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Abstract: Network analyses are becoming increasingly popular in a wide range dis-

ciplines, including social science, finance, and genetics. In practice, it is common

to collect numerous covariates along with the response variable. Because the net-

work structure means the responses at different nodes are no longer independent,

existing screening methods may not perform well for network data. Therefore, we

propose a network-based sure independence screening (NW-SIS) method that ex-

plicitly considers the network structure. The strong screening consistency property

of the NW-SIS method is rigorously established. Furthermore, we estimate the net-

work effect and establish the
√
n-consistency of the estimator. The finite-sample

performance of the proposed method is assessed using a simulation study and an

empirical analysis of a data set from the Chinese stock market.

Key words and phrases: Feature screening, network autoregression, network struc-

ture, strong screening consistency.

1. Introduction

A network data analysis is an important tool used to explore data that have

a dependency structure by incorporating the network structure into the modeling

framework. Network analyses have been successfully applied in a wide range of

disciplines, including social science (Leenders (2002); Newman (2010)), finance

(LeSage and Pace (2009); Diebold and Yilmaz (2014)), and genetics (Monnier

et al. (2013); Taylor-Teeples et al. (2015)). In the field of social network analy-

sis, network modeling is used to study users’ social behavior, where researchers

have found positive dependencies between users through network links (Lee, Li

and Lin (2010); Chen, Chen and Xiao (2013); Zhu et al. (2017)). In the area of

empirical finance, network analyses are used to study the stock returns of finan-

cial institutions. Here, studies have found that financial contagion could spread

via network relationships, which is a key indicator for financial risk management

(Hautsch, Schaumburg and Schienle (2014); Zou et al. (2017); Zhu et al. (2018)).
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Along with the responses, researchers often collect numerous predictors. Con-

sider, for example, a financial network of firms. One can collect firms’ funda-

mentals from balance sheets, income statements, and the cash flow statements.

However, these might contain hundreds of predictors that are closely related to

the firms’ financial performance (Fama and French (2015)). As another example,

on a social network platform, a user’s profile is collected from user-created labels.

In particular, the network labels are mostly short keywords created by the user

to describe his/her personal characteristics, career, life status, and so on (Huang

et al. (2016)). Accordingly, the total number of keywords could be of ultrahigh

dimension. However, to the best of our knowledge, the ultrahigh dimensionality

of predictors has not been adequately addressed in network modeling literature.

To deal with high dimensionality, a popular solution is to consider a sparse

structure of the regression coefficients. That is, we assume that not all predic-

tors make a significant contribution to the model prediction. In this case, the

predictors are screened based on their contributions to the model fitting. Since

the seminal work of Fan and Lv (2008), sure independence screening (SIS) has

received considerable attention in the literature. Many extensions have been in-

vestigated for the feature screening framework. These include the extensions to

the generalized linear models and robust linear models developed by Fan, Sam-

worth and Wu (2009) and Fan and Song (2010), respectively, the nonparametric

SIS procedure designed by Fan, Feng and Song (2011) for additive models, and

the correlation-based SIS procedure for linear models proposed by Li et al. (2012);

see Wang (2009), Li, Zhong and Zhu (2012), He, Wang and Hong (2013), Mai and

Zou (2013), Liu, Li and Wu (2014) and Huang, Li and Wang (2014) for further

details.

Despite their usefulness in many scenarios, traditional screening methods may

not be effective when a network structure is involved, because the network nodes

are dependent through the network links. As a result, two questions emerge. First,

how do we conduct feature screening while considering the network information?

Second, how do we estimate the network effect after feature screening? In this

work, we propose a network-based sure independence screening (NW-SIS) method

that explicitly considers the network structure. Specifically, we design a screening

measure by controlling the network effect. We prove that the NW-SIS method

enjoys the strong screening consistency property and could be easy to compute.

Lastly, the network effect is estimated after screening, and the
√
n-consistency of

the estimator is established.

The rest of this paper is organized as follows. Section 2 introduces the pro-

posed NW-SIS approach, and establishes its theoretical properties. Simulation
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studies, including a real-data example, are given in Section 3. Section 4 con-

cludes the paper. All theoretical proofs are relegated to the online Supplementary

Material.

2. Network-Based Independent Screening

2.1. Model and notation

To describe the structure of a network with n nodes, we define an adjacency

matrix A = (aij) ∈ Rn×n, where aij = 1 if there is a link from node i to node j

(j 6= i), and aij = 0 otherwise. Define aii = 0, for 1 ≤ i ≤ n. Note that the network

could be directed (i.e., A is asymmetric) or undirected (i.e., A is symmetric). Let

Y = (Y1, . . . , Yn)> ∈ Rn be the continuous responses and X = (X1, . . . , Xn)> ∈
Rn×p be the corresponding predictors, with Xi = (Xi1, . . . , Xip)

> ∈ Rp collected

from the n nodes. In this study, we consider the case p � n, which means the

predictors are of ultrahigh dimension.

To model the relationship between the response and the covariates, we con-

sider the following network vector autoregression model:

Y = ρWY + Xβ + E , (2.1)

where W = (wij) ∈ Rn×n is the normalized weighting matrix, with wij =

aij/
∑n

j=1 aij , and β = (β1, . . . , βp)
> ∈ Rp is the regression coefficient. The co-

efficient ρ is the autocorrelation parameter representing the network influence

effect. The model in (2.1) is similar in spirit to the spatial autoregression (SAR)

model (Lee (2004); Anselin (2013)). However, it takes the network structure A

into consideration rather than geographical distance information, and allows the

dimension of the covariates to be ultrahigh. Lastly, E = (ε1, . . . , εn)> ∈ Rn is

assumed to have mean 0n = (0, . . . , 0) ∈ Rn and covariance matrix σ2In ∈ Rn×n,

where In is the identity matrix of dimension n. It is assumed that E and X are

mutually independent.

Remark 1. Note that the weighting matrix W is row-normalized such that∑
j wij = 1. This form is widely assumed in the literature (Chen, Chen and

Xiao (2013); Liu (2014); Zhu et al. (2017); Cohen-Cole, Liu and Zenou (2018)).

Therefore, the autocorrelation parameter in model (2.1) is viewed as the average

network effect that nodes receive from their following friends. One could con-

sider other flexible forms of W , such as the non-normalized adjacency matrix, or

other weighting matrices. In those cases, the autocorrelation should be explained

accordingly.
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The row-normalized W leads to the simple assumption about the range of

ρ. In order to ensure the invertibility of (In − ρW ), ρW should have eigenvalues

all different from one. Banerjee, Carlin and Gelfand (2004) have shown that the

largest absolute eigenvalue of W is one. Consequently, it can be easily verified

that |ρ| < 1 is a sufficient condition to make (In−ρW ) invertible for a general W .

As a matter of fact, this is also a necessary condition; refer to Banerjee, Carlin

and Gelfand (2004) for a more detailed discussion. Thus, throughout this paper,

we assume |ρ| < 1.

For convenience, define Xj = (X1j , X2j , . . . , Xnj)
> ∈ Rn as the jth column of

X, for 1 ≤ j ≤ p. We follow convention, and normalize each predictor Xj and Y so

that the means are zero and the marginal variances are one. In the high-dimension

literature, sparsity is typically assumed. This means only the important features

have a significant effect on the response (Fan and Lv (2008)). Therefore, we define

the full model as MF = {1, 2, . . . , p} and let MT = {1 ≤ j ≤ p : βj 6= 0} be the

true sparse model with non-sparsity size |MT |.
In model (2.1), the nodes are no longer independent. Instead, they are de-

pendent via the network structure W . As a result, unimportant features might be

correlated with the responses through their linkages with the important features.

This makes the traditional marginal independence screening method unreliable.

To see this, one can easily verify that zj = X>j Y = X>j (In − ρW )−1(Xβ + E)(1 ≤
j ≤ p) depends on the network influence parameter ρ and the weighting matrix

W . In this case, the correlation between Xj and Y can no longer be an appro-

priate measurement for the screening procedure. To obtain a feasible screening

method in a network setting, we propose a network-based independence screening

method.

2.2. Network-based independence screening

We consider a feature screening procedure when the dimension of the predic-

tor is ultrahigh in model (2.1). If we define Y ∗ = (In−ρW )Y = (Y ∗1 , Y
∗
2 , . . . , Y

∗
n )>

∈ Rn, the model can be written as

Y ∗ = Xβ + E .

A simple calculation reveals that Cov(Y ∗|X) = σ2In. As a result, if the network ef-

fect ρ is known, then Y ∗ follows immediately. In this way, we can apply traditional

screening approaches, such as the marginal correlation between Y ∗i (1 ≤ i ≤ n)

and Xij(1 ≤ j ≤ p). Unfortunately, in the model defined in (2.1) with ultrahigh-

dimensional predictors, the estimator of ρ can be difficult to obtain.

To avoid having to estimate ρ, we evaluate the marginal correlation between
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Y ∗i and Xij(1 ≤ j ≤ p) directly. This amounts to measuring the multiple cor-

relation between (Y,WY ) and Xj(1 ≤ j ≤ p). Specifically, we treat Xj as the

response and (Y,WY ) as the predictors. By regressing Xj on (Y,WY ), we obtain

an R-square-type statistic. This measurement can function as the multiple corre-

lation between (Y,WY ) and Xj . As a result, it plays a role as an approximation

to the the marginal correlation between Y ∗i and Xij . Let Ỹ = (Y,WY ) ∈ Rn×2.
Then R̂2

j is defined as,

R̂2
j =

X>j
{
Ỹ (Ỹ >Ỹ )−1Ỹ >

}
Xj

X>j Xj
, (2.2)

for every 1 ≤ j ≤ p. For a given constant cγ , one can estimate MT using

M̂R =
{

1 ≤ j ≤ p : R̂2
j ≥ cγ

}
. (2.3)

As a result, the full model MF is reduced to a submodel M̂R of size |M̂R|. The

rank of R̂2
j s (1 ≤ j ≤ p) learns the order of importance of the features based on

their comprehensive correlation with (Y,WY ). Consequently, it filters out those

features with weak correlations to (Y,WY ). This is the NW-SIS method. It is

generalized from the SIS approach, but incorporates the network structure.

Remark 2. The problem can also be converted to one of feature screening with

multiple responses, for example, the SIS procedure based on the distance correla-

tion (DC-SIS) by Li, Zhong and Zhu (2012). This approach is model-free and can

handle multiple responses. However, it is not designed for models with network

structure information, and thus does not work as well as R̂2
j . We compare the

performance of each in the numerical studies in Section 3.

2.3. Theoretical properties

In this subsection, we study the theoretical properties of the NW-SIS method.

Intuitively, we wish to have MT ⊂ M̂R with a large probability. In fact, this is

satisfied if we always define M̂R = MF = {1, . . . , p}, which is the full model.

However, by doing so, a large number of irrelevant features are introduced. To

achieve a desirable screening result, two properties should be satisfied. First, it

should include all relevant features consistently. Second, it should simultaneously

control the screening model size.

To facilitate the development of the theory, we first provide some nota-

tion related to network structures. For convenience, define κ
(n)
1 = n−1tr

{
(In −

ρW )−1(In − ρW>)−1
}

, κ
(n)
2 = n−1tr{W (In − ρW )−1(In − ρW>)−1}, κ(n)3 =
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n−1tr{(In − ρW>)−1W>W (In − ρW )−1}, κ(n)4 = n−1tr{(In − ρW )−1}, κ(n)5 =

n−1tr{W (In − ρW )−1}, and κ
(n)
6 = n−1tr[{(In − ρW )−1W}2]. Moreover, let

ν0 = β>Σβ + σ2 and νj = β>Σ·j , where Σ = Cov(X) ∈ Rn×n and Σ·j ∈ Rn×1

denotes the jth column of Σ. In addition, for an arbitrary semi-positive-definite

matrix M , let λmin(M) and λmax(M) denote the smallest and largest eigenvalues,

respectively, of matrix M . Lastly, define R2
j = (c

(n)
κ )−1(κ

(n)
1 κ

(n)2
5 −2κ

(n)
2 κ

(n)
4 κ

(n)
5 +

κ
(n)
3 κ

(n)2
4 )ν2j and γ∗min = minj∈MT

R2
j , where c

(n)
κ = (κ

(n)
1 κ

(n)
3 −κ

2(n)
2 )ν0. We show

in Proposition 1 that maxj |R̂2
j −R2

j | = op(1), where R̂2
j is defined in (2.2).

Remark 3. Note that the population screening measure R2
j is proportional

to ν2j , where νj = β>Σ·j =
∑

i∈MT
βiΣij . This might lead to the so-called

“signal cancellation” problem (Wasserman and Roeder (2009)). For instance, if∑
i 6=j,i∈MT

βiΣij/Σjj ≈ −βj , then νj ≈ 0, regardless of the size of βj . This cor-

rupts the performance of the univariate screening, especially when the signals are

rare and weak (Jin, Zhang and Zhang (2014)). To solve this problem, one can

either impose faithfulness assumptions, or use multivariate screening procedures

(Ji and Jin (2012); Jin, Zhang and Zhang (2014)). We leave this as an important

future extension to this work.

Next, to establish the two abovementioned properties of the NW-SIS estima-

tor M̂R, the following technical conditions are needed.

(C1) (Sub-Gaussian Distribution) The covariates Xij (1 ≤ i ≤ n) and the

random errors εi (1 ≤ i ≤ n) are idependent and identically distributed

(i.i.d.) mean zero sub-Gaussian random variables with scale parameters 0 <

σx < ∞ and 0 < σe < ∞; that is, for any t, E{exp(tXij)} ≤ exp(σ2xt
2/2)

and E{exp(tεi)} ≤ exp(σ2e t
2/2).

(C2) (Divergence Speed) Let log p ≤ νnξ, where 0 ≤ ξ < 1 and ν is a positive

finite constant.

(C3) (Convergence) The limits κ
(n)
1 → κ1, κ

(n)
4 → κ4, and κ

(n)
6 → κ6 exist as

n→∞.

(C4) (Sparsity) Let |ρ| < 1, and define Σy = Cov(Y ) and W = WW>. For

finite positive constants τmin and τmax, 2τmin ≤ min{λmin(Σ), λmin(Σy)}
≤ max{λmax(Σ), λmax(Σy), λmax(W)} ≤ 2−1τmax.

(C5) (Minimum Signal) Let γ∗min = 2cγ as n → ∞, where cγ is a positive

constant, as defined in (2.3).
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The following comments relate to the above technical conditions. First, Con-

dition (C1) assumes the sub-Gaussian assumption for Xj (1 ≤ j ≤ p) and E .

Note that this assumption is a more relaxed condition than the normality as-

sumption commonly employed in the feature screening literature (Fan and Lv

(2008); Wang (2009); Wang, Kim and Li (2013)). One can easily verify that the

response Y , which is essentially a linear combination of X and E , also follows a

sub-Gaussian distribution (Bartlett (2013)). Second, Condition (C2) restricts the

divergence rate of p with respect to the sample size n. Specifically, the feature di-

mension p can be allowed to grow exponentially fast with the sample size n. Third,

Condition (C3) contains a series of convergence conditions. These conditions are

easily satisfied as n → ∞ if the whole network admits certain uniformity prop-

erties. In addition, the following values also converge: κ
(n)
2 = ρ−1(κ

(n)
1 − κ(n)4 )→

ρ−1(κ1 − κ4)
def
= κ2, κ

(n)
3 = ρ−2(κ

(n)
1 − 2κ

(n)
4 + 1) → ρ−2(κ1 − 2κ4 + 1)

def
= κ3,

and κ
(n)
5 = ρ−1(κ

(n)
4 − 1)→ ρ−1(κ4 − 1)

def
= κ5. Thus, Condition (C3) is sufficient

to ensure the convergence of all κ
(n)
1 to κ

(n)
6 . Subsequently, Conditions (C4) and

(C1) ensure the sparse Riesz condition (SRC), which controls the eigenvalues of

a fixed subset of the design matrix. See Zhang and Huang (2008), Wang (2009),

and Pan, Wang and Li (2015) for definitions of the SRC and further discussions.

In addition, Condition (C4) sets constraints on the network structure W , which

guarantees uniformity (Zhu et al. (2017)). Lastly, Condition (C5) sets a con-

straint on the minimal signal of the true model MT . We then have the following

proposition that R2
j is a good approximation to R̂2

j .

Proposition 1. Assume Conditions (C1)–(C4) hold. Then, we have that

maxj |R̂2
j −R2

j | →p 0.

The proof of Proposition 1 is given in Section S2 of the Supplementary Material.

Condition (C5) essentially requires that the signal of R2
j in the true model must

stay away from zero by a good margin. Note that this is a crucial condition

that guarantees that the signal of the true model will be strong enough to be

detected. Thus, the screening consistency property holds. Similar conditions are

widely assumed in the ultrahigh-dimensional regression literature; see Fan and

Lv (2008).

Under the above technical conditions, the following screening properties can

be established for the proposed NW-SIS method.

Theorem 1. Let mmax = cβγ
∗−1
min τ

2
max|MT |, where cβ is a finite positive constant.

Under Conditions (C1)–(C5), it holds that

P (MT ⊂ M̂R)→ 1, (2.4)
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P (|M̂R| ≤ mmax)→ 1, (2.5)

as n→∞.

The proof of Theorem 1 is given in Section S3 of the Supplementary Material.

The first conclusion in (2.4) reveals that under appropriate conditions, the NW-

SIS method selects all relevant features consistently. As a result, the proposed

approach enjoys the screening consistency property. Next, the model size should

be controlled. As discussed earlier, if M̂R = MF = {1, . . . , p}, the conclusion

in (2.4) holds. However, the model will be overfitted in this case. In contrast,

from the second conclusion in (2.5), we conclude that the overfitting effect is

controlled. The conclusions in (2.4) and (2.5) are referred to as strong screening

consistency.

Remark 4. The mmax in (2.5) can be treated as the upper bound for the es-

timated model size. From its form, we conclude that the estimated model size

will be smaller if (a) the minimal signal of the true model is stronger (i.e., larger

γ∗min), (b) the covariates and the responses are not highly correlated (i.e., lower

τmax), and (c) the true model is sparse (i.e., smaller |MT |).

Note that the upper bound of the model size mmax in Theorem 1 involves

the minimal signal γ∗min. However, if the minimal signal is too small, this will

result in a very high upper bound. In this case, the method may fail to select

a compact model. However, if in the true model the signal of the other features

is sufficiently large, the proposed screening measure is still able to detect them

using a compact screened model size. See the corollary to Theorem 1, together

with the detailed discussion in Section S4 of the Supplementary Material.

2.4. Parameter estimation

By Theorem 1, we know that the true model MT can be consistently cov-

ered by a finite selected model using the NW-SIS procedure. Assume M is a

model covering the true model (i.e., MT ⊂ M). In this subsection, we estimate

the unknown parameters of model (2.1), given M. For convenience, we first de-

fine some notation. Let M = {j1, . . . , js} with MT ⊂ M and |M| = s, where

j1, . . . , js ∈ {1, . . . , p}. Correspondingly, define XM = (Xj1 , . . . ,Xjs)> ∈ Rn×s and

βM = (βM,j1 , . . . , βM,js)
> ∈ Rs. Therefore, βM contains the nonzero coefficients

(i.e., βM) and the zero coefficients.

We next give the estimation procedure. Note that the response Y in (2.1)

takes the form Y = (I−ρW )−1(Xβ+E). Therefore, Y explicitly contains informa-

tion on E . Consequently, a direct least squares-type estimation (i.e., minimizing
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‖Y − ρWY − Xβ‖2) may introduce endogeneity and, thus, may be biased (Lee

(2004)). As an alternative, we write the quasi-loglikelihood function as `(ρ, βM) =

log
∣∣I − ρW ∣∣− n

2
log
[{

(I − ρW )Y −XMβM
}>{

(I − ρW )Y −XMβM
}]
, (2.6)

ignoring some constants. Note that the quasi-loglikelihood (2.6) has often been

studied using spatial econometrics (Lee (2004); Anselin (2013)). The correspond-

ing asymptotic properties are established, which suit the spatial data set very

well. However, some conditions might be stringent (e.g., the bounded column

summation of W ) when applied to the network data, especially when the net-

work is large.

Moreover, note that in (2.6), the dimension of βM diverges slowly according

to the screening model size. Given M, it is interesting to study the asymptotic

behavior of the autocorrelation coefficient estimator ρ̂. To this end, we first max-

imize (2.6) with respect to βM, which yields,

β̂M =
(
X>MXM

)−1{X>M(I − ρW )Y
}
. (2.7)

Here β̂M takes an explicit form for a fixed ρ. Next, substituting (2.7) into (2.6),

we have the quasi-loglikelihood as a function of ρ,

`1(ρ) = log
∣∣I − ρW ∣∣− n

2
log
[
Y >(I − ρW>)(I − PX)(I − ρW )Y

]
, (2.8)

where PX = XM(X>MXM)−1X>M is the projection matrix. By maximizing `1(ρ),

we obtain ρ̂ = arg maxρ `1(ρ). To study the asymptotic properties of ρ̂ obtained

in a network, even in a large-scale network, we require the following conditions.

(C6) (Network Structure)

(C6.1) (Connectivity) Let the set of all nodes {1, . . . , n} be the state space

of a Markov chain, with the transition probability given by W . It is

assumed the Markov chain is irreducible and aperiodic. In addition,

define π = (πi)
> ∈ Rn as the stationary distribution vector of the

Markov chain (i.e., πi ≥ 0,
∑

i π = 1, and W>π = π). It is assumed

that
∑n

i=1 π
2
i → 0 as n→∞.

(C6.2) (Uniformity) Assume |λmax(W ∗)| = O(log n), where W ∗ is defined to

be a symmetric matrix as W ∗ = W +W>.

Condition (C6) sets a constraint on the network structure. Similar assumptions

are assumed for the recent network vector autoregression model proposed by
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Zhu et al. (2018). Specifically, (C6.1) requires that a certain connectivity holds

for the network structure. This essentially assumes that each node in the network

is reachable from any other node. Thus, two arbitrary nodes should be connected

by a finite path in the network, which fits the well-known six degrees of separation

theory (Newman, Barabasi and Watts (2006)). The second condition assumes a

certain type of uniformity for the network. In particular, it requires that the

diverging speed of λmax(W ∗) should be sufficiently slow. Consequently, we have

the following theorem.

Theorem 2. Assume Conditions (C1)–(C4) and (C6) hold. In addition, let

|M| = o(n(1−ξ)/3). Then, we have ρ̂− ρ = Op(n
−1/2).

The proof of Theorem 2 is given in Section S5 of the Supplementary Material. By

Theorem 2, we conclude that under the condition that |M| is slowly diverging

(i.e., |M| = o(n(1−ξ)/3)), the estimator ρ̂ is
√
n-consistent. Subsequently, βM can

be estimated using (2.7). The finite performance of ρ̂ and β̂M is illustrated using

a number of simulation studies in the next section.

3. Numerical Studies

3.1. Data generation

We consider four examples. In the first three examples, the adjacency matrix

A is generated from a stochastic block model with block number K = 50. We

randomly assign each node i a block label (k = 1, . . . ,K) with equal probability

1/K. Next, let P (aij = 1) = 0.6 if i and j are in the same block, and P (aij =

1) = 0 otherwise. In all the examples, the covariance matrix of E is set to σ2In,

with σ2 = 1; ρ is set to 0.8. We illustrate the generation of X in each example;

the responses can be generated using model (2.1) accordingly. In each example,

n is fixed as 500 and p =2000, 5000.

Example 1. (Independent Predictors). This example is adopted from Fan

and Lv (2008) withMT = {1, 2, . . . , d0}, where d0 = 8. Each predictor Xj is gen-

erated independently according to a standard multivariate normal distribution.

Therefore, the predictors are mutually independent. Next, the jth (1 ≤ j ≤ d0)

nonzero coefficient of β is given by βj = (−1)Uj (4 log n/
√
n+ |Zj |), where Uj is a

binary random variable with P (Uj = 1) = 0.4, and Zj follows a standard normal

distribution.

Example 2. (Autoregressive Correlation). We consider here an autoregr-

essive-type correlation structure. In this structure, predictors with large distances
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are expected to be mutually independent, approximately. Specifically, we revise

the example in Wang (2009) withMT = {1, 4, 7}. Each covariate Xj is generated

from a multivariate normal distribution with mean 0p and Cov(Xij1 , Xij2) =

0.5|j1−j2|, for (1 ≤ j1, j2 ≤ p). The first, fourth, and seventh components of β are

given by 0.3, 0.2, and 0.2, respectively. The other components of β are fixed as

zero.

Example 3. (Compound Symmetry). By compound symmetry, all predictors

are equally correlated with each other. We borrow the example from Fan and Lv

(2008) with MT = {1, 2, 3}. Specifically, Xj is generated such that var(Xij) = 1

and Cov(Xij1 , Xij2) = 0.5, for any j1 6= j2 and 1 ≤ j1, j2 ≤ p. The first three

coefficients of β are fixed as 0.3. The remainder are fixed as zero.

Example 4. (A Challenging Case). In this case, a network structure is in-

volved in the generation of the predictors. Specifically, the predictor Xj is gen-

erated as follows. The first d0 covariates are sampled independently from a mul-

tivariate normal distribution N(0n, In). Next, for d0 < j ≤ p, the covariate Xj
is simulated by Xj = X1 + ρWX1 + 1.1Ej , where Ej independently follows the

multivariate normal distribution N(0n, In). Then, d0 is set to three. The first

d0 coefficients of β are fixed as 0.5, and the others are fixed as zero; that is,

MT = {1, 2, 3}. In this example, the network structure is adopted as ai(i+1) = 1,

for 1 ≤ i ≤ n, for computational simplicity. Note that in the last example, the de-

pendency structure between the important and unimportant covariates increases

the screening difficulty.

3.2. Results of screening consistency

We compare the proposed NW-SIS method with two popular screening meth-

ods and the oracle screening procedure:

• The SIS method (Fan and Lv 2008), which uses the sample Pearson corre-

lation between Y and Xj for feature screening.

• The DC-SIS method (Li, Zhong and Zhu 2012). The distance covariance

between two random vectors is defined based on characteristic functions.

Thus, the distance correlation is defined for multidimensional vectors. In

this way, the DC-SIS method allows for a multidimensional response. In

this study, we apply the method using the distance correlation between

(Y,WY ) and Xj for feature screening.

• The oracle procedure, which uses the sample Pearson correlation coefficient

between Xj and (In−ρW )Y with the true value of ρ. Because ρ is unknown,
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Table 1. Screening Simulation Results for Example 1. The average rank r̄j and correctly
selected probability CSPsj (%) are reported for each predictor Xj . In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect ρ and model size are assumed to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j (CSPsj)

2,000 1 4.6(97.0) 6.5( 99.0) 880.3( 2.0) 412.5(24.5)

2 4.6(98.0) 5.6( 99.5) 933.3( 2.5) 439.4(24.5)

3 4.7(98.0) 5.1(100.0) 932.2( 3.0) 453.1(18.5)

4 4.7(97.5) 5.7( 99.5) 903.0( 1.5) 410.9(20.0)

5 5.1(96.0) 6.9( 99.0) 937.9( 2.0) 463.3(17.5)

6 4.7(99.0) 5.6( 99.5) 919.0( 2.0) 425.6(21.0)

7 4.5(97.0) 5.4(100.0) 948.9( 2.0) 406.3(26.0)

8 5.0(98.0) 7.3( 99.5) 880.4( 1.5) 465.0(22.5)

MS 8.0 11.6 2.3 17.6

r̄j (CSPsj)

5,000 1 4.6(99.0) 4.9(100.0) 2359.5( 3.0) 862.7(17.5)

2 4.6(98.5) 5.0(100.0) 2055.9( 2.0) 835.1(17.5)

3 4.8(96.0) 6.6( 99.5) 2150.6( 3.0) 862.8(17.5)

4 10.0(98.5) 9.9( 99.5) 2185.7( 2.0) 932.3(15.0)

5 4.8(98.0) 5.1(100.0) 2046.3( 2.0) 892.0(15.5)

6 5.0(97.5) 6.0( 99.5) 2244.7( 2.5) 874.6(13.0)

7 4.4(98.0) 4.5(100.0) 2270.8( 2.0) 881.9(18.5)

8 4.4(98.5) 5.1( 99.5) 2222.0( 1.5) 818.1(17.0)

MS 8.0 11.2 3.1 14.5

we refer to this procedure as an oracle procedure, and label it as Oracle in

Tables 1-4.

The first method is based on the traditional feature screening procedure. The

second considers the model-free DC-SIS method with multiple responses (Y,WY ).

The third is proposed for feature screening based on known network information,

because we know that (In− ρW )Y = Xβ + E . The final one is an ideal estimator

because in practice, ρ is unknown.

To gauge the finite-sample performance of the proposed method, we employ

the following measurements. Denote the screening model in the mth replication

as M̂(m) = {1 ≤ j ≤ p : R̂2
j,(m) ≥ c

(m)
γ }. The tuning parameter c

(m)
γ in the mth

replication is selected using the EBIC-based method (Chen and Chen (2008);

Wang (2009)), which is discussed in detail in Section S6 of the Supplementary

Material. We first calculate the average model size after the tuning parameter

selection as MS= M−1
∑

m MS(m), where MS(m) = |M̂(m)| in the mth replication.
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Table 2. Screening Simulation Results for Example 2. The average rank r̄j and correctly
selected probability CSPsj (%) are reported for each predictor Xj . In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect ρ and model size are assumed to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j(CSPsj)

2,000 1 1.8(97.5) 1.8( 99.5) 3.2(97.5) 4.5(93.0)

4 3.3(73.0) 4.6( 85.0) 6.9(80.0) 11.7(71.0)

7 1.8(95.5) 1.8( 99.5) 2.0(99.0) 2.9(95.5)

MS 3.0 3.6 4.0 3.8

r̄j(CSPsj)

5,000 1 1.8(97.0) 1.8( 99.5) 2.1(99.5) 3.3(96.0)

4 3.4(73.0) 4.6( 87.5) 10.2(80.5) 22.9(69.0)

7 1.7(97.5) 1.7(100.0) 2.2(99.5) 3.8(95.5)

MS 3.0 4.4 4.7 4.2

Table 3. Screening Simulation Results for Example 3. The average rank r̄j and correctly
selected probability CSPsj (%) are reported for each predictor Xj . In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect ρ and model size are assumed to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j(CSPsj)

2,000 1 2.3(98.5) 2.2( 99.0) 5.5(88.0) 8.4(84.5)

2 2.0(98.0) 2.0(100.0) 5.1(92.0) 6.1(87.5)

3 2.0(98.5) 2.1( 99.5) 4.5(94.0) 6.3(91.0)

MS 3.0 3.6 4.0 3.8

r̄j(CSPsj)

5,000 1 2.2(95.5) 2.3( 99.0) 13.8(88.0) 22.8(85.0)

2 2.4(96.0) 2.3( 99.0) 18.9(81.0) 33.7(73.0)

3 2.2(96.0) 2.2( 99.0) 10.6(84.0) 13.5(79.0)

MS 3.0 4.4 4.7 4.2

A smaller MS implies a more compact screening model. Next, we evaluate the

screening performance for each predictor j. First, we record the rank of the jth

(1 ≤ j ≤ p) predictor as r
(m)
j for the mth (1 ≤ m ≤ M) replication of the

simulation. For each j, the average rank r̄j = M−1
∑M

m=1 r
(m)
j is calculated.

Next, the correctly selected probability (i.e., CSPs
j = M−1

∑
m I(j ∈ M̂(m))) is

reported to reflect the model recoverability. We repeat the experiment M = 200

times to evaluate a reliable result.

Detailed results for the simulations are given in Tables 1-4. The oracle pro-
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Table 4. Screening Simulation Results for Example 4. The average rank r̄j and correctly
selected probability CSPsj (%) are reported for each predictor Xj . In addition, the esti-
mated average model size (MS) is reported after tuning parameter selection. The network
effect ρ and model size are assumed to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j(CSPsj)

2,000 1 2.0(99.0) 2.7(96.0) 835.4( 0.0) 841.5( 0.5)

2 10.8(85.5) 44.4(83.5) 1009.9(15.0) 966.8(10.5)

3 10.8(85.0) 49.0(84.0) 965.0(17.0) 943.8(12.0)

MS 3.0 3.6 4.0 3.8

r̄j(CSPsj)

5,000 1 2.1(97.5) 4.5(95.0) 2141.0( 0.0) 1921.7( 1.0)

2 21.6(86.0) 83.8(83.5) 2383.6(12.5) 2231.3(10.5)

3 8.0(85.5) 51.6(83.5) 2187.6(14.5) 2084.4(12.0)

MS 3.0 4.4 4.7 4.2

cedure has the smallest r̄j in all of the examples, as expected, mainly because

we know the network effect ρ and model size in advance. Note that the pro-

posed NW-SIS method outperforms the SIS and DC-SIS methods in terms of

both r̄j and CSPsj , which are almost as good as the oracle procedure. In addi-

tion, the NW-SIS method achieves a more compact model size (with lower MS)

than those of the other two methods after the selection of the tuning parame-

ter. In the final example, as expected, X1 is easier to recover than X2 and X3

for both the oracle procedure and the proposed NW-SIS. The reason can be ex-

plained as follows. Define Corrj as the Pearson correlation coefficient between

Xj and (In − ρW )Y . By the design of Example 4, we can calculate explicitly

that |Corrj/Corr1| = |ρ|/(2.21 + ρ2) < 1, for j > 3 (because (In − ρW )−1 can

be expressed explicitly in this case). Thus, the first feature is relatively easy to

identify. However, owing to the correlation between Xj (j > 3) and Y , recovering

X2 and X3 is more difficult. The results show that NW-SIS method outperforms

the SIS and DC-SIS methods in this case.

3.3. Results of parameter estimation

In this subsection, we examine the parameter estimation result. Specifically,

s is set as 10 and M = 200. Let M̂(m) denote the selected model in the mth

(1 ≤ m ≤M) replication. Define the coverage probability (CP) and the root sum

of squares error (RSSE) for ρ, σ2, and β for the mth (1 ≤ m ≤M) replication as

follows:
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Table 5. Parameter Estimation Simulation Results with 200 Replications for Examples
2–4. The coverage probability CP(%) and root sum of squares error for ρ (RSSEρ), σ

2

(RSSEσ2), and β (RSSEβ) are reported.

p n CP(%) RSSEρ RSSEσ2 RSSEβ
Example 2

5,000 200 27.50 0.0195 0.1717 0.4770

500 97.00 0.0162 0.0689 0.2452

1,000 100.00 0.0138 0.0369 0.1550

Example 3

5,000 200 34.50 0.0174 0.1455 0.5652

500 99.00 0.0139 0.0669 0.3038

1,000 100.00 0.0127 0.0392 0.2086

Example 4

5,000 200 18.00 0.0509 0.1396 0.6242

500 84.00 0.0246 0.0717 0.2684

1,000 99.00 0.0163 0.0394 0.1537

CP(m) = I(M̂(m) ⊃MT ),

RSSE(m)
ρ = |ρ̂

(M̂(m))
− ρ|2,

RSSE
(m)
σ2 = |σ̂2

(M̂(m))
− σ2|2,

RSSE
(m)
β = ||β̂

(M̂(m))
− β||,

where I(·) is the indicator function. We then average the performance mea-

sures across all replications. This leads to CP = M−1
∑M

m=1 CP(m), RSSEρ =

M−1
∑M

m=1 RSSE
(m)
ρ , RSSEσ2 = M−1

∑M
m=1 RSSE

(m)
σ2 , and RSSEβ = M−1

∑M
m=1

RSSE
(m)
β . We fix p = 5,000, and n = {200, 500, 1000}. In Example 1, β in each

replication is not fixed. Therefore, to examine the reliability, we consider only

Examples 2–4 in the simulation for the parameter estimation.

The simulation results are given in Table 5. We conclude the following. First,

the CP values for all examples quickly increase toward 100% as the sample size n

increases. This corroborates the strong screening consistency property, which we

defined in (2.4) and (2.5). Second, RSSEρ decreases as n increases, as explained

by Theorem 2. Lastly, RSSE2
σ and RSSEβ steadily decrease as n increases in all

of the examples.

3.4. Financial feature screening for stock returns

We next illustrate a real-data example using data collected from the Chinese

Stock Market in 2014. The data set consists of n = 487 stocks in the Chinese A
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share market, which are traded in the Shanghai Stock Exchange and the Shenzhen

Stock Exchange. The corresponding response Yi is the annualized return of stock

i (1 ≤ i ≤ n) in 2014.

To construct the network relationship between the stocks, the common share-

holders of the stocks are considered. First, we collect information on the top 10

shareholders for each stock, which we define as major shareholders. Second, for

i 6= j, if the ith stock and jth stock share at least one major shareholder, then

define aij = aji = 1; otherwise, aij = aji = 0. The resulting network density

(i.e.,
∑

j 6=i aij/{n(n− 1)}) is 9.34%. In addition to the response (i.e., Yi) and the

network information (i.e., A), the firm-specific financial indices in the previous

year (i.e., 2013) are considered as explanatory covariates. The financial indices

are collected from the firms’ financial statements (i.e., the balance sheet, income

statement, and cash flow statement released in 2013). Furthermore, we consider

the interaction effects between Xj1 and Xj2 within the same financial statement,

which we define as Xj1Xj2 . This yields a total of p = 796 predictors.

We then conduct the NW-SIS analysis. Here, R̂2
j is calculated for j = 1, . . . , p.

Next, the covariates are ranked according to the decreasing order of the R̂2
j val-

ues. The covariates with the top eight highest R̂2
j are given in Figure 1. These are

mostly related to the assets (i.e., Asset Impairment Loss, Capital Reserve

Fund, Deferred Tax Asset, Intangible Assets), liabilities (i.e., Short

Term Loan, Total Liability), liquidity (i.e., Cash Equivalents), and Fi-

nancial Expense of the firm.

Next, we compare the NW-SIS method with the SIS and DS-SIS methods

using model fitness levels. First, we conduct the screening procedure for all three

approaches. We then compare the fitness levels of the methods while varying

the model size |M| = 1, . . . , 200. The estimation is conducted as follows. For

the SIS method, we follow Fan and Lv (2008) to estimate a linear regression

model, and then obtain the resulting estimator β̂M. Therefore, the fitted value Ŷ

can be calculated as Ŷ = XMβ̂M. Next, for the other two methods, we use the

estimation methods in Section 2.4 to obtain ρ̂M and β̂M, because the multivariate

information is considered in the screening procedure.

To eliminate the endogenous effect, the fitted value is computed as Ŷ = (I −
ρ̂MW )−1XMβ̂M. Lastly, we compare the fitness of the three screening approaches

using the adjusted R2, as shown in Figure 2. The figure shows that, as more

features are included, the adjusted R2 increases at first for all three methods.

Next, the adjusted R2 of the NW-SIS method achieves peaks at |M| = 75, which

is 25.8%, and the highest of the three methods. Consequently, compared with
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Figure 1. Covariates with top eight R̂2
j related to the assets (i.e., Asset Impairment

Loss, Capital Reserve Fund, Deferred Tax Asset, Intangible Assets), liabili-
ties (i.e., Short Term Loan, Total Liability), liquidity (i.e., Cash Equivalents),
and Financial Expense of the firm.

the other competing methods, the NW-SIS method obtains a better fitness level

using fewer features.

4. Conclusion

We have proposed a network-based independence screening approach that

incorporates the network structure. We rigorously show that the proposed NW-

SIS method enjoys the strong screening consistency property. The properties of

the parameter estimation are established next. Lastly, the proposed method is

applied to a financial data set that screens financial indices effectively with respect

to stock returns.

To conclude, we discuss several topics for future research. First, the responses

considered in this study are continuous. In practice, other types of responses

(i.e., discrete, mixed type) are frequently encountered. Accordingly, correspond-

ing screening methods should be developed and studied. Second, the innovation

term E in model (2.1) has been restricted to be independent across network nodes.

This can be made more flexible to allow for more sophisticated structures (e.g.,

autoregressive structures). This may improve the estimation efficiency. Third, in
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Figure 2. The fitted adjusted R2 against the screening model size s for the three screening
methods: NW-SIS, SIS, and DC-SIS. The adjusted R2 of NW-SIS achieves the peak value
first at s = 75, which is 25.8%, and the highest of the three methods.

the numerical study, we show that the tuning parameter selection method per-

forms well. However, the theoretical properties of the tuning parameter selection

should be investigated further. Lastly, note that unimportant features are typi-

cally included in the post-screening set because the screening technique tends to

overselect the features. Consequently, appropriate variable selection methods are

worth investigating after the screening procedure to precisely identify the true

model.

Supplementary Material

The online Supplementary Material contains useful lemmas, the proof of

Proposition 1, the proofs of Theorems 1–2, a corollary to Theorem 1, and a

discussion on selecting the tuning parameter.
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