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a b s t r a c t

Most existing methods of variable selection in partially linear models (PLM) with
ultrahigh dimensional covariates are based on partial residuals, which involve a two-
step estimation procedure. While the estimation error produced in the first step may
have an impact on the second step, multicollinearity among predictors adds additional
challenges in the model selection procedure. In this paper, we propose a new Bayesian
variable selection approach for PLM. This new proposal addresses those two issues
simultaneously as (1) it is a one-step method which selects variables in PLM, even
when the dimension of covariates increases at an exponential rate with the sample
size, and (2) the method retains model selection consistency, and outperforms existing
ones in the setting of highly correlated predictors. Distinguished from existing ones, our
proposed procedure employs the difference-based method to reduce the impact from the
estimation of the nonparametric component, and incorporates Bayesian subset modeling
with diffusing prior (BSM-DP) to shrink the corresponding estimator in the linear
component. The estimation is implemented by Gibbs sampling, and we prove that the
posterior probability of the true model being selected converges to one asymptotically.
Simulation studies support the theory and the efficiency of our methods as compared
to other existing ones, followed by an application in a study of supermarket data.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric model attracts considerable attention in the literature since it retains the interpretability of the
arametric models and keeps some flexibility of the nonparametric models. In this paper, we study a type of commonly
sed semiparametric model, the partially linear model (PLM). The PLM assumes that, the response Y depends both linearly
n some covariates X ∈ Rp of interest, and nonparametrically on another univariate continuous covariate U defined on
0, 1]. Suppose that the observed data {(Yi,Xi,Ui)}, i ∈ {1, . . . , n}, is a random sample from the following PLM

Y = f (U)+ X⊤β + ϵ, ϵ ∼ N (0, σ 2). (1)

This PLM specifies a parsimonious linear function in the parametric part, while allowing a nonparametric component to be
unconstrained and subject to empirical estimation. In this paper, a new one-step Bayesian approach is proposed to select
variables for PLM with ultrahigh dimensional covariate X, that is ln p = o(n). Specifically, our proposed method simplifies
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he procedure by avoiding estimating the infinite dimensionality brought by the nonparametric component and results
n sparsity in the linear component.

The estimation procedure for PLM with fixed dimension p of X has been extensively studied. Engle et al. used the
penalized least squares method to estimate β and the nuisance function f (·) simultaneously by adding a penalty on
the roughness of f (·), which was referred as the partial smoothing splines [6,7,12,23]. Since β is of primary interest,
some other methods brilliantly avoid the estimation of f (·). For example, Robinson [24] introduced a profile least squares
estimator based on the idea of partial residual, which later became one of the commonly used approaches to eliminate the
nonparametric component in PLM. Another type of approach to eliminate the nonparametric component is the difference-
based method [27,29]. It estimates the coefficients in linear component by taking differences of the ordered observations.
The resulting estimator is proven to be asymptotically efficient under finite dimensions. See Section 2.1 for more details
about the difference-based method.

Variable selection for PLM can be accomplished by adding another penalty function on β to the loss function of the
forementioned partial smoothing splines method. The least absolute shrinkage and selection operator (LASSO) [25], the
onnegative garrote [2,31], the smoothly clipped absolute deviation (SCAD) [8], the elastic net [34], and the minimum
oncave penalty (MCP) [32] are all among popular choices of penalty functions. Xie and Huang [28] used the SCAD penalty
o achieve the sparsity in the linear part and used the polynomial splines to estimate the nonparametric component
imultaneously. The resulting estimator β̂ was shown to be consistent with p = o(

√
n). An alternative is to use a two-step

procedure, in which Y and X are first regressed on U separately to get partial residuals, then the variable selection is further
applied on the transformed model. For example, the consistency for both the linear and the nonparametric components
has been well studied by Zhu et al. [33] under the regime of p = o(

√
n). Liang and Li [18] discussed this approach in the

resence of measurement errors. More recently, Liu et al. [20] proposed a selection procedure via recursively test on the
artial correlation among the partial residuals and among the covariates when ln p = o(n). The method was referred as
he thresholded partial correlation on partial residuals (TPC-PR). However, to the best of our knowledge, there is nearly
o literature on variable selection in the high-dimensional setting based on the extension of difference-based method.
Bayesian approach puts priors on the parameters and the model space, and selects the model with the highest posterior

robability. There have been multiple developments for variable selection using Bayesian approach with linear and
eneralized linear models. George and McCulloch [11] proposed a milestone method of Bayesian variable selection via
tochastic search. They introduced a latent binary vector to indicate the inclusion of variables in linear models, and then
laced a mixture spike and slab prior on each coefficient conditioning on this latent vector. Following this approach,
any other selection procedures with similar structure have been proposed. The distinction between them is mostly

n the form of the spike and slab priors, or in the form of the prior on the model space. To alleviate the difficulty in
hoosing specific prior parameters, several approaches have been proposed, see [10,14,30]. However, these papers focused
n small-scaled questions and did not discuss any possible extension to the high-dimensional setting. More recently,
shwaran and Rao [15] established the oracle property of the posterior mean as n converges to infinity with fixed p under
ertain conditions on the prior variances for linear models. Johnson and Rossell [16] proved selection consistency under
= O(n) for a non-local prior in linear model settings. Liang et al. [19] proposed a point-mass spike prior with a slab
rior depending on the model size, and proved the posterior consistency under ln p = o(n) in generalized linear models,
ut the corresponding conditions are relatively strong. Additionally, the step-wise estimation procedure is not efficient.
arisetty and He [21] also used Gaussian prior but argued the prior should be sample-size dependent, referred to as
ayesian shrinking and diffusing priors (BASAD), and obtained strong selection consistency when ln p = o(n) for linear
odels under mild assumptions. However, BASAD is not computationally practical for large-p problems, since it requires

o update β from a p-dimensional multivariate normal distribution in each iteration. Recently Narisetty et al. [22] proposed
kinny Gibbs (SG) algorithm to address this computation issue via sparsifying the precision matrix. They referred to this
ind of update as Skinny Gibbs (SG) and argued that it is a scalable method, namely the required computation time grows
pproximately linearly in p. The selection consistency was proved for the logistic regression. While spike and slab priors
ave been widely used in applications for its attractive interpretability, the theory for spike and slab models has not
aught up with the applications. Again, all the aforementioned papers focused on linear or generalized linear models, and
he corresponding work on semiparametric or nonparametric models under high dimensional setting is limited.

In this paper, we propose a Bayesian subset selection procedure for the partially linear model. We incorporate the
ifference-based method in the prior for the nonparametric component. For the parametric component, we adopt a
odified version of Bayesian shrinking and diffusing priors (BASAD) [21] and propose the novel Bayesian subset modeling
ith diffusing prior (BSM-DP). We use a normal distribution with a diverging variance as the slab prior and a normal
istribution with a small variance as the spike prior. Differently from BASAD, the response variable in our model only
epends on the active covariates. This conveniently allows us to sample coefficients separately for the active and the
nactive sets during the estimation. In fact, the spike prior has no impact on the theoretical result, so any proposal including
point mass will work. As a practical note, we recommend a Gaussian distribution with a small variance, which allows
ore flexibility for the Markov chain to explore the model space, and hence avoids local trap. As a result, the proposed
ethods are more computationally efficient than BASAD. We also notice that the Skinny Gibbs (SG) [22] is a special case
f BSM-DP when the variance of spike prior is set to be proportional to 1/n. Their original paper [22] discussed logistic
egression only. We establish the selection consistency for the parametric component in partially linear models when
n p = o(n) under mild conditions.
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The rest of the paper is organized as follows. In Section 2 we present the Bayesian subset modeling with diffusing
prior (BSM-DP) and discuss variable selection for partially linear model, followed by the estimation procedure, regularity
conditions and theoretical results. Performances of several numerical studies are presented in Section 3 to demonstrate
reliability of the proposed model. We further apply the proposed method on the supermarket data set. Proofs for lemmas
and theorems are given in Section 4, followed by discussions in Section 5.

2. Bayesian subset modeling with diffusing prior

2.1. Model and notation

Suppose that {(Yi,Xi,Ui)}, i ∈ {1, . . . , n} is a random sample from PLM (1) with high-dimensional covariates X ∈ Rpn

and univariate covariate U ∈ [0, 1], where we use pn to emphasize that the number of variables is allowed to diverge
with sample size n. Assume that the random error ϵ is independent of (X⊤,U) and each observation Xi has the same
distribution with mean 0 and covariance Σ. Denote f (Ui) as αi, and α = (α1, . . . ., αn)⊤ as a vector with size n. Notation
Y is the corresponding size n vector, and X is the design matrix with size n× pn.

We will propose a prior for the nonparametric function (i.e. the α) in our proposed Bayesian subset selection based
on difference-based method. Assume the observation {(Yi,Xi,Ui)}1≤i≤n is ordered by the increasing order of {Ui}1≤i≤n. The
difference in observed value for contingent Y can be written as

Yi − Yi−1 = {f (Ui)− f (Ui−1)} + (Xi − Xi−1)⊤β + ϵi − ϵi−1, i ∈ {2, . . . , n}.

If Ui−1 and Ui are close and f (·) is smooth enough, f (Ui) should also be close to f (Ui−1). So the nonparametric part tends
to be canceled out. In this case, the ordinary least squares estimate can be applied on the differenced data, as long as X
is not perfectly correlated with U . Define the mth higher order difference sequence to be {di}i∈{1,...,m+1}, which satisfies∑m+1

i=1 di = 0 and
∑m+1

i=1 d2i = 1. So the mth order difference operation reduces the sample size to n−m by defining

Y ∗

i = C1/2
m+1∑
t=1

dtYi+m+1−t ,X∗

i = C1/2
m+1∑
t=1

dtXi+m+1−t , δi = C1/2
m+1∑
t=1

dt f (Ui+m+1−t ), ωi = C1/2
m+1∑
t=1

dtϵi+m+1−t ,

for i ∈ {1, . . . , n−m}, where C is some positive constant. Define the difference matrix D as

D =

⎛⎜⎜⎜⎜⎝
dm+1 . . . d1 0 . . . . . . 0
0 dm+1 . . . d1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

0 . . . 0 dm+1 . . . d1 0
0 . . . . . . 0 dm+1 . . . d1

⎞⎟⎟⎟⎟⎠ ∈ R(n−m)×n. (2)

Therefore the PLM (1) can be rewritten in matrix form as

Y∗
= X∗β + δ + ω,

where Y∗
= C1/2DY ∈ Rn−m,X∗

= C1/2DX ∈ R(n−m)×pn , δ = C1/2Dα ∈ Rn−m, ω = C1/2Dϵ ∈ Rn−m. Under some
smoothness conditions on f (·) with fixed p, Yatchew [29] and Wang et al. [27] showed that the ordinary least square
estimator β̂ = (X∗⊤X∗)−1X∗⊤Y∗ is asymptotically efficient when m → ∞, if X and U are independent. This indicates that
the effect of the nonparametric component is negligible after applying a high order difference operation on the data.

In the literature, Ui’s are either from a fixed design e.g., Ui = i/n, or observations from a distribution on [0, 1] with
density function bounded away from 0. In this paper, we only consider the case when X and U are independent under a
dense design with a constraint on max2≤i≤n |Ui − Ui−1|.

We use Xj as the notation for the jth covariate. A size-pn latent binary random vector is introduced as γ . The jth entry γj
indicates whether Xj is included in the model (1 = present, 0 = not present). Therefore, the model space is fully specified
by γ , and we use γ and M as notations for models interchangeably. The true model is denoted as A. The cardinality of
model M, denoted by |M|, is the size of the model. Consequently, if βM is the subvector of β with size |M|, XM is the
submatrix of X with respect to model M, and ΣM is the |M| × |M| covariance matrix for XM. Other notations used in
the paper are unified as follows.

• Model operation: M1 ∧ M2 and M1 ∨ M2 are defined as the intersection and union of model M1 and M2, for
example M1 ∧M2 = {i : i ∈ M1 and i ∈ M2}.

• Rate: an ⪯ bn or bn ⪰ an means an = O(bn), an ≺ bn or bn ≻ an means an = o(bn). And an ∼ bn refers to an/bn −→ c
for some positive constant.

• Matrix and matrix operation: n×n identity matrix is denoted as In. For a matrix M, ∥M∥ is the spectral norm, which is
the largest singular value of M. The Moore–Penrose inverse of M is denoted by M+, which is the unique generalized
inverse. And if M is a positive definite matrix we use λmin(M) and λmax(M) as the notation for the minimum and the
maximum eigenvalues of M.
3



J. Wang, X. Cai and R. Li Journal of Multivariate Analysis 183 (2021) 104733
Here and hereafter, the densities are conditional on X and U . The working model for variable selection in the partially
linear model in (1) via Bayesian subset modeling with diffusing prior (BSM-DP) is proposed as

π (Y|α, γ, β, σ ) = N (α + Xγβγ , σ
2In),

π (βj|γ, σ ) =
{
N (0, σ 2

1nσ
2) γj = 1

N (0, σ 2
0 σ 2) γj = 0

, j ∈ {1, . . . , pn},

π (γ) =
pn∏
j=1

q
γj
n (1− qn)1−γj , π (α|σ ) = N (0, σ 2Σ0n), π (σ 2) = IG(a0, b0),

(3)

where, Σ0n =
{
(In − CD⊤D)−1

− In
}+, D is the difference matrix defined in (2).

We choose the classical Inverse Gamma distribution as the prior for σ 2 as it is the most commonly used conjugate prior.
Other choices of prior could be used, and it can be shown that Theorem 5 applies to a wider family of priors, including
some commonly choices like improper non-informative prior and the class of folded-noncentral-t prior (see Remark 8).
Meanwhile, independent Bernoulli distribution with probability qn is used as the prior for each γj. So the preliminary
marginal inclusion probability for each variable is qn. It is natural to assume that when the dimension pn diverges with
the sample size, qn should converge at some rate to 0. Each βi has a mixture normal distribution. Conditioning on γj = 1,
βj has a normal distribution with a relative large variance σ 2

1nσ
2. This corresponds to a very wide and flat distribution,

usually referred to as a slab prior. We call it the diffusing prior as named in [21]. Within its variance, σ1n depends on the
sample size, and diverges at some certain rate when the sample size goes to infinity. Conditioning on γj = 0, βj has a
normal distribution with variance σ 2

0 σ 2. As the choice of σ 2
0 would not influence the asymptotic results, it can be chosen

depending on sample size or simply as a fixed value.
With a partially linear model, we will need to accommodate the nonparametric part. A conjugate prior of normal

distribution with a semi-definite covariance matrix σ 2Σ0n is proposed for α = (f (U1), . . . , f (Un)). The covariance matrix
σ 2Σ0n is further taken as a function of the difference matrix D thus to eliminate the effect of nonparametric function. More
intuitions about the choice of Σ0n will be discussed later. The error term is assumed to be normally distributed. Therefore,
conditional on the latent indicator γ , coefficients β, nonparametric component α, and the variance for the error σ , Y has
a normal distribution.

Remark 1 (Comparison with BASAD [21] and SG [22]). As mentioned earlier, the inclusion of γ in the conditional distribution
of Y distinguishes our model from BASAD. This difference allows us to sample separately for the active and the inactive
groups.

In our working model (3), the response variable Y is conditioned on γ , hence only depends on the active covariates
Xγ . But in BASAD, Y depends on both the active and nonactive part of the covariates. As a result, the full conditional
distributions for βγ and βγc are not independent in BASAD. Therefore, to update β in MCMC, each iteration requires
sampling a size-p vector from a multivariate normal distribution. This will increase the computational time quickly under
large p. On the other hand, the full conditional distributions for βγ and βγc are independent in our proposal. So in each
iteration, we only need to sample a size-|γ| vector from a multivariate normal distribution and sample (p − |γ|) scalars
from independent univariate normal distributions. The current active model size |γ| is usually small after several iterations
if the true model is sparse. In fact, just as SG, the proposed BSM-DP is scalable in high dimensional problems, which means
that the computation time growing approximately linearly with the dimension p. The computational complexity for each
iteration in the estimation procedure is n(p∨|γ|2∨n2). We have also validated this claim in the simulation study for PLM
and more simulation studies about linear models as compared with BASAD and SG in the supplementary material. It can be
shown that SG is equivalent to our Bayesian subset modeling by taking the variance of spike prior to be σ 2

0 = (n+τ−2
0n )−1,

where τ 2
0n is the variance for spike prior in SG.

2.2. Estimation procedure

Gibbs sampling is used to update our parameters iteratively. In each iteration, we draw samples from those full
conditional distributions.

1. Update γk from a Bernoulli distribution:
Full conditional distribution of γk is a Bernoulli distribution with probability Pr(γk = 1|β, α, σ 2,Y, γ−k) =

p1/(p1 + p2), and

p1
p2

=
qnσ0

(1− qn)σ1n
exp

{
−

β2
k

2σ 2
1nσ

2
+

β2
k

2σ 2
0 σ 2

+ βkX⊤

k

(
Y− α − XÂkβÂk

)
/σ 2

− β2
kX

⊤

k Xk/
(
2σ 2)} ,

where Xi is the ith column of X, and the index Âk is the collection of current active covariates after removing the
kth covariate, that is Â = {i : γ = 1, i ̸= k}.
k i

4
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Fig. 1. Visualizations to display the magnitude of values in the difference matrix D, the covariance matrix Σαn used for the update of α and the
ovariance matrix for prior Σ0n . All plots are taking constant C = 0.6, sample size n = 200 and difference order m = 20. On the graph, red
olor indicates positive values on the corresponding locations of the matrix, and purple color represents negative values. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

2. Update β from multivariate normal distributions:
In each iteration, we divide β into the active group and the inactive group based on the current γ . Denote Â as the
collection of covariates with γj = 1, and Î as the collection of covariates with γj = 0. Rewrite β =

(
βÂ, βÎ

)
, and

we can update those two groups separately.

I. Update the active group Â: βÂ ∼ N
(
VX⊤

Â(Y− α), σ 2V
)
, where V =

(
X⊤

ÂXÂ +
1

σ2
1n
I|Â|

)−1

.

II. Update the inactive group Î: βÎ ∼ N
(
0, σ 2

0 σ 2I|Î|
)
.

3. Update σ 2 from an Inverse Gamma distribution:
σ 2

∼ IG(a, b), where

a = a0 + (n+ pn)/2,

b = b0 + β⊤

ÂβÂ/
(
2σ 2

1n

)
+ β⊤

ÎβÎ/(2σ 2
0 )+

(
Y− α − XÂβÂ

)⊤ (Y− α − XÂβÂ
)
/2+ α⊤Σ0nα/2.

4. Update α from a multivariate normal distribution:
α ∼ N

(
Σαn

(
Y− XÂβÂ

)
, σ 2Σαn

)
, where Σαn =

(
Σ

+

0n + In
)−1, furthermore by Condition A, Σαn = In − CD⊤D.

In the literature, the nonparametric function f (·) is usually assumed to be smooth, which means f (x) and f (y) should be
close if x and y are close enough. This dependency among f (U1), f (U2), . . . , f (Un) suggests that the covariance matrix Σ0n

of α has to be a dense matrix. Here we take Σ0n to be Σ0n =
{
(In − CD⊤D)−1

− In
}+ where C is some positive constant

and D is the difference matrix defined in (2). We will show the reason for this specific choice of Σ0n in Remark 2. Fig. 1.
hows the intuitive structure of difference matrix D, the matrix Σαn used for the update of α, and covariance matrix for the
rior Σ when constant C = 0.6 with sample size n = 200 and difference order m = 20. As demonstrated in the figure,
0n

5
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∈ R(n−m)×n is a general upper triangular band matrix with bandwidth m. The update matrix Σαn is also a band matrix
with bandwidth m. The covariance matrix for the prior of the nonparametric component Σ0n ∈ Rn×n is a dense matrix
with positive larger values near the diagonal, then decays gradually to 0 and negative when moving further. The reason
why it has negative off-diagonal values is because the difference sequence {di}1≤i≤m+1 is standardized to be centered at 0.
Theoretically, we do require the difference order m, which is also the bandwidth, goes to infinity as n −→ ∞ at some slow
ate. In this way, the effect of the nonparametric component can be removed without over-smoothing the nonparametric
unction f (·), so the selection consistency for the linear component holds.

.3. Selection procedure

In the typical Bayesian variable selection approach, the model with the highest posterior is selected as the final model,
eferred to as maximum a posterior model (MAP): M̂ = argmaxM Pr(γ = M|Y ). With the spike and slab prior, the
osterior of the model space is usually reflected by the posterior probability of the latent variable γ . Alternatively, another
ay is to consider the marginal probability of Pr(γj = 1|Y ). Specifically, one will select the jth covariate if Pr(γj = 1|Y ) is
qual to or greater than a certain threshold. A threshold of 0.5 is a natural choice. This is known as the median probability
odel (MPM). It has been shown that MPM has good predictive power [1]. Although it is likely that these two approaches
ay produce different results in practice, it can be shown those two selection methods are asymptotically the same under
trong selection consistency, which will be shown in Section 2.4. Moreover, some other data-driven criteria could also be
sed in determining the threshold, e.g. AIC, BIC and EBIC [4].

.4. Theoretical results

Variable selection procedures typically aim to achieve selection consistency, and under Bayesian framework, it means
onditional on observed data, the probability of the true model A being selected goes to 1 in probability.

Pr(M̂ = A | Y )
P
−→ 1 as n → ∞.

hat is, the true model is selected consistently. Note that the posterior of model space is fully specified by γ . If the model is
elected via MAP: M̂ = argmaxM Pr(γ = M|Y ), then the selection consistency only requires that the posterior probability
f the true model, i.e. Pr(γ = A|Y ) is no less than that of any other models, i.e. Pr(γ = M|Y ). But the difference in their
osterior probabilities could still shrink to 0. In this paper, we will consider the following strong selection consistency

Pr(γ = A | Y )
P

−→ 1 as n → ∞.

t indicates the difference for the posterior probabilities of the true model and any other model is 1. This non-zero
ifference indicates a stronger conclusion than selection consistency. We first present the following regularity conditions
or the selection consistency of the linear component in the PLM, and we then start with the case when σ 2 is known as
t provides intuitive interpretation for the proposed method.

Condition A (On the dimension and priors). The dimension pn satisfies that ln(pn) = o(n). The prior probability that a
coefficient is nonzero qn satisfies that qn ∼ 1/pn. The variance for slab prior σ 2

1n → ∞ as n → ∞, and nσ 2
1nλ1 ∼

p2+3δ
n for some δ > 0, where λ1 is defined in Conditions C. The covariance for the prior of nonparametric component

Σ0n =
{
(In − CD⊤D)−1

− In
}+, where C is a positive constant, with values no greater than min

{
1, 1/λmax(D⊤D)

}
,

and D is the difference matrix defined in (2).
Condition B (Identifiability). There exists K > 1+ 4/δ such that

∆n(K ) = inf
M:|M|≤K |A|,A⊈M

∥(I− PM)X∗⊤

A βA∥
2
2 > σ 2

|A|(4+ 4δ + κ) ln pn,

where X∗
= C1/2DX and the projection matrix PM = X∗

M(X∗⊤
MX∗

M)−1X∗⊤
M.

Condition C (Regularity of the design). Define

λ1 = min
M:|M|≤mn+|A|

λmin

(
1
n
X⊤

MXM

)
, λ2 = max

M:M⊆A
λmax

(
1
n
X⊤

MXM

)
,

then (λ2/λ1)
|A|

⪯ pκ
n , for some 0 < κ < δ, where mn is defined in Condition D.

ondition D (On the true model). Let βA consist of all nonzero elements of β. That is, XA consists of all active predictors.
The size of A satisfies that |A| = o(mn), mn = cn/ln pn, where c < δ/{(4+ δ)(2+ δ)}. Further assume that
U∞ = max2≤i≤n |Ui − Ui−1| = O

(
n−c1

)
for some 0 < c1 ≤ 1.

Condition E (On the difference matrix). Let D be the difference matrix, as defined in (2). Denote hk =
∑m+1−k

i=1 didi+k, then
the mth difference sequence d1, . . . , dm+1 satisfies,

m+1∑
i=1

di = 0,
m+1∑
i=1

d2i = 1,
m∑

k=1

h2
k = O(m−1), 1− d21 = O(m−1).

Furthermore m −→ ∞,m = o(nc2 ) for some 0 < c < c ≤ 1, where c is defined in Condition D.
2 1 1

6
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Condition F (On the nonparametric component f (·)). Suppose f (·) ∈ Λk(M) for some k > 1
2(c1−c2)

, where c1 and c2 are
defined in Conditions D, E. The Lipschitz ball Λk(M) is defined as

Λk(M) =
{
f : for all 0 ≤ x, y ≤ 1, |f (i)(x)| ≤ M, i ∈ {0, . . . , ⌊k⌋ − 1}, |f (⌊k⌋)(x)− f (⌊k⌋)(y)| ≤ M|x− y|k

′
}
,

where ⌊k⌋ is the largest integer less than k and k′ = k− ⌊k⌋.

The convergence and divergence rates of the parameters in the priors and the dimension of the variables are stated
n Condition A. Identifiability Condition B is needed to distinguish active covariates out of spurious ones. Condition C
ives the regularity condition of the design matrix. Instead of requiring bounded eigenvalues, we will need the minimal
igenvalues to decay slower than some rate and the maximal eigenvalues to diverge slower than some rate. We would
ike to point that, if the size of the true model is not too large, the condition holds even with the extreme case when
is sampled from normal distribution with compound symmetric covariance matrix when correlation among predictors
−→ 1. Theoretically the model still works even under nearly perfectly correlated covariates. Condition D states the

normality assumption for the error and we do allow infinitely many active variables.
Conditions E–F control the error in estimating the nonparametric component. Condition E is about the difference

matrix. A sequence satisfying the above conditions, for example, is d1 =

√
m

m+1 , d2 = d3 = · · · = dm+1 = −

√
1

m(m+1) .
s argued in [23] about partial smoothing spline method for PLM, higher ordered difference operation gives lower
pproximation error. We do assume m −→ ∞, so the approximation error becomes ignorable. In the estimation of the
artial residuals, it requires that the nonparametric estimators of E(Y |U) and E(X|U) to converge sufficiently fast so that
heir substitutions in the OLS estimator do not affect its asymptotic distribution. Similarly, our upper bound for the growth
ate of difference order m reflects this. Finally, the commonly used smoothness assumption for nonparametric nuisance
unction is stated in Condition F.

The first step is to derive posterior probability of any model M.

emma 1. Under fixed σ 2, for any model M, the posterior probability has the following explicit form:

Pr(γ = M | Y, σ 2) ∝ q|M|

n TM exp
(
−

1
2σ 2 RM

)
,

where

RM = Y⊤

{
Σ1n −Σ1nXM

(
X⊤

MΣ1nXM + I|M|/σ
2
1n

)−1 X⊤

MΣ1n

}
Y,

TM = σ
−|M|

1n

⏐⏐X⊤

MΣ1nXM + I|M|/σ
2
1n

⏐⏐−1
,

nd Σ1n = In − (Σ+

0n + In)−1, Σ0n is the covariance matrix for the prior of f (U).
Furthermore, define the likelihood ratio between model M and the true model A as PR(M,A). If Conditions A, C hold,

PR(M,A) is bounded by

PR(M,A) =
Pr(γ = M|Y, σ )
Pr(γ = A|Y, σ )

⪯ p−1.5δ(|M|−|A|)+0.5κ
n exp

{
−

1
2σ 2 (RM − RA)

}
. (4)

Remark 2. Lemma 1 gives the explicit form of the posterior probability for any given model M and puts an upper bound
on the likelihood ratio between model M and the true model A. Intuitively from (4), when σ 2

1n is sufficiently large, RM
s close to

R∗M = Y⊤

{
Σ1n −Σ1nXM

(
X⊤

MΣ1nXM
)−1 X⊤

MΣ1n

}
Y.

o if Σ1n is taken to be CD⊤D, which means Σ0n =
{
(In − CD⊤D)−1

− In
}+, then R∗M is proportional to the sum of

quared residuals under model M, after applying the difference-based method. It could be interpreted as the goodness
f fit. Additionally, the first term p−1.5δ(|M|−|A|)

n in (4) could be regarded as the penalty on the model size. So it is mostly
analogous to a L0 penalized method. As σ1n diverges fast, we can directly work with R∗A and R∗M instead of RM − RA. The
following two lemmas present some properties of R∗A and R∗M.

Lemma 2. For any model M containing the true model, i.e A ⊆ M, if conditions A, E, F hold, then

R∗M ∼ Cσ 2χ2
n−m−|M|

a.s.,

R∗A − R∗M ∼ Cσ 2χ2
|M|−|A|

a.s..

Lemma 3. Suppose that Conditions A, C, D are satisfied, then for any gn −→ ∞ and ϵ > 0,

(i) Pr(RA − R∗A > gn) ≤ exp(−c ′nλ1σ
2
1ngn), for some c ′ > 0, where λ1 is defined in Condition C.

(ii) Pr(|R∗ /(Cnσ 2)− 1| > ϵ) ≤ exp (−cn), for some c > 0.
A

7
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emark 3. Lemma 2 shows for over-fitted models, after applying the difference operation, the sum of squared residuals
as an asymptotic χ2 distribution with the degrees of freedom as n−m− |M|. It also gives the asymptotic distribution
f R∗A − R∗M. The difference of RA and R∗A is further bounded in Lemma 3. Lemma 3(ii) is straightforward by using the
ail bound with χ2 distributions.

heorem 4 (Strong Selection Consistency Under Fixed σ 2). Suppose that Conditions A, B, C, D, E, F hold for the partially linear
odel in (1) with ln pn = o(n), and |A| = o(mn) is valid, we have

Pr
(
γ = A | Y, σ 2, |γ | ≤ mn + |A|

) P
−→ 1 as n → ∞,

where mn = cn/ln pn, as defined in Condition D.

Remark 4. It suffices to show∑
M̸=A,|M|≤mn+|A|

PR(M,A) =
∑

M̸=A,|M|≤mn+|A|

Pr(γ = M|Y, σ )
Pr(γ = A|Y, σ )

P
−→ 0.

Recall that, by (4) in Lemma 1, we have PR(M,A) ⪯ p−1.5δ(|M|−|A|)+0.5κ
n exp

{
−

1
2σ2 (RM − RA)

}
. Inspired by [21], we first

ivide the model space into 3 disjoint parts, Pi, i = 1, 2, 3 defined as below. In each group, we prove the sum of likelihood
ratio converges to 0 in probability.

1. Consider the set of overfitted models P1 = {M : A ⊆ M, |M| ≤ mn + |A|}. Model M in this group contains all
active variables, so RA − RM might be large. However since |M| − |A| > 0, the number of extra spurious variables
is penalized at the rate of p−c

n .
2. For large and including some inactive variables models P2 = {M : A ⊈ M, K |A| < |M| ≤ mn + |A|}, let M ∨ A

be the union of models M and A, then any model M in this group has M ∨ A ∈ P1. Although size of M ∨ A
may exceed mn + |A|, but since mn dominates |A| so it is reasonable to assume the difference is negligible. Model
M ∨ A will also have a better fit than M. Thus we can control exp

{
−

1
2σ2 (RM − RA)

}
by bounding the value of

exp
{
−

1
2σ2 (RM∨A − RA)

}
. Since the size of models in P2 is large, the growth of exp

{
−

1
2σ2 (RM − RA)

}
is under

control.
3. Now consider the set of underfitted models missing some active variables, which is formulated as P3 = {M : A ⊈

M, |M| ≤ K |A|}, where K is the constant defined in Condition B. For any model M in this group, at least one active
variable is missed. By Condition B on the identifiability of the active variables, RM − RA will be large since model
M does not have a good fit, thus the value of PR(M,A) is controlled.

Remark 5. In this paper, we only consider models that are not unreasonably large, that is, |M| ≤ mn + |A|, where mn is
at the order of n/ln pn. There is a reason behind the choice of mn. It can be shown that the marginal probability for the
inclusion of a single variable i.e. q = Pr(γi = 1) somehow controls the size of the selected model. Let M̂ = argmax

M
Pr(γ =

M|Y , σ 2). For any fixed choice of q, we can derive the upper bound on the selected model size

|M̂| ⪯ |A| +
c|A| ln pn
− ln q

+
c ′n

− ln q
.

Since we require qn ∼ p−1
n and |A| = o

(
n

ln pn

)
in Conditions A, D, it reduces to

|M̂| = O
(

n
ln pn

)
.

Theorem 5 (Strong Selection Consistency Under Unknown σ 2). Suppose that Conditions A, B, C, D, E, F hold for the partially
inear model in (1) with ln pn = o(n), and |A| = o(mn) is valid, we have

Pr (γ = A | Y, |γ | ≤ mn + |A|)
P

−→ 1 as n → ∞,

here mn = cn/ln pn, as defined in Condition D.

By further integrating out σ 2 and applying some inequalities, the problem reduces to intermediate steps in Theorem 4.
lease refer to Section 4 for the proof.

emark 6. As linear models are special cases of partially linear models, the proposed BSM-DP variable selection method
ay be directly applicable to linear models. We have also studied theoretical properties, finite sample performance and
omputational time of the BSM-DP under the setting of linear models and compared with BASAD [21] and SG [22]. To
ave space, all material related to BSM-DP for linear models are put in the supplementary material.
8
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. Numerical study

.1. Simulation study

.1.1. Simulation settings and the choice of hyperparameters
In this section, we compare the performance of the proposed method with several other existing methods including

enalized methods on partial residuals and methods based on partial correlation of partial residuals. The penalized
ethods include the famous LASSO [25] and SCAD [8] tuned by BIC. The R packages msgps, ncvreg are used for LASSO
nd SCAD. Methods based on partial correlation include PC-simple algorithm on the partial residuals (PC-PR) [3] and
hreshold partial correlation on partial residuals (TPC-PR) [20]. Both PC-PR and TPC-PR select variables based on the
agnitude of the partial correlation between the partial residuals of the response and the corresponding predictors, while

he difference is on the threshold used for partial correlations. TPC-PR uses a threshold depending on the kurtosis of X,
o the normality assumption for X is not necessary. For TPC-PR, we also consider a fine tuning on the critical value
T (α, n, κ̂,m), where c is the tuning parameter chosen by EBIC [4]. The method is denoted as TPC-PR.EBIC.
First we need to specify the hyper-parameters σ0, σ1n, qn,m, α0, β0. Partially refer to the choice in [21], we use α0 = 2,

0 = 5, and σ0 = 0.1 for our proposed method (BSM-DP). The order of the difference operator is set to be m = ⌊5n1/5
⌋.

dditionally, the variance for the diffusing prior is set as σ1n =

√
max

{
p2.1n
100n , ln(n)

}
, and we choose qn = Pr(γi = 1) such

hat Pr(
∑pn

j=1 γj > K ) = 0.1, for a prespecified value of K . The value of K can be our preliminary guess for the size of
ctive set, and for example, we can use the size of active set selected by LASSO. In this paper we simply set K = 10. In
ach of the following case, we allow 6000 iterations, and treat the first 3000 as burn-in samples. We report simulation
esults based on both MAP and MPM for our proposed method.

We fix n = 200, p = 1000 and the true active set A = (1, 2, 5, 8) with coefficients of βA = (1.5, 2.0, 2.5, 3.0). The
rror ϵi is drawn from standard normal distribution N (0, 1). Fixed design of Ui = i/n, i ∈ {1, . . . , n} is used with three
ifferent types of X:

Case 1. Type I normal distribution with autoregressive covariance matrix: X ∼ N (0,Σ), where Σij = ρ|i−j|.
Case 2. Type II normal distribution with compound symmetric covariance matrix: X ∼ N (0,Σ), where Σij = 1 for
i = j and Σij = ρ for i ̸= j.
Case 3. Type III mixture of normals: X is sampled from N (0,Σ) with probability 0.9 and from N (0, 9Σ) with
probability 0.1, where Σ is the compound symmetric correlation matrix with correlation ρ.

n each case, we also consider low and high correlations at ρ = 0.2 and ρ = 0.8 separately, with two choices of the
onparametric component f (U) = U2 and f (U) = sin(2πU). The following evaluation criteria are used for comparing
ethods based on 500 replications:

pmax
Ac and pmin

A : the average for the maximal of marginal posterior probabilities on true inactive covariates, and the
average for the minimal of marginal posterior probabilities on true active covariates.
pA=M: the proportion of replications with the exact model being selected.
pA∈M: the proportion of replications with all true active variables being selected.
pi: the proportion of replications that the ith true active variable is selected successfully , i ∈ {1, 4}.
TP (true positive): the average number of true active variables selected.
FP (false positive): the average number of selected variables that are actually inactive.
ME (model error): (̂β − β)⊤cov(X)(̂β − β).

ote that for those existing methods, partial residuals are firstly obtained. Getting the partial residuals involves the value
f E(Y |U), which is estimated by the local linear regression, followed by [20]. The bandwidth is chosen via plug-in methods
sing R package KernelSmooth. Afterwards, with LASSO and SCAD, we are able to estimate β and achieve variable
election simultaneously in the second step. While for the partial correlation methods including PC and TPC, an estimation
f the active set Â needs to be obtained first, then β̂ is estimated by regressing the partial residuals on Â through the least
quares method. Details can be found in [20]. In this simulation, we use the posterior mean of β as β̂ for the proposed
ethod.

.1.2. Simulation results
Tables 1–3 record the mean results from those 500 replications. Case 1 is with the decayed autoregressive covariance

atrix. Under the case with low correlation ρ = 0.2, all methods perform well regardless of the type of the nonparametric
unction. For the situation with high correlation of ρ = 0.8, LASSO is prone to overfit the model, with the exact model
eing selected only around 20% of the time.
It gets more challenging to identify true covariates under dense correlation, which is Case 2 with the compound

ymmetric covariance matrix. The exact-fit rates are much lower for most of the methods as compared to that in Case
. It is noteworthy that under high correlation ρ = 0.8, except for our proposed BSM-DP, most other methods do not
erform well. LASSO consistently selects a larger model with about 16 spurious covariates on average, while SCAD tuned
9
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able 1
ummarized simulation results for Case 1: p = 1000, n = 200 and X is sampled from normal distribution with autoregressive correlation matrix.

The reported values are means of different performance measures averaged over 500 replications. The methods compared include LASSO and SCAD
on partial residuals tuned by BIC (LASSO.BIC, SCAD.BIC), PC-simple algorithm on the partial residuals (PC-PR), threshold partial correlation on partial
residuals (TPC-PR, TPC-PR.EBIC), proposed method with model selected by MAP and MPM (BSM-DP.MAP, BSM-DP.MPM). The details of different
methods and measures are provided in Section 3.1.1.

Method pmax
Ac pmin

A pA=M pA∈M p1 p4 TP FP ME

LASSO.BIC 0.760 1.000 1.000 1.000 4.000 0.256 0.313
SCAD.BIC 0.932 1.000 1.000 1.000 4.000 0.082 0.026

f (u) = u2 PC-PR 0.966 0.994 0.994 1.000 3.994 0.030 0.040
ρ = 0.2 TPC-PR 0.964 0.994 0.994 1.000 3.994 0.032 0.041

TPC-PR.EBIC 0.994 1.000 1.000 1.000 4.000 0.010 0.027
BSM-DP.MAP (new) 0.073 1.000 0.974 1.000 1.000 1.000 4.000 0.032 0.026
BSM-DP.MPM (new) 0.974 1.000 1.000 1.000 4.000 0.030 0.026

LASSO.BIC 0.738 1.000 1.000 1.000 4.000 0.288 0.334
SCAD.BIC 0.924 1.000 1.000 1.000 4.000 0.120 0.029

f (u) = sin(2πu) PC-PR 0.996 0.994 0.994 1.000 3.994 0.032 0.045
ρ = 0.2 TPC-PR 0.958 0.994 0.994 1.000 3.994 0.040 0.045

TPC-PR.EBIC 0.982 1.000 1.000 1.000 4.000 0.018 0.029
BSM-DP.MAP (new) 0.074 1.000 0.974 1.000 1.000 1.000 4.000 0.028 0.026
BSM-DP.MPM (new) 0.970 1.000 1.000 1.000 4.000 0.032 0.026

LASSO.BIC 0.222 1.000 1.000 1.000 4.000 1.266 0.309
SCAD.BIC 0.984 0.998 0.998 1.000 3.998 0.020 0.032

f (u) = u2 PC-PR 0.644 0.652 0.768 1.000 3.652 0.094 0.344
ρ = 0.8 TPC-PR 0.652 0.660 0.774 1.000 3.660 0.092 0.338

TPC-PR.EBIC 0.846 0.858 0.886 1.000 3.858 0.038 0.149
BSM-DP.MAP (new) 0.053 1.000 0.990 1.000 1.000 1.000 4.000 0.010 0.023
BSM-DP.MPM (new) 0.994 1.000 1.000 1.000 4.000 0.006 0.023

LASSO.BIC 0.172 1.000 1.000 1.000 4.000 1.362 0.321
SCAD.BIC 0.986 0.998 0.998 1.000 3.998 0.014 0.040

f (u) = sin(2πu) PC-PR 0.650 0.656 0.796 1.000 3.998 0.014 0.348
ρ = 0.8 TPC-PR 0.662 0.668 0.804 1.000 3.666 0.132 0.337

TPC-PR.EBIC 0.840 0.854 0.906 1.000 3.854 0.064 0.159
BSM-DP.MAP (new) 0.055 1.000 0.982 1.000 1.000 1.000 4.000 0.018 0.023
BSM-DP.MPM (new) 0.984 1.000 1.000 1.000 4.000 0.016 0.023

by BIC is prone to select a smaller model. PC and TPC work evidently slow under dense correlation, when ρ = 0.2, it
akes around 12 h for PC, TPC and TPC-EBIC to finish one replication. More than 48 h are needed when ρ = 0.8, thus we
mark it as stars (***) since 500 replications cannot be done in timely manner. Our proposed method (BSM-DP) gives the
best results, with high exact-fit rates (above 95%) even under the high dense correlation situation.

In Case 3, X is generated from a mixture normal distribution, with a heavier tail than the normal distribution. Since
PC-PR relies heavily on the normality of the covariates, it gives poor results. The updated version of TPC without assuming
normality shows improvement. Our proposed method (BSM-DP) still stands out in the comparison with around 95% perfect
exact-fit rates.

Overall, when correlation increases, LASSO tuned by BIC tends to overfit the model while SCAD tuned by BIC is
more likely to select a smaller model. When X is normally distributed, PC and TPC are similar. But when the normality
assumption is violated, TPC performs better than PC. The newly proposed method BSM-DP performs consistently the best,
regardless of the correlation strength and distribution of X. The exact-fit rates for all cases are all above 90%.

Remark 7 (On Model Selection Procedure). In our simulation study, models selected by MAP and MPM are very similar to
each other. We do not need to select the threshold with MAP. With the MPM, the jth variable is selected if its posterior
probability Pr(γj = 1|Y ) ≥ 0.5. In order to investigate the impact of different thresholds other than 0.5, we further
xplore one simulation setting Case 2 with ρ = 0.8, and consider various threshold values from 0 to 1. The results
re presented in Fig. 2. With a smaller threshold, more spurious variables are likely to enter the model, so the false
iscovery rate (dotted red line) is higher. While with a larger threshold which associates with a more stringent selection
riterion, we have a higher chance to miss active variables. It is worth noting that although for our simulation setting with
A = (1.5, 2.0, 2.5, 3.0) shown in Fig. 2(a), the true positive rate (dashed green line) is consistently high as all active
ariables have marginal inclusion probabilities as 1, but generally we may expect a drop when threshold approaches to 1
or most cases as in Fig. 2(b) with lower signal βA = (0.8, 1.3, 1.8, 2.3). The exact-fit rate (solid blue line), which gives
the proportion of replications with exact model being selected, is reasonably good, as long as the threshold is neither too
large nor too small. Overall, 0.5 looks like a good choice.

We also compare the computation time required by different methods. Among the five methods mentioned above,
LASSO and SCAD are the fastest which take about 2 min in R to finish estimation for one replication. PC and TPC are fast
as well when covariate X has decayed covariance matrix. They become dramatically slow with high and dense correlation.
10
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able 2
ummarized simulation results for Case 2: p = 1000, n = 200 and X is sampled from normal distribution with compound symmetric correlation
atrix. The reported values are means of different performance measures averaged over 500 replications. The methods compared include LASSO
nd SCAD on partial residuals tuned by BIC (LASSO.BIC, SCAD.BIC), PC-simple algorithm on the partial residuals (PC-PR), threshold partial correlation
n partial residuals (TPC-PR, TPC-PR.EBIC), proposed method with model selected by MAP and MPM (BSM-DP.MAP, BSM-DP.MPM). The details of
ifferent methods and measures are provided in Section 3.1.1. Results under high correlation ρ = 0.8 are highlighted.

Method pmax
Ac pmin

A pA=M pA∈M p1 p4 TP FP ME

LASSO.BIC 0.220 1.000 1.000 1.000 4.000 1.652 0.509
SCAD.BIC 0.938 1.000 1.000 1.000 4.000 0.070 0.028

f (u) = u2 PC-PR 0.420 0.998 0.998 1.000 3.998 0.766 0.063
ρ = 0.2 TPC-PR 0.406 0.998 0.998 1.000 3.998 0.782 0.063

TPC-PR.EBIC 0.862 0.998 0.998 1.000 3.998 0.140 0.040
BSM-DP.MAP (new) 0.077 1.000 0.970 1.000 1.000 1.000 4.000 0.030 0.024
BSM-DP.MPM (new) 0.970 1.000 1.000 1.000 4.000 0.024 0.024

LASSO.BIC 0.202 1.000 1.000 1.000 4.000 1.746 0.515
SCAD.BIC 0.950 1.000 1.000 1.000 4.000 0.054 0.027

f (u) = sin(2πu) PC-PR 0.368 0.984 0.984 1.000 3.984 0.870 0.098
ρ = 0.2 TPC-PR 0.358 0.986 0.986 1.000 3.986 0.884 0.095

TPC-PR.EBIC 0.826 0.990 0.990 1.000 3.990 0.208 0.060
BSM-DP.MAP (new) 0.087 1.000 0.970 1.000 1.000 1.000 4.000 0.036 0.032
BSM-DP.MPM (new) 0.976 1.000 1.000 1.000 4.000 0.026 0.033

LASSO.BIC 0.000 1.000 1.000 1.000 4.000 16.174 0.390
SCAD.BIC 0.386 0.386 0.412 1.000 3.386 0.000 0.585

f (u) = u2 PC-PR *** *** *** *** *** *** ***
ρ = 0.8 TPC-PR *** *** *** *** *** *** ***

TPC-PR.EBIC *** *** *** *** *** *** ***
BSM-DP.MAP (new) 0.105 1.000 0.942 1.000 1.000 1.000 4.000 0.068 0.034
BSM-DP.MPM (new) 0.956 1.000 1.000 1.000 4.000 0.048 0.037

LASSO.BIC 0.000 1.000 1.000 1.000 4.000 16.114 0.401
SCAD.BIC 0.426 0.426 0.448 1.000 3.426 0.000 0.574

f (u) = sin(2πu) PC-PR *** *** *** *** *** *** ***
ρ = 0.8 TPC-PR *** *** *** *** *** *** ***

TPC-PR.EBIC *** *** *** *** *** *** ***
BSM-DP.MAP (new) 0.093 1.000 0.970 1.000 1.000 1.000 4.000 0.036 0.032
BSM-DP.MPM (new) 0.976 1.000 1.000 1.087 4.000 0.026 0.033

*** Stands for the cases when a single replication takes more than 48 h. So 500 replications cannot be done in timely manner.

Fig. 2. Impact of model selection performance using different threshold values for the posterior probability. The criteria displayed to measure
performance include exact-fit rate (solid blue line), false discovery rate (dotted red line) and true positive rate (dashed green line). A range of threshold
values from 0 and 1 are used to plot the curve for each criterion. Two signal values with different strengths are considered: βA = (1.5, 2.0, 2.5, 3.0)
nd βA = (0.8, 1.3, 1.8, 2.3).

ore than 48 h is needed for PC using R to finish one replication when the covariance of X is compound symmetric with
= 0.8. It may get worse with higher dimensional covariates and larger active groups, since the computational time for
oth PC and TPC grows polynomially with them. Time is recorded based on Macbook Pro early 2015 with 2.7 GHZ, Intel
5 and 8 GB.

On the contrary, the computation burden for the newly proposed Bayesian method (BSM-DP) is moderate. Among
ll simulation settings, the slowest one takes about 12 min to finish 6000 iterations for one replication using Julia
11
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able 3
ummarized simulation results for Case 3: p = 1000, n = 200 and X is sampled from mixture of normals with compound symmetric matrix. The
eported values are means of different performance measures averaged over 500 replications. The methods compared include LASSO and SCAD on
artial residuals tuned by BIC (LASSO.BIC, SCAD.BIC), PC-simple algorithm on the partial residuals (PC-PR), threshold partial correlation on partial
esiduals (TPC-PR, TPC-PR.EBIC), proposed method with model selected by MAP and MPM (BSM-DP.MAP, BSM-DP.MPM). The details of different
ethods and measures are provided in Section 3.1.1. Results under high correlation ρ = 0.8 are highlighted.

Method pmax
Ac pmin

A pA=M pA∈M p1 p4 TP FP ME

LASSO.BIC 0.156 1.000 1.000 1.000 4.000 2.434 0.475
SCAD.BIC 0.994 1.000 1.000 1.000 4.000 0.008 0.022

f (u) = u2 PC-PR 0.476 0.690 0.724 1.000 3.676 1.304 0.927
ρ = 0.2 TPC-PR 0.574 0.574 0.636 1.000 3.552 0.622 1.252

TPC-PR.EBIC 0.680 0.694 0.726 1.000 3.680 0.612 0.891
BSM-DP.MAP (new) 0.046 1.000 0.984 1.000 1.000 1.000 4.000 0.016 0.015
BSM-DP.MPM (new) 0.986 1.000 1.000 1.000 4.000 0.014 0.015

LASSO.BIC 0.228 1.000 1.000 1.000 4.000 2.194 0.449
SCAD.BIC 0.990 1.000 1.000 1.000 4.000 0.012 0.018

f (u) = sin(2πu) PC-PR 0.572 0.768 0.802 1.000 3.776 0.982 0.670
ρ = 0.2 TPC-PR 0.618 0.622 0.682 1.000 3.602 0.544 1.125

TPC-PR.EBIC 0.748 0.768 0.804 1.000 3.764 0.438 0.667
BSM-DP.MAP (new) 0.050 1.000 0.986 1.000 1.000 1.000 4.000 0.016 0.014
BSM-DP.MPM (new) 0.988 1.000 1.000 1.000 4.000 0.012 0.014

LASSO.BIC 0.000 0.998 0.998 1.000 3.998 14.060 0.395
SCAD.BIC 0.380 0.382 0.432 1.000 3.374 0.120 0.652

f (u) = u2 PC-PR *** *** *** *** *** *** ***
ρ = 0.8 TPC-PR *** *** *** *** *** *** ***

TPC-PR.EBIC *** *** *** *** *** *** ***
BSM-DP.MAP (new) 0.092 1.000 0.962 1.000 1.000 1.000 4.000 0.042 0.025
BSM-DP.MPM (new) 0.964 1.000 1.000 1.000 4.000 0.040 0.025

LASSO.BIC 0.000 0.996 0.996 1.000 3.996 14.002 0.418
SCAD.BIC 0.422 0.426 0.492 1.000 3.416 0.022 0.672

f (u) = sin(2πu) PC-PR *** *** *** *** *** *** ***
ρ = 0.8 TPC-PR *** *** *** *** *** *** ***

TPC-PR.EBIC *** *** *** *** *** *** ***
BSM-DP.MAP (new) 0.082 1.000 0.960 1.000 1.000 1.000 4.000 0.042 0.020
BSM-DP.MPM (new) 0.970 1.000 1.000 1.000 4.000 0.032 0.020

*** Stands for the cases when a single replication takes more than 48 h. So 500 replications cannot be done in timely manner.

Fig. 3. Change in computational time (in minutes) when the dimension of covariates increases from 100 to 4000. The CPU time is estimated by the
median computation time consumed among 10 replications for each dimension setting.

0.6. As discussed in Remark 1 Section 2.1, the Bayesian subset modeling is scalable, and the computational time only
grows approximately linearly with the dimension of covariates. Based on the estimation procedure, the computational
complexity for each iteration is n(p ∨ |γ|2 ∨ n2), where |γ| is the current active model size. To explore the change in the
omputation time for different (and especially higher) dimensions of covariates, we record the CPU time to finish 6000
terations with various p from 100 to 4000, in the simulation setting Case 1 ρ = 0.8. The result is presented in Fig. 3. The
omputation time increases nearly linearly with the dimension p. It is not perfectly linear since the number of iterations
ntil convergence seems to grow with p. We notice that for small p (e.g. p < 500), it usually only takes a few iterations
o converge and ends up with a small |γ|, but it often requires more iterations when p gets larger. There is one place in
he above plot which shows a large jump. This might relate to the caching limit on the hardware, especially when p is
arge.
12
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Fig. 4. Visualizations to display features of the (standardized) supermarket data set. The plot on the left gives the trend of daily number of customers
entering a supermarket for 464 days. The histogram on the right describes the distribution of the correlation among sampled predictors.

Table 4
Comparisons of the resulting model size and the mean squared errors by different methods. The values in the table are the means and the
corresponding standard errors (in the parenthesis) over the 100 replications. The methods compared are LASSO and SCAD on partial residuals
tuned by BIC (SIS-LASSO.BIC, SIS-SCAD.BIC), PC-simple algorithm on the partial residuals (SIS-PC-PR), threshold partial correlation on partial residuals
(SIS-TPC-PR, SIS-TPC-PR.EBIC), proposed method with model selected by MPM tuned by EBIC (SIS-BSM-DP).
Method Model size (s.e.) MSE on training set (s.e.) MSE on testing set (s.e.)

SIS-LASSO.BIC 28.80 (3.32) 0.0575 (0.0030) 0.0836 (0.0120)
SIS-SCAD.BIC 15.75 (5.44) 0.0647 (0.0062) 0.0907 (0.0143)
SIS-PC-PR 12.94 (1.03) 0.0497 (0.0031) 0.0847 (0.0112)
SIS-TPC-PR 9.81 (0.92) 0.0540 (0.0034) 0.0860 (0.0109)
SIS-TPC-PR.EBIC 8.50 (0.98) 0.0559 (0.0038) 0.0867 (0.0117)
SIS-BSM-DP.EBIC (new) 7.95 (1.91) 0.0610 (0.0055) 0.0864 (0.0122)

3.2. A real data example — supermarket data analysis

In this section, the proposed method is applied to analyze a supermarket data set mentioned in [5,20,26]. The data set
ontains n = 464 daily records of the number of customers, which is the response variable and the sales of p = 6398
roducts which are predictors. Both the response variable and the predictors are standardized to have zero mean and
nit variance. The plot on the left of Fig. 4 shows the relationship between the number of customers and the days.
he periodicity of Y is obvious, thus it is reasonable to model Y with a PLM, which takes time variation into account. A
ovariate Ui = i/n is introduced to represent time. To check the correlation among predictors, we plot the histogram of
he sampled correlation in Fig. 4., which shows some moderate correlation. We randomly select 75% of the observations
Xi, Yi,Ui), i ∈ {1, . . . , 464} as the training set and keep the remaining 25% as the testing set. The PLM is fitted and
ariables are selected using the training data set, then the mean squared errors of the selected model on the testing data
et are calculated to evaluate the model fit. This procedure is repeated 100 times, and Table 4 summarizes the average
ize of the selected models and the mean squared errors.
To take the dimension down to a moderate scale, we first apply the SIS [9] on the partial residual to only keep the

op 2000 predictors as the set subjected to variable selection. We also implement the LASSO.BIC, SCAD.BIC, PC-PR, TPC-PR
nd TPC-PR-EBIC on the same data set as comparisons. The choice of the hyperparameters for BSM-DP is the same as the
et up in the simulation. We complete 10000 iterations, with the first 6000 as burn-in samples, and rank covariates by
heir marginal posterior probabilities Pr(γj = 1|Y ). The candidate set is further selected by EBIC.

After obtaining partial residuals, with LASSO and SCAD, we are able to obtain β̂ and select variables simultaneously.
ut for PC, TPC, and BSM-DP, an estimation of the active set Â is first obtained, then β̂ is estimated by regressing the
artial residuals on Â through OLS. Since we derive the theoretical property of γ , we only use BSM-DP to select the set
f active covariates, β̂ is also obtained by regressing the partial residuals on the selected covariate set.
As shown in Table 4, LASSO gives the most conservative result with an average size of selected models as 28.80. On

he other hand, the MSE is much smaller on the training than that on the testing. This suggests that the LASSO may
e overfitting. SCAD selects smaller models with size 15.75 on average, but having large error on testing set. PC, TPC,
PC.EBIC and the newly proposed BSM-DP all select even smaller models with the average size less than 10. Among all,
ur proposed BSM-DP selects the smallest number of covariates with very similar value of the mean squared error on the
esting data set. Fig. 5 illustrates a comparison on the estimated nonparametric function obtained by different methods.
13
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Fig. 5. The estimates of the nonparametric function for the supermarket data set by different methods including: LASSO and SCAD on partial residuals
uned by BIC (SIS-LASSO.BIC, SIS-SCAD.BIC), PC-simple algorithm on the partial residuals (SIS-PC-PR), threshold partial correlation on partial residuals
SIS-TPC-PR, SIS-TPC-PR.EBIC), and proposed method with model selected by MPM tuned by EBIC (SIS-BSM-DP.EBIC).

. Technical proofs

This section includes technical proofs for Lemmas 1–3 and Theorems 4–5.

Proof of Lemma 1. Note that, as qn −→ 0, which is stated in Condition A, we first write out the posterior distribution
for parameters as

Pr(γ = M, β, σ ,α|Y) ∝π (Y|α, γ, β, σ )π (α|σ )π (β|γ, σ )π (γ)π (σ 2)

∝ exp
{
−

1
2σ 2 (Y− α − XMβM)⊤(Y− α − XMβM)−

1
2σ 2 α⊤Σ

+

0nα

}
q|M|

n σ−2n−pnσ
−|M|

1n σ
−(pn−|M|)
0 exp

{
−

1
2σ 2

1nσ
2
β⊤

MβM −
1

2σ 2
0 σ 2

β⊤

McβMc

}
π (σ 2).

e first integrate out α, and it follows that

Pr(γ = M, β, σ |Y) ∝q|M|

n σ−n−pnσ
−|M|

1n σ
−(pn−|M|)
0 exp

{
−

1
2σ 2

1nσ
2
β⊤

MβM −
1

2σ 2
0 σ 2

β⊤

McβMc

}
exp

[
−

1
2σ 2

(
Y− XMβM

)⊤ {In − (Σ+

0n + In)−1} (Y− XMβM
)]
|Σ

+

0n + In|
−1/2

π (σ 2).

Denote Σ1n = In − (Σ+

0n + In)−1. It follows by integrating out β that

Pr(γ = M, σ |Y) ∝ q|M|

n σ−nσ
−|M|

1n |Σ
+

0n + In|
−1/2

|X⊤

MΣ1nXM + I|M|/σ
2
1n|

−1/2
exp

(
−

1
2σ 2 RM

)
π (σ 2), (5)

where

RM = Y⊤

{
Σ1n −Σ1nXM

(
X⊤

MΣ1nXM + I|M|/σ
2
1n

)−1 X⊤

MΣ1n

}
Y.

Let X∗
= C1/2DX, λ∗

1 = minM:|M|≤mn+|A| λmin
( 1
n−mX∗⊤

MX∗
M
)
, λ∗

2 = maxM:M⊆A λmax
( 1
n−mX∗⊤

MX∗
M
)
. As D⊤D −→

0m×m 0m×(n−m)
0(n−m)×m In−m

)
, for any model M, X∗⊤

MX∗
M is asymptotically equal to CX⊤

M′XM′ , where M′ is the subset of M by

taking last n−m elements. By Conditions C, E, it can be shown that λ∗

1 ∼ λ1 and λ∗

2 ∼ λ2. Now we put bound on TM/TA.
For any model M:

TM
TM∧A

=
⏐⏐In−m + σ 2

1nX
∗

MX∗⊤

M

⏐⏐− 1
2
⏐⏐In−m + σ 2

1nX
∗

M∧AX∗⊤

M∧A

⏐⏐ 12 ⪯ (nσ 2
1nλ

∗

1)
−|M|/2(nσ 2

1nλ
∗

2)
|M∧A|/2

TM∧A

TA
= |In−m + σ 2

1nX
∗

M∧AX∗⊤

M∧A|
−

1
2 |In−m + σ 2

1nX
∗

AX∗⊤

A |
1
2 ≤ |In−m + σ 2

1nX
∗

A∧McX∗⊤

A∧Mc |
1
2 ⪯ (nσ 2

1nλ
∗

2)
|A∧Mc

|/2.
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hus, TM
TA

⪯ (nσ 2
1nλ1)−(|M|−|A|)/2

(
λ2
λ1

)|A|/2
, so

PR(M,A) =
Pr(γ = M|Y, σ )
Pr(γ = A|Y, σ )

= q|M|−|A|

n
TM
TA

exp
{
−

1
2σ 2 (RM − RA)

}
⪯ q|M|−|A|

n (nσ 2
1nλ1)−(|M|−|A|)/2

(
λ2

λ1

)|A|/2

exp
{
−

1
2σ 2 (RM − RA)

}
⪯ p−1.5δ(|M|−|A|)+0.5κ

n exp
{
−

1
2σ 2 (RM − RA)

}
. □

Proof of Lemma 2. By Condition A, if Σ0n is taken to be Σ0n =
{
(In − CD⊤D)−1

− In
}+, since Σ1n is defined as

1n = In − (Σ+

0n + In)−1, so we have

Σ1n = CD⊤D,

here D ∈ R(n−m)×n is the difference matrix defined in (2) and 0 < C ≤ min
{
1, 1/λmax(D⊤D)

}
is a constant, thus

αn = In −Σ1n and Σ0n = (Σ−1
αn − In)+ are semi-positive definite. By taking difference operation on each side, we have

Y∗
= X∗

+ δ + ω,

here Y∗
= C1/2DY ∈ Rn−m,X∗

= C1/2DX ∈ R(n−m)×pn , δ = C1/2Dα ∈ Rn−m, ω = C1/2Dϵ ∈ Rn−m. The projection matrix
s defined as PM = X∗

M(X∗⊤
MX∗

M)−1X∗⊤
M and furthermore we denote QM = In−m − PM. Under the true model, we have

= α + XAβA + ϵ, then for any model containing the true model A ⊆ M,

R∗M = Y⊤

{
Σ1n −Σ1nXM

(
X⊤

MΣ1nXM
)−1 X⊤

MΣ1n

}
Y = Y∗⊤(In−m − PM)Y∗

= (δ + ω)⊤QM(δ + ω) = ω⊤QMω + 2ω⊤QMδ + δ⊤QMδ.

t suffices to show δ⊤QMδ −→ 0 a.s., ω⊤QMδ −→ 0 a.s. and σ−2ω⊤QMω ∼ Cχ2
n−m−|M|

a.s..

Step 1: To show that δ⊤QMδ −→ 0 a.s.: note that

0 ≤ δ⊤QMδ = ∥δ∥22 − ∥PMδ∥22 ≤ ∥δ∥22,

where δi = C1/2∑m+1
t=1 dt f (Ui+m+1−t ). Thus by

∑
di = 0,

∑
d2i = 1, we have

δ2i = C

{
m+1∑
t=1

dt f (Ui+m+1−t )

}2

= C [d2 {f (Ui+m−1)− f (Ui+m)} + d3 {f (Ui+m−2)− f (Ui+m)} + · · · + dm+1 {f (Ui)− f (Ui+m)}]2 .

By Cauchy–Schwarz inequality and Condition F, for any f (·) ∈ Λk(M),

δ2i ≤ C(1− d21)

(
m∑

t=1

M2
∥Ui+m−t − Ui+m∥

2(k∧1)

)
≤ O

(
m−1)m1+2(k∧1)U2(k∧1)

∞
= O

(
(mU∞)2(k∧1)) .

By Conditions D, E, F, 1 + (c2 − c1)2(k ∧ 1) < 0, it can be shown that ∥δ∥22 = O
(
n(mU∞)2(k∧1)

)
−→ 0. Then

δ⊤QMδ −→ 0 a.s..
Step 2: To show that ω⊤QMδ −→ 0 a.s.: under fixed design, we have

ω⊤QMδ | δ ∼ N (0, Cσ 2δ⊤QMDD⊤QMδ).

Since DD⊤
−→ In−m and δ⊤QMδ −→ 0 a.s. from Step 1, so ω⊤QMδ −→ 0 a.s.

Step 3: To show that σ−2ω⊤QMω ∼ Cχ2
n−m−|M|

a.s.: by Condition E, ω⊤QMω = Cϵ⊤(D⊤QMD)ϵ. Let J = (0(n−m)×m, In−m)
∈ R(n−m)×n, then ω = C1/2Dϵ = C1/2Jϵ+C1/2(D−J)ϵ = ω1+ω2. Since D −→ J , so ω2 is negligible as compared to ω1 as
n goes to infinity. Furthermore ω⊤

1 QMω1 = Cϵ⊤J⊤QMJϵ ∼ Cσ 2χ2
n−m−|M|

, therefore σ−2ω⊤QMω ∼ Cχ2
n−m−|M|

a.s..

verall we have R∗M ∼ Cσ 2χ2
n−m−|M|

a.s.. Similarly, write R∗A−R∗M = ω⊤(QA−QM)ω+2ω⊤(QA−QM)δ+δ⊤(QA−QM)δ.
t can be proven that the second and third terms are almost surely 0, so R∗A − R∗M ∼ ω⊤(QA −QM)ω ∼ Cσ 2χ2

|M|−|A|
. □
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roof of Lemma 3. We first prove part (i). Note that RA = Y∗⊤

{
In−m − X∗

A

(
1

σ2
1n
I+ X∗⊤

A X∗
A

)−1

X∗⊤
A

}
Y∗, R∗A =

Y∗⊤

{
In−m − X∗

A
(
X∗⊤
A X∗

A
)−1 X∗⊤

A

}
Y∗, thus

0 ≤ RA − R∗A = Y∗⊤X∗

A

{
(X∗⊤

A X∗

A)−1
−

(
1

σ 2
1n

I+ X∗⊤

A X∗

A

)−1
}
X∗⊤

A Y∗

= Y∗⊤X∗

A(X∗⊤

A X∗

A)−1 {σ 2
1nI+ (X∗⊤

A X∗

A)−1}−1
(X∗⊤

A X∗

A)−1X∗⊤

A Y∗
≤ σ−2

1n Y∗⊤X∗

A(X∗⊤

A X∗

A)−2X∗⊤

A Y∗,

where the first equality is due to the Woodbury matrix identity A−1
− (A + UCV)−1

= A−1U
(
C−1

+ VA−1U
)−1 VA−1.

Denote M = nX∗
A(X∗⊤

A X∗
A)−2X∗⊤

A , which has rank |A| and λmax(M) ≤ 1/λ∗

1 ∼ 1/λ1. By [13], we can derive the tail bound
for the quadratic term:

Pr(RA − R∗A ≥ gn) ≤ Pr(Y∗⊤MY∗
≥ nσ 2

1ngn) ≤ exp(−cnσ 2
1nλ1gn)

We next prove part (ii). By Lemma 2, R∗A/(Cσ 2) ∼ χ2
n−m−|A|

, by the tail bound for χ2 distribution in [17], for any
positive x, we have

Pr
{⏐⏐⏐⏐ R∗ACσ 2 − (n−m− |A|)

⏐⏐⏐⏐ ≥ 2(n−m− |A|)(
√
x+ 2x)

}
≤ 2 exp {−(n− |A|)x} .

urthermore, since m = o(n), thus for any fixed ϵ > 0, there exists a constant c > 0, such that

Pr
(⏐⏐⏐⏐ R∗A

nCσ 2 − 1
⏐⏐⏐⏐ > ϵ

)
≤ exp (−cn). □

Proof of Theorem 4. We will use strategy related to that of Theorem 4.1 in [21] to establish Theorem 4.
For overfitted models P1 = {M : A ⊆ M, |M| ≤ mn+|A|}, we first put bound on RM−RA. By Lemma 2, for M ∈ P1,

we have R∗A − R∗M ∼ Cσ 2χ2
|M|−|A|

. For any x > 0,
√
2/3 < w < 1, there exists some constant c > 0, such that

Pr
{
R∗A − R∗M > Cσ 2(2+ 3x)(|M| − |A|) ln pn

}
= Pr

{
χ2
|M|−|A|

> (2+ 3x)(|M| − |A|) ln pn
}

≤ Pr
{
χ2
|M|−|A|

− (|M| − |A|) > (2+ 3w2x)(|M| − |A|) ln pn
}

≤ c exp {−(1+ x)(|M| − |A|) ln pn} ≤ cp−(1+x)(|M|−|A|)
n .

efine events A(M) = {RA − RM > 2Cσ 2(1+ 2s)(|M| − |A|) ln pn},U(d) =
⋃

M∈P1:|M|=d A(M).
Then for any fixed s > 0, there exists some c, c ′ > 0, such that

Pr {U(d)} = Pr

⎧⎨⎩ ⋃
M∈P1:|M|=d

{
RA − RM > 2Cσ 2(1+ 2s)(|M| − |A|) ln pn

}⎤⎦
= Pr

⎡⎣ ⋃
M∈P1:|M|=d

{
RA − RM + R∗M − R∗M > 2Cσ 2(1+ 2s)(|M| − |A|) ln pn

}⎤⎦
≤ Pr

⎡⎣ ⋃
M∈P1:|M|=d

{
RA − R∗M > 2Cσ 2(1+ 2s)(|M| − |A|) ln pn

}⎤⎦
≤ Pr

⎡⎣ ⋃
M∈P1:|M|=d

{
R∗A − R∗M > Cσ 2(2+ 3s)(d− |A|) ln pn

}⎤⎦
+ Pr

[
RA − R∗A > Cσ 2s(d− |A|) ln pn

]
,

here the first inequality is due to the fact that RM − R∗M ≥ 0. By Lemma 3 and Condition A, it follows that

Pr {U(d)} ≤ c ′p−(1+s)(d−|A|)
n pd−|A|

n + exp
{
−cnσ 2

1nλ1(d− |A|) ln pn
}
≤ 2c ′p−s(d−|A|)

n .

hen,

Pr

⎧⎨⎩ ⋃
U(d)

⎫⎬⎭ ≤

∑
Pr {U(d)} ≤

2c ′

psn − 1
−→ 0.
d>|A| d>|A|
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A
A
c

o consider the high probability event
{⋂

d>|A|
U(d)c

}
, we have∑

M∈P1

PR(M,A) ⪯
∑

M∈P1

q|M|−|A|

n p−(1+δ)(|M|−|A|)
n exp

{
−

1
2σ 2 (RM − RA)

}
⪯

∑
M∈P1

q|M|−|A|

n p−(1+δ)(|M|−|A|)
n exp {C(1+ 2s)(|M| − |A|) ln pn}

⪯

∑
M∈P1

q|M|−|A|

n p−(1+δ)(|M|−|A|)
n pC(1+2s)(|M|−|A|)

n .

As 0 < C < 1, set 0 < s < δ/2, then there exists c > 0 such that∑
M∈P1

PR(M,A) ⪯ p−c
n

pn∑
|M|−|A|=1

(
|M| − |A|

pn

)
p−(|M|−|A|)
n ⪯ p−c

n −→ 0.

Consider large and missing some active variables models P2 = {M : A ⊈ M, K |A| < |M| ≤ mn + |A|}. Define events

B(M) =
{
RA − RM > 2Cσ 2(1+ 2s)(|M| − |A|) ln pn

}
⊆
{
RA − RM∨A > 2Cσ 2(1+ 2s)(|M| − |A|) ln pn

}
,

V (d) =
⋃

M∈P2:|M|=d

B(M).

Similar to the proof for P1, there exists c ′ > 0, such that

Pr {V (d)} ≤ P

⎡⎣ ⋃
M∈P2:|M|=d

{
RA − RM∨A > 2Cσ 2(1+ 2s)(|M| − |A|) ln pn

}⎤⎦
≤ 2c ′p−(1+s)(d−|A|)

n pdn ≤ 2c ′p−(1+w′)d
n pdn ≤ 2c ′p−w′d

n .

Take s = δ/4, we can find such w′ > 0 as long as K−1
K (1+ s) > 1. That is, K > 1+ 4/δ, which is stated in Condition B. It

follows that

Pr

⎧⎨⎩ ⋃
d>K |A|

V (d)

⎫⎬⎭ ≤

∑
d>K |A|

Pr {V (d)} ≤ 2c ′p−w′K |A|

n −→ 0.

hen consider the high probability event
{⋂

d>K |A|
V (d)c

}
,∑

M∈P2

PR(M,A) ⪯
∑

M∈P2

q|M|−|A|

n p−(1+δ)(|M|−|A|)
n exp {C(1+ 2s)(|M| − |A|) ln pn}

⪯

∑
M∈P2

q|M|−|A|

n p−δ(M−1)/2
n ⪯ p−δ(K−1)/2

n

pn∑
|M|−|A|=1

(
|M| − |A|

pn

)
p−(|M|−|A|)
n ⪯ p−δ(K−1)/2

n −→ 0.

For any model M belonging to the group of underfitted models P3 = {M : A ⊈ M, |M| ≤ K |A|}, it follows that

R∗M − R∗M∨A = ∥(PM − PM∨A)Y∗
∥
2
2 = ∥(PM − PM∨A)(X∗

AβA + δ + ω)∥22
≥
{
∥(PM − PM∨A)X∗

AβA∥2 − ∥(PM − PM∨A)(δ + ω)∥2
}2

.

By Condition B,

∥(PM − PM∨A)X∗

AβA∥2 = ∥(I− PM)X∗

AβA∥2 ≥
√

∆n(K ).

nd on the other hand, ∥(PM − PM∨A)(δ + ω)∥22 = ∥(PM − PM∨A)δ∥22 + ∥(PM − PM∨A)ω∥22 − 2ω⊤(PM − PM∨A)δ.
mong them, 0 ≤ ∥(PM − PM∨A)δ∥22 ≤ 2(∥PMδ∥22 + ∥PM∨Aδ∥22) ≤ 4∥δ∥22 −→ o(1). By the similar trick in Lemma 2, it
an be shown ω⊤(PM − PM∨A)δ = 0 a.s.
For any 0 < w < 1,

Pr

⎡⎣ ⋃
M∈P3

{
R∗M − R∗M∨A < (1− w)2∆n(K )

}⎤⎦ ≤ Pr

⎡⎣ ⋃
M∈P3

{
∥(PM − PM∨A)ω∥2 > w/2

√
∆n(K )

}⎤⎦
≤ Pr

{
∥PAω∥2 > w/2

√
∆n(K )

}
= Pr

{
Cσ 2χ2

|A|
> w2/4∆n(K )

}
≤ exp {−c∆n(K )/|A|} .
17
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f
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f

he last step follows by the bound for tail with quadratic form. For any 0 < w′ < 1,

Pr

⎡⎣ ⋃
M∈P3

{
RM − RM∨A < (1− w′)∆n(K )

}⎤⎦
= Pr

⎡⎣ ⋃
M∈P3

{(R∗M − R∗M∨A)+ (R∗M∨A − RM∨A)+ (RM − R∗M) < (1− w′)∆n(K )}

⎤⎦
≤ Pr

⎡⎣ ⋃
M∈P3

{R∗M − R∗M∨A} < (1− w′/2)∆n(K )

⎤⎦+ Pr

⎡⎣ ⋃
M∈P3

{R∗M∨A − RM∨A} < −w′/2∆n(K )

⎤⎦
≤2 exp

{
−c ′∆n(K )/|A|

}
,

where the first inequality is due to the fact that RM − R∗M ≥ 0, and the last inequality follows by the exponential tails of
nσ 2

1nλ1(RM∨A − R∗M∨A). The proof is similar to Lemma 2(1).
Let c = 2w, it follows that

Pr

⎡⎣ ⋃
M∈P3

{RM − RA < (1− c)∆n(K )}

⎤⎦ ≤ Pr

⎡⎣ ⋃
M∈P3

{RM − RM∨A < (1− w)∆n(K )}

⎤⎦
+ Pr

⎡⎣ ⋃
M∈P3

{RA − RM∨A > w∆n(K )}

⎤⎦
≤ 2 exp

{
−c ′∆n(K )/|A|

}
+ Pr

⎡⎣ ⋃
M∈P3

{R∗A − R∗M∨A > w∆n(K )}

⎤⎦
+ Pr

{
RA − R∗A > w∆n(K )

}
≤ 3 exp

{
−c ′∆n(K )/|A|

}
+ Pr

{
Cσ 2χ2

K |A|
> w∆n(K )

}
≤ 4 exp

{
−c ′∆n(K )/|A|

}
−→ 0,

here the second inequality holds because RA − RM∨A = R∗A − R∗M∨A + RA − R∗A + R∗M∨A − RM∨A, and the last step
ollows by Condition B. Then consider the high probability event

{⋂
M ∈P3

(RM − RA) > (1− c)∆n(K )
}
,∑

M∈P3

PR(M,A) ⪯
∑

M∈P3

q|M|−|A|

n (nσ 2
1nλ1)|A|/2(λ2/λ1)|A|/2 exp

{
−(1− c)∆n(K )/(2σ 2)

}
⪯ exp

[
−

1
2σ 2

{
(1− c)∆n(K )− σ 2

|A|(2+ 3δ) ln pn − σ 2
|A|(2+ κ) ln pn

}]
.

y Condition B, ∆n(K ) > σ 2
|A| ln pn(4+4δ+κ), so, we can find 0 < c < 1, w′ > 0, such that (1−c)∆n(K )−σ 2

|A| ln pn(4+
δ + κ) = w′σ 2

|A| ln pn. Thus,∑
M∈P3

PR(M,A) ⪯ exp
(
−

1
2σ 2 w′σ 2

|A| ln pn

)
−→ 0. □

Proof of Theorem 5. Similar to Theorem 4.2 in [21], we start from (5) and integrate out σ 2, thus the posterior probability
under unknown σ 2 is

Pr(γ = M|Y) ∝
∫

q|M|

n σ−nσ
−|M|

1n |X⊤

MXM + In/σ 2
1n|

−1/2
exp

(
−

1
2σ 2 RM

)
π (σ 2)dσ 2

∝ q|M|

n σ
−|M|

1n |X⊤

MXM + In/σ 2
1n|

−1/2
(2b0 + RM)−a0−n/2.

emark 8. Inside the integration, σ−n exp
(
−

1
2σ2 RM

)
is the dominant term as the sum of squared residuals RM has

an order of Op(n). The theorem applies to a wider family of prior as long as π (σ 2) is Op(1) and the support is not too
strange. This includes some commonly used priors like improper non-informative prior π (σ 2) ∝ σ−2 and the class of

olded-noncentral-t prior with fixed hyper-parameters π (σ ) ∝
(
1+ σ2

)−(ν+1)/2
.

ν2a2

18
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By Lemma 1, we have

Pr(γ = M|Y )
Pr(γ = A|Y )

∝ p−1.5δ(|M|−|A|)+0.5κ
n

(
2b0 + RM

2b0 + RA

)−a0−
n
2

.

Define ρn =
RA+2b0
nCσ2 − 1, then ρn = op(1), since

R∗A + 2b0
nCσ 2 − 1 < ρn =

RA + 2b0
nCσ 2 − 1 =

R∗A + 2b0
nCσ 2 − 1+

RA − R∗A
nCσ 2 ,

Pr(|ρn| > 2ϵ) ≤ Pr
(⏐⏐⏐⏐ R∗A

nCσ 2 − 1
⏐⏐⏐⏐ > ϵ

)
+ Pr

(⏐⏐⏐⏐RA − R∗A
nCσ 2

⏐⏐⏐⏐ > ϵ

)
≤ 2 exp(−cn).

First consider overfitted modelsM ∈ P1. Define xn = (|M|−|A|) ln pn/n, tn = − ln {1− 2(1+ 4s)xn}. Then by Condition
D, xn ≤ δ

(4+δ)(2+δ) . Since − ln(1− x) ≤ x
1−x , then for any s < δ/16, we have

tn = − ln {1− 2(1+ 4s)xn} <
2(1+ 4s)xn

1− 2(1+ 4s)xn
< 2(1+ δ/2)xn.

Similar to the proof in Theorem 4(1), consider the high probability event
{⋂

d>|A|
U(d)c

}⋂
{|ρn| < ϵ∗}, where (1+4s)(1−

∗) > (1+ 2s), then(
2b0 + RM

2b0 + RA

)−a0−
n
2

=

{
1+

RM − RA

nCσ 2(1+ ρn)

}−a0−
n
2

⪯ exp
{
(a0 +

n
2
)tn
}

⪯ exp
{
(a0 +

n
2
)2(1+ δ/2)(|M| − |A|) ln pn/n

}
⪯ exp {(1+ δ/2)(|M| − |A|) ln pn} ⪯ p(1+δ/2)(|M|−|A|)

n .

he problem reduces to the same problem in Theorem 4(1). And for M ∈ P2, we can use the same trick, thus we have∑
M∈P1∪P2

Pr(γ = M|Y )
Pr(γ = A|Y )

P
−→ 0.

For underfitted models M ∈ P3, similar to the proof in Theorem 4(3), consider the high probability event{⋂
M ∈P3

[RM − RA > (1− c)∆n(K )]
}⋂

{|ρn| < ϵ∗}.

If ∆n(K ) = o(n), by limn→∞(1+ 1/n)n = e,(
2b0 + RM

2b0 + RA

)−a0−
n
2

=

{
1+

RM − RA

nCσ 2(1+ ρn)

}−a0−
n
2

⪯

{
1+

(1− c)∆n(K )
nCσ 2(1+ ρn)

}−a0−
n
2

⪯ exp
{
−(

n
2
+ a0)

(1− c)∆n(K )
nCσ 2(1+ ϵ∗)

}
⪯ exp

{
−

(1− c)∆n(K )
2σ 2(1+ ϵ∗)

}
.

It reduces to the same problem in Theorem 4(3).
While if ∆n(K ) ⪰ n, it follows that(

2b0 + RM

2b0 + RA

)−a0−
n
2

⪯

{
1+

(1− c)∆n(K )
nCσ 2(1+ ρn)

}−a0−
n
2

⪯ exp
{
−c ′n ln

∆n(K )
n

}
⪯ exp

(
−c ′n

)
,

hich converges even faster to 0 as n → ∞. □

. Discussion

Inspired by the difference-based method, we have proposed a new Bayesian approach to select variables in the linear
omponent of the partially linear models. We modify the Bayesian shrinking and diffusing priors (BASAD) [21], and
ropose the new Bayesian subset modeling with diffusing prior (BSM-DP). The idea is extended from linear models to
he partially linear model with the help of the difference-based method. Model selection consistency is proved under the
etting with ultra-high dimensional covariates. Compared to BASAD, BSM-DP performances better in identifying the low
ignal covariates and in shorter computation time, as shown in the supplementary material. Results in the simulation
tudies show that our method has higher tolerance on the correlation among predictors and requires mild conditions
n covariates, compared with other existing methods for variable selection on PLM. The proposed model is less likely to
verfit the model, which is also illustrated by the real data example about supermarket. However, like all other Bayesian
ethods, it has some price to pay. We do need specific assumptions on the error distribution. The computation is relative

ntense as compared to frequentist penalized methods. Finally, similar to frequentist methods, although we showed the
equired rates for the hyperparameters of the priors, the practical choices of them in finite sample applications still need
ine tuning.
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