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Abstract: Network analyses are becoming increasingly popular in a wide range dis-
ciplines, including social science, finance, and genetics. In practice, it is common
to collect numerous covariates along with the response variable. Because the net-
work structure means the responses at different nodes are no longer independent,
existing screening methods may not perform well for network data. Therefore, we
propose a network-based sure independence screening (NW-SIS) method that ex-
plicitly considers the network structure. The strong screening consistency property
of the NW-SIS method is rigorously established. Furthermore, we estimate the net-
work effect and establish the y/n-consistency of the estimator. The finite-sample
performance of the proposed method is assessed using a simulation study and an
empirical analysis of a data set from the Chinese stock market.
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1. Introduction

A network data analysis is an important tool used to explore data that have
a dependency structure by incorporating the network structure into the modeling
framework. Network analyses have been successfully applied in a wide range of
disciplines, including social science (Leenders (2002); Newman (2010)), finance
(LeSage and Pace (2009); Diebold and Yilmaz (2014)), and genetics (Monnier
et al. (2013); Taylor-Teeples et al. (2015)). In the field of social network analy-
sis, network modeling is used to study users’ social behavior, where researchers
have found positive dependencies between users through network links (Lee, Li
and Lin (2010); Chen, Chen and Xiao (2013); Zhu et al. (2017)). In the area of
empirical finance, network analyses are used to study the stock returns of finan-
cial institutions. Here, studies have found that financial contagion could spread
via network relationships, which is a key indicator for financial risk management
(Hautsch, Schaumburg and Schienle (2014); Zou et al. (2017); Zhu et al. (2018)).
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Along with the responses, researchers often collect numerous predictors. Con-
sider, for example, a financial network of firms. One can collect firms’ funda-
mentals from balance sheets, income statements, and the cash flow statements.
However, these might contain hundreds of predictors that are closely related to
the firms’ financial performance (Fama and French (2015)). As another example,
on a social network platform, a user’s profile is collected from user-created labels.
In particular, the network labels are mostly short keywords created by the user
to describe his/her personal characteristics, career, life status, and so on (Huang
et al. (2016)). Accordingly, the total number of keywords could be of ultrahigh
dimension. However, to the best of our knowledge, the ultrahigh dimensionality
of predictors has not been adequately addressed in network modeling literature.

To deal with high dimensionality, a popular solution is to consider a sparse
structure of the regression coefficients. That is, we assume that not all predic-
tors make a significant contribution to the model prediction. In this case, the
predictors are screened based on their contributions to the model fitting. Since
the seminal work of Fan and Lv (2008), sure independence screening (SIS) has
received considerable attention in the literature. Many extensions have been in-
vestigated for the feature screening framework. These include the extensions to
the generalized linear models and robust linear models developed by Fan, Sam-
worth and Wu (2009) and Fan and Song (2010), respectively, the nonparametric
SIS procedure designed by Fan, Feng and Song (2011) for additive models, and
the correlation-based SIS procedure for linear models proposed by Li et al. (2012);
see Wang (2009), Li, Zhong and Zhu (2012), He, Wang and Hong (2013), Mai and
Zou (2013), Liu, Li and Wu (2014) and Huang, Li and Wang (2014) for further
details.

Despite their usefulness in many scenarios, traditional screening methods may
not be effective when a network structure is involved, because the network nodes
are dependent through the network links. As a result, two questions emerge. First,
how do we conduct feature screening while considering the network information?
Second, how do we estimate the network effect after feature screening? In this
work, we propose a network-based sure independence screening (NW-SIS) method
that explicitly considers the network structure. Specifically, we design a screening
measure by controlling the network effect. We prove that the NW-SIS method
enjoys the strong screening consistency property and could be easy to compute.
Lastly, the network effect is estimated after screening, and the /n-consistency of
the estimator is established.

The rest of this paper is organized as follows. Section 2 introduces the pro-
posed NW-SIS approach, and establishes its theoretical properties. Simulation
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studies, including a real-data example, are given in Section 3. Section 4 con-
cludes the paper. All theoretical proofs are relegated to the online Supplementary
Material.

2. Network-Based Independent Screening
2.1. Model and notation

To describe the structure of a network with n nodes, we define an adjacency
matrix A = (a;;) € R™™", where a;; = 1 if there is a link from node i to node j
(j # 1), and a;; = 0 otherwise. Define a;; = 0, for 1 <4 < n. Note that the network
could be directed (i.e., A is asymmetric) or undirected (i.e., A is symmetric). Let
Y = (Y1,...,Y,)" € R™ be the continuous responses and X = (X1,...,X,)" €
R™*P be the corresponding predictors, with X; = (Xj1,. .., Xip)—r € RP collected
from the n nodes. In this study, we consider the case p > n, which means the
predictors are of ultrahigh dimension.

To model the relationship between the response and the covariates, we con-
sider the following network vector autoregression model:

Y = pWY +XB+€, (2.1)

where W = (w;;) € R™" is the normalized weighting matrix, with w;; =
aij/Z;L:1 a;j, and g = (B1,... ,Bp)" € RP is the regression coefficient. The co-
efficient p is the autocorrelation parameter representing the network influence
effect. The model in (2.1) is similar in spirit to the spatial autoregression (SAR)
model (Lee (2004); Anselin (2013)). However, it takes the network structure A
into consideration rather than geographical distance information, and allows the
dimension of the covariates to be ultrahigh. Lastly, £ = (eq,... ,€n)T € R™ is
assumed to have mean 0,, = (0,...,0) € R" and covariance matrix o2I,, € R"*",
where I, is the identity matrix of dimension n. It is assumed that £ and X are
mutually independent.

Remark 1. Note that the weighting matrix W is row-normalized such that
>_jw;; = 1. This form is widely assumed in the literature (Chen, Chen and
Xiao (2013); Liu (2014); Zhu et al. (2017); Cohen-Cole, Liu and Zenou (2018)).
Therefore, the autocorrelation parameter in model (2.1) is viewed as the average
network effect that nodes receive from their following friends. One could con-
sider other flexible forms of W, such as the non-normalized adjacency matrix, or
other weighting matrices. In those cases, the autocorrelation should be explained
accordingly.
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The row-normalized W leads to the simple assumption about the range of
p. In order to ensure the invertibility of (I,, — pW¥), pW should have eigenvalues
all different from one. Banerjee, Carlin and Gelfand (2004) have shown that the
largest absolute eigenvalue of W is one. Consequently, it can be easily verified
that |p| < 1is a sufficient condition to make (I,, — pWV) invertible for a general W.
As a matter of fact, this is also a necessary condition; refer to Banerjee, Carlin
and Gelfand (2004) for a more detailed discussion. Thus, throughout this paper,
we assume |p| < 1.

For convenience, define X; = (X1, Xaj,...,Xy;)| € R™ as the jth column of
X, for 1 < j < p. We follow convention, and normalize each predictor X; and Y so
that the means are zero and the marginal variances are one. In the high-dimension
literature, sparsity is typically assumed. This means only the important features
have a significant effect on the response (Fan and Lv (2008)). Therefore, we define
the full model as Mp = {1,2,...,p} and let My = {1 < j <p: f; # 0} be the
true sparse model with non-sparsity size |Mr].

In model (2.1), the nodes are no longer independent. Instead, they are de-
pendent via the network structure W. As a result, unimportant features might be
correlated with the responses through their linkages with the important features.
This makes the traditional marginal independence screening method unreliable.
To see this, one can easily verify that z; = X;—Y = X}—(In - W) HXB+E)(1 <
j < p) depends on the network influence parameter p and the weighting matrix
W. In this case, the correlation between X; and Y can no longer be an appro-
priate measurement for the screening procedure. To obtain a feasible screening
method in a network setting, we propose a network-based independence screening
method.

2.2. Network-based independence screening

We consider a feature screening procedure when the dimension of the predic-
tor is ultrahigh in model (2.1). If we define Y* = (I,—pW)Y = (Y}, Y5, ..., Y, "
€ R”, the model can be written as

YV* = X8+ €.

A simple calculation reveals that Cov(Y*|X) = 021,,. As aresult, if the network ef-
fect p is known, then Y* follows immediately. In this way, we can apply traditional
screening approaches, such as the marginal correlation between Y;*(1 < i < n)
and X;;(1 < j <p). Unfortunately, in the model defined in (2.1) with ultrahigh-
dimensional predictors, the estimator of p can be difficult to obtain.

To avoid having to estimate p, we evaluate the marginal correlation between
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Y;* and X;;(1 < j < p) directly. This amounts to measuring the multiple cor-
relation between (Y,WY') and X;(1 < j < p). Specifically, we treat X; as the
response and (Y, WY') as the predictors. By regressing X; on (Y, WY’), we obtain
an R-square-type statistic. This measurement can function as the multiple corre-
lation between (Y, WY') and X;. As a result, it plays a role as an approximation
to the the marginal correlation between Y;* and X;;. Let Y = (Y,WY) € R¥2,

Then f{? is defined as,

XY
R? = - , (2.2)
J XTX;

for every 1 < j < p. For a given constant c,, one can estimate M7 using
/\73:{1§j§p:f{§207}. (2.3)

As a result, the full model M is reduced to a submodel MP of size IM\R]. The
rank of ﬁ?s (1 < j < p) learns the order of importance of the features based on
their comprehensive correlation with (Y, WY'). Consequently, it filters out those
features with weak correlations to (Y, WY'). This is the NW-SIS method. It is
generalized from the SIS approach, but incorporates the network structure.

Remark 2. The problem can also be converted to one of feature screening with
multiple responses, for example, the SIS procedure based on the distance correla-
tion (DC-SIS) by Li, Zhong and Zhu (2012). This approach is model-free and can
handle multiple responses. However, it is not designed for models with network
structure information, and thus does not work as well as 1?{]2 We compare the
performance of each in the numerical studies in Section 3.

2.3. Theoretical properties

In this subsection, we study the theoretical properties of the NW-SIS method.
Intuitively, we wish to have Mr C MPE with a large probability. In fact, this is
satisfied if we always define MR = Mp = {1,...,p}, which is the full model.
However, by doing so, a large number of irrelevant features are introduced. To
achieve a desirable screening result, two properties should be satisfied. First, it
should include all relevant features consistently. Second, it should simultaneously
control the screening model size.

To facilitate the development of the theory, we first provide some nota-
tion related to network structures. For convenience, define ngn) = n_ltr{(In -

W)L = pW ), kY = e (W (L — W) (L — pW )Y, s =
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n~Yr{(L, — pW )W TW (I, — pW)~ 1}, /ifln) = n~Yr{(I, — pW)71}, /ién) =
n~r{W (I, — pW)~'}, and nén) = n~Hr[{(I, — pW)"'W}2]. Moreover, let
vo = B'EB + 0% and v; = BTX, where ¥ = Cov(X) € R™" and X; € R™*!
denotes the jth column of X. In addition, for an arbitrary semi-positive-definite
matrix M, let Apin(M ) and Apax (M) denote the smallest and largest eigenvalues,
respectively, of matrix M. Lastly, define R? = (c,(in))*l(/ign)mgn)z (n)/ﬁ}(n) Hé "4
f@én)ﬁfln)2)ujz and 77, = minje R?, where ) = (fign)ﬁz())n) - mg( ))

in Proposition 1 that max; |f{]2 - R3| = 0p(1), where ﬁ? is defined in (2.2).

1g. We show

Remark 3. Note that the population screening measure R? is proportional
to V], where v; = = g7 X, = ZieMT B;%;j. This might lead to the so-called
“signal cancellation” problem (Wasserman and Roeder (2009)). For instance, if
Ei#j,ieMT Bi¥ij/Xj; =~ —pj, then v; ~ 0, regardless of the size of 3;. This cor-
rupts the performance of the univariate screening, especially when the signals are
rare and weak (Jin, Zhang and Zhang (2014)). To solve this problem, one can
either impose faithfulness assumptions, or use multivariate screening procedures
(Ji and Jin (2012); Jin, Zhang and Zhang (2014)). We leave this as an important

future extension to this work.

Next, to establish the two abovementioned properties of the NW-SIS estima-
tor M%, the following technical conditions are needed.

(C1) (SuB-GAUSSIAN DISTRIBUTION) The covariates X;; (1 < i < n) and the
random errors ¢; (1 < i < n) are idependent and identically distributed
(i.i.d.) mean zero sub-Gaussian random variables with scale parameters 0 <
0y < 0o and 0 < 0. < oo; that is, for any ¢, E{exp(tX;;)} < exp(c2t?/2)
and E{exp(te;)} < exp(a?t?/2).

(C2) (DIVERGENCE SPEED) Let logp < vnf, where 0 < £ < 1 and v is a positive
finite constant.

(C3) (CONVERGENCE) The limits m( "k, /@(1 " 5 k4, and /@én) — Kg exist as

n — oQ.

(C4) (SpARSITY) Let |p| < 1, and define ¥, = Cov(Y) and W = WW . For
finite positive constants Tmin and Tmax, 27min < MIN{Amin (), Amin(Xy) }
< maX{/\max(Z); )\max(zy); /\max(w)} < 2717—max-

C5) (MINIMUM SIGNAL) Let ~*. = 2¢, as n — oo, where ¢, is a positive
Ymin Y Y
constant, as defined in (2.3).
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The following comments relate to the above technical conditions. First, Con-
dition (C1) assumes the sub-Gaussian assumption for X; (1 < j < p) and €£.
Note that this assumption is a more relaxed condition than the normality as-
sumption commonly employed in the feature screening literature (Fan and Lv
(2008); Wang (2009); Wang, Kim and Li (2013)). One can easily verify that the
response Y, which is essentially a linear combination of X and &, also follows a
sub-Gaussian distribution (Bartlett (2013)). Second, Condition (C2) restricts the
divergence rate of p with respect to the sample size n. Specifically, the feature di-
mension p can be allowed to grow exponentially fast with the sample size n. Third,
Condition (C3) contains a series of convergence conditions. These conditions are
easily satisfied as n — oo if the whole network admits certain uniformity prop-

erties. In addition, the following values also converge: ng") = p_l(ngn) _ ”51”)) N
p L — ka) = ma, w1 = p 2k = 265 1) o 72— 200 + 1) E kg,

and Hgn) = p_l(/@(ln) —1) = p ks —1) L . Thus, Condition (C3) is sufficient
to ensure the convergence of all Hgn) to nén). Subsequently, Conditions (C4) and
(C1) ensure the sparse Riesz condition (SRC), which controls the eigenvalues of
a fixed subset of the design matrix. See Zhang and Huang (2008), Wang (2009),
and Pan, Wang and Li (2015) for definitions of the SRC and further discussions.
In addition, Condition (C4) sets constraints on the network structure W, which
guarantees uniformity (Zhu et al. (2017)). Lastly, Condition (C5) sets a con-
straint on the minimal signal of the true model Mz . We then have the following

proposition that R? is a good approximation to fl?

Proposition 1. Assume Conditions (C1)—(C4) hold. Then, we have that
max |R§ = Rj2| —p 0.

The proof of Proposition 1 is given in Section S2 of the Supplementary Material.
Condition (C5) essentially requires that the signal of R? in the true model must
stay away from zero by a good margin. Note that this is a crucial condition
that guarantees that the signal of the true model will be strong enough to be
detected. Thus, the screening consistency property holds. Similar conditions are
widely assumed in the ultrahigh-dimensional regression literature; see Fan and
Lv (2008).

Under the above technical conditions, the following screening properties can
be established for the proposed NW-SIS method.

Theorem 1. Let Mumax = €7, Taax M|, where cg is a finite positive constant.

Under Conditions (C1)—(C5), it holds that

P(Mp c MP) = 1, (2.4)
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P(ME| < Mumax) = 1, (2.5)

as n — o0.

The proof of Theorem 1 is given in Section S3 of the Supplementary Material.
The first conclusion in (2.4) reveals that under appropriate conditions, the NW-
SIS method selects all relevant features consistently. As a result, the proposed
approach enjoys the screening consistency property. Next, the model size should
be controlled. As discussed earlier, if ME = M r = {1,...,p}, the conclusion
n (2.4) holds. However, the model will be overfitted in this case. In contrast,
from the second conclusion in (2.5), we conclude that the overfitting effect is
controlled. The conclusions in (2.4) and (2.5) are referred to as strong screening
consistency.

Remark 4. The myp,y in (2.5) can be treated as the upper bound for the es-
timated model size. From its form, we conclude that the estimated model size
will be smaller if (a) the minimal signal of the true model is stronger (i.e., larger
Vi), (b) the covariates and the responses are not highly correlated (i.e., lower
Tmax ), and (c) the true model is sparse (i.e., smaller |[Mr|).

Note that the upper bound of the model size mpma.x in Theorem 1 involves
the minimal signal +. . However, if the minimal signal is too small, this will
result in a very high upper bound. In this case, the method may fail to select
a compact model. However, if in the true model the signal of the other features
is sufficiently large, the proposed screening measure is still able to detect them
using a compact screened model size. See the corollary to Theorem 1, together
with the detailed discussion in Section S4 of the Supplementary Material.

2.4. Parameter estimation

By Theorem 1, we know that the true model Mt can be consistently cov-
ered by a finite selected model using the NW-SIS procedure. Assume M is a
model covering the true model (i.e., M7y C M). In this subsection, we estimate
the unknown parameters of model (2.1), given M. For convenience, we first de-
fine some notation. Let M = {j1,...,Js} with My C M and |[M| = s, where
5 X;.) " € R™ and
Brm = (BMyjrs-- s 6M7j5)—r € R®. Therefore, B¢ contains the nonzero coefficients

Jis---,Js € {1,...,p}. Correspondingly, define X4 = (Xj,, ..
(i.e., Baq) and the zero coefficients.

We next give the estimation procedure. Note that the response Y in (2.1)
takes the form Y = (I —pW)~1(XB+&). Therefore, Y explicitly contains informa-
tion on &. Consequently, a direct least squares-type estimation (i.e., minimizing
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|Y — pWY — XBJ|?) may introduce endogeneity and, thus, may be biased (Lee
(2004)). As an alternative, we write the quasi-loglikelihood function as ¢(p, ) =

log |1 = pW| = Zlog [{(I = pW)Y = XneBae} {(I = pW)Y = XniBac} ], (2.6)

ignoring some constants. Note that the quasi-loglikelihood (2.6) has often been
studied using spatial econometrics (Lee (2004); Anselin (2013)). The correspond-
ing asymptotic properties are established, which suit the spatial data set very
well. However, some conditions might be stringent (e.g., the bounded column
summation of W) when applied to the network data, especially when the net-
work is large.

Moreover, note that in (2.6), the dimension of S diverges slowly according
to the screening model size. Given M, it is interesting to study the asymptotic
behavior of the autocorrelation coefficient estimator p. To this end, we first max-
imize (2.6) with respect to S, which yields,

B = (XAXm) H{X (I = pW)Y ). (2.7)

Here 3 takes an explicit form for a fixed p. Next, substituting (2.7) into (2.6),
we have the quasi-loglikelihood as a function of p,

t1(p) =log |[I — pW | — glog [YT(I — pW (I = Px)(I - pW)Y}y (2.8)

where Px = X (XLXM)AXL is the projection matrix. By maximizing ¢1(p),
we obtain p = arg max, ¢1(p). To study the asymptotic properties of p obtained
in a network, even in a large-scale network, we require the following conditions.

(C6) (NETWORK STRUCTURE)

(C6.1) (CONNECTIVITY) Let the set of all nodes {1,...,n} be the state space
of a Markov chain, with the transition probability given by W. It is
assumed the Markov chain is irreducible and aperiodic. In addition,

define 7 = (m;)7 € R™ as the stationary distribution vector of the

Markov chain (i.e., m; > 0, Y., = 1, and W'7 = 7). It is assumed

that >0, 72 — 0 as n — oo.

(C6.2) (UNIFORMITY) Assume [Amax(W*)| = O(logn), where W* is defined to
be a symmetric matrix as W* =W + W .

Condition (C6) sets a constraint on the network structure. Similar assumptions
are assumed for the recent network vector autoregression model proposed by
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Zhu et al. (2018). Specifically, (C6.1) requires that a certain connectivity holds
for the network structure. This essentially assumes that each node in the network
is reachable from any other node. Thus, two arbitrary nodes should be connected
by a finite path in the network, which fits the well-known six degrees of separation
theory (Newman, Barabasi and Watts (2006)). The second condition assumes a
certain type of uniformity for the network. In particular, it requires that the
diverging speed of Apax(W*) should be sufficiently slow. Consequently, we have
the following theorem.

Theorem 2. Assume Conditions (C1)—(C4) and (C6) hold. In addition, let
IM| = o(n1=8/3). Then, we have p— p = Op(n~1/?).

The proof of Theorem 2 is given in Section S5 of the Supplementary Material. By
Theorem 2, we conclude that under the condition that |M| is slowly diverging
(i.e., (M| = o(n(1_5)/3)), the estimator p is y/n-consistent. Subsequently, S can
be estimated using (2.7). The finite performance of p and B is illustrated using

a number of simulation studies in the next section.

3. Numerical Studies
3.1. Data generation

We consider four examples. In the first three examples, the adjacency matrix
A is generated from a stochastic block model with block number K = 50. We
randomly assign each node i a block label (k= 1,..., K) with equal probability
1/K. Next, let P(a;; = 1) = 0.6 if ¢ and j are in the same block, and P(a;; =
1) = 0 otherwise. In all the examples, the covariance matrix of £ is set to o21I,,
with 02 = 1; p is set to 0.8. We illustrate the generation of X in each example;
the responses can be generated using model (2.1) accordingly. In each example,
n is fixed as 500 and p =2000, 5000.

Example 1. (INDEPENDENT PREDICTORS). This example is adopted from Fan
and Lv (2008) with M7 = {1,2,...,do}, where dy = 8. Each predictor X is gen-
erated independently according to a standard multivariate normal distribution.
Therefore, the predictors are mutually independent. Next, the jth (1 < j < dp)
nonzero coefficient of 3 is given by 8; = (=1)Vi (4logn/\/n +|Z;|), where Uj is a
binary random variable with P(U; = 1) = 0.4, and Z; follows a standard normal
distribution.

Example 2. (AUTOREGRESSIVE CORRELATION). We consider here an autoregr-
essive-type correlation structure. In this structure, predictors with large distances
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are expected to be mutually independent, approximately. Specifically, we revise
the example in Wang (2009) with M7 = {1,4, 7}. Each covariate X; is generated
from a multivariate normal distribution with mean 0, and Cov(Xjj,, X;j;,) =
0.5l =721 for (1 < j1,j2 < p). The first, fourth, and seventh components of 3 are
given by 0.3, 0.2, and 0.2, respectively. The other components of 3 are fixed as

Z€ero.

Example 3. (COMPOUND SYMMETRY). By compound symmetry, all predictors
are equally correlated with each other. We borrow the example from Fan and Lv
(2008) with M7 = {1,2,3}. Specifically, X; is generated such that var(X;;) =1
and Cov(Xjj,, Xi;,) = 0.5, for any ji # jo and 1 < ji,j2 < p. The first three
coefficients of 8 are fixed as 0.3. The remainder are fixed as zero.

Example 4. (A CHALLENGING CASE). In this case, a network structure is in-
volved in the generation of the predictors. Specifically, the predictor X is gen-
erated as follows. The first dy covariates are sampled independently from a mul-
tivariate normal distribution N(0,, I,,). Next, for dy < j < p, the covariate X;
is simulated by X; = X + pWX; + 1.1E;, where E; independently follows the
multivariate normal distribution N(0,, I,). Then, dy is set to three. The first
do coefficients of 3 are fixed as 0.5, and the others are fixed as zero; that is,
Mz = {1,2,3}. In this example, the network structure is adopted as a;;;1) = 1,
for 1 <14 < n, for computational simplicity. Note that in the last example, the de-
pendency structure between the important and unimportant covariates increases
the screening difficulty.

3.2. Results of screening consistency

We compare the proposed NW-SIS method with two popular screening meth-
ods and the oracle screening procedure:

e The SIS method (Fan and Lv 2008), which uses the sample Pearson corre-
lation between Y and X for feature screening.

e The DC-SIS method (Li, Zhong and Zhu 2012). The distance covariance
between two random vectors is defined based on characteristic functions.
Thus, the distance correlation is defined for multidimensional vectors. In
this way, the DC-SIS method allows for a multidimensional response. In
this study, we apply the method using the distance correlation between
(Y,WY) and X; for feature screening.

e The oracle procedure, which uses the sample Pearson correlation coefficient
between X; and (I, — pW)Y with the true value of p. Because p is unknown,
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Table 1. Screening Simulation Results for Example 1. The average rank 7; and correctly
selected probability CSP] (%) are reported for each predictor X;. In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect p and model size are assumed to be known for the oracle estimator.

P j Oracle NW-SIS SIS DC-SIS
7; (CSP})
2,000 1  4.6(97.0) 6.5( 99. 0) 880.3( 2.0) 412.5(24.5)
2 4.6(98.0) 5.6( 99.5)  933.3( 2.5) 439.4(24.5)
3 4.7(98.0) 5.1(100.0)  932.2( 3.0) 453.1(18.5)
4 4.7(97.5) 5.7( 99.5) 903.0( 1.5) 410.9(20.0)
5 5.1(96.0) 6.9( 99.0) 937.9( 2.0) 463.3(17.5)
6 4.7(99.0) 5.6( 99.5)  919.0( 2.0) 425.6(21.0)
7 4.5(97.0) 5.4(100.0)  948.9( 2.0) 406.3(26.0)
8  5.0(98.0) 7.3( 99.5) 880.4( 1.5) 465.0(22.5)
MS 8.0 11.6 2.3 17.6
5000 1  4.6(99.0) 49(100 0) 2359.5( 3.0) 862.7(17.5)
2 4.6(98.5) 5.0(100.0) 2055.9( 2.0) 835.1(17.5)
3 4.8(96.0) 6.6( 99.5) 2150.6( 3.0) 862.8(17.5)
4 10 0(98.5) 9.9( 99.5) 2185.7( 2.0) 932.3(15.0)
5 4.8(98.0) 5.1(100.0) 2046.3( 2.0) 892.0(15.5)
6  5.0(97.5) 6.0( 99.5) 2244.7( 2.5) 874.6(13.0)
7 4.4(98.0) 4.5(100.0) 2270.8( 2.0) 881.9(18.5)
8 4.4(98.5) 5.1( 99.5) 2222.0( 1.5) 818.1(17.0)
MS 8.0 11.2 3.1 14.5

we refer to this procedure as an oracle procedure, and label it as Oracle in
Tables 1-4.

The first method is based on the traditional feature screening procedure. The
second considers the model-free DC-SIS method with multiple responses (Y, WY).
The third is proposed for feature screening based on known network information,
because we know that (I, — pW)Y = X5 + €. The final one is an ideal estimator
because in practice, p is unknown.

To gauge the finite-sample performance of the proposed method, we employ
the following measurements. Denote the screening model in the mth replication
as M™m) = {1<ji<p: 1?{?( ) > Cv )} The tuning parameter cg ™) in the mth
replication is selected using the EBIC-based method (Chen and Chen (2008);
Wang (2009)), which is discussed in detail in Section S6 of the Supplementary
Material. We first calculate the average Inodel size after the tuning parameter
selection as MS= M 13" MS™) where MS(™ |/\/l(m)| in the mth replication.
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Table 2. Screening Simulation Results for Example 2. The average rank 7; and correctly
selected probability CSP] (%) are reported for each predictor X;. In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect p and model size are assumed to be known for the oracle estimator.

P 7 Oracle NW-SIS SIS DC-SIS
CSP

r;(CSP3)
2,000 1 1.8(97.5) 1.8( 99.5) 2(97.5)  4.5(93.0)
3.3(73.0) 4.6( 85.0) 9(80.0) 11.7(71.0)
7 1.8(95.5) 1.8( 99.5)  2.0(99.0)  2.9(95.5)
MS 3.0 3.6 40 38
7 (CSP3)
5000 1 1.8(97.0) 1.8( 995) 21(99.5)  3.3(96.0)
3.4(73.0) 4.6( 87.5) 10.2(80.5) 22.9(69.0)
7 1.7(97.5) 1.7(100.0)  2.2(99.5)  3.8(95.5)
MS 3.0 44 47 4.2

3
6.

Table 3. Screening Simulation Results for Example 3. The average rank 7; and correctly
selected probability CSP} (%) are reported for each predictor X;. In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect p and model size are assumed to be known for the oracle estimator.

D j  Oracle NW-SIS SIS DC-SIS
7;(CSP3)
2,000 1 2.3(98.5) 2.2( 99.0) 5 5(88.0)  8.4(84.5)
2.0(98.0) 2 0(100.0)  5.1(92.0)  6.1(87.5)
3 2.0(98.5) 2.1( 99.5) 4.5(94.0) 6.3(91.0)
MS 3.0 3.6 4.0 3.8
7, (CSPY)
5000 1 2.2(95.5) 2.3( 99.0) 13.8(88.0) 22.8(85.0)
2 24(96.0) 2.3( 99.0) 18.9(81.0) 33.7(73.0)
3 2.2(96.0) 2.2( 99.0) 10.6(84.0) 13.5(79.0)
MS 3.0 4.4 4.7 4.2

A smaller MS implies a more compact screening model. Next, we evaluate the
screening performance for each predictor j. First, we record the rank of the jth
(1 < j < p) predictor as r( ™ for the mth (1 < m < M) replication of the
simulation. For each j, the average rank 7; = M -1 Z%zl r](-m) is calculated.
Next, the correctly selected probability (i.e., CSP§ = M~1Y I(j € ./T/l\(m))) is
reported to reflect the model recoverability. We repeat the experiment M = 200
times to evaluate a reliable result.

Detailed results for the simulations are given in Tables 1-4. The oracle pro-
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Table 4. Screening Simulation Results for Example 4. The average rank 7; and correctly
selected probability CSP] (%) are reported for each predictor X;. In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect p and model size are assumed to be known for the oracle estimator.

P j  Oracle NW-SIS SIS DC-SIS
7;(CSP3)
2,000 1  2.0(99.0) 2.7(96.0) 835.4( 0.0) 841.5( 0.5)
2 10.8(85.5) 44.4(83.5) 1009.9(15.0)  966.8(10.5)
3 10.8(85.0) 49.0(84.0)  965.0(17.0)  943.8(12.0)
MS 3.0 3.6 4.0 3.8
5000 1  2.1(97.5)  4.5(95.0) 2141.0( 0.0) 1921.7( 1.0)
2 21.6(86.0) 83.8(83.5) 2383.6(12.5) 2231.3(10.5)
3 8.0(85.5) 51.6(83.5) 2187.6(14.5) 2084.4(12.0)
MS 3.0 4.4 4.7 4.2

cedure has the smallest 7; in all of the examples, as expected, mainly because
we know the network effect p and model size in advance. Note that the pro-
posed NW-SIS method outperforms the SIS and DC-SIS methods in terms of
both 7; and CSP3, which are almost as good as the oracle procedure. In addi-
tion, the NW-SIS method achieves a more compact model size (with lower MS)
than those of the other two methods after the selection of the tuning parame-
ter. In the final example, as expected, Xy is easier to recover than Xy and X3
for both the oracle procedure and the proposed NW-SIS. The reason can be ex-
plained as follows. Define Corr; as the Pearson correlation coefficient between
X, and (I, — pW)Y. By the design of Example 4, we can calculate explicitly
that |Corr;/Corry| = |p|/(2.21 4 p?) < 1, for j > 3 (because (I, — pW)~! can
be expressed explicitly in this case). Thus, the first feature is relatively easy to
identify. However, owing to the correlation between X; (j > 3) and Y, recovering
Xy and X3 is more difficult. The results show that NW-SIS method outperforms
the SIS and DC-SIS methods in this case.

3.3. Results of parameter estimation

In this subsection, we examine the parameter estimation result. Specifically,
s is set as 10 and M = 200. Let M) denote the selected model in the mth
(1 <m < M) replication. Define the coverage probability (CP) and the root sum
of squares error (RSSE) for p, o2, and 3 for the mth (1 < m < M) replication as
follows:
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Table 5. Parameter Estimation Simulation Results with 200 Replications for Examples
2-4. The coverage probability CP(%) and root sum of squares error for p (RSSE,), o2
(RSSE,=2), and 8 (RSSEg) are reported.

P n CP(%) RSSE, RSSE,» RSSEg
Example 2

5,000 200 27.50  0.0195 0.1717  0.4770

500 97.00 0.0162 0.0689  0.2452

1,000  100.00 0.0138 0.0369  0.1550
Example 3

5,000 200 34.50 0.0174 0.1455  0.5652

500 99.00 0.0139 0.0669  0.3038

1,000  100.00 0.0127 0.0392  0.2086
Example 4

5,000 200 18.00  0.0509 0.1396  0.6242

500 84.00 0.0246 0.0717  0.2684

1,000 99.00 0.0163 0.0394  0.1537

Ccpm = I(M\(m) O M),
RSSE;’”) = |ﬁ(ﬂ(m>) - p|2,

RSSEYY = 02 ) — 022

RSSES" = 1, g7 — Bll;

where I(-) is the indicator function. We then average the performance mea-
sures across all replications. This leads to CP = M~! Z%zl cpm, RSSE, =
M-y M  RSSEY™, RSSE,> = M~ M  RSSE™Y, and RSSEs = M1 "M
RSSEém). We fix p = 5,000, and n = {200, 500, 1000}. In Example 1, 5 in each
replication is not fixed. Therefore, to examine the reliability, we consider only
Examples 2—4 in the simulation for the parameter estimation.

The simulation results are given in Table 5. We conclude the following. First,
the CP values for all examples quickly increase toward 100% as the sample size n
increases. This corroborates the strong screening consistency property, which we
defined in (2.4) and (2.5). Second, RSSE, decreases as n increases, as explained
by Theorem 2. Lastly, RSSEZ and RSSEg steadily decrease as n increases in all
of the examples.

3.4. Financial feature screening for stock returns

We next illustrate a real-data example using data collected from the Chinese
Stock Market in 2014. The data set consists of n = 487 stocks in the Chinese A
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share market, which are traded in the Shanghai Stock Exchange and the Shenzhen
Stock Exchange. The corresponding response Y; is the annualized return of stock
i (1 <i<mn)in 2014.

To construct the network relationship between the stocks, the common share-
holders of the stocks are considered. First, we collect information on the top 10
shareholders for each stock, which we define as major shareholders. Second, for
i # j, if the ith stock and jth stock share at least one major shareholder, then
define a;; = aj; = 1; otherwise, a;; = aj; = 0. The resulting network density
(i.e., 3254 aij/{n(n —1)}) is 9.34%. In addition to the response (i.e., ¥;) and the
network information (i.e., A), the firm-specific financial indices in the previous
year (i.e., 2013) are considered as explanatory covariates. The financial indices
are collected from the firms’ financial statements (i.e., the balance sheet, income
statement, and cash flow statement released in 2013). Furthermore, we consider
the interaction effects between X, and X;, within the same financial statement,
which we define as X; X;,. This yields a total of p = 796 predictors.

We then conduct the NW-SIS analysis. Here, ﬁ? is calculated for j = 1,...,p
Next, the covariates are ranked according to the decreasing order of the 1?{]2 val-
ues. The covariates with the top eight highest ﬁjz are given in Figure 1. These are
mostly related to the assets (i.e., ASSET IMPAIRMENT L0sS, CAPITAL RESERVE
FunD, DEFERRED TAX ASSET, INTANGIBLE ASSETS), liabilities (i.e., SHORT
TERM LOAN, TOTAL LIABILITY), liquidity (i.e., CASH EQUIVALENTS), and F1-
NANCIAL EXPENSE of the firm.

Next, we compare the NW-SIS method with the SIS and DS-SIS methods
using model fitness levels. First, we conduct the screening procedure for all three
approaches. We then compare the fitness levels of the methods while varying
the model size |M| = 1,...,200. The estimation is conducted as follows. For
the SIS method, we follow Fan and Lv (2008) to estimate a linear regression
model, and then obtain the resultlng estimator B . Therefore, the fitted value Y
can be calculated as Y = X M B M. Next, for the other two methods, we use the
estimation methods in Section 2.4 to obtain paq and B M, because the multivariate
information is considered in the screening procedure.

To eliminate the endogenous effect, the fitted value is computed as Y = (I—
PmW) X ,B\ - Lastly, we compare the fitness of the three screening approaches
using the adjusted R?, as shown in Figure 2. The figure shows that, as more
features are included, the adjusted R? increases at first for all three methods.
Next, the adjusted R? of the NW-SIS method achieves peaks at |M| = 75, which
is 25.8%, and the highest of the three methods. Consequently, compared with
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ASSETIMPAIRMENTLOSS

SHORTTERMLOAN

CAPITALRESERVEFUND
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INTANGIBLEASSETS

CASHEQUIVALENTS

TOTALLIABILITY

FINANCIALEXPENSE

T T !
0.00 0.02 0.04 0.06

R-square

Figure 1. Covariates with top eight f&? related to the assets (i.e., ASSET IMPAIRMENT
Loss, CAPITAL RESERVE FUND, DEFERRED TAX ASSET, INTANGIBLE ASSETS), liabili-
ties (i.e., SHORT TERM LOAN, TOTAL LIABILITY), liquidity (i.e., CASH EQUIVALENTS),
and FINANCIAL EXPENSE of the firm.

the other competing methods, the NW-SIS method obtains a better fitness level
using fewer features.

4. Conclusion

We have proposed a network-based independence screening approach that
incorporates the network structure. We rigorously show that the proposed NW-
SIS method enjoys the strong screening consistency property. The properties of
the parameter estimation are established next. Lastly, the proposed method is
applied to a financial data set that screens financial indices effectively with respect
to stock returns.

To conclude, we discuss several topics for future research. First, the responses
considered in this study are continuous. In practice, other types of responses
(i.e., discrete, mixed type) are frequently encountered. Accordingly, correspond-
ing screening methods should be developed and studied. Second, the innovation
term £ in model (2.1) has been restricted to be independent across network nodes.
This can be made more flexible to allow for more sophisticated structures (e.g.,
autoregressive structures). This may improve the estimation efficiency. Third, in
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Figure 2. The fitted adjusted R? against the screening model size s for the three screening
methods: NW-SIS, SIS, and DC-SIS. The adjusted R? of NW-SIS achieves the peak value
first at s = 75, which is 25.8%, and the highest of the three methods.

the numerical study, we show that the tuning parameter selection method per-
forms well. However, the theoretical properties of the tuning parameter selection
should be investigated further. Lastly, note that unimportant features are typi-
cally included in the post-screening set because the screening technique tends to
overselect the features. Consequently, appropriate variable selection methods are
worth investigating after the screening procedure to precisely identify the true
model.

Supplementary Material

The online Supplementary Material contains useful lemmas, the proof of
Proposition 1, the proofs of Theorems 1-2, a corollary to Theorem 1, and a
discussion on selecting the tuning parameter.
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