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Anharmonic phonon-phonon scattering serves a critical role in heat conduction in solids. Previous studies have
identified many selection rules for possible phonon-phonon scattering channels imposed by phonon energy and
momentum conservation conditions and crystal symmetry. However, the crystal-symmetry-based selection rules
have mostly been ad hoc so far in selected materials, and a general formalism that can summarize known selection
rules and lead to new ones in any given crystal is still lacking. In this work, we apply a general formalism for
symmetry-based scattering selection rules based on the group theory to anharmonic phonon-phonon scatterings,
which can reproduce known selection rules and guide the discovery of new selection rules between phonon
branches imposed by the crystal symmetry. We apply this formalism to analyze the phonon-phonon scattering
selection rules imposed by the in-plane symmetry of graphene, and demonstrate the significant impact of
symmetry-breaking strain on the lattice thermal conductivity. Our work quantifies the critical influence of the
crystal symmetry on the lattice thermal conductivity in solids and suggests routes to engineer heat conduction

by tuning the crystal symmetry.
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I. INTRODUCTION

Phonon scattering processes play a central role in the
atomic-level understanding of thermal transport in semi-
conductors and insulators [1]. The intrinsic anharmonic
phonon-phonon scattering, which includes three-phonon,
four-phonon, and higher-order phonon scattering processes
[2], is the mechanism that dominates the behavior of the
lattice thermal conductivity for crystalline semiconductors
and insulators around and above room temperature. Extensive
theoretical, computational [1], and experimental [3] efforts
have focused on understanding the anharmonic phonon-
phonon scattering processes in detail. Maradudin et al. [4,5]
established the anharmonic lattice dynamics framework to
predict intrinsic three-phonon scattering rates in solids [6] by
creating the third-order anharmonic Hamiltonian and adopt-
ing the phonon creation and annihilation operators in the
second quantization formalism of many-body physics. Re-
cent advancements of first-principles methods, such as the
density-functional perturbation theory (DFPT) [7] and the
finite-displacement approach [6] have enabled routine cal-
culations of the anharmonic three-phonon scattering rates in
realistic single crystalline materials. Feng and Ruan [8] fur-
ther generalized the first-principles calculation to include the
four-phonon scattering process. Combining first-principles
calculations of phonon scattering rates with the phonon Boltz-
mann transport equation (BTE) solvers, the lattice thermal
conductivity of a wide range of crystalline materials can now
be computed with a high accuracy, often showing excellent
agreements with experiments [9-13].

In addition to the advancement of first-principles com-
putational methods, an improved physical understanding of
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the phonon-phonon scattering, particularly the selection rules
that determine allowed and forbidden scattering channels in a
given material, has led to the rational discovery of materials
with desirable thermal transport properties. Many of these
selection rules are imposed by the requirement of energy and
momentum conservation during phonon-phonon scattering
events [14]. One well-known example is the large acoustic-
optical band gaps typically existing in materials with a large
mass contrast between constituent atoms that forbid the aao
type of phonon scattering processes involving two acoustic
phonons and one optical phonon [15]. Another example is
the “acoustic-bunching” effect, where overlapping acoustic
branches in the phonon dispersion limit the aaa scattering
channels involving three acoustic phonons [16]. Both selec-
tion rules have contributed to the unexpected high lattice
thermal conductivity in boron arsenide [15] that has been
experimentally verified recently [17-19].

Besides the energy and momentum conservation condi-
tions, the crystal symmetry also places restrictions on possible
phonon scattering channels. For example, symmetry-based
analysis of the selection rules have been extensively used
to interpret optical spectroscopic measurements involving
photon-phonon interactions, such as the Raman and infrared
spectroscopy [20]. The impact of symmetry-based selection
rules on electron-phonon scatterings has also been examined
to understand the strain-engineering of charge mobility in
semiconductors [21,22] and the electrical transport in two-
dimensional (2D) materials [23]. In the context of phonon
properties and thermal transport, crystal symmetry has been
used to reduce the number of unique interatomic force
constants (IFCs) in first-principles phonon calculations and
improve their numerical accuracy [24,25]. In addition, crystal
symmetry can place constraints on the phonon dispersion
relations, which indirectly affect phonon scattering through
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energy and momentum conservation conditions [26]. Fur-
thermore, phonon-phonon scattering rules that are directly
imposed by crystal symmetry have been studied in a few ma-
terial systems with special crystal symmetries. For example,
the existence of a screw axis in certain one-dimensional (1D)
systems, such as the carbon nanotubes [10] and the 1D-chain
compound Bas;N [27], imposes an additional phonon scat-
tering selection rule requiring the conservation of a phonon
angular momentum. As another example, Lindsay et al
[28] discussed the selection rule for three-phonon scatter-
ings involving flexural phonon modes associated with the
out-of-plane mirror reflection symmetry in 2D materials,
which contributes to the high lattice thermal conductivity of
graphene. However, most crystalline materials possess more
crystal symmetries and should have more phonon scattering
selection rules imposed by their full crystal symmetry prop-
erties. A natural development, therefore, is to systematically
identify phonon scattering selection rules for a given crystal
based on its full crystal symmetry.

Group theory provides a systematic mathematical frame-
work to analyze the impact of crystal symmetries on phonon-
phonon scattering. To reveal additional phonon scattering
selection rules, we first review the three-phonon scattering
matrix elements written in complex normal coordinates for
phonon eigenmodes [29,30]. We then investigate the symme-
try properties of the complex normal coordinates [30] and
apply the method of space-group selection rules [31,32] to
derive the phonon scattering selection rules in crystals with
symmorphic space groups. We provide several examples to
illustrate how those selection rules can be identified based on
the group theory and provide justifications for our findings.
Our results not only show good compatibility with the find-
ings in previous research [27,28], but also lead to additional
selection rules for phonon scattering channels. To demonstrate
the effect of these selection rules, we compare the phonon
scattering rates of forbidden channels and allowed channels
in graphene with or without a symmetry-breaking strain using
first-principles simulations. The simulation results agree well
with our theoretical predictions and show that the group the-
ory framework we have generalized can serve as a valuable
tool to search for phonon-phonon scattering selection rules
in crystalline materials and investigate the impact of crys-
tal symmetry on phonon transport. Our result also implies
a potential route towards tuning the thermal conductivity of
solids via controlled crystal-symmetry breaking. We note that
the group-theory formalism has been applied to discuss the
thermal conductivity of transition metal dichalcogenides by
Cammarata [33], however, the scattering selection rules for
phonons with particular wave vectors were not established.

II. THREE-PHONON SCATTERING RATES
IN NORMAL COORDINATES

The lattice Hamiltonian of a crystal can be written as
the sum of the harmonic part Hy and the anharmonic parts
[8,29,34]:

H=Hy+H;+Hy+--- (1)

The third-order terms are expressed as
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Here @ represents the force constant and u is the atomic
displacement. «, B, and y are Cartesian coordinates. [, ', I”
and «, ', k" represent the indices for a certain unit cell and
a particular atom within that cell. The atomic displacements
u can be expanded in the basis of the phonon eigenvectors
[29,30]:
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Here N is the number of atoms, M, is the mass of the atom «.
q is the phonon wave vector and j is the phonon branch index.
p is an extra index labeling degenerate phonon modes for a
givenbranch. p =1, ..., [; and /; is the number of degenerate
eigenvectors. e (/1) is one component of the eigenvector of
the phonon mode (q, j,) associated with the displacement of
atom « along the direction «. R; is the coordinate of a unit cell.
The expansion coefficients Q(}! ) are the complex normal coor-
dinates for the phonon eigenmodes. We can transform Eq. (2)
into the following form by rewriting the atomic displacements
Uq(;) in normal coordinates Q(}1)
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Equation (4) can be rewritten in a more compact form for
the phonon absorption case (two phonons merge into a third
phonon):
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where V..(qj,, q'j,,q"j,) and A(q + q' — q") are:
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where K can be any reciprocal lattice vector. Equations
(6) and (7) are extensively used in first-principles phonon
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scattering calculations [34]. The three-phonon absorption rate
+ .
Wi can be expressed as [35]:
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where f stands for fy(w,), the Bose—Einstein distribution,
and Vi(qj,.9q'j,.q"j,) can be viewed as the absorption
scattering matrix element of three specific phonons. The two
delta functions in Egs. (7) and (8) impose the conserva-
tion of energy and momentum during the scattering process.
Equation (5) shows the third-order anharmonic Hamiltonian
can be expressed as a linear combination of triple products
of the complex normal coordinates Q with the coefficient
Vi(jp.4'j,.9"j;)A@+4q —q"). In order to derive the
scattering selection rules in the framework of the group theory,
we need to find the transformation properties of the left-hand
side and the right-hand side of Eq. (5) from the symmetry

perspective. First we express Eq. (5) as
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In Eq. (9), we merge V.(4j,,9q'j,.9q"j,) and A(q+q' —
q") into one coefficient C, (q&, q'¢’, q"¢"”). Here we use &
instead of j, to specify each phonon branch at each q for
brevity. Similarly, for phonon emission processes (one phonon
splits into two phonons),
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and A(q — q' — q"), where
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III. PHONON SCATTERING SELECTION RULES
IN SYMMORPHIC GROUPS

In this paper, we focus mainly on symmorphic space
groups, which do not contain symmetry operations with frac-
tional translations, such as screw axes and glide planes. In
symmorphic space groups, the space group G can be ex-
pressed as the semidirect product of the point group Gy and its
normal subgroup A, which for most cases is the translational
group T [31,32,36]:

G =A A G. 13)

Given a phonon wave vector ¢, all the group elements {R} in
G that satisfy the following relation:

Rq=q+K, (14)

will form a subgroup of the point group, which is called the
group of the wave vector Go(q). Here K is any reciprocal
lattice vector.

Next we will apply the selection-rule theory for space
groups to the phonon absorption process. It can be shown [30]
that Q(¢) transforms in the same way as the phonon eigen-
vector e(f). Suppose e(f) transforms according to a certain

irreducible representation Dg’)(é) of the group of the wave

vector Go(q), then the triple product o(1)o(%)0(¥,)” must trans-
form according to the direct product of the representations:

D(Gq)(g) ® D(Gq )E) ®Dgl )& )*. (15)

A necessary and sufficient condition for a particular triple
product of the complex normal coordinates to appear in the ex-
pansion of H3 [in another word, the coefficient C; is nonzero
for a particular triple product in Eq. (5)] is that the correspond-
ing character reduction coefficient after the Clebsch—Gordan
series expansion is nonvanishing [30,31], i.e., in the expansion

Dgl)(é) ®Dg]’)(f’) ® D(Gq/’)(é”) — Z<q§ Q q,é:, ® q,,€/,*|n>rn,
n

(16)

(g¢ @ '8’ ® q"&"*|1) # 0. Here n labels different irreducible
representations and T'! is the identity representation. For
symmorphic space groups, (g€ ® '8’ ® ”£"*|1) can be cal-
culated by the following formula [31]:

(4t ® q'E' ® "™ 1)
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where x% is the character of the irreducible representation
Dgl)(s) and R goes through all the common elements in
Go(q), Go(q'), and Go(q"). These symmetry operations form
a new subgroup, which we denote as Go(q,q’, q”) and g
is the number of elements in this group. Equation (17) can
be used to determine whether a particular phonon scattering
process is forbidden by the crystal symmetry once the groups
of the wave vector Gy(q), Go(q'), and Gy(q") for the three
participating phonons are specified. We can write down the
condition for a forbidden phonon absorption process as fol-
lows:

(gt ®q'¢’ ®q"§™1) = 0. (18)

Following the same procedure, we can get the similar selec-
tion rule for phonon emission processes:

(4 ® 4’6" ®q"§™1) = 0. 19

These equations show that once we have determined
Go(q,q’,q") and specified the phonon branches, the ex-
pansion coefficients (g€ ® q'8’ ® q"£"*|1) or (g€ @ q'£™* ®
q"&"*|1) can be readily calculated with the help of group
character tables using Eq. (17).
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TABLE I. C,;, group character table.

E Op
A 1 1
A, 1 -1

IV. APPLICATION TO 2D SYSTEM: GRAPHENE

In this section, we demonstrate the use of the space-
group selection-rule theory elaborated in the previous section
by deriving the phonon-phonon scattering selection rules in
graphene. Graphene’s space group is P6/mmm, and the cor-
responding point group is Dg,, whose properties are most
conveniently studied in terms of the combination of the sim-
pler Cg, subgroup that includes all the in-plane symmetries
and the out-of-plane mirror symmetry o;,. Given graphene’s
2D nature, the subgroup Gy(q, q’, q”) always contains oy, and
may have additional in-plane symmetries from Cg,. In the
following examples, we will only apply the selection rules for
phonon absorption processes since the procedure is the same
for phonon emission processes.

A. Selection rules imposed by the mirror reflection o,

Since all q in the momentum space are confined in a 2D
plane, there are at least two elements in Gy(q, ', q”):

GO(q’ q/’ q//) = {E’ Gh}’ (20)

where E is the identify operation. In this case, Go(q, q’, q")
is the point group C;;, which means any phonon eigenvector
e(g) must transform according to one of its irreducible rep-
resentations listed in Table I: A; or A,. To be concrete, the
eigenvectors of in-plane phonon modes (TA, TO and LA, LO
modes) remain the same under the mirror reflection o, and
thus belong to the representation A, while the eigenvectors of
out-of-plane phonon modes (the flexural ZA and ZO modes)
change sign under o, and thus belong to the representation
As.

Now consider the scattering process involving two in-plane
phonons and one out-of-plane phonon assuming the energy
and momentum conservation conditions are satisfied. Then
the eigenvector e(g) transforms as A, e(g,) transforms as A,

and e(g:) transform as A,. Applying Eq. (17), we have
(6 ®qE' ®@q"E™|1)

1 1 e
=7 D XEARDX I AR XS (R

0 (R}

1
= E[XAI (E)xa,(E)xa,(E) + xa,(0n)xa,(00) X2, (0h)]

1
=§[lxlxl+lxlx(—l)]

=0, 1)

so this transition is forbidden. This calculation indicates that
two in-plane modes cannot scatter into an out-of-plane mode.
Similarly, we can repeat the calculation for other possible
phonon combinations, which concludes that any three-phonon

NP

Unit cell

et

FIG. 1. The crystal structure and the Brillouin zone of grpahene.
Three phonon modes with wave vectors along the I'-M direction in
the Brillouin zone of graphene are labeled (q, q', q”).

scattering channels involving an odd number of out-of-plane
phonon modes are forbidden in 2D materials with the out-
of-plane mirror reflection symmetry o;,. These selection rules
were first analyzed by Lindsay et al. [28] by an explicit sym-
metry analysis of the scattering matrix elements in graphene,
and are responsible for the reduced scattering of the flexural
phonons in graphene. Here we justify them through our group
theory approach. Similarly, the group theory approach can
also reproduce the phonon-angular-momentum selection rules
in 1D chain systems with a screw axis as discussed in previous
work [27]. We detail the derivation process in Appendix A.

B. Selection rules imposed by in-plane symmetries

Besides the mirror reflection oy, the in-plane symmetries
of graphene, including the six-fold rotational axis and in-
plane mirror reflections, impose additional selection rules on
phonon-phonon scattering. For phonon modes with a generic
wave vector ¢ in the momentum space (not located at any
high-symmetry lines or points), the associated group of wave
vector Gy(q) is trivial and only contains the identity operation
and oy,. Therefore, for any scattering process involving such a
generic phonon mode, the in-plane crystal symmetry will not
impose additional selection rules. In other words, the in-plane
crystal symmetries will only lead to additional selection rules
on scattering processes involving phonon modes located at
high-symmetry lines and points, where the associated groups
of wave vector contain more symmetry elements and possess
nontrivial representations.

As one example, consider three phonon modes with wave
vectors along the high-symmetry path I' to M (as shown in
Fig. 1, excluding I" and M points), then Gy(q, q', q”) contains
four elements:

Go(q.q',q") = {E, C2(x), 0x;, On}, (22)

where C,(x) is the 7 rotation around the x axis and oy, is the
mirror reflection by the x-z plane. In this case, Go(q, q’, q")
has the same representations as the point group C,,, which
means the eigenvector e(g) of any phonon mode along this
path must transform according to one of its irreducible repre-
sentations listed in Table II (A; to A4). Since all irreducible
representations in this case are one dimensional, the symmetry
properties of the phonon eigenvectors can be easily analyzed
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TABLE II. C,, character table.

E C2(x) Oxz O
A 1 1 1 1
Ar 1 1 -1 -1
As 1 -1 1 1
Ay 1 -1 -1 1

by examining their sign change under a particular symme-
try operation. The typical eigenvectors of different phonon
branches along this path and their respective irreducible rep-
resentations are shown in Fig. 2.

Consider a scattering channel involving three phonons
along the I"-M path, whose eigenvectors belong to the irre-
ducible representations A4, Apg, and Ac, respectively, and
we denote this scattering channel as Ay © Agp © A¢. With
the help of the character table (Table II), we can enumerate
the forbidden scattering channels by applying Eq. (17). Since
no phonon modes belong to the representation A, along the
I'-M path in graphene, the following scattering channels for
phonons along the I'-M path are forbidden by the in-plane
crystal symmetries in graphene:

AOAIOA; ATOA O Ay

AsOAOA; A3OA;O0 Ay

ALOALOA; ALOALO Ay
AL O A3 O Ay

(23)

For example, since the channel A} ® A} ® Ay is forbidden,
so two longitudinal modes cannot scatter with a transverse
mode along the I'-M direction, even if the energy and momen-
tum conservation conditions are satisfied. These additional
scattering selection rules are imposed strictly by the crystal
symmetry, indicating more restrictions on phonon scattering
channels and thus higher lattice thermal conductivity for ma-
terials with higher crystal symmetries. To gain more physical
insights, we explicitly analyze the symmetry properties of the
force constants that are associated with the forbidden channels
in Appendix B.

FIG. 2. Typical atomic vibrational patterns (eigenvectors) for
phonon modes along the I'-M path and their corresponding irre-
ducible representation as listed in Table II. The crosses and dots
represent directions into and out from the paper plane.

(b) Ky

FIG. 3. (a) Three phonon modes with wave vectors along the I"-
K path, whose representations are listed in Table III. (b) One example
of three other phonons possessing the same symmetry properties as
those along the I'-K path.

Similarly, we can examine the scattering processes in-
volving phonon modes along other high-symmetry paths. For
example, if all three phonon wave vectors are along the high-
symmetry path I" to K [Fig. 3(a)], then Gy(q, q’, q”) has four
elements:

Go(q,q',q") = {E, Cy(y), 0y, o4} (24)

We note here that there are other possible combinations of
phonon modes with the same Gy(q, q’, q”) structure, as long
as each mode’s group of wave vector contains the same four
elements. One example is shown in Fig. 3(b). In this case,
Go(q, q', ") has the same representations as the point group
C,,, whose character table is given in Table III with irre-
ducible representations A} to Aj. For these phonon modes
shown in Fig. 3, the symmetry properties of their eigenvectors
and the corresponding irreducible representation that they be-
long to are listed in Fig. 4. Different from the I"'-M path, all
four representations appear along I'-K. Thus, the following
forbidden processes can be derived using Eq. (17):

ANOAOA, AlOA A,
AlOAOA, ALOA,OA,
ASOAN,OA; ALOA,O A
A, OAN, 0 A, A;0A0 A, 25)
ASOAOA, A,OA,O A,
Ay ON, 0N, AN, 0A,0A,
AOAOA, ATOAOA]
A} O A O A

From this list of forbidden scattering channels, we can con-
clude, for example, TA + TA — TA is a forbidden process

TABLE III. G, character table.

E G () 0Oy,

Z

A
Ay
Ay
Ay

S Y
—_
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TABLE IV. G5, ® H character table.

E 2C5(z) 30, S 25C5(z2) 3So,
I 1 1 1 1 1 1
I 1 1 1 -1 -1 -1
I, 1 1 -1 1 1 -1
r 1 I -1 -1 -1 1
I, 2 -1 0 2 -1 0
r; 2 -1 0 -2 1 0

while LA + LA — LA is an allowed process for phonons
along the I'-K path. We can also observe that the scatterings
of phonons along the I'-K path are more restricted by the
crystal symmetry than those along the I'-M path given the
larger number of selection rules.

V. IMPACT OF SELECTION RULES ON
THERMAL TRANSPORT IN GRAPHENE

In this section, we use the first-principles calculation to
verify the phonon scattering selection rules in graphene. From
the discussion in the previous section, when the in-plane sym-
metries exist, the group of wave vectors Go(q, q', q”) could
contain many elements, so there will be more selections rules
for phonon scattering. On the other hand, once the crystal
symmetries are broken in the x-y plane, the group of wave
vectors Gy(q, q’, q”) will only contain E and oy, so most of
the selection rules will be lifted (except for the ones imposed
by o3,) as long as energy and momentum conservation condi-
tions are met.

In order to directly verify this conclusion and evaluate the
effect of symmetry breaking on thermal transport in graphene,
we simulate a “skewed” graphene with first-principles meth-
ods [1], in which the atomic positions are slightly shifted in
x-y plane to break all the in-plane symmetries. The struc-
tures of the original graphene unit cell and the “skewed”
graphene unit cell are shown in Fig. 5. We note here that,
although the “skewed” graphene structure is artificial, it serves
as an extreme example to assess the impact of the symmetry-
imposed selection rules. Experimentally achievable uniaxial
strains can affect some, but not all, of the in-plane sym-
metries. In practice, a strain gradient can break all in-plane

FIG. 4. Typical atomic vibrational patterns (eigenvectors) for
phonon modes along the I'-K path and their corresponding irre-
ducible representation as listed in Table III. The crosses and dots
represent directions into and out from the paper plane.

Graphene Skewed Graphene

FIG. 5. The crystal structures and unit cells of (a) graphene, and
(b) “skewed” graphene.

symmetries but it is difficult to theoretically assess its impact
on thermal transport due to the broken lattice periodicity.
The details for the first-principles computation are given in
Appendix D. We use first-principles simulation to calculate
the mode-specific phonon-phonon scattering rates and de-
compose them into contributions from different scattering
channels. Strictly speaking, the symmetry-imposed selection
rules only affect phonon modes located at high-symmetry
lines and points in the momentum space. However, it is chal-
lenging to only focus on these special phonon modes in the
first-principles simulation due to the lack of sufficient data
limited by the sampling mesh. So instead, we compute the
scattering rates of all phonon modes and examine how the
scattering rates of the commonly forbidden scattering chan-
nels in graphene (such as TA — ZA 4+ ZA and LA + TA —
LA) change when the in-plane symmetries are broken in the
“skewed” graphene. In Figs. 6(a) and 6(b), we compare the
scattering rates of these two forbidden channels in graphene
and “skewed” graphene. We find that, for the two forbidden
channels in graphene, the phonon-phonon scattering rates in-
crease significantly when the in-plane symmetries are broken
in the “skewed” graphene. In contrast, for the two allowed
channels in graphene (LA — ZA + ZA and LA — TA +
TA), there is no apparent order-of-magnitude change of the
phonon scattering rates. We further confirm that the phonon
dispersion relations for graphene and “skewed” graphene are
similar [Fig. 7(a)]. Although it has been shown that small
differences in phonon dispersions can lead to large changes
of phonon scattering rates due to the modified phonon scat-
tering phase space [37-39], this effect alone cannot explain
the mode-selectivity we observe in Fig. 6. We further evaluate
the impact of the broken in-plane crystal symmetry and the
lifted scattering selection rules on the lattice thermal conduc-
tivity. As shown in Fig. 7(b), the thermal conductivity of the
“skewed” graphene (~2100 W/mK at 300 K) is much lower
than graphene (~3000 W/mK at 300 K). Given their similar
phonon dispersion relations, we expect that the phonon group
velocities and phonon specific heats in both materials are very
similar. In fact, the group velocity of the ZA mode in graphene
is lower than that in “skewed” graphene from the slope of
the phonon dispersions shown in Fig. 7(a). Therefore, the
enhanced phonon-phonon scatterings should be the main con-
tributor to the significant reduction of the thermal conductivity
(~30%) in skewed graphene. Although our calculation cannot
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FIG. 6. Phonon-phonon scattering rates for both graphene and “skewed graphene” decomposed into scattering channels. (a) and (b) show
the results for scattering channels that are forbidden by in-plane symmetry in graphene, while (c) and (d) show the results for allowed scattering

channels in graphene.

directly prove that the broken crystal symmetry is the single
factor contributing to the enhanced phonon-phonon scattering
in “skewed” graphene due to the difficulty in sampling the
Brillouin zone, the clear contrast of scattering rates in phonon
scattering channels shown in Fig. 6 demonstrate that the scat-
tering selection rules imposed by crystal symmetry are at least
a significant contributor to the change of the phonon scattering
rates, illustrating the important influence of crystal symmetry
on the lattice thermal conductivity. In addition, we note that,
although the crystal-symmetry selection rules only strictly
impact the phonons along high-symmetry lines, the continuity
of physical quantities implies that phonons in the proximity
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(a)
40+ — -
¥ =z
= Skewed Graphene
> 30F Graphene
2
o
& 20t -
g
w
10+ E
0
r K M r

(b)

Lattice Thermal

Conductivity (W

of high-symmetry lines and points should also be strongly
influenced by the selection rules. This result suggests that
the lattice thermal conductivity in high-symmetry materials
can potentially be controlled effectively by external conditions
that break the crystal symmetry. Lastly, we emphasize that the
impact of the crystal-symmetry-imposed scattering selection
rules is not an “on and off™ effect. In perfect graphene, the
scattering rates of some phonons located on high-symmetry
lines and points are strictly zero due to the selection rules.
When the symmetries are broken, the selection rules are lifted,
but it does not mean the scattering rates of these phonons will
suddenly change to high values. The continuity of physical
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FIG. 7. (a) Calculated phonon dispersion relations of graphene and “skewed” graphene. (b) Calculated lattice thermal conductivity of

graphene and “skewed” graphene at different temperatures.

184302-7



YANG, YUE, QUAN, AND LIAO

PHYSICAL REVIEW B 103, 184302 (2021)

quantities indicate that the change of the phonon scattering
rate will be a gradual process when the lattice is increasingly
distorted.

VI. SUMMARY AND DISCUSSION

In summary, we demonstrated that a group-theory-based
formalism can be applied to systematically identify anhar-
monic phonon scattering selection rules imposed by crystal
symmetry. We showed that this formalism can reproduce
known ad hoc selection rules and lead to new ones. We
further examined the impact of crystal-symmetry breaking
on the phonon scattering and thermal transport properties of
graphene. Although there has been the qualitative understand-
ing that crystals with higher symmetry tend to possess higher

J

lattice thermal conductivity, our study quantifies the influence
of the crystal symmetry. Our recent experimental and compu-
tational study of the thermal conductivity of epitaxial gallium
arsenide (GaAs) on silicon substrate showed that a small
symmetry-breaking in-plane biaxial strain can significantly
reduce the lattice thermal conductivity of GaAs [40]. This
observation can now be quantitatively understood using the
group-theory formalism here, although the derivation is quite
tedious so not provided in this paper (we give a brief heuristic
discussion in Appendix C).

Furthermore, we note that the group-theory formalism
here can be generalized to higher-order scattering processes
involving more phonons. For an anharmonic scattering chan-
nel involving N phonons, the Clebsch-Gordon coefficient in
Eq. (17) can be calculated in a generalized way:

N N
(N phonon process|1) = i Z l_[ X""£”({R}){| A ( Z(—l)quj>
L 50 j=1

(R} i=1
q;é; i Xqi&({R}) itM; =0
X (R} = Xq:'Ei({R})* ifM; =1 26)

N ) N
A(Z(—l)M"qj> = (1) if 35-1(=1'q; =K
=1

R goes through all elements in the group Go(qi, q2, . . .

While the application of this formula is cumbersome for
general crystal symmetries, useful conclusions can be drawn
for simple symmetries. For example, it can be shown from
Eq. (26) that the forbidden scattering channels involving an
odd number of flexural phonons imposed by oy, in graphene
still applies to higher-order phonon scattering processes,
which was also discussed by Lindsay et al. [28].

Compared to materials with symmorphic space groups,
it is more difficult to obtain straightforward selection rules
for materials with nonsymmorphic space groups due to the
complexity of their symmetry considerations. This suggests
that further research can be done to generalize the current
formalism to lattices with nonsymmorphic space groups.

On a practical level, our result suggests that symmetry-
breaking strain should be minimized for applications where
efficient heat dissipation is desirable [40]. On the other hand,
breaking the crystal symmetry in a controlled way can serve as
a means to tune the thermal conductivity for solid-state ther-
mal switching applications. For this purpose, a strain gradient
can be more effective than uniaxial or biaxial strains.
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APPENDIX A: SCATTERING SELECTION RULES IN 1D
CHAIN SYSTEM WITH A SCREW AXIS

For 1D helical systems with screw axes such as carbon
nanotubes and BazN, it is known that anharmonic phonon
scattering is further subjected to selection rules on the phonon
angular momentum [27]. Here we analyze this selection rule
using the group-theory formalism with BaszN as an exam-
ple [27], which contains 1D-chain structures with a two-fold
screw axis. The space group of the BazN chain can be treated
as a symmorphic group because the helical symmetry group
containing the screw axis operation is its normal subgroup.
In this case, since all phonon wave vectors are along the z
direction, the group Gy(q, q', q”) is the direct product of the
helical symmetry group H and Cs, group. The character table
is given in Table IV. Here S is the screw axis operation (7
rotation around the chain axis plus a half-period translation
along the chain direction), C3(z) is a three-fold rotation around
the chain axis (z axis), and o, is a mirror reflection operation.
Typical phonon eigenvectors for the acoustic branches and the
corresponding representations are given in Fig. 8.

Due to the space limitation, we will not write down all
forbidden processes here. Still, we can retrieve some general
findings: the representations without the prime can be seen
to have chirality 0 and those with the prime has chirality 1,
depending on how they transform under S. Then the selection
rules originated from the phonon chirality (or the conservation

184302-8
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Torsional

Transverse

FIG. 8. Typical atomic vibrational patterns (eigenvectors) for
phonon modes along the 1D Bas;N chains and their corresponding
irreducible representation as listed in Table IV.

of phonon angular momentum) discussed by Pandey ez al. [27]
can be easily checked. For instance, using Eq. (17), we can
show that the scattering channel

(TyorTy) + (I orTy) — T (AD)

is forbidden, which means two longitudinal or torsional
phonon modes cannot scatter into a transverse phonon mode.
This is consistent with the phonon angular momentum rule
since the left-hand side has a total angular momentum of O
while the right-hand side has a total angular momentum of 1.
Also, we can identify the following forbidden transitions:

rHoriornr;

, (A2)
HLoTr,o

which means, if we only consider scatterings among acoustic
phonons, two torsional modes cannot be scattered into one
longitudinal mode, and three torsional modes cannot scatter
with each other. These results are all consistent with the
phonon angular momentum selection rule.

APPENDIX B: SYMMETRY ANALYSIS
OF THE FORCE CONSTANTS

Here we provide an explicit symmetry analysis of the
relevant force constants to understand the selection rules dis-
cussed in the main text. For this purpose, we rewrite Eq. (6) in
the following form:

Vi(qAs, q'Ag, q"Ac)

¢a (0 ’l /, l/ //)
“LL X

Ok, L', Bl k", y

/ 17\ *
N q e/c’ q e;{” q eiq’~R,7iq”~er’ (Bl)
“\as) P\ag) 7 \Ac

where Ay, Ap, and Ac¢ are the corresponding representa-
tions of &, &', and &” in the character table of Gy(q, ', q").
Consider the particular forbidden channel for phonons along
the I"-M path in graphene: A} © A} © A4 (two longitudinal
phonons scatter with one transverse phonon). One term in the

FIG. 9. An illustration of the graphene crystal structure, where
the three atoms involved in the force constants used in Egs. (B2) and
(B3) are labeled. The vibrational modes of the three participating
phonons are also illustrated.

summation in Eq. (B1) has the form

Papy ([012, [111, [3]2)
MMM,

(A (9 2(d" *i’-R —iq"-R
<afa)a(3, )8 (5,) e @

Here the third-order force constants involve three atoms,
whose unit cell indices and atomic indices inside each unit
cell are labeled in Fig. 9. For each term V), there is always a
corresponding term V, in the summation with the following
form:

Vi =

Pypy ([012, [2]1, [4]2)
MMM,

/ 1\ *
x (4 es 1 e, 1) eia Re-ia" R (B3
A Aq Ay

Given the reflection symmetry about the x axis, it is obvious
that

V, =

/4 Rin—id" Rz _ it Rpy—iq" Ry (B4)

Further, we know that the force constants are related by crystal
symmetries in the following form [28,41]:

D Dy (1012, [111, [312)Qura 25 Ry
a/’B/.y/
= Dy, ([012, [2]1, [4]2). (BS)

Here €,, are scalar elements of a matrix representing
a symmetry operation. If we take the symmetry opera-
tion to be the mirror reflection about the x axis (the
direction of phonon wave vectors), the above equation
gives ®,,,([012, [1]1, [3]2) = —D,,,([0]2, [2]1, [4]2). Since
A modes only have polarizations along the x direction and
A4 modes only along the y direction, ®,,, are the only force
constants contributing to V| and V,. Therefore, we have

Vi+V,=0. (B6)
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(@) (b)

FIG. 10. An illustration of Brillouin zones of (a) simple cubic
structure (b) cuboid structure and wave vectors discussed in Ap-
pendix C.

The above analysis shows that for any give term V; in the
summation in Eq. (B1), it is always possible to find another
term V, that the sum of these two terms is zero given the
reflection symmetry by the x axis. Thus, the total sum in
Eq. (B1), namely V., must be zero, confirming that this par-
ticular scattering channel is forbidden. Other selection rules
derived in the main text can be understood in a similar manner.
Taking TA — ZA + ZA in Sec. IV B for example, we still
can find the cancellation of two terms in summation for V_ if
we choose the symmetry operator to be mirror reflection about
y axis and therefore this scattering channel is also forbidden.

APPENDIX C: SIMPLE 3D CRYSTAL APPLICATION

It is also interesting to investigate the effect of symmetry
breaking from a group theory perspective in 3D crystals. For
simplicity, we compare two cases here. One is the Brillouin
zone of a simple cubic lattice, which is a perfect cube. The
second is a cuboid Brillouin zone. This is the case when some
strain was applied on the material with a simple cubic struc-
ture. In these two cases, phonons with wave vectors located
in the shadow area shown in Fig. 10 should possess different
scattering properties. In case 1, the plane reflection operator
with respect to the shadowed plane that leaves these wave
vectors invariant belongs to the group of wave vectors Gy,

while in case 2 this reflection operator does not belong to Gy
since it is not an element of the space group G. Thus, some
selection rules in case 1 no longer hold in case 2. For instance,
out-of-plane phonon modes in the shadow area will obey the
selection rules similar to flexural phonons in graphene, while
in case 2 they will not. A complete analysis and enumeration
of selection rules are tedious but, in principle, can be done
following the formalism introduced in the main text.

APPENDIX D: DETAILS FOR THE FIRST-PRINCIPLES
CALCULATION

We applied the first-principles calculations to obtain the
phonon properties of the normal and the “skewed” graphene.
The Vienna ab initio simulation package (VASP) [42,43] based
on density-functional theory (DFT) were adopted for all sim-
ulations. The Perdew-Burke-Ernzerhof (PBE) of generalized
gradient approximation (GGA) was chosen as the exchange
correlation functional [44]. We used the projector augmented
wave (PAW) potentials [45,46] to describe the core (1s°) elec-
trons, with the 25> and 2p? electrons of carbon considered
as valence electrons [13]. The kinetic energy cutoff of wave
functions was set at 500 eV [13], and Monkhorst-pack k
mesh 20 x 20 x 1 including the I point was used to sample
the Brillouin zone for both cases. Vacuum layers with 10 A
thickness were used to hinder the self-interactions between
atomic layers arising from the periodic boundary condition.
In the calculation of phonon dispersions, 5 x 5 x 1 supercells
were constructed for both structures. To obtain the phonon
dispersions, we calculated the second-order interatomic force
constants employing the finite displacement method using
PHONOPY package [47]. For the calculations of the lattice ther-
mal conductivity, the anharmonic third-order force constants
were computed using the same supercell and sampling mesh.
Interactions among atoms up to the fifth-nearest neighbor
were taken into account. The convergence of the interaction
distance was checked. With the second- and third-order force
constants, we solved the phonon Boltzmann transport equa-
tion (BTE) by an iterative method using ShengBTE package
[35]. The g-grid mesh density for converged thermal conduc-
tivities in both cases was 100 x 100 x 1.
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