4% and shear wave splitting anisotropy, AVS =22.1%, respectively, these values 20 

are higher than typical mantle minerals. Meanwhile, the anisotropy of δ-AlOOH is close 21 

to wadsleyite, but its aggregate velocity is faster than the majority of mantle minerals 22 

with the exception of stishovite and brigmanite, thus δ-AlOOH is a potential candidate 23 

for local positive abnormal seismic velocity in transition zone. In addition, the 24 

decomposition of phase Egg to δ-AlOOH and stishovite will lead to large velocity 25 

jumps of 17% for VP and 18% for VS based on present experimental elastic data at 26 

ambient condition, which is likely detectable by seismic observation in deep mantle of 27 

the earth. 28 
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Introduction 30 

Hydrous phases (minerals) formed in wet subducted lithospheric slabs are 31 

regarded as potential carriers to transport water into deep earth interior. Dehydration of 32 

these hydrous phases can release substantial amount of water and significantly affect 33 

the physical and chemical properties of the surrounding rocks, such as partial melting, 34 

rheology and conductivity (Jacobsen, 2006; Ohtani, 2020). Based on advanced high-35 

pressure and high-temperature apparatuses, researchers have examined phase relations 36 

on hydrous systems with various chemical compositions representing sedimentary, 37 

basaltic and peridotitic layers (components) of subducted slabs and a number of 38 

hydrous minerals have been identified (Iwamori, 2004; Litasov and Ohtani, 2003; 39 

Schmidt and Poli, 1998). Among these hydrous minerals, phase Egg and δ-AlOOH are 40 

two typical phases which exist in the sedimentary layer of subducted slabs or the 41 

simplified Al2O3+H2O+SiO2 ternary system (Ono, 1998; Schmidt et al., 1998). Besides, 42 

δ-AlOOH may even exist in basaltic and peridotitic layers (Suzuki et al., 2000). 43 

Experimental studies on the phase stability of phase Egg show it remains stable at 44 

depths of mantle transition zone (MTZ) along warm slab geotherm and then 45 

decomposes to δ-AlOOH and stishovite at depth of the upmost lower mantle (25-30GPa) 46 

(Fukuyama et al., 2017; Pamato et al., 2015; Sano et al., 2004). The δ-AlOOH is found 47 

to survive in the lower mantle down to core-mantle boundary conditions and even be 48 

stable along normal mantle geotherm (Duan et al., 2018; Ohtani et al., 2001; Sano et 49 

al., 2008; Yuan et al., 2019). Therefore, phase Egg and δ-AlOOH could form a 50 

continuous chain to transport water from MTZ to deep lower mantle in the process of 51 

slab subduction. The natural nano-size inclusions of phase Egg, which was discovered 52 

in ultradeep diamond (Wirth et al., 2007), provided the direct evidence for the existence 53 

of phase Egg at depth of mantle transition zone. 54 

Phase Egg with an ideal formula of AlSiO3OH was firstly synthesized by 55 

(Eggleton et al., 1978). It belongs to monoclinic system with space group P21/n 56 



 

 

(Schmidt et al., 1998) and composed of layer arranged Si-octahedron and Al-57 

octahedron (Figures S1a and b). High-pressure X-ray diffraction studies show that the 58 

compressibility of phase Egg is extremely anisotropic in three axis directions (Schulze 59 

et al., 2018; Vanpeteghem et al., 2003), which is also supported by recent first-60 

principles calculation (Mookherjee et al., 2019). The δ-AlOOH is a synthetic high-61 

pressure polymorphism of diaspore (α-AlOOH) and boehmite (γ-AlOOH), which 62 

adopts CaCl2-type structure with P21nm space group (Figure S1c) (Suzuki et al., 2000). 63 

In recent years, increasing attention has been to δ-AlOOH due to its wide P-T stability 64 

field, pressure-induced hydrogen-bond symmetrization and formation of δ-phase 65 

AlOOH–FeOOH–MgSiO2(OH)2 –SiO2 solid solution, which is of potential important 66 

significance to water circulation and dynamic evolution in the Earth’s deep interior 67 

(Hsieh et al., 2020; Sano-Furukawa et al., 2018; Sano-Furukawa et al., 2009; Yuan et 68 

al., 2019). Elasticity data of phase Egg and δ-AlOOH is essential to interpret seismic 69 

(geophysical) observations and probe their possible existence and implication in the 70 

Earth’s deep interior. Although first-principle calculation have been performed to 71 

calculate the elastic property of these two phases, few experimental study on their 72 

elasticity has ever been reported even at ambient condition. To date, only one Brillouin 73 

scattering study was performed on δ-AlOOH poly-crystalline aggregates (Mashino et 74 

al., 2016). Meanwhile, no experimental elastic data have be published for the phase Egg 75 

with the exception of buck moduli obtain from static compression X-ray diffraction 76 

(Schulze et al., 2018; Vanpeteghem et al., 2003).  77 

In this study, we performed Brillouin scattering measurements on single crystal 78 

phase Egg and δ-AlOOH at ambient conditions. The full elastic tensors were extracted 79 

from the acoustic velocity using the Christoffell's equation. We quantify the 80 

compressional and shear wave velocities as well as the elastic anisotropy of phase Egg 81 

and δ-AlOOH, which will refine our understanding of the seismic feature of these two 82 

phases.   83 



 

 

Experimental methods 84 

Synthesis and characterization of single crystals 85 

High-quality single crystals of Phase Egg and δ-AlOOH were synthesized at high 86 

pressures and high temperatures using the Sakura 2500-ton multi-anvil apparatus at 87 

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. To synthesize 88 

single-crystal phase Egg, a grounded mixture of CaO, Al(OH)3 and SiO2 in 1:4:2 mole 89 

ratio was used as starting material and sealed in an welded gold capsule. The synthesis 90 

experiment was conducted at 17 GPa and 1400 ℃ with a duration of 20 hours (run 91 

number U801). This experiment was initially intended to synthesize CaAl4Si2O11, a Ca-92 

rich aluminosilicate (Irifune et al., 1994; Zhai and Ito, 2008), but the recovered product 93 

turned out to be composed of single crystals of phase Egg with maximum dimensions 94 

of 200 μm and some fine powders. The chemical compositions of several crystals 95 

determined by electron microprobe analysis (EMPA) are 50.5(1) wt% SiO2 and 41.7(1) 96 

wt% Al2O3, yielding a chemical formula of Al0.98(1)Si1.01(1)O4H1.02(1) with the H content 97 

determined from the weight deficiency in total, which is close to the ideal formula of 98 

phase Egg. Single-crystal X-ray diffraction measurements also confirm that the 99 

synthesized crystals are phase Egg.  100 

Single-crystal δ-AlOOH was synthesized by following the procedure reported by 101 

Kawazoe et al., 2017. Reagent-grade Al(OH)3 powder of high purity (99.99%) was used 102 

as starting material and the synthesis experiment was conducted at 20 GPa and 1000 ℃ 103 

with a duration of 22 hours (run number U795). The recovered product is composed of 104 

crystals with a maximum dimension of about 300 μm. X-ray diffraction and EPMA 105 

measurments verified that the synthesized crystals are the pure phase of δ-AlOOH.   106 

Sample preparation and Brillouin scattering measurements 107 

To tightly constrain the elastic tensors of phase Egg (monoclinic, P21/n) and δ-108 

AlOOH (orthorhombic, P21nm ), which possess 13 and 9 elastic constants respectively, 109 

normally at least 3-4 platelets with different orientations are needed for Brillouin 110 



 

 

spectroscopic measurements on single-crystal elasticity. We carelfully checked the 111 

synthesized crystals under microscope and selected a number of high-quality clean and 112 

colourless crystals with homogeneous extinction for both phase Egg and δ-AlOOH. 113 

With the selected single crystals of phase Egg, we prepared four double-polished 114 

platelets with ~15um thickness. The Miller indexs of the polished faces of the four 115 

platelet, which were determined by traditional single crystal X-ray diffraction at the 116 

University of Texas at Austin, are (8, 3, -5), (0, -1, -1), (45, -6, 13) and (2, -1, 2). All 117 

four crystals displayed very similar lattice parameters and unit cell volumes, and the 118 

average values are: a = 7.1449(7), b = 4.3295(4), c = 6.9526(7), β = 98.35(9)°, and V0 119 

= 201.79(4) Å3, which are consistent with the values reported by previous studies 120 

(Schulze et al., 2018; Vanpeteghem et al., 2003). The calculated density is 3.740(2) 121 

g/cm3 with the measured unit-cell volume and the chemical formula mentioned above. 122 

In case of δ-AlOOH, it was somehow difficult to prepare the platelets as the 123 

synthesized crystals are often twin crystals, preventing us to obtain a platelet of single 124 

crystal at some orientations. Fortunately, some twin crystals are large enough so as to 125 

allow us to collect Brillouin scattering signals from one single-crystal domain. Finally, 126 

we obtained three workable platelets with the Miller indexes (0, 0, 1), (2, 9, 2) and (10, 127 

7, 3). The orientations of these platelets were determined by single-crystal X-ray 128 

diffraction measurements with a beam size of 3 × 4μm, which were performed at 13-129 

IDD beamline sector of GSECARS at APS. The average lattice parameters of these 130 

three platelets are: a = 4.7093 (8), b = 4.2271 (1), c = 2.8302 (1) and V0 = 56.34(5) Å3, 131 

and the calculated density is 3.536(1) g/cm3 with the measured lattice parameters and 132 

the chemical formula AlOOH. 133 

Brillouin scattering measurements were conducted at ambient conditions using a 134 

Brillouin system at the Mineral Physics Laboratory, the University of Texas at Austin 135 

(Fu et al., 2017; Fu et al., 2019; Zhang et al., 2021). In the Brillouin system, a single-136 

frequency 532 nm solid-state green laser (Coherent Verdi V2) was used as a excitation 137 

light source and a JRS six-pass tandem Fabry–Pérot interferometer equipped with a 138 

Perkin–Elmer photomultiplier detector was used to record the Brillouin spectra of the 139 



 

 

sample. Samples (platelets) were loaded in a short-symmetrical diamond-anvil cell 140 

without pressure transmitting medium. The laser beam was focused down to the sample 141 

in a spot approximately 20 μm in diameter. In a symmetric forward scattering geometry, 142 

sound (acoustic) velocities (v) were calculated from the measured Brillouin shifts (Δν) 143 

through the equation (Whitfield et al., 1976): 144 

v =
Δν · λ0

2 sin(𝜃/2)
 145 

where v is the acoustic velocity, Δν is the measured Brillouin frequency shift, λ0 is the 146 

laser wavelength of 532 nm, and θ is the external scattering angle of 48.3° .  147 

Results and discussion 148 

Phase Egg 149 

Brillouin scattering measurements were performed for each platelet of phase Egg 150 

in 19 distinct directions at an interval of 10° over an angular range of 180°. One typical 151 

Brillouin spectrum is shown in Figure 1a. In most cases, both compressional acoustic 152 

mode (VP) and shear acoustic modes (Vs1, Vs2) can be observed, but the VP signal was 153 

blocked by the strong Vs peak of diamond at some directions. The dispersion of 154 

measured acoustic velocities with azimuthal angle for the four platelets of phase Egg 155 

are depicted in Figure 2. Using the density from the single-crystal X-ray diffraction 156 

measurements and the sound velocities as a function of azimuthal angle measured by 157 

Brillouin scattering, we inverted the 13 independent elastic constants of phase Egg by 158 

using a nonlinear least-squares fitting to the Chritoffel's equation (Every, 1980). In the 159 

procedure of inversion, we used the Cij values calculated by first-principals simulation 160 

as the initial values (Mookherjee et al., 2019). All the elastic constants based on the 161 

Cartesian coordinated system where the X-axis parallel to a*-axis and Y-axis parallel to 162 

b-axis are obtained after several fitting runs. The inverted results of elastic constants Cij 163 

for phase Egg are given in Table 1, together with the theoretical values (Mookherjee et 164 

al., 2019).  Our results are generally in agreement with those of Mookherjee et al., 165 

2019, but all of our principal Cij are much lower than the theoretical values.  166 



 

 

The principal elastic constants exhibit a relation of C11>C33>C22, while the shear 167 

elastic components holds a relation of C55>C66>C44. These relations can be well 168 

explained by the orientation of the hydrogen bond, which is mostly aligned along the 169 

b-axis but is tilted to have a component along the c-axis of the crystal structure, and the 170 

distortion of SiO6 octahedron with the longer Si-O(4) bond lying in the a-c plane 171 

(Schmidt et al., 1998; Schulze et al., 2018) (Fig. S1 a and b). The values of the principal 172 

elastic constants with C11 being twice as much as C22 indicate that phase Egg has a 173 

striking anisotropy in axial compressibility and b-axis is the most compressible 174 

direction, in agreement with the observations by previous static compression 175 

experiments (Schulze et al., 2018; Vanpeteghem et al., 2003).  176 

The measured elastic constants of phase Egg allow us to evaluate its azimuthal 177 

anisotropy of acoustic velocity. From 3D azimuthal imaging of velocity distribution 178 

(Figure S2), it is noticed that the compressional-wave velocity varies from 7.68 km/s to 179 

11.34 km/s. The fastest compressional-wave velocity propagates along the direction 180 

that deviates 38° to a-axi in a-c plane, and slowest compressional-wave velocity 181 

propagates along the b-axis direction. Similarly, the shear-wave velocity also exhibits 182 

strong dependence on directions (anisotropy). The anisotropy factors of compressional-183 

wave and shear-wave velocities, AV=200×(Vmax −Vmin)/ (Vmax +Vmin), are calculated to 184 

be AVP = 38.4% , AVS1 = 21.3% and AVS2 = 21.2, and the shear-wave splitting factor, 185 

which is defined as AVS=200×(VS1−VS2)/ (VS1 +VS2)，is calculated to be 22.1%. Using 186 

the Voigt–Reuss–Hill averages, the aggregate properties such as adiabatic bulk and 187 

moduli as well as the aggregate compressional-wave and shear-wave velocities are also 188 

calculated and given in Table 1.  189 

δ-AlOOH 190 

Figure 1b show a representative Brillouin spectrum of δ-AlOOH. The measured 191 

acoustic velocities as a function of azimuthal angle for the three δ-AlOOH platelets are 192 

shown in Figure 3. The full 9 independent elastic constants of δ-AlOOH were inverted 193 

by fitting all the velocity data of the three platelets using the Christoffel's equation and 194 



 

 

the results are given in Table 1. Our values of the elastic constants are in good 195 

agreement with the theoretical values using first- principals simulations (Tsuchiya and 196 

Tsuchiya, 2009). We found the principal elastic constants hold the relation C33>C11>C22 197 

and C22 are much smaller than C33 and C11. In accordance with this relation, the velocity 198 

along the c-axis is faster than a-axis and b-axis by about 7.4% and 21.1%, respectively. 199 

The relation of C33>C11>C22 reflects the anisotropy in axial compressibility in the 200 

crystal structure of δ-AlOOH which is consistent the fact that the O-H bond lie in the 201 

a-b plane (see Figure S1c), hence a- and b-axes are more compressible than c-axis. The 202 

anisotropic factors of δ-AlOOH are calculated and yield values of AVP = 19.1%, AVS1 203 

= 6.89 and AVS1 = 6.56. The shear-wave splitting factor is calculated to be AVS = 204 

12.65%. The calculated isotropic aggregate properties of δ-AlOOH are shown Table 1. 205 

Interestingly, the aggregate VP and VS values in our study are higher by 5.2% and 8.8% 206 

respectively than those determined by Brillouin scattering measurements on 207 

polycrystalline aggregate of δ-AlOOH (Mashino et al., 2016). Previous study shown 208 

the size of the polycrystalline aggregate sample influence significantly the obtained 209 

velocity in Brillouin scattering measurements. For example, large reductions of 210 

compressional and shear wave velocities were observed in the nanocrystalline MgO 211 

(Gleason et al., 2011; Marquardt et al., 2011). In this sense, the discrepancy between 212 

our results and Mashino's et al. (2016) probably also originated from the size effect of 213 

polycrystalline δ-AlOOH, which deserved further study to clarify this issue in future.  214 

Implications 215 

Seismology is one of the primary methods for investigating water circulation in 216 

the earth’s interior. To date, many elasticity studies have been carried out on the major 217 

water-bearing mantle minerals, such as olivine, wadsleyite and ringwoodite (Jacobsen 218 

et al., 2008; Mao et al., 2008b; Mao et al., 2012). Although the amounts of hydrous 219 

phase Egg and δ-AlOOH are not high with comparison to major mantle minerals, it is 220 

also possible to detect them by seismic observations if they exhibit remarkable contrast 221 

of seismic property to their surrounding rocks in subduction zone. We have compiled 222 

the density, aggregate elastic moduli, aggregate acoustic velocities and anisotropy 223 



 

 

factors of typical minerals in subducted slabs together with phase Egg and δ-AlOOH at 224 

ambient condition (Fan et al., 2020; Fan et al., 2019; Jackson et al., 2006; Jiang et al., 225 

2009; Mao et al., 2015; Mao et al., 2008a; Mao et al., 2012; Sanchez-Valle et al., 2019; 226 

Sinogeikin et al., 1998; Sinogeikin et al., 2004; Wang et al., 2014; Wu et al., 2016; 227 

Zhang and Bass, 2016)(See Table S1). It is found that the density, elastic moduli and 228 

acoustic velocities of phase Egg are quite close to that of ferropericlase with 6wt% iron, 229 

but the phase Egg exhibits larger anisotropy of compressional-wave velocity (AVP). 230 

Actually, the AVP of phase Egg is higher than that of all the other minerals. Therefore, 231 

it is likely phase Egg is a potential candidate of seismic anisotropy of compressional-232 

wave velocity in subducting slabs. As for δ-AlOOH, its VP are faster than all the other 233 

major minerals in subducted slabs except stishovite and bidgmanite, and its VS is close 234 

to bidgmanite. Thus δ-AlOOH may result in high-velocity anomaly at depths of mantle 235 

transition zone. As mentioned before, with pressure increasing, phase Egg will 236 

decompose to δ-AlOOH and stishovite at the depth of the uppermost lower mantle 237 

along slab geotherm through the reaction: AlSi3OH=δ-AlOOH+SiO2. Based on the 238 

elastic data obtained at ambient conditions in this study, the velocity contrast of this 239 

reaction are determined to be 17% for VP and 18% for VS, respectively, which is likely 240 

detectable by seismic observation in deep mantle of the earth.  241 

It should to be stressed that above conclusions require to be further refined by 242 

elasticity experiments when being applied to seismic observations in the deep earth’s 243 

interior. Pressure and temperature are two important thermal parameters which 244 

influence the elasticity of materials. In particular, recent first-principals calculations 245 

shows the evolution of elastic properties with pressure is abnormal due to the hardening 246 

behavior of hydrogen bond. In the case of δ-AlOOH, the pressure-induced 247 

symmetrization of hydrogen bond was observed and hardening effect of hydrogen-bond 248 

symmetrization on elastic constants was unveiled by Brillouin scattering study on 249 

polycrystalline aggregate and first-principals theoretical study (Mashino et al., 2016; 250 

Tsuchiya and Tsuchiya, 2009). Meanwhile, pressure-induced transfer of hydrogen 251 

between acceptor and donor was proposed by recent study (Mookherjee et al., 2019), 252 



 

 

which is interpreted to affect significantly the elastic constants of phase Egg at high 253 

pressure. Because the abnormal behaviors of hydrogen bond probably occurs in the 254 

earth’s interior for phase Egg and δ-AlOOH, further in-situ high-pressure and high-255 

temperature elasticity experiments are needed to explore the elastic behavior of these 256 

two hydrous minerals under extreme conditions of the earth’s deep interior.  257 
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Tables 453 

Table 1. Elastic properties of phase Egg and δ-AlOOH at ambient conditions. 454 

 455 

 Phase Egg δ-AlOOH 

 This study Mookherjee et al. (2019) This study Tsuchiya et al. (2009) 

ρ (g/cm3)    3.740(2) 3.798 3.536(1) 3.383 

C11 (GPa) 467.2(15) 504.7 375.9(9) 314 

C22 (GPa) 220.8(8) 280.4 295.4(11) 306 

C33 (GPa) 305.2(7) 401.0 433.5(12) 391 

C44 (GPa) 109.8(4) 150.3 129.2(6) 117 

C55 (GPa) 166.0(5) 174.0 133.4(7) 115 

C66 (GPa) 139.6(5) 159.7 166.4(6) 152 

C12 (GPa) 115.9(9) 98.6 49.7(9) 34 

C13 (GPa) 164.3(9) 141.6 91.9(15) 95 

C23 (GPa) 26.3(7) 87.9 52.8(21) 67 

C15 (GPa) 3.2(6) 7.5   

C25 (GPa) 20.9(9) 13.5   

C35 (GPa) 21.2(4) 19.8   

C46 (GPa) 13.7(4) 18.6   

KVoigt (GPa) 178.5(8) 204.7 166.0(13) 155.9 

GVoigt (GPa) 128.9(3) 154.0 146.5(3) 131.1 

KReuss (GPa) 138.2(8) 188.2 159.8(13) 151.2 

GReuss (GPa) 117.0(3) 148.4 144.0(3) 128.8 

KVRH (GPa) 158.3(8) 196.4 162.9(13) 153.5 

GVRH (GPa) 123.0(3) 151.2 145.2(3) 130.0 

VP (km/s) 9.28(2) 10.25 10.04(2) 9.83 

VS (km/s) 5.73(1) 6.32 6.41(2) 6.20 

 456 

Figure 1. Representative Brillouin spectra of (a) Phase Egg, (b) δ-AlOOH. The VS of 457 

diamond are marked with D. 458 

 459 

Figure 2. The measured velocities of single-crystal phase Egg as a function of the 460 

azimuthal angle in crystallographic plane. Dash lines are calculated using the fitting 461 

elastic value. 462 

 463 



 

 

Figure 3. The measured velocities of single-crystal δ-AlOOH as a function of the 464 

azimuthal angle in crystallographic plane. Dash lines are calculated using the fitting 465 

elastic value.  466 
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Table S1. Elastic property, seismic velocity and anisotropy of typical mantle minerals at ambient condition.  529 

 530 

Mineral Composition ρ(g/cm3) KS (GPa) G (GPa) VP (km/s) VS (km/s) AVP AVS Reference 

Olivine (Mg0.9Fe0.1)2SiO4 3.343 129.6 77.8 8.35 4.82 24.3 18.0 Mao et al. (2015) 

Enstatite (Mg1.74Fe0.16Al0.05Ca0.04Cr0.02)(Si1.94Al0.06)O6 3.288 112.5 75.9 8.06 4.80 14.0 13.7 Zhang et al. (2016) 

Diopside Ca0.99Mg0.79Fe0.21Si2.01O6 3.345 117.0 70.0 7.92 4.57 25.9 21.2 Fan et al. (2020) 

Wadsleyite (Mg0.915Fe0.075)2SiO4 3.570 170.1 108.0 9.38 5.50 19.0 17.5 Wang et al. (2014) 

Hydrous wadsleyite 0.84 wt.% H2O 3.435 160.4 105.4 9.36 5.54 15.8 15.6 Mao et al. (2008) 

Ringwoodite (Mg0.91Fe0.09)2SiO4 3.701 188.3 119.6 9.69 5.68 4.7 10.3 Sinogeikin et al. (1998) 

Hydrous ringwoodite (Mg1.633Fe2+
0.231Fe3+

0.026) Si1.00H0.179O4 3.649 175.0 106.0 9.31 5.39 4.6 10.4 Mao et al. (2012) 

Majorite (Ca0.39 Mg2.66)((Mg,Si)0.84Al1.14)Si3O12 3.460 159.0 87.1 8.92 5.02 0.3 0.7 Sanchez-Valle et al. (2019) 

Pyrope Mg3.006Al1.995Si3.005O12 (900 ppmw H2O) 3.557 168.6 92.3 9.05 5.09 0.9 2.1 Fan et al. (2019) 

Bridgmanite MgSiO3 4.106 253.6 175.0 10.89 6.53 7.6 15.4 Sinogeikin et al. (2004) 

Ferropericlase Mg0.94Fe0.06O 3.723 163.3 121.0 9.34 5.70 11.7 23.9 Jackson et al. (2006) 

Stishovite SiO2 4.301 308.2 228.1 11.93 7.28 25.6 34.2 Jiang et al. (2009) 

NAL Na0.71Mg2.05Al4.62Si1.16Fe2+
0.09Fe3+

0.17O12 3.870 213.1 132.1 10.02 5.84 14.7 15.1 Wu et al. (2016) 

Phase Egg Al0.981Si1.008O4H1.022 3.740 158.3 123.0 9.28 5.73 38.4 22.1 this study 

δ-AlOOH AlOOH 3.536 162.9 145.2 10.04 6.41 19.1 12.7 this study 

 531 

 532 

 533 



 

 

Figure S1. (a) The structure of phase Egg. (b) The SiO6 octahedron in phase Egg, the 534 

length of Si-O bonds are shown (Schmidt et al., 1998). (c) The structure of δ-AlOOH. 535 

The Al, Si and O atoms are shown in gray, blue and red, respectively. The H atoms are 536 

small white spheres. 537 

 538 

Figure S2. Upper hemisphere pole figures of compressional wave (VP), shear wave 539 

(VS1, VS2) and shear wave splitting (VS) anisotropy of phase Egg. 540 

 541 

Figure S3. Upper hemisphere pole figures of compressional wave (VP), shear wave 542 

(VS1, VS2) and shear wave splitting (VS) anisotropy of δ-AlOOH. 543 
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