Journal of Multivariate Analysis 183 (2021) 104733

Contents lists available at ScienceDirect

Multivariate

Analysis

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Variable selection for partially linear models via Bayesian )

Check for

subset modeling with diffusing prior

a,l,*

Jia Wang®!, Xizhen Cai"', Runze Li

2 Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
b Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267, USA

ARTICLE INFO ABSTRACT

Article history: Most existing methods of variable selection in partially linear models (PLM) with
Received 4 March 2020 ultrahigh dimensional covariates are based on partial residuals, which involve a two-
Received in revised form 31 January 2021 step estimation procedure. While the estimation error produced in the first step may

Accepted 31 January 2021

- ) have an impact on the second step, multicollinearity among predictors adds additional
Available online 13 February 2021

challenges in the model selection procedure. In this paper, we propose a new Bayesian

AMS 2010 subject classifications: variable selection approach for PLM. This new proposal addresses those two issues
primary 62G08 simultaneously as (1) it is a one-step method which selects variables in PLM, even
secondary 62J05 when the dimension of covariates increases at an exponential rate with the sample

size, and (2) the method retains model selection consistency, and outperforms existing
Keywords: ones in the setting of highly correlated predictors. Distinguished from existing ones, our

g?%gf_;i:f’;;glderﬁfﬁggn proposed procedure employs the difference-based method to reduce the impact from the

Selecti p estimation of the nonparametric component, and incorporates Bayesian subset modeling
10N consistency . R . . . . . . .
Semiparametric modeling with diffusing prior (BSM-DP) to shrink the corresponding estimator in the linear
component. The estimation is implemented by Gibbs sampling, and we prove that the
posterior probability of the true model being selected converges to one asymptotically.
Simulation studies support the theory and the efficiency of our methods as compared
to other existing ones, followed by an application in a study of supermarket data.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric model attracts considerable attention in the literature since it retains the interpretability of the
parametric models and keeps some flexibility of the nonparametric models. In this paper, we study a type of commonly
used semiparametric model, the partially linear model (PLM). The PLM assumes that, the response Y depends both linearly
on some covariates X € R? of interest, and nonparametrically on another univariate continuous covariate U defined on
[0, 1]. Suppose that the observed data {(Y;, Xi, U;)},i € {1, ..., n}, is a random sample from the following PLM

Y=fU)+X B+e, e~NO,o?). (1)

This PLM specifies a parsimonious linear function in the parametric part, while allowing a nonparametric component to be
unconstrained and subject to empirical estimation. In this paper, a new one-step Bayesian approach is proposed to select
variables for PLM with ultrahigh dimensional covariate X, that is In p = o(n). Specifically, our proposed method simplifies
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the procedure by avoiding estimating the infinite dimensionality brought by the nonparametric component and results
in sparsity in the linear component.

The estimation procedure for PLM with fixed dimension p of X has been extensively studied. Engle et al. used the
penalized least squares method to estimate § and the nuisance function f(-) simultaneously by adding a penalty on
the roughness of f(-), which was referred as the partial smoothing splines [6,7,12,23]. Since B is of primary interest,
some other methods brilliantly avoid the estimation of f(-). For example, Robinson [24] introduced a profile least squares
estimator based on the idea of partial residual, which later became one of the commonly used approaches to eliminate the
nonparametric component in PLM. Another type of approach to eliminate the nonparametric component is the difference-
based method [27,29]. It estimates the coefficients in linear component by taking differences of the ordered observations.
The resulting estimator is proven to be asymptotically efficient under finite dimensions. See Section 2.1 for more details
about the difference-based method.

Variable selection for PLM can be accomplished by adding another penalty function on 8 to the loss function of the
aforementioned partial smoothing splines method. The least absolute shrinkage and selection operator (LASSO) [25], the
nonnegative garrote [2,31], the smoothly clipped absolute deviation (SCAD) [8], the elastic net [34], and the minimum
concave penalty (MCP) [32] are all among popular choices of penalty functions. Xie and Huang [28] used the SCAD penalty
to achieve the sparsity in the linear part and used the polynomial splines to estimate the nonparametric component
simultaneously. The resulting estimator § was shown to be consistent with p = o(+4/n). An alternative is to use a two-step
procedure, in which Y and X are first regressed on U separately to get partial residuals, then the variable selection is further
applied on the transformed model. For example, the consistency for both the linear and the nonparametric components
has been well studied by Zhu et al. [33] under the regime of p = o(+/n). Liang and Li [18] discussed this approach in the
presence of measurement errors. More recently, Liu et al. [20] proposed a selection procedure via recursively test on the
partial correlation among the partial residuals and among the covariates when Inp = o(n). The method was referred as
the thresholded partial correlation on partial residuals (TPC-PR). However, to the best of our knowledge, there is nearly
no literature on variable selection in the high-dimensional setting based on the extension of difference-based method.

Bayesian approach puts priors on the parameters and the model space, and selects the model with the highest posterior
probability. There have been multiple developments for variable selection using Bayesian approach with linear and
generalized linear models. George and McCulloch [11] proposed a milestone method of Bayesian variable selection via
stochastic search. They introduced a latent binary vector to indicate the inclusion of variables in linear models, and then
placed a mixture spike and slab prior on each coefficient conditioning on this latent vector. Following this approach,
many other selection procedures with similar structure have been proposed. The distinction between them is mostly
in the form of the spike and slab priors, or in the form of the prior on the model space. To alleviate the difficulty in
choosing specific prior parameters, several approaches have been proposed, see [10,14,30]. However, these papers focused
on small-scaled questions and did not discuss any possible extension to the high-dimensional setting. More recently,
Ishwaran and Rao [15] established the oracle property of the posterior mean as n converges to infinity with fixed p under
certain conditions on the prior variances for linear models. Johnson and Rossell [16] proved selection consistency under
p = O(n) for a non-local prior in linear model settings. Liang et al. [19] proposed a point-mass spike prior with a slab
prior depending on the model size, and proved the posterior consistency under Inp = o(n) in generalized linear models,
but the corresponding conditions are relatively strong. Additionally, the step-wise estimation procedure is not efficient.
Narisetty and He [21] also used Gaussian prior but argued the prior should be sample-size dependent, referred to as
Bayesian shrinking and diffusing priors (BASAD), and obtained strong selection consistency when Inp = o(n) for linear
models under mild assumptions. However, BASAD is not computationally practical for large-p problems, since it requires
to update B from a p-dimensional multivariate normal distribution in each iteration. Recently Narisetty et al. [22] proposed
Skinny Gibbs (SG) algorithm to address this computation issue via sparsifying the precision matrix. They referred to this
kind of update as Skinny Gibbs (SG) and argued that it is a scalable method, namely the required computation time grows
approximately linearly in p. The selection consistency was proved for the logistic regression. While spike and slab priors
have been widely used in applications for its attractive interpretability, the theory for spike and slab models has not
caught up with the applications. Again, all the aforementioned papers focused on linear or generalized linear models, and
the corresponding work on semiparametric or nonparametric models under high dimensional setting is limited.

In this paper, we propose a Bayesian subset selection procedure for the partially linear model. We incorporate the
difference-based method in the prior for the nonparametric component. For the parametric component, we adopt a
modified version of Bayesian shrinking and diffusing priors (BASAD) [21] and propose the novel Bayesian subset modeling
with diffusing prior (BSM-DP). We use a normal distribution with a diverging variance as the slab prior and a normal
distribution with a small variance as the spike prior. Differently from BASAD, the response variable in our model only
depends on the active covariates. This conveniently allows us to sample coefficients separately for the active and the
inactive sets during the estimation. In fact, the spike prior has no impact on the theoretical result, so any proposal including
a point mass will work. As a practical note, we recommend a Gaussian distribution with a small variance, which allows
more flexibility for the Markov chain to explore the model space, and hence avoids local trap. As a result, the proposed
methods are more computationally efficient than BASAD. We also notice that the Skinny Gibbs (SG) [22] is a special case
of BSM-DP when the variance of spike prior is set to be proportional to 1/n. Their original paper [22] discussed logistic
regression only. We establish the selection consistency for the parametric component in partially linear models when
Inp = o(n) under mild conditions.
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The rest of the paper is organized as follows. In Section 2 we present the Bayesian subset modeling with diffusing
prior (BSM-DP) and discuss variable selection for partially linear model, followed by the estimation procedure, regularity
conditions and theoretical results. Performances of several numerical studies are presented in Section 3 to demonstrate
reliability of the proposed model. We further apply the proposed method on the supermarket data set. Proofs for lemmas
and theorems are given in Section 4, followed by discussions in Section 5.

2. Bayesian subset modeling with diffusing prior
2.1. Model and notation

Suppose that {(Y;, X;, U;)}, i € {1, ..., n} is a random sample from PLM (1) with high-dimensional covariates X € RP"
and univariate covariate U € [0, 1], where we use p, to emphasize that the number of variables is allowed to diverge
with sample size n. Assume that the random error ¢ is independent of (X', U) and each observation X; has the same
distribution with mean 0 and covariance . Denote f(U;) as «;, and & = (1, . ..., on)" as a vector with size n. Notation
Y is the corresponding size n vector, and X is the design matrix with size n x p;.

We will propose a prior for the nonparametric function (i.e. the &) in our proposed Bayesian subset selection based
on difference-based method. Assume the observation {(Y;, X;, U;)}; <<, is ordered by the increasing order of {U;}1<i<n. The
difference in observed value for contingent Y can be written as

Yi — Yiog = (f(U) — f(Ui—1)} + (X — Xi1) ' B+ € — €1, i€(2,...,n).

If U;_1 and U; are close and f(-) is smooth enough, f(U;) should also be close to f(U;_1). So the nonparametric part tends
to be canceled out. In this case, the ordinary least squares estimate can be applied on the differenced data, as long as X
is not perfectly correlated with U. Define the mth higher order difference sequence to be {d;}ic(1,... m+1), Which satisfies
Y™ld; =0and Y1\ d? = 1. So the mth order difference operation reduces the sample size to n — m by defining

m+1 m+1 mt+1 m+1
Y =C"? Z diYipmp1—e, Xf = C'/2 Z diXitmii1—t, 8 = C'/? Z def (Uismir—c), 0p = C'2 Z di€ivmi1—t

t=1 t=1 t=1 t=1

forie {1,...,n— m}, where C is some positive constant. Define the difference matrix D as
T 0 .. ... 0
0 dpp1 ... dy 0o ... 0
D=| i . i fermmm )
0 ce. 0 dpy ... di O
0 e “ee O dm+1 oo d]

Therefore the PLM (1) can be rewritten in matrix form as
Y =XB+3d+ w,

where Y* = C2DY € R"™ X* = CV/2DX € R"™*P § = CV2De € R"™, w = C'/?De € R™™. Under some
smoothness conditions on f(-) with fixed p, Yatchew [29] and Wang et al. [27] showed that the ordinary least square
estimator B = (X*TX*)~1X*TY* is asymptotically efficient when m — oo, if X and U are independent. This indicates that
the effect of the nonparametric component is negligible after applying a high order difference operation on the data.

In the literature, U;’s are either from a fixed design e.g., U; = i/n, or observations from a distribution on [0, 1] with
density function bounded away from 0. In this paper, we only consider the case when X and U are independent under a
dense design with a constraint on max<j<y |U; — Ui_1].

We use X; as the notation for the jth covariate. A size-p, latent binary random vector is introduced as y. The jth entry y;
indicates whether X; is included in the model (1 = present, 0 = not present). Therefore, the model space is fully specified
by y, and we use y and M as notations for models interchangeably. The true model is denoted as .A. The cardinality of
model M, denoted by | M|, is the size of the model. Consequently, if B8, is the subvector of B with size |M], X is the
submatrix of X with respect to model M, and X, is the | M| x | M| covariance matrix for X ,. Other notations used in
the paper are unified as follows.

e Model operation: M; A M3 and M; vV M, are defined as the intersection and union of model M and M, for
example M; A My ={i:i€ M;andie M,}.

e Rate: a, < b, or b, > a, means a, = O(b,), a, < b, or b, > a, means a, = o(b,). And a, ~ b, refers to a,/b, — ¢
for some positive constant.

e Matrix and matrix operation: n x n identity matrix is denoted as I,,. For a matrix M, ||M|| is the spectral norm, which is
the largest singular value of M. The Moore-Penrose inverse of M is denoted by M™, which is the unique generalized
inverse. And if M is a positive definite matrix we use Anin(M) and Apax(M) as the notation for the minimum and the
maximum eigenvalues of M.



J. Wang, X. Cai and R. Li Journal of Multivariate Analysis 183 (2021) 104733

Here and hereafter, the densities are conditional on X and U. The working model for variable selection in the partially
linear model in (1) via Bayesian subset modeling with diffusing prior (BSM-DP) is proposed as

7T(Y|(¥, Y Bv 0-) = N(a + Xyﬂy, O'zln),

N(O, afnaz) yi=1 .
s : 70‘ = N € 1, ey )
(Bily, o) {N(O, 0‘020‘2) =0 jed Pn} 3)

Dn
() =]]ar(1—a)'™, =lalo) =N(0,0%S0n),  7(0?) = IG(ag, bo),
j=1

where, £, = {(I, —CD'D)"" — ln}+, D is the difference matrix defined in (2).

We choose the classical Inverse Gamma distribution as the prior for o2 as it is the most commonly used conjugate prior.
Other choices of prior could be used, and it can be shown that Theorem 5 applies to a wider family of priors, including
some commonly choices like improper non-informative prior and the class of folded-noncentral-t prior (see Remark 8).
Meanwhile, independent Bernoulli distribution with probability g, is used as the prior for each y;. So the preliminary
marginal inclusion probability for each variable is g,. It is natural to assume that when the dimension p, diverges with
the sample size, g, should converge at some rate to 0. Each g; has a mixture normal distribution. Conditioning on y; = 1,
B; has a normal distribution with a relative large variance alznaz. This corresponds to a very wide and flat distribution,
usually referred to as a slab prior. We call it the diffusing prior as named in [21]. Within its variance, oy, depends on the
sample size, and diverges at some certain rate when the sample size goes to infinity. Conditioning on y; = 0, §; has a
normal distribution with variance oo 2. As the choice of o would not influence the asymptotic results, it can be chosen
depending on sample size or simply as a fixed value.

With a partially linear model, we will need to accommodate the nonparametric part. A conjugate prior of normal
distribution with a semi-definite covariance matrix o232, is proposed for & = (f(U;), ..., f(U,)). The covariance matrix
023, is further taken as a function of the difference matrix D thus to eliminate the effect of nonparametric function. More
intuitions about the choice of g, will be discussed later. The error term is assumed to be normally distributed. Therefore,
conditional on the latent indicator p, coefficients B, nonparametric component e, and the variance for the error o, Y has
a normal distribution.

Remark 1 (Comparison with BASAD [21] and SG [22]). As mentioned earlier, the inclusion of y in the conditional distribution
of Y distinguishes our model from BASAD. This difference allows us to sample separately for the active and the inactive
groups.

In our working model (3), the response variable Y is conditioned on y, hence only depends on the active covariates
X,. But in BASAD, Y depends on both the active and nonactive part of the covariates. As a result, the full conditional
distributions for 8, and B, are not independent in BASAD. Therefore, to update 8 in MCMC, each iteration requires
sampling a size-p vector from a multivariate normal distribution. This will increase the computational time quickly under
large p. On the other hand, the full conditional distributions for 8, and B, are independent in our proposal. So in each
iteration, we only need to sample a size-|y| vector from a multivariate normal distribution and sample (p — |p|) scalars
from independent univariate normal distributions. The current active model size |y| is usually small after several iterations
if the true model is sparse. In fact, just as SG, the proposed BSM-DP is scalable in high dimensional problems, which means
that the computation time growing approximately linearly with the dimension p. The computational complexity for each
iteration in the estimation procedure is n(p V |y|* v n?). We have also validated this claim in the simulation study for PLM
and more simulation studies about linear models as compared with BASAD and SG in the supplementary material. It can be
shown that SG is equivalent to our Bayesian subset modeling by taking the variance of spike prior to be 002 =(n+ ro‘nz)’l,
where rgn is the variance for spike prior in SG.

2.2. Estimation procedure

Gibbs sampling is used to update our parameters iteratively. In each iteration, we draw samples from those full
conditional distributions.

1. Update y; from a Bernoulli distribution:

Full conditional distribution of y is a Bernoulli distribution with probability Pr(y, = 1|8, a,0%,Y,y_) =
p1/(p1+ p2), and
D1 qn0o ,3/? ,31? T 2 2¢T 2
=T - +BX (Y—a—Xz3B1) /02— BX X/ (26%) } .
= i 0 o et K (X385 (0"~ XA (2

where X; is the ith column of X, and the index A is the collection of current active covariates after removing the
kth covariate, that is A, = {i: y; = 1,1 # k}.
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Fig. 1. Visualizations to display the magnitude of values in the difference matrix D, the covariance matrix =,, used for the update of & and the
covariance matrix for prior =g,. All plots are taking constant C = 0.6, sample size n = 200 and difference order m = 20. On the graph, red
color indicates positive values on the corresponding locations of the matrix, and purple color represents negative values. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

2. Update B from multivariate normal distributions:
In each iteration, we divide g into the active group and the inactive group based on the current y. Denote A as the
collection of covariates with y; = 1, and 7 as the collection of covariates with y; = 0. Rewrite g = (Bz. Bz). and
we can update those two groups separately.

-1
. Update the active group A: B3 ~ N (VX(Y — ), 62V), where V = <X}X; + él@) )
II. Update the inactive group Z: Bz ~ N (0, oZo?l ).
3. Update o2 from an Inverse Gamma distribution:
o2 ~ IG(a, b), where
a=ap+(n+ps)/2,
.
b=bo+ B5Ba/(207,) + B3B2/(203) + (Y —a —XzB2) (Y—a—XzBz)/2+a Sona/2.
4, Update & from a multivariate normal distribution: :
a~ N (Zan (Y—X2B3) . 0%*Zan), where oy = (S¢, +1n) . furthermore by Condition A, 4, =1, — CD'D.

In the literature, the nonparametric function f(-) is usually assumed to be smooth, which means f(x) and f(y) should be
close if x and y are close enough. This dependency among f(U,), f(U,), ..., f(U,) suggests that the covariance matrix =,
of o has to be a dense matrix. Here we take X, to be 3¢, = {(In —CcD'D)! — In}+ where C is some positive constant
and D is the difference matrix defined in (2). We will show the reason for this specific choice of 3¢, in Remark 2. Fig. 1.
shows the intuitive structure of difference matrix D, the matrix X, used for the update of &, and covariance matrix for the
prior 3¢, when constant C = 0.6 with sample size n = 200 and difference order m = 20. As demonstrated in the figure,

5
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D € R("™"™x" j5 3 general upper triangular band matrix with bandwidth m. The update matrix S, is also a band matrix
with bandwidth m. The covariance matrix for the prior of the nonparametric component g, € R™" is a dense matrix
with positive larger values near the diagonal, then decays gradually to 0 and negative when moving further. The reason
why it has negative off-diagonal values is because the difference sequence {d;}1<i<m+1 is standardized to be centered at 0.
Theoretically, we do require the difference order m, which is also the bandwidth, goes to infinity as n — oo at some slow
rate. In this way, the effect of the nonparametric component can be removed without over-smoothing the nonparametric
function f(-), so the selection consistency for the linear component holds.

2.3. Selection procedure

In the typical Bayesian variable selection approach, the model with the highest posterior is selected as the final model,
referred to as maximum a posterior model (MAP): M = argmax 4 Pr(y = M|Y). With the spike and slab prior, the
posterior of the model space is usually reflected by the posterior probability of the latent variable p. Alternatively, another
way is to consider the marginal probability of Pr(y; = 1]Y). Specifically, one will select the jth covariate if Pr(y; = 1|Y) is
equal to or greater than a certain threshold. A threshold of 0.5 is a natural choice. This is known as the median probability
model (MPM). It has been shown that MPM has good predictive power [1]. Although it is likely that these two approaches
may produce different results in practice, it can be shown those two selection methods are asymptotically the same under
strong selection consistency, which will be shown in Section 2.4. Moreover, some other data-driven criteria could also be
used in determining the threshold, e.g. AIC, BIC and EBIC [4].

2.4. Theoretical results

Variable selection procedures typically aim to achieve selection consistency, and under Bayesian framework, it means
conditional on observed data, the probability of the true model A being selected goes to 1 in probability.

Pr(/\//\lelY)il as n — oo.

That is, the true model is selected consistently. Note that the posterior of model space is fully specified by p. If the model is
selected via MAP: M = argmax  Pr(y = MJY), then the selection consistency only requires that the posterior probability
of the true model, i.e. Pr(y = A|Y) is no less than that of any other models, i.e. Pr(y = M]|Y). But the difference in their
posterior probabilities could still shrink to 0. In this paper, we will consider the following strong selection consistency

P
Pily=A|Y)— 1 asn— oo.
It indicates the difference for the posterior probabilities of the true model and any other model is 1. This non-zero
difference indicates a stronger conclusion than selection consistency. We first present the following regularity conditions

for the selection consistency of the linear component in the PLM, and we then start with the case when ¢ is known as
it provides intuitive interpretation for the proposed method.

Condition A (On the dimension and priors). The dimension p, satisfies that In(p,) = o(n). The prior probability that a
coefficient is nonzero q, satisfies that g, ~ 1/p,. The variance for slab prior afn — o0 as n — oo, and nafnkl ~
p2*3 for some § > 0, where A, is defined in Conditions C. The covariance for the prior of nonparametric component
Son = {I, —CD'D)~" — In}+, where C is a positive constant, with values no greater than min {1, 1/Amax(D D)},
and D is the difference matrix defined in (2).

Condition B (Identifiability). There exists K > 1+ 4/§ such that

An(K) = inf (1= Pu)Xy Balls > 02| Al(4+ 48 + k) Inpy,
M:IM|<K|Al, AZM
where X* = C/2DX and the projection matrix P = X’ (X3 X% )7 1X%
Condition C (Regularity of the design). Define
A= min A XTI x A2 = max A XTI X
1= Mi\lelmnHAl min n MM | 2 = M:MEA max n MM |
then (x,/A1)"! < p¥, for some 0 < « < §, where m, is defined in Condition D.

Condition D (On the true model). Let B 4 consist of all nonzero elements of B. That is, X 4 consists of all active predictors.
The size of A satisfies that |A| = o(m,), my = cn/Inp,, where ¢ < §/{(4 + 8)(2 + 8)}. Further assume that
Us = MaXa<i<n U — Ui_1| = 0 (n7°1) for some 0 < ¢; < 1.

Condition E (On the difference matrix). Let D be the difference matrix, as defined in (2). Denote h; = ZEH‘ didi, then
the mth difference sequence dy, ..., dpy; satisfies,

m+1 m+1

dodi=0 Y d=1, Xm:hﬁzom*l), 1—d=o(m™).
i=1 k=1

i=1
Furthermore m — oo, m = o(n?) for some 0 < ¢, < ¢; < 1, where c; is defined in Condition D.

6
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Condition F (On the nonparametric component f(-)). Suppose f(-) € A¥(M) for some k >
defined in Conditions D, E. The Lipschitz ball A¥(M) is defined as

1
CEDL where c; and ¢, are

A = [f s forall 0 < xy =1, IR = M. € (0, Lk = 1), F1900 — F0)] < Mix—yI¥ ],
where | k] is the largest integer less than k and k' = k — |k].

The convergence and divergence rates of the parameters in the priors and the dimension of the variables are stated
in Condition A. Identifiability Condition B is needed to distinguish active covariates out of spurious ones. Condition C
gives the regularity condition of the design matrix. Instead of requiring bounded eigenvalues, we will need the minimal
eigenvalues to decay slower than some rate and the maximal eigenvalues to diverge slower than some rate. We would
like to point that, if the size of the true model is not too large, the condition holds even with the extreme case when
X is sampled from normal distribution with compound symmetric covariance matrix when correlation among predictors
p —> 1. Theoretically the model still works even under nearly perfectly correlated covariates. Condition D states the
normality assumption for the error and we do allow infinitely many active variables.

Conditions E-F control the error in estimating the nonparametric component. Condition E is about the difference

m+1° m(m+1)"*
As argued in [23] about partial smoothing spline method for PLM, higher ordered difference operation gives lower
approximation error. We do assume m — o0, so the approximation error becomes ignorable. In the estimation of the
partial residuals, it requires that the nonparametric estimators of E(Y|U) and E(X|U) to converge sufficiently fast so that
their substitutions in the OLS estimator do not affect its asymptotic distribution. Similarly, our upper bound for the growth
rate of difference order m reflects this. Finally, the commonly used smoothness assumption for nonparametric nuisance
function is stated in Condition F.

The first step is to derive posterior probability of any model M.

matrix. A sequence satisfying the above conditions, for example, is d; = ./-"~,d, = d3 = --- = dpy1 = —,/ ==

Lemma 1. Under fixed o2, for any model M, the posterior probability has the following explicit form:
1
Pr(y = M | Y,0%) o« ¢! Trqexp [ —=—Ru |,
202
where
-1
R =Y" {21,., — S X (XS X + T /o2) xLzm} Y,
_ -1
Tvm = UanVU IXLEmXM + I\MI/OHZn’
and =1, =1, — (Earn +1,)7", X, is the covariance matrix for the prior of f(U).
Furthermore, define the likelihood ratio between model M and the true model A as PR(M, A). If Conditions A, C hold,
PR(M, A) is bounded by
Pr(y = MY, o) —1.58(] M —|A|)+0.5¢

1
PR(M, A) = m =P, EXP{_E(RM _RA)}~ (4)

’

Remark 2. Lemma 1 gives the explicit form of the posterior probability for any given model M and puts an upper bound
on the likelihood ratio between model M and the true model A. Intuitively from (4), when ‘712n is sufficiently large, R4
is close to

—1
R, =Y {zln — S Xt (XL S1X) xLzm}Y.

So if X4, is taken to be CD'D, which means %o, = {(I, —CD'D)™' — l,,}+, then R, is proportional to the sum of

squared residuals under model M, after applying the difference-based method. It could be interpreted as the goodness

of fit. Additionally, the first term p;]'s‘s('M‘f‘A') in (4) could be regarded as the penalty on the model size. So it is mostly

analogous to a Ly penalized method. As o1, diverges fast, we can directly work with R* and R’ , instead of Ry, — R 4. The
following two lemmas present some properties of R¥ and R} ,.
Lemma 2. For any model M containing the true model, i.e A C M, if conditions A, E, F hold, then

Ry~ Co?xp mipg @S-

* * 2.2
Ry — Ry ~ CoXm—1a) @S-

Lemma 3. Suppose that Conditions A, C, D are satisfied, then for any g, — oo and € > 0,

(i) Pr(R4 — RY > gq) < exp(—c/nk1afngn), for some ¢’ > 0, where )\ is defined in Condition C.
(i) Pr(|R* /(Cno?) — 1| > €) < exp(—cn), for some ¢ > 0.

7
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Remark 3. Lemma 2 shows for over-fitted models, after applying the difference operation, the sum of squared residuals
has an asymptotic x? distribution with the degrees of freedom as n — m — |M]. It also gives the asymptotic distribution
of Ry — R%,. The difference of R4 and R is further bounded in Lemma 3. Lemma 3(ii) is straightforward by using the
tail bound with yx? distributions.

Theorem 4 (Strong Selection Consistency Under Fixed o'2). Suppose that Conditions A, B, C, D, E, F hold for the partially linear
model in (1) with Inp, = o(n), and | A| = o(m,) is valid, we have

Pl‘(y:A|Y,O'2,|)/|§mn+|A|)—P>] as n — oo,

where m, = cn/Inpy, as defined in Condition D.

Remark 4. It suffices to show

Pr(y = M|Y, o
3 PR(M, A) = 3 Prily = MY, 0) »
Pr(y = AlY, 0)
M#EA | M|=mp+|A| M#FEA | M|=mp+|A]
Recall that, by (4) in Lemma 1, we have PR(M, A) < pgl'ss(‘M'_'A‘Ho‘S” exp {—z(%z(RM - RA)}. Inspired by [21], we first
divide the model space into 3 disjoint parts, P;, i = 1, 2, 3 defined as below. In each group, we prove the sum of likelihood

ratio converges to O in probability.

1. Consider the set of overfitted models P; = {M : A C M, |[M| < m, + |A|}. Model M in this group contains all
active variables, so R4 — Ry, might be large. However since |[M| — | A| > 0, the number of extra spurious variables
is penalized at the rate of p; ‘.

2. For large and including some inactive variables models 7, = {M : A € M, K|A| < |[M| < m, + |A]}, let MV A
be the union of models M and 4, then any model M in this group has M Vv A € Py. Although size of M Vv A
may exceed m, + |.A|, but since m,, dominates |.A| so it is reasonable to assume the difference is negligible. Model

M Vv A will also have a better fit than M. Thus we can control exp [—ZU%(RM — R4)t by bounding the value of

exp {—ZU%(RMW\ - RA)}. Since the size of models in P, is large, the growth of exp {—ﬁ(RM - RA)} is under

control.

3. Now consider the set of underfitted models missing some active variables, which is formulated as P3 = {M : A ¢
M, |IM| < K| A}, where K is the constant defined in Condition B. For any model M in this group, at least one active
variable is missed. By Condition B on the identifiability of the active variables, Ry, — R4 will be large since model
M does not have a good fit, thus the value of PR(M, A) is controlled.

Remark 5. In this paper, we only consider models that are not unreasonably large, that is, |M| < m, + |A|, where m;, is

at the order of n/Inp,. There is a reason behind the choice of m,. It can be shown that the marginalAprobability for the

inclusion of a single variable i.e. ¢ = Pr(y; = 1) somehow controls the size of the selected model. Let M = argmax Pr(y =
M

M|Y, o). For any fixed choice of g, we can derive the upper bound on the selected model size
c|Allnp, c'n

M| = Al + .
—Ing —Ing

Since we require g, ~ p;l and |4 =0 (ﬁ) in Conditions A, D, it reduces to

~ n
| M| :o( )
Inp,

Theorem 5 (Strong Selection Consistency Under Unknown o2). Suppose that Conditions A, B, C, D, E, F hold for the partially
linear model in (1) with Inp, = o(n), and | A| = o(m,) is valid, we have

P
Pry =AY, |ly|<mp+1|A])) — 1 asn— oo,
where m, = cn/Inp,, as defined in Condition D.
By further integrating out o2 and applying some inequalities, the problem reduces to intermediate steps in Theorem 4.
Please refer to Section 4 for the proof.

Remark 6. As linear models are special cases of partially linear models, the proposed BSM-DP variable selection method
may be directly applicable to linear models. We have also studied theoretical properties, finite sample performance and
computational time of the BSM-DP under the setting of linear models and compared with BASAD [21] and SG [22]. To
save space, all material related to BSM-DP for linear models are put in the supplementary material.

8
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3. Numerical study
3.1. Simulation study

3.1.1. Simulation settings and the choice of hyperparameters

In this section, we compare the performance of the proposed method with several other existing methods including
penalized methods on partial residuals and methods based on partial correlation of partial residuals. The penalized
methods include the famous LASSO [25] and SCAD [8] tuned by BIC. The R packages msgps, ncvreg are used for LASSO
and SCAD. Methods based on partial correlation include PC-simple algorithm on the partial residuals (PC-PR) [3] and
threshold partial correlation on partial residuals (TPC-PR) [20]. Both PC-PR and TPC-PR select variables based on the
magnitude of the partial correlation between the partial residuals of the response and the corresponding predictors, while
the difference is on the threshold used for partial correlations. TPC-PR uses a threshold depending on the kurtosis of X,
so the normality assumption for X is not necessary. For TPC-PR, we also consider a fine tuning on the critical value
cT(a, n,k, m), where c is the tuning parameter chosen by EBIC [4]. The method is denoted as TPC-PR.EBIC.

First we need to specify the hyper-parameters oy, o1s, G, M, &g, Bo. Partially refer to the choice in [21], we use «g = 2,
Bo = 5, and oy = 0.1 for our proposed method (BSM-DP). The order of the difference operator is set to be m = [5n'/].

Additionally, the variance for the diffusing prior is set as o1, = ,/max { (n )}, and we choose g, = Pr(y; = 1) such

100n°

that Pr( f”1 ¥; > K) = 0.1, for a prespecified value of K. The value of K can be our preliminary guess for the size of
active set, and for example, we can use the size of active set selected by LASSO. In this paper we simply set K = 10. In
each of the following case, we allow 6000 iterations, and treat the first 3000 as burn-in samples. We report simulation
results based on both MAP and MPM for our proposed method.

We fix n = 200, p = 1000 and the true active set A = (1, 2, 5, 8) with coefficients of 8 , = (1.5, 2.0, 2.5, 3.0). The
error ¢; is drawn from standard normal distribution A/(0, 1). Fixed design of U; = i/n, i € {1, ..., n} is used with three
different types of X:

Case 1. Type I normal distribution with autoregressive covariance matrix: X ~ N(0, £), where ; = p/=l.

Case 2. Type Il normal distribution with compound symmetric covariance matrix: X ~ A/(0, ), where ¥; = 1 for
i=jand = = p fori #j.

Case 3. Type IIl mixture of normals: X is sampled from AN(0, =) with probability 0.9 and from A0, 9%) with
probability 0.1, where X is the compound symmetric correlation matrix with correlation p.

In each case, we also consider low and high correlations at p = 0.2 and p = 0.8 separately, with two choices of the
nonparametric component f(U) = U? and f(U) = sin(2nU). The following evaluation criteria are used for comparing
methods based on 500 replications:

pe and pm‘" the average for the maximal of marginal posterior probabilities on true inactive covariates, and the

average for the minimal of marginal posterior probabilities on true active covariates.

Da=n: the proportion of replications with the exact model being selected.

Daen: the proportion of replications with all true active variables being selected.

pi: the proportion of replications that the ith true active variable is selected successfully , i € {1, 4}.
TP (true positive): the average number of true active variables selected.

FP (false positive): the average number of selected variables that are actually inactive.

ME (model error): (B — B)T cov(X)(B — B).

Note that for those existing methods, partial residuals are firstly obtained. Getting the partial residuals involves the value
of E(Y|U), which is estimated by the local linear regression, followed by [20]. The bandwidth is chosen via plug-in methods
using R package KernelSmooth. Afterwards, with LASSO and SCAD, we are able to estimate B and achieve variable
selection 51multaneously in the second step. While for the partial correlation methods including PC and TPC an estimation
of the active set 4 needs to be obtained first, then ﬂ is estimated by regressing the partial residuals on .A through the least
squares method. Details can be found in [20]. In this simulation, we use the posterior mean of f as ﬂ for the proposed
method.

3.1.2. Simulation results

Tables 1-3 record the mean results from those 500 replications. Case 1 is with the decayed autoregressive covariance
matrix. Under the case with low correlation p = 0.2, all methods perform well regardless of the type of the nonparametric
function. For the situation with high correlation of p = 0.8, LASSO is prone to overfit the model, with the exact model
being selected only around 20% of the time.

It gets more challenging to identify true covariates under dense correlation, which is Case 2 with the compound
symmetric covariance matrix. The exact-fit rates are much lower for most of the methods as compared to that in Case
1. It is noteworthy that under high correlation p = 0.8, except for our proposed BSM-DP, most other methods do not
perform well. LASSO consistently selects a larger model with about 16 spurious covariates on average, while SCAD tuned

9
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Table 1

Summarized simulation results for Case 1: p = 1000, n = 200 and X is sampled from normal distribution with autoregressive correlation matrix.
The reported values are means of different performance measures averaged over 500 replications. The methods compared include LASSO and SCAD
on partial residuals tuned by BIC (LASSO.BIC, SCAD.BIC), PC-simple algorithm on the partial residuals (PC-PR), threshold partial correlation on partial
residuals (TPC-PR, TPC-PR.EBIC), proposed method with model selected by MAP and MPM (BSM-DP.MAP, BSM-DP.MPM). The details of different
methods and measures are provided in Section 3.1.1.

Method poE pmin PA=M Pacrm P P4 TP FP ME
LASSO.BIC 0.760 1.000 1.000 1.000 4,000 0.256 0.313
SCAD.BIC 0.932 1.000 1.000 1.000 4.000 0.082 0.026
flu) = u? PC-PR 0.966 0.994 0.994 1.000 3.994 0.030 0.040
p =02 TPC-PR 0.964 0.994 0.994 1.000 3.994 0.032 0.041
TPC-PR.EBIC 0.994 1.000 1.000 1.000 4.000 0.010 0.027
BSM-DP.MAP (new) 0.073 1.000 0.974 1.000 1.000 1.000 4.000 0.032 0.026
BSM-DP.MPM (new) : ’ 0.974 1.000 1.000 1.000 4.000 0.030 0.026
LASSO.BIC 0.738 1.000 1.000 1.000 4.000 0.288 0.334
SCAD.BIC 0.924 1.000 1.000 1.000 4.000 0.120 0.029
f(u) = sin(2mu) PC-PR 0.996 0.994 0.994 1.000 3.994 0.032 0.045
p =02 TPC-PR 0.958 0.994 0.994 1.000 3.994 0.040 0.045
TPC-PR.EBIC 0.982 1.000 1.000 1.000 4.000 0.018 0.029
BSM-DP.MAP (new) 0.074 1.000 0.974 1.000 1.000 1.000 4.000 0.028 0.026
BSM-DP.MPM (new) : ’ 0.970 1.000 1.000 1.000 4.000 0.032 0.026
LASSO.BIC 0.222 1.000 1.000 1.000 4.000 1.266 0.309
SCAD.BIC 0.984 0.998 0.998 1.000 3.998 0.020 0.032
f(u) = u? PC-PR 0.644 0.652 0.768 1.000 3.652 0.094 0.344
p=0.38 TPC-PR 0.652 0.660 0.774 1.000 3.660 0.092 0.338
TPC-PR.EBIC 0.846 0.858 0.886 1.000 3.858 0.038 0.149
BSM-DP.MAP (new) 0.053 1.000 0.990 1.000 1.000 1.000 4.000 0.010 0.023
BSM-DP.MPM (new) . : 0.994 1.000 1.000 1.000 4.000 0.006 0.023
LASSO.BIC 0.172 1.000 1.000 1.000 4.000 1.362 0.321
SCAD.BIC 0.986 0.998 0.998 1.000 3.998 0.014 0.040
f(u)=sin(2ru)  PC-PR 0.650 0.656 0796 1000 3998 0014  0.348
p=0.38 TPC-PR 0.662 0.668 0.804 1.000 3.666 0.132 0.337
TPC-PR.EBIC 0.840 0.854 0.906 1.000 3.854 0.064 0.159
BSM-DP.MAP (new) 0.055 1.000 0.982 1.000 1.000 1.000 4.000 0.018 0.023
BSM-DP.MPM (new) . . 0.984 1.000 1.000 1.000 4.000 0.016 0.023

by BIC is prone to select a smaller model. PC and TPC work evidently slow under dense correlation, when p = 0.2, it
takes around 12 h for PC, TPC and TPC-EBIC to finish one replication. More than 48 h are needed when p = 0.8, thus we
mark it as stars (***) since 500 replications cannot be done in timely manner. Our proposed method (BSM-DP) gives the
best results, with high exact-fit rates (above 95%) even under the high dense correlation situation.

In Case 3, X is generated from a mixture normal distribution, with a heavier tail than the normal distribution. Since
PC-PR relies heavily on the normality of the covariates, it gives poor results. The updated version of TPC without assuming
normality shows improvement. Our proposed method (BSM-DP) still stands out in the comparison with around 95% perfect
exact-fit rates.

Overall, when correlation increases, LASSO tuned by BIC tends to overfit the model while SCAD tuned by BIC is
more likely to select a smaller model. When X is normally distributed, PC and TPC are similar. But when the normality
assumption is violated, TPC performs better than PC. The newly proposed method BSM-DP performs consistently the best,
regardless of the correlation strength and distribution of X. The exact-fit rates for all cases are all above 90%.

Remark 7 (On Model Selection Procedure). In our simulation study, models selected by MAP and MPM are very similar to
each other. We do not need to select the threshold with MAP. With the MPM, the jth variable is selected if its posterior
probability Pr(y; = 1]Y) > 0.5. In order to investigate the impact of different thresholds other than 0.5, we further
explore one simulation setting Case 2 with p = 0.8, and consider various threshold values from 0 to 1. The results
are presented in Fig. 2. With a smaller threshold, more spurious variables are likely to enter the model, so the false
discovery rate (dotted red line) is higher. While with a larger threshold which associates with a more stringent selection
criterion, we have a higher chance to miss active variables. It is worth noting that although for our simulation setting with
B4 = (1.5,2.0,2.5,3.0) shown in Fig. 2(a), the true positive rate (dashed green line) is consistently high as all active
variables have marginal inclusion probabilities as 1, but generally we may expect a drop when threshold approaches to 1
for most cases as in Fig. 2(b) with lower signal g, = (0.8, 1.3, 1.8, 2.3). The exact-fit rate (solid blue line), which gives
the proportion of replications with exact model being selected, is reasonably good, as long as the threshold is neither too
large nor too small. Overall, 0.5 looks like a good choice.

We also compare the computation time required by different methods. Among the five methods mentioned above,
LASSO and SCAD are the fastest which take about 2 min in R to finish estimation for one replication. PC and TPC are fast
as well when covariate X has decayed covariance matrix. They become dramatically slow with high and dense correlation.
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Table 2

Summarized simulation results for Case 2: p = 1000, n = 200 and X is sampled from normal distribution with compound symmetric correlation
matrix. The reported values are means of different performance measures averaged over 500 replications. The methods compared include LASSO
and SCAD on partial residuals tuned by BIC (LASSO.BIC, SCAD.BIC), PC-simple algorithm on the partial residuals (PC-PR), threshold partial correlation
on partial residuals (TPC-PR, TPC-PR.EBIC), proposed method with model selected by MAP and MPM (BSM-DP.MAP, BSM-DP.MPM). The details of
different methods and measures are provided in Section 3.1.1. Results under high correlation p = 0.8 are highlighted.

Method poE pmin PA-M Pacrm P P4 TP FP ME
LASSO.BIC 0.220 1.000 1.000 1.000 4.000 1.652 0.509
SCAD.BIC 0.938 1.000 1.000 1.000 4.000 0.070 0.028
flu) = u? PC-PR 0.420 0.998 0.998 1.000 3.998 0.766 0.063
p =02 TPC-PR 0.406 0.998 0.998 1.000 3.998 0.782 0.063
TPC-PR.EBIC 0.862 0.998 0.998 1.000 3.998 0.140 0.040
BSM-DP.MAP (new) 0077 1.000 0.970 1.000 1.000 1.000 4.000 0.030 0.024
BSM-DP.MPM (new) ’ : 0.970 1.000 1.000 1.000 4.000 0.024 0.024
LASSO.BIC 0.202 1.000 1.000 1.000 4,000 1.746 0.515
SCAD.BIC 0.950 1.000 1.000 1.000 4.000 0.054 0.027
f(u) = sin(2mu) PC-PR 0.368 0.984 0.984 1.000 3.984 0.870 0.098
p =02 TPC-PR 0.358 0.986 0.986 1.000 3.986 0.884 0.095
TPC-PR.EBIC 0.826 0.990 0.990 1.000 3.990 0.208 0.060
BSM-DP.MAP (new) 0.087 1.000 0.970 1.000 1.000 1.000 4.000 0.036 0.032
BSM-DP.MPM (new) ’ : 0.976 1.000 1.000 1.000 4.000 0.026 0.033
LASSO.BIC 0.000 1.000 1.000 1.000 4.000 16.174 0.390
SCAD.BIC 0.386 0.386 0.412 1.000 3.386 0.000 0.585
f(u) — uZ PC-PR Fkok Hkk EEEY Hkk Hkk dokk Fkk
p — 0.8 TPC_PR * kK kkok Kokk dkk *kk kokk *okk
BSM-DP.MAP (new) 0.105 1.000 0.942 1.000 1.000 1.000 4.000 0.068 0.034
BSM-DP.MPM (new) : . 0.956 1.000 1.000 1.000 4.000 0.048 0.037
LASSO.BIC 0.000 1.000 1.000 1.000 4.000 16.114 0.401
SCAD.BIC 0.426 0.426 0.448 1.000 3.426 0.000 0.574
f(u) = Sln(zﬂu) PC_I)R ok Fkk *okk Hkk *kk kK kK
p =08 TPC-PR - s . arn ann . .
TPC-PR.EBIC - . . - ek . .
BSM-DP.MAP (new) 0.093 1.000 0.970 1.000 1.000 1.000 4.000 0.036 0.032
BSM-DP.MPM (new) : . 0.976 1.000 1.000 1.087 4.000 0.026 0.033

*** Stands for the cases when a single replication takes more than 48 h. So 500 replications cannot be done in timely manner.

Comparison for Different Thresholds Comparison for Different Thresholds
group -e- exact-fit rate false discovery rate - true positive rate group -e- exact-fit rate false discovery rate ~® - true positive rate
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.
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Threshold Threshold
(a) B# = (1.5,2.0,2.5,3.0) (b) B4 =(0.8,1.3,1.8,2.3)

Fig. 2. Impact of model selection performance using different threshold values for the posterior probability. The criteria displayed to measure
performance include exact-fit rate (solid blue line), false discovery rate (dotted red line) and true positive rate (dashed green line). A range of threshold
values from 0 and 1 are used to plot the curve for each criterion. Two signal values with different strengths are considered: g 4 = (1.5, 2.0, 2.5, 3.0)
and B 4 =(0.8,1.3,1.8,2.3).

More than 48 h is needed for PC using R to finish one replication when the covariance of X is compound symmetric with
p = 0.8. It may get worse with higher dimensional covariates and larger active groups, since the computational time for
both PC and TPC grows polynomially with them. Time is recorded based on Macbook Pro early 2015 with 2.7 GHZ, Intel
i5 and 8 GB.

On the contrary, the computation burden for the newly proposed Bayesian method (BSM-DP) is moderate. Among
all simulation settings, the slowest one takes about 12 min to finish 6000 iterations for one replication using Julia
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Table 3

Summarized simulation results for Case 3: p = 1000, n = 200 and X is sampled from mixture of normals with compound symmetric matrix. The
reported values are means of different performance measures averaged over 500 replications. The methods compared include LASSO and SCAD on
partial residuals tuned by BIC (LASSO.BIC, SCAD.BIC), PC-simple algorithm on the partial residuals (PC-PR), threshold partial correlation on partial
residuals (TPC-PR, TPC-PR.EBIC), proposed method with model selected by MAP and MPM (BSM-DP.MAP, BSM-DP.MPM). The details of different
methods and measures are provided in Section 3.1.1. Results under high correlation p = 0.8 are highlighted.

Method poE pmin PA-M Pacrm P P4 TP FP ME
LASSO.BIC 0.156 1.000 1.000 1.000 4.000 2.434 0.475
SCAD.BIC 0.994 1.000 1.000 1.000 4.000 0.008 0.022
flu) = u? PC-PR 0.476 0.690 0.724 1.000 3.676 1.304 0.927
p =02 TPC-PR 0.574 0.574 0.636 1.000 3.552 0.622 1.252
TPC-PR.EBIC 0.680 0.694 0.726 1.000 3.680 0.612 0.891
BSM-DP.MAP (new) 0.046 1.000 0.984 1.000 1.000 1.000 4.000 0.016 0.015
BSM-DP.MPM (new) ’ ' 0.986 1.000 1.000 1.000 4.000 0.014 0.015
LASSO.BIC 0.228 1.000 1.000 1.000 4,000 2.194 0.449
SCAD.BIC 0.990 1.000 1.000 1.000 4.000 0.012 0.018
f(u) = sin(2mu) PC-PR 0.572 0.768 0.802 1.000 3.776 0.982 0.670
p =02 TPC-PR 0.618 0.622 0.682 1.000 3.602 0.544 1.125
TPC-PR.EBIC 0.748 0.768 0.804 1.000 3.764 0.438 0.667
BSM-DP.MAP (new) 0.050 1.000 0.986 1.000 1.000 1.000 4.000 0.016 0.014
BSM-DP.MPM (new) ’ : 0.988 1.000 1.000 1.000 4.000 0.012 0.014
LASSO.BIC 0.000 0.998 0.998 1.000 3.998 14.060 0.395
SCAD.BIC 0.380 0.382 0.432 1.000 3.374 0.120 0.652
f(u) — uZ PC-PR Fkok Hkk EEEY Hkk Hkk dokk Fkk
p — 0.8 TPC_PR * kK kkok Kokk dkk *kk kokk *okk
BSM-DP.MAP (new) 0.092 1.000 0.962 1.000 1.000 1.000 4.000 0.042 0.025
BSM-DP.MPM (new) : . 0.964 1.000 1.000 1.000 4.000 0.040 0.025
LASSO.BIC 0.000 0.996 0.996 1.000 3.996 14.002 0.418
SCAD.BIC 0.422 0.426 0.492 1.000 3.416 0.022 0.672
f(u) = Sln(zﬂu) PC_I)R ok Fkk *okk Hkk *kk kK kK
p =08 TPC-PR - s . arn ann . .
TPC-PR.EBIC - . . - ek . .
BSM-DP.MAP (new) 0.082 1.000 0.960 1.000 1.000 1.000 4.000 0.042 0.020
BSM-DP.MPM (new) : ’ 0.970 1.000 1.000 1.000 4.000 0.032 0.020

*** Stands for the cases when a single replication takes more than 48 h. So 500 replications cannot be done in timely manner.

computation time vs dimension

3
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Dimension

Fig. 3. Change in computational time (in minutes) when the dimension of covariates increases from 100 to 4000. The CPU time is estimated by the
median computation time consumed among 10 replications for each dimension setting.

0.6. As discussed in Remark 1 Section 2.1, the Bayesian subset modeling is scalable, and the computational time only
grows approximately linearly with the dimension of covariates. Based on the estimation procedure, the computational
complexity for each iteration is n(p v |y|? v n?), where |y| is the current active model size. To explore the change in the
computation time for different (and especially higher) dimensions of covariates, we record the CPU time to finish 6000
iterations with various p from 100 to 4000, in the simulation setting Case 1 p = 0.8. The result is presented in Fig. 3. The
computation time increases nearly linearly with the dimension p. It is not perfectly linear since the number of iterations
until convergence seems to grow with p. We notice that for small p (e.g. p < 500), it usually only takes a few iterations
to converge and ends up with a small |y/|, but it often requires more iterations when p gets larger. There is one place in
the above plot which shows a large jump. This might relate to the caching limit on the hardware, especially when p is
large.

12



J. Wang, X. Cai and R. Li Journal of Multivariate Analysis 183 (2021) 104733

464 daily records of a supermarket Histogram for 10000 sampled correlation
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Fig. 4. Visualizations to display features of the (standardized) supermarket data set. The plot on the left gives the trend of daily number of customers
entering a supermarket for 464 days. The histogram on the right describes the distribution of the correlation among sampled predictors.

Table 4

Comparisons of the resulting model size and the mean squared errors by different methods. The values in the table are the means and the
corresponding standard errors (in the parenthesis) over the 100 replications. The methods compared are LASSO and SCAD on partial residuals
tuned by BIC (SIS-LASSO.BIC, SIS-SCAD.BIC), PC-simple algorithm on the partial residuals (SIS-PC-PR), threshold partial correlation on partial residuals
(SIS-TPC-PR, SIS-TPC-PR.EBIC), proposed method with model selected by MPM tuned by EBIC (SIS-BSM-DP).

Method Model size (s.e.) MSE on training set (s.e.) MSE on testing set (s.e.)
SIS-LASSO.BIC 28.80 (3.32) 0.0575 (0.0030) 0.0836 (0.0120)
SIS-SCAD.BIC 15.75 (5.44) 0.0647 (0.0062) 0.0907 (0.0143)
SIS-PC-PR 12.94 (1.03) 0.0497 (0.0031) 0.0847 (0.0112)
SIS-TPC-PR 9.81 (0.92) 0.0540 (0.0034) 0.0860 (0.0109)
SIS-TPC-PR.EBIC 8.50 (0.98) 0.0559 (0.0038) 0.0867 (0.0117)
SIS-BSM-DP.EBIC (new) 7.95 (1.91) 0.0610 (0.0055) 0.0864 (0.0122)

3.2. A real data example — supermarket data analysis

In this section, the proposed method is applied to analyze a supermarket data set mentioned in [5,20,26]. The data set
contains n = 464 daily records of the number of customers, which is the response variable and the sales of p = 6398
products which are predictors. Both the response variable and the predictors are standardized to have zero mean and
unit variance. The plot on the left of Fig. 4 shows the relationship between the number of customers and the days.
The periodicity of Y is obvious, thus it is reasonable to model Y with a PLM, which takes time variation into account. A
covariate U; = i/n is introduced to represent time. To check the correlation among predictors, we plot the histogram of
the sampled correlation in Fig. 4., which shows some moderate correlation. We randomly select 75% of the observations
(Xi, Yi, Up),i € {1,...,464} as the training set and keep the remaining 25% as the testing set. The PLM is fitted and
variables are selected using the training data set, then the mean squared errors of the selected model on the testing data
set are calculated to evaluate the model fit. This procedure is repeated 100 times, and Table 4 summarizes the average
size of the selected models and the mean squared errors.

To take the dimension down to a moderate scale, we first apply the SIS [9] on the partial residual to only keep the
top 2000 predictors as the set subjected to variable selection. We also implement the LASSO.BIC, SCAD.BIC, PC-PR, TPC-PR
and TPC-PR-EBIC on the same data set as comparisons. The choice of the hyperparameters for BSM-DP is the same as the
set up in the simulation. We complete 10000 iterations, with the first 6000 as burn-in samples, and rank covariates by
their marginal posterior probabilities Pr(y; = 1|Y). The candidate set is further selected by EBIC.

After obtaining partial residuals, with LASSO and SCAD, we are able to obtain ﬂ and select variables simultaneously.
But for PC, TPC, and BSM-DP, an estimation of the active set A is first obtained, then ﬂ is estimated by regressing the
partial residuals on 4 through OLS. Since we derive the theoretical property of y, we only use BSM-DP to select the set
of active covariates, B is also obtained by regressing the partial residuals on the selected covariate set.

As shown in Table 4, LASSO gives the most conservative result with an average size of selected models as 28.80. On
the other hand, the MSE is much smaller on the training than that on the testing. This suggests that the LASSO may
be overfitting. SCAD selects smaller models with size 15.75 on average, but having large error on testing set. PC, TPC,
TPC.EBIC and the newly proposed BSM-DP all select even smaller models with the average size less than 10. Among all,
our proposed BSM-DP selects the smallest number of covariates with very similar value of the mean squared error on the
testing data set. Fig. 5 illustrates a comparison on the estimated nonparametric function obtained by different methods.
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Fig. 5. The estimates of the nonparametric function for the supermarket data set by different methods including: LASSO and SCAD on partial residuals
tuned by BIC (SIS-LASSO.BIC, SIS-SCAD.BIC), PC-simple algorithm on the partial residuals (SIS-PC-PR), threshold partial correlation on partial residuals
(SIS-TPC-PR, SIS-TPC-PR.EBIC), and proposed method with model selected by MPM tuned by EBIC (SIS-BSM-DP.EBIC).

4. Technical proofs

This section includes technical proofs for Lemmas 1-3 and Theorems 4-5.

Proof of Lemma 1. Note that, as g, —> 0, which is stated in Condition A, we first write out the posterior distribution
for parameters as

Pr(y = M, B, o, a|Y) o (Ylee, y, B, o) (etlo ) (Bly, o ) (p)m(o?)

1 T 1 -
aexp{—ﬁ(Y—a—XMﬂM) (Y—a—XMﬂM)—ﬁa Eaa}
1
\M|072H7PnU—|M\G—(Pn—\/\/1\)eX T . Ao,
n n 0 p e 2 ﬁMﬁM 200202:3/\/1 B (07)
We first integrate out «, and it follows that
Prty = M. oY) T g e exp 207 g1 PMBr = 52 srrsiPbac
~ D w-x "y — (= + 1) ' (Y =X g (02
exp | =5 (Y= XuBar) {ln = (S, + 1)} (Y = XniBod) |15, + Il (0?).
Denote =1, =1, — (Ef{n +1,)~ . It follows by integrating out 8 that
M| _—n_—IMl| s+ 1723 T 27172 1 2
Pr(y = M, oY) x q;; "' "oy, 130, + Inl T IX 0\ B X + L /og,] T exp _ERM 7(o”), 5)
where
-1
RM = YT [Z]n — ElnXM (XLEMXM +I|M|/612n) XLE]n}Y

Let X* = C'2DX, A7 = Milpgagzmy+ial Amin (X0 X5 ) - A3 = MaXaeaca Amax (=X X5,). As D'D —

O(Omx)'“ Omlx(“_m) , for any model M, X} X}, is asymptotically equal to CX [, X v, where M’ is the subset of M by
n—m)xm n—m
taking last n —m elements. By Conditions C, E, it can be shown that A7 ~ A and A ~ 4,. Now we put bound on T /T 4.

For any model M:

TM _1
2 T 2 T —IMI/2( 1 -2 3 %[ MAA]/2
= [hom + 0, X0 X0 | 2 |In_m +oh MAAXLAAV (nog,A3) M2 (nad g MAA
MAA
Traina 1 c
2 T 2 2 5+ AAME|/2
T. e + 05 X0 aXitnal |ln “m+oR XX | < 4+ 00 X e X g < (nof25) 2.
A
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Thus, M < (no? 1) (IMIZIAD/2 (22 4 s
" Ty = 1”1 e ’

PR(M, A) =

Pr(y = M|Y T
v =MN.0) _ mi-ja M axp | —
202

1
— (R —R
Py = A,0) " T, (Rt A)}

A2 [Al/2 1
<ot (2) o L)
1

1
< pn—LSS(\M\—lAU‘FO-S" exp {—E(RM - RA)} - O

Proof of Lemma 2. By Condition A, if X, is taken to be S, = {(I, —CD'D)"! — In}+, since X1, is defined as
S =1, — (2§, + I.)"", so we have

> = CD'D,

where D € R"™™*" js the difference matrix defined in (2) and 0 < C < min {1, 1/kmaX(DTD)} is a constant, thus
Son =1, — 21, and g, = (Z;n] —1I,)* are semi-positive definite. By taking difference operation on each side, we have

Y =X"+0§+ o,
where Y* = C'/2DY € R X* = C'/2DX € R""™*Pn § = C1/2Da € R"™™, @ = C'/?De € R"™. The projection matrix
is defined as P = X7, (X} X’()"'X}}; and furthermore we denote Q. = I,_n — P . Under the true model, we have
Y = a + X 4B 4 + ¢ then for any model containing the true model A € M,

k. -1 e k.
R =Y [S1n = SuXar (KR ZuXat) " XS0 ] ¥ = Y (o = Pag¥
=+ ©) QU+ ) = 0 Quo + 20 Qud + 3" Qus.

It suffices to show 8" Q8 —> 0 a.s., @' Qud —> 0 as. and 0 2w Q@ ~ CXp_mejpa| &S-

Step 1: To show that ' Q.8 —> 0 a.s.: note that
0 <8 Qud = 18115 — IIPASII3 < 1181,

where & = C'2 3" dif (Ui my1-c). Thus by 3" d; = 0, " d? = 1, we have

m+1 2
81»2 =C {Zdtf(ui+m+1—t)}

t=1

= Cldy {f(Uirm—1) = FUigm)} + d3 {f (Uiym—2) — FUim)} + - - + dimgr (F(UD) = F(Uipm )}

By Cauchy-Schwarz inequality and Condition F, for any f(-) € AX(M),

1

m
8 = C(1-dj) (Z M2 U — U,»+m||2(k“>) < 0 (m™") m" VYD = 0 (mUs P*11) .
=1
By Conditions D, E, F, 1+ (c; — ¢1)2(k A 1) < 0, it can be shown that [|§]3 = O (n(mUs)**"") — 0. Then
§"Qué — 0 as..
Step 2: To show that @"Q.& — 0 a.s.: under fixed design, we have
©'Qud | § ~ N(0,Co?8" QDD Qusd).
Since DDT —> I,_,, and 8' Q8 —> 0 a.s. from Step 1, s0 @' Q8 —> 0 a.s.
Step 3: To show that o %@ Qu@ ~ Cx7 . | 5. by Condition E, @ Qu@ = Ce"(DTQuD)e. Let ] = (O(n—m)xm, In-m)
€ RO~MX1 then @ = C/?De = C'/?Je+C/*(D—])e = w1 +w,. Since D — J, so w, is negligible as compared to w1 as

n goes to infinity. Furthermore @ Qu®1 = Ce'J ' Quije ~ Co?x?_, |\, therefore 0 2@ Qu@ ~ Cxy 1 1q aS.

Overall we have R, ~ Co?x2_,_ | as. Similarly, write R% =R}, = " (Q4—Qur)o+20 " (Q4—Qu)5+8 ' (Qu—Qu)d.
It can be proven that the second and third terms are almost surely 0, so R% — R}, ~ @ (Q4 — Qr ) ~ CUZX‘ZM|,|A‘~ a
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-1
Proof of Lemma 3. We first prove part (i). Note that R4, = Y*' {l,,_m —X’j4< -2 l+X*TX*> X;T}Y*, Ry =

YT o = X (X)X | v thos

0<R4u—Riy =YX {(X/ X)) — (
O1n

1 * 1wk - * T wk
— I+ X xA> }XAY

k. * * * — * * — 1 * * — * k. - e * * * — * e
=YX X)) {of I+ (X X)) (XX TIXE Y < o 2V TX (X X)X Y

where the first equality is due to the Woodbury matrix identity A=' — (A + UCV)™! = A7'U(C™' + VAflu)’1 VA,
Denote M = nX* (X% X*)72X*, which has rank |.A| and Amax(M) < 1/A% ~ 1/A;. By [13], we can derive the tail bound
for the quadratic term:

Pr(Ra — R’y > g1) < PI(Y TMY* > nof,g,) < exp(—cnof,iign)

We next prove part (ii). By Lemma 2, R%/(Ca®) ~ x2 .| 4, by the tail bound for x* distribution in [17], for any
positive x, we have

R*
Pri|l-—4 —(n—m—|A4
[E—

> 2(n—m— [A)(Vx+ 2X)} <2exp{—(n—|A}x}.
Furthermore, since m = o(n), thus for any fixed ¢ > 0, there exists a constant ¢ > 0, such that
R*
Pr (‘ ol 1
Proof of Theorem 4. We will use strategy related to that of Theorem 4.1 in [21] to establish Theorem 4.

For overfitted models P; = {M : A C M, |M| < m,+|Al|}, we first put bound on Ry, —R 4. By Lemma 2, for M € Py,
we have R — R} ~ Cazx‘leflA‘. For any x > 0, /2/3 < w < 1, there exists some constant ¢ > 0, such that

) <exp(—cn). O

Pr{R — Ry, > Co(2+ 3x)(IM| — [ADInpp} = Pr{xf,_ .4 > 2+ 3x)(IM| — |A])Inp,}
<Pr {X\Z/\4|7|A\ —(IM] = A]) > (2 + 3w’x)(IM| — |-A|)lnpn}
< cexp{—(1+X)(IM| = [A])Inp,} < cpyTHHMITHAD,

Define events A(M) = {Ra — Raq > 2Co*(1 + 25)(IM| — [A]) Inpa}, U(d) = U pyep, pgjma AM)-
Then for any fixed s > 0, there exists some c, ¢’ > 0, such that

Pr{U(d)} = Pr U {Ra—Rum > 2Co%(1 +25) (M| — |A]) Inp,}
MEeP:M|=d
=Pr U {Ra — Rt + Ry — Ry > 2Co?(1 + 25)(IM| — |A]) Inp,}
| MePr:M|=d
<Pr U {Ra—Ry > 2Co%(1+25)(IM| — | A])Inp,}
| MePr:M|=d

<Pr U {R—Ru > CoX(2+3s)(d — |ADInp,}
| MePy:|M|=d
+Pr[Ra — R > Co’s(d — |A])Inpy],

where the first inequality is due to the fact that Ry, — R%, > 0. By Lemma 3 and Condition A, it follows that
Pr{U(d)} < c'p, "N ADpd=IAT 4 exp { —cnof,Ai(d — [A]) Inp,} < 2¢/p, 414D
Then,

Pr U Zpr{u — — 0.

d>|A| d>|A|
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So consider the high probability event {(,. , U(d)}, we have

1
[M|=[Al,—(14+38)(|M]|—|A[)
> PRM, A) = Y g, exp{—w(RM —RA>}

MePq MePq
< Y qT Mg MY exp (C(1 + 25)(IMI — |A]) Inpy}
MePq
|M]— IA\ (1+5)(\MI—IAD C(1+2s)(IMI=].A])
an Py .
MePq

As 0 < C < 1,set 0 < s < §/2, then there exists ¢ > 0 such that

Pn
- M| —|A _ _ B
Z PR(M, A) < p,© Z (| |pn | |) prMI=AD < e g,

MePy |M|—|Al=1
Consider large and missing some active variables models P, = {M : A € M, K| A| < [M]| < mj, + | Al}. Define events
B(M) = {R4 — Rapq > 2Co(1 + 2s)(|M| — |A]) Inp,}
C {Ra — Rpva > 2Co?(1 4 25)(|M| — |A]) Inp,},
vid= |J B

MePy:| M|=d

Similar to the proof for P, there exists ¢’ > 0, such that

Privd) <P| | [Ra—Ruwva > 2Co%(1 +25)(1M| — 4] Inp,)
MePy:IM|=d

< 2¢p (IFNd=1ADpd < perp=(itulipd < perp-u'd,

Take s = §/4, we can find such w’ > 0 as long as ¥ ( +s) > 1. That is, K > 1+ 4/§, which is stated in Condition B. It
follows that

Pry |J Vi< Y Prvid} <2cp," M — 0.
d>K|A| d>K|A|

Then consider the high probability event {(M,_y, 4 V(d)‘},

D PRM, A) = Y M A IMITIAD exp {C(1 + 25)(|IM | — |A]) Inpa}

MeP, MePy
bn
Z gIMImIAI =S M=1)/2 L s(K=1)/2 Z <|M|pn |A|> (MIZAD < p=dK-1)/2 @
MeP, IMI-IA|=1

For any model M belonging to the group of underfitted models P3 = {M : A € M, M| < K|Al}, it follows that
Riu = Riva = IPar = Pagv Y113 = [(Prr = Priva)Xiy B + 8 + 0)l13
> (1Pt = Prava)X5Ballz = I(Pac — Prgva)(d + w)||2}2~
By Condition B,
I(Pat = Preva )X Ballz = 11— PrIX B all2 = v/ An(K).

And on the other hand, (P — Patva)(d + @)[5 = [[(Par — Parva)8l3 + (Pas — Prrva)@ll3 — 20 (Prg — Pagy.a)d.
Among them, 0 < [[(Paq — Pagv.a)81l5 < 2(I[Pas81I3 + IPAcv.481I3) < 4[18]5 —> o(1). By the similar trick in Lemma 2, it
can be shown @ (P — P 4)8 = 0 as.

Forany 0 < w < 1,

Pr| U (R = Ruwa < (1= wPa) [ el U {1Pu = Paaolls > w/2y/a,(K))

MeP3 MeP3
=Pr{IPaoll > w/2y/A(0) = Pr{Co?y > w?/4an(K)} < exp (—cAn(K)/1 A}
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The last step follows by the bound for tail with quadratic form. For any 0 < w’ < 1,

Pr| [J {Rm —Ruva < (1—w)An(K)}
_MEP3

=Pr| | J (R — Rivva) + Ripya — Rutvd) + (Rau — Riyy) < (1= w') An(K)}
MePs3

<Pr| |J Ry —Ryua) <(1=w/2)2uK) | +Pr| | (Rigyn — Ratva} < —w'/2A4(K)
_MEP3 MeP3

<2exp {—c'Ax(K)/|Al},

where the first inequality is due to the fact that Ry — R’ > 0, and the last inequality follows by the exponential tails of
no2 (R a — Riyy 4)- The proof is similar to Lemma 2(1).
Let ¢ = 2w, it follows that

Pr| U (Rae—Ra < (1= 08 | =Pr| | (Rut = Rusva < (1= 0)Ao(K))
MeP3 MeP3

+Pr | | (Ra = Ryva > w A}
MeP3

< 2exp{—c'An(K)/|Al} + Pr U {RY — Rl 4 > wAR(K))
MeP3

+Pr{R4 — R > wAu(K)}
< 3exp {—c'An(K)/|Al} + Pr{Co?xg, 4 > wALK)}
<4dexp {—c'Ay(K)/|Al} — 0O
where the second inequality holds because R4 — Ryqva = R% — R, 4 +Ra — R% + R}, 4 — Rarva, and the last step
follows by Condition B. Then consider the high probability event {ﬂM eps(Rm —Ra) > (1 - c)An(K)},

D0 PRM,A) = Y g o 2q) A2 00 /00) A exp {—(1 = €)An(K)/(207)
MeP3 MeP3

< exp [—22 {(1 = )A(K) — 07412 + 38) In p, — 02|42 + x)lnpn}] .

By Condition B, An(K) > 02| A|Inpa(4+48+k), so,we can find 0 < ¢ < 1, w’ > 0, such that (1—c)A,(K)—o?|A| Inp,(4+
38 4+ k) = w'o?| A| In p,. Thus,

1
Z PR(M, A) < exp (——w o |A| lnpn> — 0. O
MeP3

Proof of Theorem 5. Similar to Theorem 4.2 in [21], we start from (5) and integrate out o2, thus the posterior probability
under unknown o2 is

n - ~1/2 1
Pr(y = M|Y) x /qLM‘U ”Um‘M||XLXM +1,/of] / exp (—ZG—ZRM> 7(o?)do?

—1/2 —dn—
o< @M MIXT X + T /o]~ 2(2bo + Rag) 02,

Remark 8. Inside the integration, o " exp ( —=5R, ) is the dominant term as the sum of squared residuals R, has
202

an order of O,(n). The theorem applies to a wider family of prior as long as 7(02) is 0,(1) and the support is not too
strange. This includes some commonly used priors like improper non- 1nforma)t/1ve prior m(02?) o« o2 and the class of

—(v+1
folded-noncentral-t prior with fixed hyper-parameters 7 (o) o (1 + u2a2)
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By Lemma 1, we have

—an—1n
Pr(y = M[Y) o pSHIMI—IAD0.5¢ (2b0 +RM) o2

Pl'(]/ :A|Y) n 2b0+RA
Define p, = % — 1, then p, = 0,(1), since
Ry + 2bo R4 + 2by R + 2bg R4 —RY
—— — 1< on=—7>">5"— = — 5
nCo? nCo? nCo? nCo?

R, Ra— R,

Pr(|pn| > 2€) < Pr —1|>€|+Pr||—==| > € ) <2exp(—cn).
nCo?2 nCo?

First consider overfitted models M € P;. Define x,, = (|JM|—|A|)Inp,/n, t, = —In {1 — 2(1 + 4s)x,}. Then by Condition

D, x, < 8 - Since —In(1 —x) < then for any s < §/16, we have

__ 8 X
(@+5)2+3 T—x’

2(1 4+ 4s)x,
t,=—In{1—2(1+4 — < 2(1+4+8/2)x,.
n= I =20 a9 < $T5 e < 2A1+8/2)

Similar to the proof in Theorem 4(1), consider the high probability event {ﬂd>w U(d)c} M{lenl < €*}, where (1+4s)(1—
€*) > (14 2s), then

2bo+Rui\ 072 Ru( — R4
2by + R4 - nCo(1+ py)

= exp (a0 + )21+ 8/2)(1M| — |4 In pu/n
< exp{(1+68/2)(IM| — | A Inp,} = p{+*/2MIZAD,

The problem reduces to the same problem in Theorem 4(1). And for M € P,, we can use the same trick, thus we have

7 < oo fw o)

Pr(y = M|Y) »p
Z Py = A7) —> 0.
MeP1UP, w(y = AlY)
For underfitted models M € Ps, similar to the proof in Theorem 4(3), consider the high probability event
[Nt epy Rt = Ra > (1= AN} N {Inl <€)
If Ap(K) = o(n), by lim,_,oo(1+ 1/n)" =e,
20+ R\ O E [ Ru—Ra | [ 1 —0a0 )R
2bo + R4 - nCo2(1+ py) - nCo2(1+ py)
(1 —1c)An(K) (1 —c)An(K)
——— < eXpy—————— ¢ -
nCo?(1+ €*) 202%(1 + €*)

It reduces to the same problem in Theorem 4(3).
While if A,,(K) > n, it follows that

(Zbo + Rum )aoz < {1 + (1—=10c)Au(K) }GOZ < exp {—C’n In A"(K)} < exp (—c'n)

n
< exp{—(2 +a)

2bO+R_A nCoZ(l—i-,on) n
which converges even faster to 0 asn — co. 0O

5. Discussion

Inspired by the difference-based method, we have proposed a new Bayesian approach to select variables in the linear
component of the partially linear models. We modify the Bayesian shrinking and diffusing priors (BASAD) [21], and
propose the new Bayesian subset modeling with diffusing prior (BSM-DP). The idea is extended from linear models to
the partially linear model with the help of the difference-based method. Model selection consistency is proved under the
setting with ultra-high dimensional covariates. Compared to BASAD, BSM-DP performances better in identifying the low
signal covariates and in shorter computation time, as shown in the supplementary material. Results in the simulation
studies show that our method has higher tolerance on the correlation among predictors and requires mild conditions
on covariates, compared with other existing methods for variable selection on PLM. The proposed model is less likely to
overfit the model, which is also illustrated by the real data example about supermarket. However, like all other Bayesian
methods, it has some price to pay. We do need specific assumptions on the error distribution. The computation is relative
intense as compared to frequentist penalized methods. Finally, similar to frequentist methods, although we showed the
required rates for the hyperparameters of the priors, the practical choices of them in finite sample applications still need
fine tuning.
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online supplement provides some extra technical details and additional simulation results.
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