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Abstract

This paper concerns the construction of confidence intervals in standard seroprevalence
surveys. In particular, we discuss methods for constructing confidence intervals for the pro-
portion of individuals in a population infected with a disease using a sample of antibody test
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documenting erratic behavior in the coverage probabilities of standard Wald and percentile
bootstrap intervals when applied to this problem. We then consider two alternative sets of in-
tervals constructed with test inversion. The first set of intervals are approximate, using either
asymptotic or bootstrap approximation to the finite-sample distribution of a chosen test statis-
tic. We consider several choices of test statistic, including maximum likelihood estimators and
generalized likelihood ratio statistics. We show with simulation that, at empirically relevant
parameter values and sample sizes, the coverage probabilities for these intervals are close to
their nominal level and are approximately equi-tailed. The second set of intervals are shown
to contain the true parameter value with probability at least equal to the nominal level, but can
be conservative in finite samples.
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1. Introduction

Effective public health policy requires accurate measurement of the spread of infections diseases

(Fauci et al., 2020; Peeling et al., 2020). Seroprevalence surveys, in which antibody tests are ad-

ministered to samples of individuals from populations of interest, are a practical and widely applied

strategy for assessing the progression of a pandemic (Krammer and Simon, 2020; Alter and Seder,

2020). However, antibody tests, which detect the presence of viral antibodies in blood samples,

are imperfect.1 Accounting for the variation in the results of seroprevalence surveys induced by

this imperfection is important for informative assessment of the uncertainty in measurements of

the spread of infectious diseases.

In this paper, we study the construction of confidence intervals in standard seroprevalence

surveys. Given the public interest in explicit representations of disease incidence, our objective is

to analyze the accuracy of various methods of constructing confidence intervals, so that results from

empirical analyses can be reported with statistical precision. We demonstrate that some methods

based on test inversion offer advantages relative to more standard confidence interval constructions

in terms of the accuracy and validity of their coverage probabilities.

In a standard seroprevalence survey, the proportion of a population that has been infected with

a disease is a smooth function of the parameters of three independent binomial trials. Although it

may be expected that standard approaches to confidence interval construction are well suited for

such a simple parametric problem, in Section 2 we demonstrate with simulation that standard Wald

and percentile bootstrap confidence intervals have erratic coverage probabilities at empirically rel-

evant parameter values and sample sizes when applied to this problem.

In fact, as documented in Brown et al. (2001), erratic coverage probabilities for confidence

intervals constructed using standard methods surface even in the context of inference on a sin-

gle binomial parameter. Bootstrap (and other) methods that are typically second-order correct in

continuous problems may not achieve this accuracy in discrete problems.2 Additionally, when a

binomial random variable has parameter value near zero or one, even first-order approximations to

its limiting distribution are not normal, while many standard methods for constructing confidence
1An early systematic review of the accuracy of SARS-CoV-2 antibody tests is given in Deeks et al. (2020), high-

lighting several methodological limitations. False positive and negative rates for five leading SARS-CoV-2 immunoas-
says are measured in Ainsworth et al. (2020). Estimates of false positive rates ranged from 0.1% to 1.1%. Estimates
of false negative rates ranged from 0.9% to 7.3%.

2Usually, claims of second-order correctness are made based on Edgeworth expansions (Hall, 2013). However, in
discrete settings, Cramér’s condition, a necessary condition for the application of an Edgeworth expansion, fails, and
second-order accuracy may not be achievable. For example, atoms in the binomial distribution based on n trials have
order n−1/2, so expansions to order n−1 must account for this discreteness.
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intervals rely, either explicitly or implicitly, on a normal approximation holding. As the parameter

of interest in a seroprevalence survey is a function of three binomial parameters, inference in this

setting is more challenging than for a single binomial proportion.

To address the erratic coverage probabilities in standard confidence interval constructions, we

consider several alternative approaches based on test inversion. A test inversion confidence interval

for a parameter θ consists of the set of points θ0 for which the null hypothesis H(θ0) : θ = θ0

is not rejected. For parameters θ where the corresponding null hypothesis H(θ0) is simple, the

application of test inversion is straightforward. However, when the corresponding null hypothesis

is composite, as in the case of seroprevalence, the application of test inversion is not immediate.

Thus, in Section 3 we explore the general problem of test inversion for parameters whose cor-

responding null hypotheses are composite. We consider both methods based on asymptotic or

bootstrap approximation and methods with finite-sample guarantees. In the later case, a maxi-

mization of p-values over a nuisance parameter space is required, as in Berger and Boos (1994)

and Silvapulle (1996). In practice, this maximization is carried out over a discrete grid. We provide

a refinement to such an approximation that maintains the finite-sample coverage requirement. We

take particular care in requiring that the confidence intervals that we develop behave well at both

endpoints; that is, we require that they are equi-tailed.3

In Section 4, we apply these approaches to construct confidence intervals for seroprevalence.

We consider several choices of test statistic, including maximum likelihood estimators and gen-

eralized likelihood ratio statistics. We demonstrate with simulation that the intervals based on

asymptotic or bootstrap approximation have coverage probabilities that, at empirically relevant

parameter values and sample sizes, are close to, but potentially below, the nominal level and are

approximately equi-tailed. By contrast, the finite-sample valid construction results in longer inter-

vals on average, but always have coverage probabilities that satisfy the coverage requirement.

We contextualize our analysis with data used to estimate seroprevalence at early stages of the

2019 SARS-Cov-2 pandemic. In particular, as a running example, we measure coverage probabili-

ties and average interval lengths for each of the methods we consider at sample sizes and parameter

values close to the estimates and sample sizes of Bendavid et al. (2020a) – a preprint posted on

medRxiv on April 11th, 2020.4 This preprint estimates that the number of coronavirus cases in

3A 1 − α confidence interval is equi-tailed if the probabilities that the parameter exceeds the upper endpoint or is
below the lower endpoint of the interval are both near or below α/2. That is, an equi-tailed 1− α confidence interval
should be given by the set of points satisfying both an upper and a lower confidence bound, each at level 1− α/2.

4This preprint has subsequently been published as Bendavid et al. (2021).
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Santa Clara County, California on April 3 - 4, 2020 was more than fifty times larger than the num-

ber of officially diagnosed cases, and as a result, received widespread coverage in the popular and

scientific press (Kolata, 2020; Mallapaty, 2020). The methods and design of this study – including

the reported confidence intervals – were questioned by many researchers (Eisen and Tibshirani,

2020), prompting the release of a revised draft on April 27th, 2020, which we refer to as Bendavid

et al. (2020b), that integrated additional data.5 Our analysis highlights statistical challenges in

seroprevalence surveys at early stages of the spread of infectious diseases, when disease incidence

is low and close to uncertain error rates of new diagnostic technologies.

This paper contributes to the literatures on inference in seroprevalence surveys (Rogan and

Gladen, 1978; Hui and Walter, 1980; Walter and Irwig, 1988); see Jewell (2004) for a general

introduction to epidemiological statistics. More broadly, we contribute to the large literature on

test inversion. The classical duality between tests and confidence intervals is discussed in Chapter

3 of Lehmann and Romano (2005). Bootstrap approaches to confidence construction based on

estimating nuisance parameters are developed in Efron (1981), DiCiccio and Romano (1990), and

Carpenter (1999). Conservative approaches to confidence interval construction that maximize p-

values over an appropriate nuisance parameter space are considered in Berger and Boos (1994)

and Silvapulle (1996). For the problem considered in this paper, Toulis (2020) uses test inversion

based on a particular choice of test statistic, though the resulting confidence interval is based on

projection. Cai et al. (2020) is more closely related to one of the approaches we consider, and we

discuss some important differences in Section 4.6 Gelman and Carpenter (2020) take a Bayesian

approach to the problem studied in this paper, and give a complementary analysis of uncertainty

quantification in Bendavid et al. (2020a,b).

2. Standard Interval Constructions in Seroprevalence Surveys

A standard seroprevalence survey entails the collection of antibody test results from three samples

of individuals of sizes n1, n2, and n3, with n = (n1, n2, n3)>. The first sample is selected at

random from the population under study. All individuals in the second sample have not had the

5See Gelman (2020), Fithian (2020b), and Bennett and Steyvers (2020) for further discussion and analysis of
Bendavid et al. (2020b). In particular, these articles highlight issues and propose alternative approaches for combining
data measuring false positive rates from different samples.

6We became aware of Cai et al. (2020), which was posted on arXiv on November 29th, 2020, late in the preparation
of this paper, on March 3rd, 2021.
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disease of interest and all individuals in the third sample have had the disease of interest.7 We

let X = (X1, X2, X3)> denote the number of positive antibody test results in the corresponding

samples. It is assumed that each Xi has a binomial distribution with success probability pi and is

independent of the other samples.8 The quantities 1 − p2 and p3 are referred to as the specificity

and sensitivity of the test, respectively. We assume that the test has diagnostic value in the sense

that p2 < p3, and so p1 necessarily satisfies p2 ≤ p1 ≤ p3.9 Thus, the parameter p = (p1, p2, p3)>

exists in the parameter space

Ω =
{
p ∈ [0, 1]3 : p2 ≤ p1 ≤ p3, p2 < p3

}
.

We consider confidence intervals for the probability π that an individual randomly selected

from the population under study has had the disease. By the law of total of probability, p1 =

p2 (1− π) + p3π, and so

π = π(p) = (p1 − p2) / (p3 − p2) . (1)

We refer to π as seroprevalence. A natural estimate of π is given by π̌n = π(p̌n), where p̌n =

(p̌n,1, p̌n,2, p̌n,3)> and p̌n,i = Xi/ni is the usual empirical frequency for group i. We let the max-

imum likelihood estimator (MLE) of p for the model p ∈ Ω be denoted by p̂n, where p̂n =

(p̂n,1, p̂n,2, p̂n,3)>.10 Accordingly, the MLE of π for the model p ∈ Ω is given by π̂n = π(p̂n).

The most obvious approach to constructing confidence intervals for π is to approximate the

finite-sample distribution of π̂n with its limiting normal distribution. The variance of the normal

limiting distribution of π̂n is given by

Vπ̂n(p) =
1

(p3 − p2)2σ
2
1 (p1) +

(p1 − p3)2

(p3 − p2)4σ
2
2 (p2) +

(p2 − p1)2

(p3 − p2)4σ
2
3 (p3) , (2)

where σ2
i (pi) = pi (1− pi) /ni. This leads to the standard Wald or delta method confidence in-

terval
(
π̂n ± z1−α/2

√
Vπ̂n (p̂n)

)
, where z1−α/2 is the 1 − α/2 quantile of the standard normal

cumulative distribution function Φ(·). This construction was used in Bendavid et al. (2020a).

7For example, in Bendavid et al. (2020a), the second sample was composed of blood samples taken before the
COVID-19 epidemic and the third sample was composed of blood samples taken from patients who had recovered
from confirmed cases of COVID-19.

8We assume the sample sizes are small relative to population size so that the difference between sampling with and
without replacement is negligible.

9Note that some of the methods developed in Section 4 will not require p2 < p3.
10Typically, p̌n and p̂n agree, with the exception occurring if p̌n /∈ Ω.
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As outlined in the introduction, the Wald interval may perform poorly in finite-samples due to

discreteness of the data or the proximity of parameter values to the boundaries of their spaces. To

address some of these issues, Bendavid et al. (2020b) apply the percentile bootstrap confidence

interval developed in Efron (1981). A refinement of this interval construction, called the BCa

interval (Efron, 1987), is also applicable to this problem, with bias and acceleration constants

estimated with the formula given in Efron (1987) and DiCiccio and Romano (1995).

The Wald and bootstrap intervals are approximate. In contrast, it may be desirable to construct

intervals that ensure coverage of at least 1 − α in finite samples, particularly if there are concerns

that the finite-sample distribution of π̂n is not well-approximated by a normal distribution. A

simple, but crude, approach to constructing finite-sample valid confidence intervals is projection.

In particular, suppose that R1−α is a joint confidence region for p of nominal level 1 − α. The

projection method simply constructs the confidence interval I1−α = {π(p) : p ∈ R1−α}. The

chance that π ∈ I1−α is bounded below by the chance that p ∈ R1−α. Thus, if R1−α has a

guaranteed coverage of 1 − α, then so does I1−α. For example, one possible choice of joint

confidence region is the rectangle R1−α =
∏3

i=1 Ii,1−γ, where Ij,1−γ is a nominal 1− γ confidence

interval for pj and γ is taken to satisfy (1 − γ)3 = 1 − α.11 In this case, the computational cost

of the projection interval I1−α is minimal, as π(p) is monotone increasing in p1 and monotone

decreasing in each of p2 and p3 as p varies on the parameter space Ω. Projection intervals are easy

to implement, but are generally wide and conservative, in that the true coverage is often larger than

the nominal level.

To assess the finite-sample performance of the delta method, bootstrap, and projection confi-

dence intervals, we estimate their coverage probabilities and average lengths at parameterizations

close to the sample size and estimates of Bendavid et al. (2020a). In this study, n1 = 3300 par-

ticipants were recruited for serologic testing for SARS-CoV-2 antibodies. The total number of

positive tests was X1 = 50. The authors use n2 = 401 pre-COVID era blood samples to measure

the specificity of their test, of which only X2 = 2 samples tested positive. Similarly, the authors

use n3 = 122 blood samples from confirmed COVID-19 patients, of which X3 = 103 samples

11In our implementation, we apply the standard Clopper and Pearson (1934) confidence intervals for pj , as they have
guaranteed coverage in finite-samples. Other choices exist, however, and in particular the intervals recommended in
Brown et al. (2001) may perform well. Alternatively, the region R1−α can be constructed by inverting likelihood ratio
tests, but would incur a significantly larger computational cost. A related approach is developed in Toulis (2020).
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Interval Ave. Length Ave. Length vs. Delta Method Coverage

Delta Method [0.003,0.022] 0.0185 1.000 0.904

Percentile Bootstrap [0.001,0.021] 0.0186 1.005 0.895

BCα Bootstrap [0.001,0.020] 0.0191 1.028 0.895

Projection [0.001,0.028] 0.0270 1.4578 1.000

Table 1: Average Interval Length and Coverage of Nominal 95% Confidence Intervals for π

Notes: Table 1 reports the delta method, percentile bootstrap, BCα bootstrap, and projection confidence intervals, at
nominal level 95% computed on data from Bendavid et al. (2020a). Estimates of the average length and coverage
for these intervals at sample sizes n and estimated values p̂n from this study are also displayed. Estimates of average
length and coverage are taken over 100,000 bootstrap replicates ofX at the sample size n and the estimated parameters
p̂n from this study.

tested positive.12 The realization of the MLE of π for these data is π̂n = 0.012.13 Table 1 reports

the nominal 95% confidence intervals constructed with the standard approaches discussed above.

For each parameter (e.g., p1), we simulate replicates of X at each value of a grid around the

estimated value of the parameter, holding the other five parameters fixed at their estimated values

(e.g., p̂n,2, p̂n,3, n1, n2, n3). For each method at each combination of parameter values and sample

sizes, we compute the proportion of replicates for which the true value of π (i.e., the value of π

associated with the parameterization) is below, contained in, or above the corresponding confidence

interval with nominal coverage probability α = 0.05.

Figure 1 displays the results of this Monte Carlo experiment for each interval construction at

parameter values around p̂n,1, p̂n,2, n1, and n2.14 The black dots display one minus the proportion

of replicates for which the realized confidence interval contains the true value of π, i.e., one minus

the estimated coverage of the confidence interval. Additionally, Table 1 reports estimates of the

coverage and average length of each interval taken over 100,000 bootstrap replicates at the sample

12The specificity and sensitivity samples combine data provided by the test manufacturer and additional tests run
at the Stanford. We refer the reader to the statistical appendices of Bendavid et al. (2020a,b) for further details. In
Bendavid et al. (2020b) it was revealed that there was an error in the recording of the sensitivity sample, i.e., that there
were two fewer positive tests than reported. We adhere to the data as reported in Bendavid et al. (2020a).

13Bendavid et al. (2020a) report an alternative estimate of seroprevalence in which the demographics of their sample
are weighted to match the overall demographics of Santa Clara County. We briefly discuss the application of the gen-
eral methods developed in Section 3 to this setting in Section 5, and view further consideration as a useful extension.
Gelman and Carpenter (2020) give a Bayesian approach that accommodates sample weights. In contemporaneous
work, Cai et al. (2020) also address the case where are samples are reweighted according to population characteristics.

14There is little variation in the coverage probabilities for parameter values around p3 and n3, so we omit the results
of this experiment for the sake of clarity.
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Figure 1: Coverage Performance for Standard Interval Constructions
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Notes: Figure 1 displays estimates of the coverage probabilities of the delta method (π̂n,∆), percentile bootstrap
(π̂n, pb), BCα bootstrap (π̂n, bca), and projection intervals at parameter values close to the estimate p̂n and sample
size n of Bendavid et al. (2020a) as specified in Section 2. The nominal coverage probability is 0.95 and is denoted
by the horizontal dotted line. The black dots denote one minus the proportion of replicates for which the true value of
π falls in the realized confidence intervals, i.e., one minus the estimated coverage probability. The purple squares and
blue triangles denote the proportion of replicates that fall below and above realized confidence intervals, respectively.
The vertical dotted line denotes the estimated value of p̂n,1, p̂n,2 or sample size n1, n2 for Bendavid et al. (2020a).

sizes n and estimated values p̂n from Bendavid et al. (2020a).

We find that the delta method and bootstrap intervals are quite liberal. In most cases the esti-

mated coverage of a nominal 95% interval is below 90%. The estimated coverage decreases sharply

as n2 and p1 become small and is not equi-tailed, in the sense that the proportions of replicates that

fall below and above the confidence intervals are not approximately equal. By contrast, the pro-

jection method intervals are quite conservative. They are approximately 45% longer than the delta

method intervals at sample sizes n and estimated values p̂n from Bendavid et al. (2020a). These

findings motivate the development of approximate and finite-sample valid alternative methods for

constructing confidence intervals that have less erratic coverage probabilities.
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3. Test Inversion

In this section, we consider both approximate and finite-sample valid approaches to the general

problem of constructing test-inversion confidence intervals for parameters θ, where the correspond-

ing null hypothesis H (θ0) : θ = θ0 is composite. To this end, we require a more general notation.

Suppose data X follows a general parametric model indexed by a parameter (θ, ϑ) in parameter

space Ω̄. The parameter of interest θ is real-valued, and the nuisance parameter ϑ is finite dimen-

sional. For a fixed value θ0, the parameter space for the nuisance parameter ϑ is denoted by

Ω̄(θ0) = {(θ, ϑ) ∈ Ω̄ : θ = θ0} .

Observe that for the case of seroprevalence π, we have that θ = π and can assign ϑ = (p1, p3).

Test inversion reduces the problem of confidence interval construction for θ to the problem

of testing H(θ0) : θ = θ0 against θ > θ0 and θ < θ0. Consider a test of the null hypothesis

H (θ0) : θ = θ0 against the alternative θ > θ0. A 1−α/2 lower confidence bound for θ constructed

with test inversion is given by the infimum of the set of θ0 such that H (θ0) is not rejected at level

α/2 against the alternative θ > θ0, which we denote by L1−α/2. A 1 − α/2 upper bound for θ,

U1−α/2 may be constructed analogously by testing H (θ0) against the alternative θ < θ0. Thus, a

1− α confidence interval is given by
[
L1−α/2, U1−α/2

]
.

3.1 Simple Null Hypotheses

It is illustrative to assume that the nuisance parameter ϑ = ϑ0 is known. In this case, the null

hypothesis H(θ0) is simple and one-sided tests that control the level at α/2 are easily constructed.

Consider the test that rejects H(θ0) against θ > θ0 for large values of the test statistic Tn = Tn(X).

The cumulative distribution function of Tn is given by Fn,θ,ϑ(t) = Pθ,ϑ{Tn ≤ t}. Additionally,

define the related quantity Fn,θ,ϑ(t−) = Pθ,ϑ{Tn < t}, and let t0 denote the observed value of Tn.

The null probability that Tn ≥ t0 is given by

q̂L,θ0,ϑ0 = 1− Fn,θ0,ϑ0(t−0 ) , (3)

and is a valid p-value in the sense that the test that rejects when this quantity is ≤ α/2 has size

≤ α/2; see, e.g., Lemma 3.3.1 in Lehmann and Romano (2005).15 Thus, a 1 − α/2 confidence

15Throughout, we will denote various p-values by q̂ rather than p̂ because p̂ is reserved for various estimates of
binomial parameters.
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set for θ includes all θ0 such that Fn,θ0,ϑ0(t
−
0 ) < 1− α/2. If Fn,θ0,ϑ0(t

−
0 ) is continuous and strictly

monotone decreasing in θ0, then a 1−α/2 lower confidence bound θL may be obtained by solving

Fn,θL,ϑ0(t
−
0 ) = 1− α/2 . (4)

Similarly, an upper confidence bound θ̂U may be obtained by solving Fn,θU ,ϑ0(t0) = α/2.16 Thus,

[θL, θU ] is a 1 − α confidence interval for θ. For a single binomial parameter, this construction

gives the classical Clopper and Pearson (1934) interval.

3.2 An Approximate Approach

If the nuisance parameter ϑ is unknown, then it may be approximated. In particular, if ϑ̂(θ0) is the

MLE for ϑ subject to the constraint θ = θ0, then the infeasible p-value (3) can be replaced with

q̂L,θ0,ϑ̂(θ0) = 1− Fn,θ0,ϑ̂(θ0)(t
−
0 ) , (5)

where Fn,θ0,ϑ̂(θ0) is approximated either analytically or with the parametric bootstrap.17 Accord-

ingly, the infeasible confidence interval [θL, θU ] is replaced with the feasible confidence interval

[θ̂L, θ̂U ], where, the endpoints θ̂L and θ̂U are the values of θ0 that satisfy

Fn,θ̂L,ϑ̂(θ0)(t
−
0 ) = 1− α/2 and Fn,θ̂U ,ϑ̂(θ0)(t0) = α/2 , (6)

respectively. In other words, either Wald or parametric bootstrap tests are constructed for each θ0,

where the distribution of the test statistic Tn is determined under the parameter (θ0, ϑ̂(θ0)). This

approach was used in DiCiccio and Romano (1990) and DiCiccio and Romano (1995).

In this approximate approach, the family of distributions indexed by (θ, ϑ) has been reduced to

an approximate least favorable one-dimensional family of distributions governed by the parameter

(θ0, ϑ̂(θ0)) as θ0 varies. This approach implicitly orthogonalizes the parameter of interest with re-

spect to the nuisance parameter, so that the effect of estimating the nuisance parameter is negligible

16Even in the case that the distribution of Tn is discrete, the function Fθ0,ϑ0(t−0 ) is typically continuous in θ0 (as in
the binomial case). If not, one could use the infimum over θ0 such that Fθ0,ϑ0

(t−0 ) < 1− α/2 as a lower bound. Note
that, in general, may wish to test at each endpoint of a reported confidence interval to determine whether it should be
a closed or open interval. We simply take the conservative approach and report closed intervals.

17An alternative, related, approach proceeds by imposing and integrating out a potentially uninformative prior on the
nuisance parameter, and then constructs test statistics from the resultant pseudo-likelihood function (see e.g., Severini
(1999) and Datta and Mukerjee (2004)).
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to second-order and then typically results in second-order accurate confidence intervals. See Cox

and Reid (1987) for a discussion of the role of orthogonal parameterizations for inference about a

scalar parameter in the presence of nuisance parameters.

3.3 An Infeasible Finite-Sample Approach

The quality of the coverage probability of the approximate intervals considered in the previous

section will depend on the quality of the approximation of ϑ̂(θ0) to the true value of the nuisance

parameter ϑ0 and the quality of the analytic or bootstrap approximation to the finite-sample dis-

tribution Fn,θ0,ϑ̂(θ0). In situations in which qualities of these approximations are in doubt, e.g.,

due to discreteness or the proximity of true parameters to the boundary of their parameter spaces,

intervals that ensure coverage of at least 1 − α in finite samples may be desirable. An infeasible

approach to constructing such intervals proceeds by taking the supremum of the p-values over all

possible values of the nuisance component ϑ, giving

q̂L,θ0,sup = sup
(θ0,ϑ)∈Ω̄(θ0)

(
1− Fn,θ0,ϑ(t−0 )

)
, (7)

with finite-sample validity following from

Pθ0,ϑ0{q̂L,θ0,sup ≤ u} ≤ Pθ0,ϑ0{1− Fn,θ0,ϑ0(T−n ) ≤ u} ≤ u.

Note that p-values of this form may be conservative, as the supremum over ϑ may be obtained

at a value far from ϑ0.18 To address this issue, one can restrict the space of values for ϑ that are

considered by first constructing a 1 − γ confidence region for ϑ. Such an approach is considered

in Berger and Boos (1994), Silvapulle (1996), and Romano et al. (2014). This refined approach

proceeds as follows. Fix a small number γ and let I1−γ be a 1 − γ confidence region for ϑ.19

18On the other hand, if the distribution of the test statistic does not vary much with ϑ, then these p-values will not be
overly conservative. Therefore, it pays to choose a test statistic that is nearly pivotal, in the sense that its distribution
does not depend heavily on ϑ.

19The difficulty of constructing such a region depends on the specific model. In the sequel, we focus attention on
cases in which confidence regions I1−γ can be formed by taking the cartesian product of exact marginal intervals for
each component of ϑ.
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Consider the modified p-value defined by

q̂L,θ0,I1−γ =

supϑ∈I1−γ
(
1− Fn,θ0,ϑ(t−0 )

)
+ γ if {ϑ ∈ I1−γ : (θ0, ϑ) ∈ Ω̄(θ0)} 6= ∅

γ otherwise .
(8)

The p-value obtained by (8) is valid in finite samples; see Berger and Boos (1994) or Silvapulle

(1996). Thus, the one-sided test that rejects when q̂L,θ0,I1−γ ≤ α/2 leads to a 1 − α/2 lower

confidence bound for θ.

3.4 A Feasible Finite-Sample Approach

The finite-sample valid approach considered in the previous section is infeasible, as it involves

computing a supremum over an infinite set Ω̄(θ0). A natural approximation to this approach is to

approximate Ω̄(θ0) with a finite discretization, so that the supremum is replaced by maximum over

a finite set of values on a grid. In particular, if G(θ0) denotes a finite grid over the space Ω̄(θ0),

then (7) can be approximated by

q̂L,θ0,max = max
(θ0,ϑ)∈G(θ0)

1− Fn,θ0,ϑ(t−0 ) . (9)

Similarly, the refinement given in (8) can be approximated by replacing I1−γ with Î1−γ , where Î1−γ

denotes a finite grid (or ε-net) approximating I1−γ .20

We develop a modification to this construction that provably maintains finite-sample Type 1

error control for testing H(θ0) by directly accounting for the approximation error induced by a

finite discretization of Ω̄(θ0). Towards this end, we require additional structure. Suppose now

that the components of the data X = (X1, . . . , Xk)
> are independent, that the distribution of Xi

depends on a parameter βi, with β = (β1, . . . , βk) ∈ Ω, and that the family of distributions for

Xi has a monotone likelihood ratio in Xi. As before, interest focuses on a real-valued parameter

θ = f(β1, . . . , βk), with the nuisance parameter ϑ given by β−1 = (β2, . . . , βk). That is, we assume

that the model can be equivalently parameterized by (θ, ϑ) ∈ Ω̄ or through β ∈ Ω, i.e., that the

mapping from β to (θ, ϑ) is one-to-one. For a fixed value θ0, the parameter space for β is given by

Ω(θ0) = {β ∈ Ω : f(β) = θ0} .
As before, let Tn = Tn(X1, . . . , Xk) be a test statistic for testing H(θ0), with t0 denoting its

20In contemporaneous work, Cai et al. (2020) use this construction to develop confidence intervals for seropreva-
lence that ensure finite-sample Type 1 error control up to the error induced by the finiteness of G(θ0).
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realized value. Assume that Tn is monotone with respect to each each component Xi.21 Let Jn,β(·)
denote the cumulative distribution function of Tn for the β- parametrization, so that Jn,β(t) =

Pβ{Tn ≤ t}, and let β̂(θ0) denote the MLE for β subject to the constraint that θ = θ0. In this case,

for example, we can represent the approximate p-value defined in Section 3.2 with q̂L,θ0,ϑ̂(θ0) =

1− Jn,β̂(θ0)(t
−
0 ), and similarly for the other p-values previously introduced.

We replace the supremum over I1−γ in (8) with a finite maximum while maintaining Type 1

control. Consider a partition of the values of ϑ in I1−γ into r regions E1, . . . , Er. In our imple-

mentation, each region is given by a hyperrectangle of the form
∏k

i=2[β′i, β
′′
i ], though this is not

essential. For each region Ej , let β−1(j) = (β2(j), . . . , βk(j)) be the vector giving the smallest

value that all but the first component of β takes on in Ej; that is βi(j) = inf{βi : β−1 ∈ Ej}.
Analogously, let β̄−1(j) be the vector giving the largest value that all but the first component of β

takes on in Ej . For a hyperrectangle Ej , clearly βi(j) = β′i and β̄i(j) = β′′i . Congruently, let

β1(j) = inf{β1 : β ∈ Ω(θ0), β−1 ∈ Ej} and β̄1(j) = sup{β1 : β ∈ Ω(θ0), β−1 ∈ Ej} (10)

denote the smallest and largest values that the first component of β takes on Ω(θ0) for β−1 in Ej .

If the infimum or supremum in (10) is over a non-empty set, then define sL(j) = Jn,β̄(j)(t
−) and

sU(j) = Jn,β(j)(t), where β̄(j) = (β̄1(j), β̄−1(j)) and β(j) = (β1(j), β−1(j)). If there is no β in

Ω(θ0) with (β2, . . . , βk) in Ej , then set sL(j) = 1 and sU(j) = 0, respectively.

We construct the p-values

q̃L,θ0,I1−γ = max
1≤j≤r

(1− sL(j)) + γ and q̃U,θ0,I1−γ = max
1≤j≤r

sU(j) + γ (11)

by taking the maximum over the adjusted p-values 1−sL(j) and sU(j) . This refinement is feasible

and valid in finite samples.

Theorem 3.1 Assume that the components of the data X = (X1, . . . , Xk)
> are independent, that

each component Xi has distribution in a family having a monotone likelihood ratio, and that the

statistic Tn = Tn(X1, . . . , Xk) is monotone increasing with respect to each component Xi. Let

I1−γ be a finite-sample valid 1− γ confidence region for (β2, . . . , βk). Then, the p-values q̃L,θ0,I1−γ

21If Tn is monotone decreasing with respect to a particular component, say Xj , then Xj can be replaced by −Xj ,
whose family of distributions is then monotone increasing with respect to −βj .
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and q̃U,θ0,I1−γ are valid for testing H(θ0) in the sense that, for any 0 ≤ u ≤ 1 and any ϑ,

Pθ0,ϑ{q̃L,θ0,I1−γ ≤ u} ≤ u and Pθ0,ϑ{q̃U,θ0,I1−γ ≤ u} ≤ u .

PROOF OF THEOREM 3.1. First, note that I1−γ could be the whole space Ω̄(θ0) by taking γ = 0. It

follows from Lemma A.1 in Romano et al. (2011) (which is a simple generalization of Lemma 3.4.2

in Lehmann and Romano (2005)) that the family of distributions of Tn satisfies Jn,β′(t) ≤ Jn,β(t)

for any t, β = (β1, . . . , βk), and β′ = (β′1, . . . , β
′
k) with β′i ≥ βi for all i ≥ 1. The same is true if

t is replaced by t−. Thus, we have that Jn,β̄(j)(t
−) ≤ Jn,β(t−) and Jn,β(j)(t) ≥ Jn,β(t) for any β

with θ = f(β) = θ0 and (β2, . . . , βk) ∈ Ej . Therefore, the p-value defined by (8) satisfies

q̂L,θ0,I1−γ ≤ max
1≤j≤r

(1− sL(j)) + γ = q̃L,θ0,I1−γ ,

and similarly q̂U,θ0,I1−γ ≤ q̃U,θ0,I1−γ for q̂U,θ0,I1−γ is defined analogously to (8) for tests of H(θ0)

against the alternative θ < θ0. Since q̂L,θ0,I1−γ and q̂U,θ0,I1−γ are valid p-values, then so are any

random variables that are stochastically larger.

Thus, tests based on the p-values q̃L,θ0,I1−γ and q̃U,θ0,I1−γ may be used to test H(θ0) and, through

test inversion, yield finite-sample valid confidence bounds for θ.

4. Test-Inversion Inference for Seroprevalence

In this section, we apply the general methods considered in Section 3 to the problem of constructing

approximate and finite-sample valid confidence intervals for seroprevalence.

4.1 Test Statistics

We begin by exhibiting a set of test statistics Tn applicable to our problem. Let p̂n(π0) denote the

MLE for p restricted to Ω(π0) = {p ∈ Ω : π = π0}.22 A natural choice for the test statistic Tn is

the difference between π̂n and π0. This statistic can be Studentized with an estimate of its standard

deviation, giving

π̃n (π0) = (π̂n − π0)
/√

Vπ̂n (p̂n) ,

22Note that there is no explicit representation for p̂n(π0), but we may compute its value by solving a convex program.
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where Vπ̂n(p) is given in (2). Alternatively, it can be Studentized with an estimate of its standard

deviation under the constraint π = π0, giving the test statistic

π̃n,C (π0) = (π̂n − π0)
/√

Vπ̂n (p̂n(π0)).

Imposing the restriction π = π0 explicitly in the estimate of the variance may provide a more

accurate approximation to the variance of π̂n under the null hypothesis. An analogous improvement

has been established for the binomial case in Hall (1982).

Observe that as p1 = p2 (1− π) + p3π, we can rewrite the condition π0 = π as the linear

restriction b (π0)> p = 0 where b (π0) = (1,− (1− π0) ,−π0)> . This observation suggests con-

sideration of the linear test statistic φ̂n (π0) = b(π0)>p̂n. Moreover, as the variance of φ̂n (π0) is

exactly equal to

Vφ̂n(π0) (p) = σ2
1 (p1) + (1− π0)2 σ2

2 (p2) + π2
0σ

2
3 (p3) , (12)

and can be estimated with the plug-in estimator Vφ̂n(π0) (p̂n), the test statistic φ̂n (π0) can be Stu-

dentized, giving the alternative test statistic

φ̃n (π0) = φ̂n (π0)
/√

Vφ̂(π0) (p̂n).

In turn, we can Studentize φ̂n (π0) with an estimate of its variance under the restriction π0 = π,

giving the statistic

φ̃n,C (π0) = φ̂n (π0)
/√

Vφ̂(π0) (p̂n(π0)).

Observe that φ̂n (π0) is well-defined if p2 = p3, and so φ̂n (π0), φ̃n (π0), or φ̃n.C (π0) may be

desirable choices in situations where p2 is close to p3.

Alternatively, we can use statistics based on the likelihood function. In particular, let L (p | x)

be the likelihood function, given by L (p | x) =
∏

1≤i≤3

(
ni
xi

)
pxii (1− pj)ni−xi . The generalized

likelihood ratio test statistic for testing H(π0) : π = π0 is given by

Wn = Wn (π0) = 2 ·
∑

1≤j≤3

(
Xj log

(
p̂n,j

p̂n,j(π0)

)
+ (nj −Xj) log

(
1− p̂n,j

1− p̂n,j(π0)

))
. (13)

Large values of Wn give evidence for both π < π0 and π > π0. To address this issue, we also



DICICCIO, RITZWOLLER, ROMANO, AND SHAIKH 15

consider the signed square root likelihood ratio statistic for the restriction π = π0, given by

Rn = Rn (π0) = sign (π̂n − π0) ·
√
Wn (π0) .

Corrections to improve the accuracy of Wn based on its signed square root Rn have a long his-

tory; see Lawley (1956), Barndorff-Nielsen (1986), Fraser and Reid (1987), Jensen (1986), Jensen

(1992), DiCiccio et al. (2001) and Lee and Young (2005). Frydenberg and Jensen (1989) consider

the effect of discreteness on the efficacy of corrections to improve asymptotic approximations to

the distribution of the likelihood ratio statistic. The statistic Rn can be re-centered and Studentized

as

R̃n =
(
Rn −mR

n (p̂n(π0))
) /√

V R
n (p̂n(π0)) ,

where mR
n (p) and V R

n (p) denote the mean and variance of Rn under p, and in practice are com-

puted with the bootstrap under p̂n(π0).

4.2 Approximate Intervals

We now outline the application of the approximate intervals developed in Section 3.2 to con-

structing confidence intervals for seroprevalence with the test statistics formulated in Section 4.1,

and measure their performance in the Monte Carlo experiment developed in Section 2. Suppose

that we are using the test statistic Tn with observed value t0. Let JTn,p(t) = Pp {Tn ≤ t} de-

note the distribution of the general statistic Tn under p, and also introduce the related quantity

JTn,p(t
−) = Pp {Tn < t} , which will be of use in computing p-values for tests of the null hypoth-

esis π = π0 against alternatives of the form π > π0. The approximate test-inversion intervals are

constructed by first computing, for each π0, the p-values

q̂L,π0,p̂n(π0) = 1− JTn,p̂n(π0)(t
−
0 ) and q̂U,π0,p̂n(π0) = JTn,p̂n(π0)(t0).

The resultant interval with nominal coverage 1− α then takes the form

{
π0 : qL,π0,p̂n(π0) ≥ α/2 and qU,π0,p̂n(π0) ≥ α/2

}
.

We begin by considering asymptotic approximations to the distribution JTn,p̂n(π0) for different test

statistics.
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Statistic Interval Ave. Length Ave. Length vs. Delta Method Coverage

π̃n,C [0.000,0.020] 0.0193 1.0404 0.963

φ̃n,C [0.000,0.020] 0.0191 1.0302 0.963

Wn [0.000,0.021] 0.0177 0.9563 0.927

R̃n [0.000,0.021] 0.0181 0.9758 0.950

Table 2: Average Interval Length and Coverage for Test-Inversion Nominal 95% Confidence In-
tervals for Seroprevalence Using Asymptotic Approximation

Notes: Table 2 reports the approximate test-inversion confidence intervals, constructed with an asymptotic approxima-
tion to test statistic null distributions, computed on data from Bendavid et al. (2020a). Estimates of the average length
and coverage for these intervals at the n and estimate p̂n from this study are also displayed. Estimates of average
length and coverage are taken over 10,000 bootstrap replicates of X at the sample size n and the estimated parameters
p̂n from this study.

Observe that, under the null hypothesis H (π0) and provided that p is not on the boundary of Ω,

the test statistics π̃n,C(π0), φ̃n,C (π0), and R̃n are asymptoticallyN (0, 1), andWn is asymptotically

χ2
1. Thus, if we set Tn equal to any of the asymptotically normal statistics, we can approximate

Jn,p̂n(π0) with a standard normal distribution. Likewise, we may apply a χ2
1 approximation if we

set Tn equal to Wn.23

Table 2 reports realizations of these approximate confidence for the observed values from Ben-

david et al. (2020a). Additionally, Table 2 presents estimates of coverage and average interval

length taken over 10,000 bootstrap replicates computed at the n and estimate p̂n from this study.

Notably, each of these intervals now includes zero.24 These interval constructions are roughly the

same length, on average, as the delta method intervals, but have coverage probability significantly

closer to the nominal level.

Figure 2 displays estimates of the coverage probabilities for these intervals in the Monte Carlo

experiment developed in Section 2. Recall that the black dots display one minus the estimates of

the coverage probabilities of the respective intervals, and that the purple squares and blue triangles

display the proportion of the replicates in which the true value of π falls below and above the real-

ized confidence interval, respectively. In contrast to the results for the standard methods displayed

23Observe that using normal approximations to π̂n or π̃n is equivalent to constructing Wald intervals for these
statistics. For that reason, we focus on statistics that make explicit use of the null hypothesis restriction π = π0.

24If the null hypothesis π = 0 is of particular interest or concern, then there exists an exact uniformly most powerful
unbiased level α test for the equivalent problem of testing p1 = p2 against p1 > p2. This is a conditional one-sided
binomial test; see Section 4.5 of Lehmann and Romano (2005). Such a test does not exist for other values of π0.
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Figure 2: Coverage Performance for Test-Inversion Intervals Based on Asymptotic Approximation
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Notes: Figure 2 displays estimates of the coverage probabilities of the approximate confidence intervals constructed
with an asymptotic approximation to test statistic null distributions. The nominal coverage probability is 0.95 and is
denoted by the horizontal dotted line. Estimates of the coverage for the interval constructed with the test statistic Tn
are denoted by “Tn, aa” and are computed at parameter values close to the estimates p̂n and sample size n of Bendavid
et al. (2020a) as specified in Section 2. The black dots denote one minus the proportion of replicates for which the
true value of π falls in the realized confidence intervals, i.e., one minus the estimated coverage probability. The purple
squares and blue triangles denote the proportion of replicates that fall below and above realized confidence intervals,
respectively. The vertical dotted line denotes the estimated value of p̂n,1, p̂n,2, or sample n1, n2 for Bendavid et al.
(2020a).

in Figure 1, we estimate that the coverage probabilities for these methods are very close to the

nominal value of 95% for most parameterizations. The intervals constructed with Wn and R̃n are

the most equi-tailed.

Next, we refine this approach by directly computing Jn,p̂n(π0) with the bootstrap. This method

is more accurate, but can be more computationally expensive. In particular, choosing test statistics

that make use of the constrained MLE p̂n(π0) requires solving the associated convex program for

each bootstrap replicate. As a result, for this case, we focus attention on test statistics that do not

make use of p̂n(π0). Table 3 reports realizations of these approximate confidence intervals com-

puted on data from Bendavid et al. (2020a), in addition to estimates of the coverage and average
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Statistic Interval Ave. Length Ave. Length vs. Delta Method Coverage

π̂n [0.000,0.021] 0.0189 1.0186 0.965

φ̂n [0.000,0.021] 0.0188 1.0133 0.962

π̃n [0.000,0.021] 0.0188 1.0150 0.953

φ̃n [0.000,0.021] 0.0188 1.0141 0.953

Wn [0.000,0.021] 0.0181 0.9788 0.946

Rn [0.000,0.021] 0.0186 1.0035 0.951

Table 3: Average Interval Length and Coverage for Approximate Test-Inversion Nominal 95%
Confidence Intervals Based on the Bootstrap

Notes: Table 3 reports the approximate test-inversion confidence intervals, constructed with a parametric bootstrap
approximation to null distributions of test statistics, computed on data from Bendavid et al. (2020a). Estimates of the
average length and coverage for these intervals at sample size n and estimate p̂n from this study are also displayed.
Estimates of average length and coverage are taken over 10,000 bootstrap replicates of X at the sample size n and
estimate p̂n from this study.

interval length at the n and estimate p̂n for this study. Again, each of these intervals include zero,

are roughly the same length as the delta-method intervals, and have coverage probability close to

the nominal level.

Figure 3 displays estimates of the coverage probabilities in the same Monte Carlo experiment

developed in Section 2. Again, these intervals have coverage close to the nominal value and are

approximately equi-tailed. The interval constructed with Rn is most equi-tailed and appears to be

the least sensitive to perturbations in p2 and n2.

4.3 Finite-Sample Valid Intervals

We now turn to the application of the finite-sample valid intervals discussed in Section 3.4. We

focus our development on the test statistic φ̂n(π0) as it is linear, and therefore monotone with

respect to each sample Xi, as is required.25

To begin, we partition the parameter space Ω into a parameter of interest and a nuisance com-

ponent. Recall that finite-sample exact intervals formed by maximizing p-values over a nuisance

space will perform best if the distribution of the chosen test statistic does not vary much with the

25One may also consider the test statistic π̂n, as π(·) is monotone with respect to each component as long as p ∈ Ω.
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Figure 3: Coverage Performance for Test-Inversion Intervals Based on Bootstrap Approximation
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Notes: Figure 3 displays estimates of the coverage probabilities of the approximate confidence intervals constructed
with the bootstrap. The nominal coverage probability is 0.95 and is denoted by the horizontal dotted line. Estimates
of the coverage for the interval constructed with the test statistic Tn are denoted by “Tn, boot” and are computed
at parameter values close to the estimates p̂n and sample size n of Bendavid et al. (2020a) as specified in Section
2. The black dots denote one minus the proportion of replicates for which the true value of π fall in the realized
confidence intervals, i.e., one minus the estimated coverage probability. The purple squares and blue triangles denote
the proportion of replicates that fall below and above realized confidence intervals, respectively. The vertical dotted
line denotes the estimate p̂n,1, p̂n,2 or sample size n1, n2 for Bendavid et al. (2020a).
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nuisance parameter. For small values of π0, the variance of φ̂n(π0) is insensitive to changes in p3,

as the variance σ2
3(p3) enters into (12) linearly and scaled by π2

0 . Additionally, for sample sizes

comparable to the measurements taken in Bendavid et al. (2020a), where n1 is much larger than

n2, the variance of φ̂n(π0) will be less sensitive to changes in p1 than to changes in p2. Thus, we

set the nuisance component ϑ = (p1, p3), giving the parameterization (π, ϑ).26

To fix ideas, consider Figure 4, which displays a heat-map of the 0.975 quantile of φ̂n(π0)

under different values of the nuisance parameter ϑ, with the sample size and the null hypothesis

restriction π0 equal to the sample size and estimated prevalence π̂n from Bendavid et al. (2020a).

The square black dot denotes the constrained MLE, ϑ̂(π0) = (p̂n,1(π0), p̂n,3(π0)). The black line

exhibits the boundary of the parameter space Ω̄(π0).

Recall that in the constructions of approximate intervals considered in Section 4.2, a point π0 is

excluded from a confidence interval with nominal coverage 0.95 if the observed value of the chosen

test statistic Tn exceeds or falls below the 0.975 or 0.025 quantiles of the statistic’s finite-sample

distribution at the constrained MLE, p̂n(π0). However, as illustrated in Figure 4, the 0.975 quantile

of the bootstrap distribution of φ̂n(π0) has considerable variation with the nuisance parameter ϑ.

As a result, these approximate intervals will not exactly control the coverage probability in finite

samples, as the event that ϑ differs from ϑ̂(π0) occurs with positive probability.

In turn, comparing the realized value of a test statistic to quantiles of the statistic’s finite-

sample distribution at every value of the nuisance component ϑ is both infeasible, as the space of ϑ

is infinite, and impractical, as it would lead to extremely conservative intervals. In fact, we can see

that in Figure 4, the 0.975 quantile of the bootstrap distribution of φ̂n(π0) is approximately four

times as large at p1 = 0.05 than at p1 = p̂n,1(π0).

Thus, the finite-sample approach developed in Section 3.4 begins by constructing a 1 − γ

confidence region for ϑ and forming a finite grid over this space. The initial confidence region I1−γ

is illustrated in Figure 4 by the greyed rectangle, and a 10 × 10 grid over this space is illustrated

by the grid of white dots. The confidence region I1−γ is formed by taking the Cartesian product of

26We note that for different sample sizes, it may be attractive to set the nuisance component ϑ = (p2, p3). For
example, Bendavid et al. (2020b) – the April 27th draft of Bendavid et al. (2020a) – includes larger sensitivity and
specificity samples n2 and n3. In particular, the specificity sample n2 was increased from 401 to 3324. These addi-
tional data were are aggregated over several samples taken at different times and locations. Gelman (2020), Fithian
(2020b), and Bennett and Steyvers (2020) highlight issues with this aggregation.

The choice ϑ = (p2, p3) also has computation advantages. In particular, by the identity p1 = p2 (1− π) + p3π,
for any value of seroprevalence π0 and any values of p2 and p3 satisfying p2 < p3, there is a value of p1 that satisfies
p2 ≤ p1 ≤ p3 such that π0 = (p1 − p2)/(p3 − p2). That is, any value of (p2, p3) corresponds to a unique value of p1
consistent with a given value of π0 and satisfying the a priori restrictions on the parameter space Ω.
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Figure 4: Bootstrap Quantiles and Initial Nuisance Parameter Confidence Region
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Notes: Figure 4 displays a heat-map of the 0.975 quantile of φ̂n(π0) under different parameter values (π0, ϑ), where
the sample size and null hypothesis restriction π0 equal to the sample size and estimated prevalence π̂n from Bendavid
et al. (2020a). The black line exhibits the boundary of the parameter space Ω̄(π0). The black square dot denotes the
constrained MLE ϑ̂(π0) = (p̂n,1(π0), p̂n,3(π0)). With γ = 0.001, the grey rectangle denotes a 1 − γ confidence
region for ϑ constructed by taking the cartesian product of two

√
1− γ level confidence regions for p1 and p3 each

constructed with the method of Clopper and Pearson (1934). The white dots denote a 10× 10 grid over this space.

two
√

1− γ level confidence regions for p1 and p3, each constructed by using the exact intervals of

Clopper and Pearson (1934). For the purposes of this figure, we set γ = 0.001. This grid partitions

the values of ϑ in I1−γ into r = 81 rectangles, which we enumerate E1, . . . , Er. Define, for

i = 1, 3, the extreme points pi(j) = inf{pi : (p1, p3)> ∈ Ej} and pi(j) = sup{pi : (p1, p3)> ∈ Ej}
as well as

p2(j) = inf{p2 : p ∈ Ω(π0), (p1, p3)> ∈ Ej} and (14)

p2(j) = sup{p2 : p ∈ Ω(π0), (p1, p3)> ∈ Ej} .

As the test statistic φ̂n(π0) is monotone increasing in X1 and monotone decreasing in X2 and X3,
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define pL(j) =
(
p1(j), p2(j), p3(j)

)
and pU(j) =

(
p1(j), p2(j), p3(j)

)
as well as

sL(j) = J
φ̂(π0)
n,pL(j)(t

−
0 ) and sU(j) = J

φ̂(π0)
n,pU (j)(t0)

where sL(j) and sL(j) are set equal to 1 and 0, respectively, if the infimum or supremum in (14) are

taken over the empty set. Thus, by Theorem 3.1 we can construct the finite-sample valid p-values

q̃L,π0,I1−γ = max
1≤j≤r

(1− sL(j)) + γ and q̃U,π0,I1−γ = max
1≤j≤r

(sU(j)) + γ

for testing the null hypothesis π = π0. Hence, the resultant finite-sample valid interval with

nominal coverage 1− α takes the form
{
π0 : q̃L,π0,I1−γ ≥ α/2 and q̃U,π0,I1−γ ≥ α/2

}
.

This approach is closely related to the method developed in Cai et al. (2020), though there

are some differences. Roughly, Cai et al. (2020) compute p-values for test of the null hypothesis

π = π0 with the parametric bootstrap using the particular choice of test statistic π̃n at each point

of a grid spanning a confidence region for the nuisance parameter. Their construction begins by

constructing a joint confidence region for all three parameters, while our approach proceeds from a

smaller initial region for just p1 and p3. We make an additional correction for a grid approximation

to the nuisance space, which allows us to ensure finite-sample validity. Their construction does not

guarantee that the resulting intervals are equi-tailed.

Table 4 reports realizations of these finite-sample valid intervals for several values of γ, in

addition to the projection intervals discussed in Section 2, for Bendavid et al. (2020a).27 The table

also reports estimates of the coverage and average interval length at the estimated values of p̂n for

this study. The cost of ensuring finite-sample valid coverage is large. The realized intervals are

roughly 40% wider on average than intervals constructed with the delta method, and the coverage

is very close to one. Figure 5 displays estimates of the coverage probabilities for the finite-sample

valid intervals as well as the projection intervals in the same Monte Carlo experiment developed

in Section 2.28 Again, the coverage is very close to one at small sample sizes. However, the finite-

sample valid intervals outperform the projection intervals. The difference is most salient in the

measurements of coverage.

The additional costs associated with correction of the approximation error induced by a finite

27These results are insensitive to small changes in the grid size g.
28Note that the proportion of Monte Carlo replicates for which the true value of π falls below the realized intervals is

very close to zero at most parameter values, and so dots denoting one minus the estimated coverage and the proportion
of Monte Carlo replicates for which the true value of π falls above the realized intervals are approximately overlaid.
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Method γ Interval Ave. Length Ave. Length vs. Delta Method Coverage

Exact

0.0001 [0.000,0.028] 0.0283 1.5311 0.999

0.0010 [0.000,0.027] 0.0269 1.4538 0.998

0.0100 [0.000,0.026] 0.0259 1.3979 0.998

Projection [0.001,0.028] 0.0270 1.4578 1.000

Table 4: Average Interval Length and Coverage for Finite-Sample Valid Test-Inversion and Pro-
jection Nominal 95% Intervals

Notes: Table 4 reports the finite-sample valid test-inversion and projection confidence intervals computed on data from
Bendavid et al. (2020a). Estimates of the average length and coverage for these intervals at sample size n and estimate
p̂n from this study are also displayed. Estimates of average length and coverage are taken over 10,000 bootstrap
replicates of X at the sample size n and the estimate p̂n from this study.

discretization of the nuisance space are not overly burdensome. In particular, consider the test

inversion intervals for π constructed with the p-values q̂L,π0,Î1−γ,g and q̂U,π0,Î1−γ,g , where the former

p-value is defined in (8), the latter is defined analogously for upper confidence bounds, and Î1−γ,g

is a g × g grid over the initial confidence region I1−γ . That is, Î1−γ,g denotes the white dots in

Figure 4, where in that case g = 10. The realized value for these intervals with g = 10 and

γ = 10−2 for data from Bendavid et al. (2020a) are [0.000, 0.025]. For these values of g and

γ, this interval construction has an average length of 0.0249, which is 34.85% longer than the

delta-method interval on average, i.e., they are 3.5% shorter than the finite-sample valid intervals

considered in this section.

There are several facets of the finite-sample valid confidence intervals considered in this section

that could potentially be improved. These include the choice of the nuisance parameter ϑ that leads

to an initial confidence region I1−γ . Additionally, an initial confidence region may be constructed

by taking the product of appropriate one-sided bounds, respectively, rather than using a single joint

confidence region for both lower and upper bounds. This change should save roughly γ/2 in over-

coverage. It may be more desirable to use a Studentized test statistic, as its distribution may vary

even less within the initial confidence region. However, a nontrivial modification of the correction

for the approximation error induced by a finite discretization of the nuisance space is required,

since monotonicity may be violated. Lastly, finer grids over the nuisance space may be applied to

further reduce the length of intervals.
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Figure 5: Coverage Performance for Finite-Sample Valid Test-Inversion and Projection Intervals
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Notes: Figure 5 displays estimates of the coverage probabilities of the finite-sample valid test inversion and projection
confidence intervals. The nominal coverage probability is 0.95. Estimates of the coverage are computed at parameter
values close to the estimates p̂n and sample size n from Bendavid et al. (2020a) as specified in Section 2. The black dots
denote one minus the proportion of replicates for which the true value of π falls in the realized confidence intervals,
i.e., one minus the estimated coverage probability. The purple squares and blue triangles denote the proportion of
replicates that fall below and above realized confidence intervals, respectively. Note that, in the case of this figure, the
black dots and blue triangles are approximately overlaid.The vertical dotted line denotes the estimated value of p̂n,1,
p̂n,2, or sample size n1, n2 from Bendavid et al. (2020a).

5. Conclusion

We demonstrate that standard methods for constructing confidence intervals in basic seropreva-

lence surveys derived from the delta method, the percentile bootstrap, and the BCa bootstrap have

coverage probabilities that behave erratically and are not consistently near the nominal level at

empirically relevant sample sizes and parameter values. By contrast, we show that methods that

combine test inversion with the parametric bootstrap lead to stable coverage probabilities that are

close to the nominal level across a variety of statistics. Specifically, statistics that are properly Stu-

dentized or based on the generalized likelihood ratio statistic exhibit superior performance. Test
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inversion based on the signed square root generalized likelihood ratio statistic gives the best overall

performance in terms of stability and validity over a range of empirically relevant parameteriza-

tions and sample sizes. On the other hand, if one desires methods with guaranteed coverage in

finite-samples, then we have provided an alternative construction with finite-sample validity, at the

cost of coverage above the nominal level and longer intervals on average.

Our reanalysis of the uncertainty in estimates of the seroprevalence of SARS-CoV-2 antibodies

in Santa Clara County, California on April 3-4, 2020 suggests that the data collected in Bendavid

et al. (2020a) are insufficient to rule out small population proportions of SARS-CoV-2 antibodies.

However, it is important to note that the maintained assumption – that the sample of antibody tests

administered to the population of interest is collected at random – is likely not to hold in many

applications. In particular, in the case of Bendavid et al. (2020a), it stands to reason that popu-

lations that differed in their likelihood of exposure to COVID-19 differed in their likelihood of

volunteering for antibody testing. In an attempt to account for these selection effects, Bendavid

et al. (2020a) apply post-stratification weighting by zip code, sex, and race to match population

weights measured with the 2018 American Community Survey. With the use of this re-weighting,

estimates of seroprevalence and corresponding confidence intervals appear to increase by approx-

imately one to two percent.29 Consequently, the interpretation of the results of the Bendavid et al.

(2020a) seroprevalence survey appears to be contingent on the form of population weighting ap-

plied. This sensitivity highlights the fundamental importance of high quality data collection in

survey design, and supports a view of seroprevalence surveys as an important input into, but not a

final answer for, assessments of the progression of early stages of infectious diseases.

The methods discussed in this paper are applicable to, but not tailored for, post-stratification

weighted estimation. If there are S strata of the population of interest, with pi1 denoting the prob-

ability that a randomly selected individual in the ith stratum tests positive, then seroprevalence in

the ith stratum is πi = (pi1 − p2)/(p3 − p2). If the ith stratum gets the known weight wi, then

the overall seroprevalence is π =
∑

iwiπi, which is a function of S + 2 binomial parameters.

However, for even moderately large values of S, the finite-sample valid intervals developed in Sec-

tion 3.4 will be computationally expensive due to the need to compute p-values for each point in

29The demographic data necessary for the replication of this result are not available. Bendavid et al. (2020a) report a
weighted seroprevalence estimate and confidence interval – purportedly constructed with the delta method – of 0.0249
and (0.0201,0.0349), respectively. However, Fithian (2020a) argues convincingly that there were coding errors made
in the computation of these intervals. Cai et al. (2020) report weighted percentile bootstrap confidence intervals of
(0.0110,0.0372), where we note that there are small differences in the specificity and sensitivity estimates that they
use relative to the data studied in this article.
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a discretization of an S + 1 dimensional first-stage confidence region.30 The computational cost

of the approximate intervals considered in Section 3.2 will not be higher than for the unweighted

problem. We view further consideration of confidence interval constructions that are well suited

for post-stratification weighting as a useful direction for further research.31

In many applied contexts it is likely valuable – both for estimation and uncertainty quantifica-

tion – to incorporate other forms of information made available in the collection of samples and test

characteristics. For example, in Bendavid et al. (2020b) a larger specificity sample is constructed

by aggregating several samples from different populations. As indicated in Fithian (2020b), there

is evidence that there is greater variation in estimates of specificity across these samples than

would be expected if each of the test results in these samples were independent and identically

distributed. Gelman and Carpenter (2020) propose a hierarchical approach to accounting for this

over-dispersion, suggesting a model in which the specificity parameters of the tests implemented

in each sample – including the sample taken from the population of interest – are drawn from a

pre-specified parametric distribution. As the process generating the specificity samples might tend

to be different from the process generating the population of interest (e.g., specificity samples may

be drawn from hospital patients local to test manufacturers), we would advocate for an approach

in which specificity was modeled as a function of relevant population characteristics. Gelman and

Carpenter (2020) also highlight the possibility of incorporating individual-level symptom data; we

second this suggestion and view it as a useful direction for further research.

The methods presented in Section 3 apply quite generally to the construction of confidence in-

tervals for real-valued parameters θ. A subclass of problems can be described as follows. Suppose

X1, . . . , Xk are independent, with Xi distributed as a binomial with parameters ni and pi. It is

desired to construct a confidence interval for some parameter θ = f(p1, . . . , pk). In this case, the

family of distributions of Xi has monotone likelihood ratio in Xi. The application of Theorem 3.1

requires specification of a nuisance parameter ϑ, construction of a confidence interval for ϑ, and

verification that the chosen test statistic is monotone with respect to each of its components. The

latter is straightforward when the test statistic is given by Tn = f(p̌1, . . . , p̌n), where p̌i = Xi/ni.

Some important special cases include differences of proportions, measures of relative risk reduc-

30In this case, adapting the finite-sample valid procedures proposed in this article for use with asymptotic approx-
imations to the distribution of the signed square root likelihood ratio statistic (see e.g., Brazzale et al. (2007); Jensen
(1986, 1992)) may significantly facilitate computation.

31Both Gelman and Carpenter (2020) and Cai et al. (2020) propose approaches to this problem, with the former
taking a Bayesian perspective.



DICICCIO, RITZWOLLER, ROMANO, AND SHAIKH 27

tion, and odds ratios.32 Agresti and Min (2002) and Fagerland et al. (2015) also consider similar

confidence interval constructions for these three parameters that involve minimizing p-values over

a nuisance parameter space, but do not account for the discretization required.

32Uniformly most accurate unbiased confidence bounds exist only for the odds ratio based on classical constructions,
but optimality considerations fail for the other parameters; see e.g., Problem 5.29 of Lehmann and Romano (2005)
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