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Abstract

In this paper, we develop a new estimation and valid inference method for single
or low-dimensional regression coefficients in high-dimensional generalized linear mod-
els. The number of the predictors is allowed to grow exponentially fast with respect
to the sample size. The proposed estimator is computed by solving a score function.
We recursively conduct model selection to reduce the dimensionality from high to a
moderate scale and construct the score equation based on the selected variables. The
proposed confidence interval (CI) achieves valid coverage without assuming consis-
tency of the model selection procedure. When the selection consistency is achieved,
we show the length of the proposed CI is asymptotically the same as the CI of the
“oracle” method which works as well as if the support of the control variables were
known. In addition, we prove the proposed CI is asymptotically narrower than the
CIs constructed based on the de-sparsified Lasso estimator (van de Geer et al., 2014)
and the decorrelated score statistic (Ning and Liu, 2017). Simulation studies and real
data applications are presented to back up our theoretical findings.

Keywords: Confidence interval; Ultrahigh dimensions; Generalized linear models; Online
estimation.

1



1 Introduction

Statistical inference for high-dimensional linear regression models has received more and

more attention in the recent literature. Lee et al. (2016) proposed a valid post-selection-

inference procedure for linear regression models. They targeted on the regression coeffi-

cients conditional on the model selected by the Lasso (Tibshirani, 1996), rather than the

coefficients in the true model. The resulting confidence interval may change with the se-

lected model and is hence difficult to interpret. Zhang and Zhang (2014) and Javanmard

and Montanari (2014) proposed bias-corrected linear estimators based on the Lasso to form

confidence intervals for individual regression coefficients. Liu and Yu (2013) and Liu et al.

(2017) developed inference procedures by bootstrapping the Lasso+modified least squares

estimator and the Lasso+partial ridge estimator, respectively. All these work, however,

only considers linear regression models.

In this paper, we consider the class of generalized liner models (GLM, McCullagh and

Nelder, 1989), which assumes the following conditional probability density function of the

response Y0 given the covariate vector X0,

exp

(
Y0X

T
0 β0 − b(βT0X0)

φ0

)
c(Y0), (1)

for some β0 = (β0,1, β0,2, . . . , β0,p)
T ∈ Rp, some positive nuisance parameter φ0 and some

convex function b(·). We focus on constructing confidence intervals (CIs) for a univariate

parameter of interest β0,j0 for some j0 ∈ {1, . . . , p}. The main challenge in high-dimensional

statistical inference lies in that the nonzero support set of the control variables (variables

other than X0,j0) is unknown and needs to be estimated. Consider the following standard

post-model-selection-inference procedure that first estimates the support of the controls

based on some regularization methods, and then fits a generalized linear regression of the

response on the variable of interest and the set of selected control variables. The validity

of such a procedure typically relies on the perfect model selection at the first step, which

is not guaranteed under the “small n, large p” settings.

Alternatively, one may apply sample-splitting estimation to allow for imperfect model
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selection. The idea of applying sample-splitting to high-dimensional statistical inference is

implicitly contained in Wasserman and Roeder (2009). To construct CI for β0,j0 , we can

split the samples into two equal halves, use the first half to select the controls and evaluate

βj0 on the remaining second half of the data. Such methods are very similar to the single

sample-splitting procedure described in Dezeure et al. (2015). However, the resulting CI

will be approximately
√

2 times wider than the CI of our proposed procedure, since β0,j0

is estimated based only on half of the samples. One can also average two such estimators

by swapping the two sub-datasets that are split apart. However, the CI based on the

aggregated estimator will fail when model selection consistencies are not guaranteed.

van de Geer et al. (2014) extended Zhang and Zhang (2014)’s methods to the GLM

setup and proposed to construct CIs based on the de-sparsified Lasso estimator. Ning

and Liu (2017) proposed to construct CIs for high-dimensional penalized M-estimators

based on the decorrelated score statistic. These CIs are valid. However, the de-sparsified

Lasso estimator and the decorrelated score statistic are computed by debiasing the Lasso

estimator and the Rao’s score test statistic, respectively. Their variances tend to increase

after the de-biasing procedure, resulting in increased lengths of the corresponding CIs.

In this paper, we develop a new estimation and valid inference procedure for β0,j0

under ultrahigh dimensional setting where the number of predictors p is allowed to grow

exponentially fast with respect to the sample size. The idea originates from online learning

algorithms for streaming datasets that recursively update estimators using new observations

(see for example, Wang et al., 2016; Schifano et al., 2016). The proposed method differs from

standard sample-splitting estimation. It divides the data into a series of non-overlapping

“chunks”. The target parameter β0,j0 is estimated by solving a score equation. We first

conduct model selection using a small chunk of data. Based on the selected control variables,

we construct the score equation with the second chunk of data. Then we select the controls

using the first two chunks of data and construct the estimating equation with the next

chunk of data. We iterate this procedure until the last chunk of data is used. Note that we

recursively conduct variable selection to construct the score equation. The accuracy of the

proposed estimator gets improved with the dimensionality reduced from high to a moderate
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scale. As a result, we prove the Wald-type CI based on our estimator is asymptotically

narrower than those based on the de-sparsified Lasso estimator and the decorrelated score

statistic.

In addition, the proposed CI achieves valid coverage without assuming consistency of

the model selection procedure. When the selection consistency is achieved, we show the

length of the proposed CI is asymptotically the same as the CI of the “oracle” method

which works as well as if the support of the control variables were known.

The rest of the paper is organized as follows. We consider a linear regression setup and

introduce our methods in Section 2. In Section 3, we consider extensions to GLMs and

investigate the asymptotic properties of the CI of our proposed procedure. Simulations

studies are presented in Section 4.1 and Section 4.2. In Section 4.3, we apply the proposed

method to a real dataset. Section 5 closes the paper with a summary and discusses some

extensions of the proposed method. All the proofs are given in the supplementary material.

2 High-dimensional linear models

To better illustrate the idea, we begin by considering the following linear regression model:

Y0 = XT
0 β0 + ε0,

where β0 = (β0,1, β0,2, . . . , β0,p) is a p-dimensional vector of regression coefficients, ε0 is in-

dependent of the covariates X0 and satisfies E(ε0) = 0. Suppose {Xi, Yi}ni=1 are a random

sample from (X0, Y0) and the dimension p satisfies log p = o(n). We focus on construct-

ing a confidence interval for a univariate parameter β0,j0 . Extension to multi-dimensional

parameters are given in Section 5.

Before presenting our approach, some notations are introduced. Let Σ = EX0X
T
0 and

Σ̂ =
∑n

i=1XiX
T
i /n. For any r×q matrix Φ and any sets J1 ⊆ [1, . . . , r], J2 ⊆ [1, . . . , q], we

denoted by ΦJ1,J2 the submatrix of Φ formed by rows in J1 and columns in J2. Similarly,

for any q-dimensional vector ψ, ψJ1 stands for the subvector of ψ formed by elements in

J1. Let |J1| be the number of elements in J1. Denote by Mj0 = {j 6= j0 : β0,j 6= 0}. Let
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I = {1, . . . , p} and Ij0 = I− {j0}. For any set M⊆ Ij0 , define ωM,j0 = Σ−1
M,MΣM,j0 and

σ2
M,j0

= Σj0,j0 −ΣT
M,j0

ωM,j0 .

Let ‖Z‖ψp be the Orlicz norm of any random variable Z,

‖Z‖ψp
∆
= inf

c>0

{
E exp

(
|Z|p

cp

)
≤ 2

}
.

2.1 An online estimator

Before we present our algorithm, let us present the motivation of the online estimator.

Suppose that we are interested in a constructing confidence interval for β0,j0 , we construct an

estimating equation for β0,j0 . To this end, we propose to construct an estimating equation

based on partial residual. Notice that

E(Y0|X0,Mj0
) = β0,j0E(X0,j0 |X0,Mj0

) + βT0,Mj0
X0,Mj0

.

Thus, it follows that

Y0 − E(Y0|X0,Mj0
) = β0,j0{X0,j0 − E(X0,j0 |X0,Mj0

)}+ ε0,

and we define the partial residual score equation

n∑
t=1

{Xt,j0 − E(Xt,j0 |Xt,Mj0
)}(Yt − β0,j0Xt,j0 − βT0,Mj0

Xt,Mj0
) = 0. (2)

To use (2) for constructing statistical inference procedure for β0,j0 , we need an estimate

for β0,Mj0
, Mj0 and E(Xt,j0 |Xt,Mj0

). We propose using regularization methods, such as

the LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), MCP (Zhang, 2010) and Dantzig

(Candes and Tao, 2007) etc., to obtain an initial estimate β̃ of β0. This corresponds to Step

2 in our proposed algorithm below. We may estimateMj0 by (iterative) sure independence

screening ((I)SIS, Fan and Lv, 2008) or some regularized regression procedure. Suppose
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M̂ is the selected model, then we can set

M̂j0 = {j ∈ M̂ : j 6= j0},

as an estimate of Mj0 . Due to ultrahigh dimensionality, some spuriously correlated pre-

dictors may be retained in the selected model (Fan et al., 2012), making it challenging to

consistently estimate the variance of the solution computed by (2).

To address these concerns, we propose using data-splitting strategy for model selection

and partial residual score evaluation. That is, we propose separately conducting model

selection and evaluating the partial residual scores in (2) using different data subsets.

Specifically, we use the sub-dataset Ft = {(X1, Y1), . . . , (Xt, Yt)} for model selection and

update the contribution of the (t+ 1)-th sample (Xt+1, Yt+1) to the estimating equation by

1

σ̂M̂(t)
j0
,j0

{Xt+1,j0 − Ê(Xt+1,j0 |Xt+1,M̂(t)
j0

)}(Y − β0,j0Xt+1,j0 − β̃TM̂(t)
j0

X
t+1,M̂(t)

j0

),

where M̂(t)
j0

denotes the model selected based on Ft, σ̂2

M̂(t)
j0
,j0

is the estimated variance of

the residual Xt,j0 − E(Xt,j0 |Xt,M̂(t)
j0

) and β̃M̂(t)
j0

is the subvector of β̃ formed by elements in

M̂(t)
j0

. As a result, we propose using the following estimating equation

n∑
t=sn

1

σ̂M̂(t)
j0
,j0

{Xt+1,j0 − Ê(Xt+1,j0 |Xt+1,M̂(t)
j0

)}(Y − β0,j0Xt+1,j0 − β̃TM̂(t)
j0

X
t+1,M̂(t)

j0

) = 0, (3)

where sn is a pre-specified integer in order for us to do model selection reasonably well based

on Fsn . This corresponds to Step 4 in our proposed algorithm below. The above estimating

equation was motivated from the online estimator proposed in Luedtke and van der Laan

(2016). The inclusion of the factor 1/σ̂M̂(t)
j0
,j0

is necessary for theoretical development of

asymptotic normality of the resulting estimate (See Step 4 of the proof of Theorem 2.1 for

details). If one excludes the factor 1/σ̂M̂(t)
j0
,j0

and set M̂(t)
j0

= Ij0 , it leads to the decorrelated

score function.

Finally, we may use a linear regression model to approximate E(Xt,j0 |Xt,M) for any
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M ⊆Mj0 . This leads to its linear approximation ωTM,j0
Xt,M. The regression coefficients

ωM,j0 = Σ−1
M,MΣM,j0 can be estimated by plugging the estimators Σ̂−1

M,M, Σ̂M,j0 for Σ−1
M,M

and ΣM,j0 . The estimating equation in (3) results in a root n consistent estimator regardless

of whether the linear approximation is valid or not.

We can summarize our procedures in the following algorithm.

Step 1. Input {Xi, Yi}ni=1 and an integer 1 < sn < n.

Step 2. Compute an initial estimator β̃ for β0, based on {Xi, Yi}ni=1.

Step 3. For t = sn, sn + 1, . . . , n− 1,

(i) Estimate Mj0 via some model selection procedure based on the sub-dataset

Ft = {(X1, Y1), . . . , (Xt, Yt)}. Denoted by M̂(t)
j0

the corresponding estimator.

We require |M̂(t)
j0
| < n, j0 /∈ M̂(t)

j0
.

(ii) Estimate ωM̂(t)
j0
,j0

by ω̂M̂(t)
j0
,j0

= Σ̂−1

M̂(t)
j0
,M̂(t)

j0

Σ̂M̂(t)
j0
,j0
.

(iii) Estimate σ2

M̂(t)
j0
,j0

by σ̂2

M̂(t)
j0
,j0

= Σ̂j0,j0 − Σ̂T

M̂(t)
j0
,j0
ω̂M̂(t)

j0
,j0

.

Step 4. Define β̄j0 to be the solution to the following equation,

n−1∑
t=sn

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0(Yt+1 −Xt+1,j0β0,j0 −Xt+1,M̂(t)
j0

β̃M̂(t)
j0

) = 0, (4)

where Ẑt+1,j0 = Xt+1,j0 − ω̂TM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

.

Due to its nature, (4) is referred to as online-score equation in order to distinguish

it from the decorrelated score equation in Ning and Liu (2017). Step 3 essentially is to

recursively calculate σ̂M̂(t)
j0
,j0

and ω̂M̂(t)
j0
,j0

for Step 4. Thus, we refer this algorithm to as

recursive online-score estimation (ROSE) algorithm.

Let

Γn =
1

n− sn

n−1∑
t=sn

Xt+1,j0

σ̂M̂(t)
j0
,j0

(
Xt+1,j0 − ω̂TM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
.
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Under certain conditions, we can show that

√
n− snΓn(β̄j0 − β0,j0) =

1√
n− sn

n−1∑
t=sn

εt+1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
+ op(1). (5)

The first term on the right-hand-side (RHS) of (5) corresponds to a mean zero martingale

with respect to the filtration {σ(Ft) : t ≥ sn} where σ(Ft) denotes the σ-algebra generated

by Ft. Note that

E

 1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
εt+1


2 ∣∣Ft

 = 1.

By the martingale central limit theorem, we have as n− sn →∞,

√
n− snΓn(β̄j0 − β0,j0)

d→ N(0, σ2
0).

Therefore, a two-sided 1− α CI for β0,j0 is given by

β̄j0 ± zα2
Γ−1
n√

n− sn
σ̂, (6)

where σ̂ is some consistent estimator for σ0.

2.2 Refinements

The CI in (6) is asymptotically valid. However, it has one drawback. Its length is equal to

2zα
2

Γ−1
n√

n− sn
σ̂. (7)

In general, (7) increases as sn increases. Nonetheless, sn should be large enough to guarantee

the sure screening property of M̂(sn)
j0

. For small n, this will result in a large CI. To address

these concerns, we propose the following refined estimator. The estimation procedure is

described below.
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Step 1. Input {Xi, Yi}ni=1 and an integer 1 < sn < n.

Step 2. Compute an initial estimator β̃ for β0, based on {Xi, Yi}ni=1 .

Step 3. Compute M̂(t)
j0

, ω̂M̂(t)
j0
,j0

, σ̂2

M̂(t)
j0
,j0

for t = sn, . . . , n− 1 as described in Section 2.1.

Step 4. Estimate Mj0 based on the sub-dataset {(Xsn+1, Ysn+1), . . . , (Xn, Yn)}. The re-

sulting estimator M̂(−sn)
j0

shall satisfy |M̂(−sn)
j0
| < n, j0 /∈ M̂(−sn)

j0
.

Step 5. Estimate ωM̂(−sn)
j0

,j0
by ω̂M̂(−sn)

j0
,j0

= Σ̂−1

M̂(−sn)
j0

,M̂(−sn)
j0

Σ̂M̂(−sn)
j0

,j0
.

Step 6. Estimate σ2

M̂(−sn)
j0

,j0
by σ̂2

M̂(−sn)
j0

,j0
= Σ̂j0,j0 − Σ̂T

M̂(−sn)
j0

,j0
ω̂M̂(−sn)

j0
,j0

.

Step 7. Define β̂j0 to be the solution to the following equation,

sn−1∑
t=0

1

σ̂M̂(−sn)
j0

,j0

Ẑt+1,j0(Yt+1 −Xt+1,j0β0,j0 −Xt+1,M̂(−sn)
j0

β̃M̂(−sn)
j0

)

+
n−1∑
t=sn

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0(Yt+1 −Xt+1,j0β0,j0 −Xt+1,M̂(t)
j0

β̃M̂(t)
j0

) = 0,

where Ẑt+1,j0 = Xt+1,j0−ω̂TM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

for t = sn, . . . , n−1 and Ẑt+1,j0 = Xt+1,j0−

ω̂T
M̂(−sn)

j0
,j0
X

t+1,M̂(−sn)
j0

for t = 0, . . . , sn − 1.

When sn = o(n), the first sn terms in the estimating equation in Step 7 is negligible.

As a result, β̂j0 is asymptotically the same as β̄j0 . Define

Γ∗n =
1

n

sn−1∑
t=0

1

σ̂M̂(t)
j0
,j0

Xt+1,j0Ẑt+1,j0 +
n−1∑
t=sn

1

σ̂M̂(−sn)
j0

,j0

Xt+1,j0Ẑt+1,j0

 . (8)

Below, we prove

β̂j0 ± zα2
Γ∗−1
n√
n
σ̂, (9)

is a valid two-sided CI for β0,j0 . We need the following conditions.
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(A1) Assume M̂(n)
j0

satisfies Pr(|M̂(n)
j0
| ≤ κn) = 1 for some 1 ≤ κn = o(n). Besides,

Pr
(
Mj0 ⊆ M̂

(n)
j0

)
≥ 1−O

(
1

nα0

)
,

for some constant α0 > 1.

(A2) Assume there exists some constant c̄ > 0 such that for any M ⊆ I and |M| ≤ κn,

λmin (Σj0∪M,j0∪M) ≥ c̄.

(A3) Assume there exists some constant c0 > 0 such that ‖XT
0 a‖ψ2 ≤ c0‖a‖2 for any

a ∈ Rp.

(A4) Assume (i) Pr(‖β̃ − β0‖2 ≤ ηn) → 1 for some ηn > 0; (ii) ηn
√
κn log p = o(1); (iii)

Pr(‖β̃Mc
0
−β0,Mc

0
‖1 ≤ k0‖β̃M0 −β0,M0‖1)→ 1 for some constant k0 > 0, whereM0 stands

for the support of β0 and Mc
0 denotes its complement.

(A5) Assume σ̂
P→ σ0.

Assumption (A1) essentially requires the sure screening property of the procedure for

obtaining M̂(n)
j0

. Typically conditions to guarantee the sure screening property are weaker

than those for the oracle property. Assume (A1) holds and sn →∞. Then it follows from

Bonferroni’s inequality that

Pr

(
Mj0 ⊆

n−1⋂
t=sn

M̂(t+1)
j0

)
≥ 1−O

(
∞∑
t=sn

1

tα0

)
→ 1.

Hence, all the selected models possess the sure screening property with probability tending

to 1.

When Mj0 is estimated via SIS, we can show (A1) holds for any arbitrary α0 > 1 (see

Theorem 1 in Fan and Lv, 2008). The validity of such sure screening property typically

relies on certain minimum-signal-strength conditions on β0,Ij0 . A counterexample is given

in Section B.1.1 of the supplementary article where we show our CI is no longer valid

when these conditions are violated. We note that van de Geer et al. (2014) and Ning

and Liu (2017) do not require these conditions. However, these authors impose some

additional assumptions on the design matrix. We discuss this further in Section B.1 of the

supplementary article. Moreover, in Section 5.4, we present a variant of our method that
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is valid without the minimal-signal-strength conditions.

Condition (A2) is similar to the restricted eigenvalue condition (Bickel et al., 2009)

imposed to derive the oracle inequalities for the Lasso estimator and the Dantzig selector.

Condition (A3) requires X0 to be a sub-Gaussian vector. This condition is used in Ning

and Liu (2017) and van de Geer et al. (2014) as well. See Section 4.1 of Ning and Liu

(2017) and Condition (B1) in van de Geer et al. (2014) for details.

When β̃ is estimated via the Lasso or the Dantzig selector, then the first part of Condi-

tion (A4) holds with ηn = cn
√
s∗ log p/n where cn is an arbitrary diverging sequence and s∗

is the number of nonzero elements in β0. The second part holds as long as κns
∗ log2 p = o(n).

Under (A1), we have κn ≥ s∗ − 1. This further implies (s∗)2 log2 p = o(n). Such a sample

size requirement is consistent with those in van de Geer et al. (2014) and Ning and Liu

(2017). See Condition (B2) of van de Geer et al. (2014), and Corollary 4.1 in Ning and Liu

(2017) for details. The last condition in (A4) holds with k0 = 3 for the Lasso estimator,

k0 = 1 for the Dantzig selector and k0 = 0 for the non-convex penalized regression estimator

(when the “oracle property” is achieved).

Condition (A5) holds when σ̂ is computed by refitted cross-validation (Fan et al., 2012)

or scaled lasso (Sun and Zhang, 2013). In Section B.3 of the supplementary article, we

further introduce a simple plug-in estimator for σ2
0 based on β̃ and show (A5) holds under

(A3), (A4) and the conditions that log p = O(n2/3), E|ε0|3 = O(1). The last moment

condition is also needed in the following theorem to guarantee the asymptotic normality of

β̂j0 .

Theorem 2.1. Under Conditions (A1)-(A5), assume sn → ∞, sn = o(n), κ2
n log p =

O(n/ log2 n) and E|ε0|3 = O(1). Then, we have

√
nΓ∗n(β̂j0 − β0,j0)

σ̂

d→ N(0, 1),

where Γ∗n is defined in (8).

11



3 High-dimensional generalized linear models

3.1 Estimation and inference

Suppose that (X1, Y1), . . . , (Xn, Yn) is a random sample from (X0, Y0) in (1). The function

b(·) is assumed to be thrice continuously differentiable. We further assume b′′(·) > 0

and b′′′(·) is Lipschitz continuous. Denoted by µ(·) the derivative of b(·). As in Section

2, our focus is to construct a CI for β0,j0 . Let Mj0 = {j 6= j0 : β0,j 6= 0} and Σ =

EX0b
′′(XT

0 β0)XT
0 , we describe our estimating procedure below.

Step 1. Input {Xi, Yi}ni=1 and an integer 1 < sn < n.

Step 2. Compute an initial estimator β̃ for β0. Compute

Σ̂ =
1

n

n∑
i=1

Xib
′′(XT

i β̃)XT
i . (10)

Step 3. For t = sn, sn + 1, . . . , n − 1, estimate Mj0 based on the sub-dataset Ft =

{(X1, Y1), . . . , (Xt, Yt)}. Denoted by M̂(t)
j0

the corresponding estimator. We require

|M̂(t)
j0
| ≤ n, j0 /∈ M̂(t)

j0
. Compute

ω̂M̂(t)
j0
,j0

= Σ̂−1

M̂(t)
j0
,M̂(t)

j0

Σ̂M̂(t)
j0
,j0

and σ̂2

M̂(t)
j0
,j0

= Σ̂j0,j0 − Σ̂T

M̂(t)
j0
,j0
ω̂M̂(t)

j0
,j0
.

Step 4. Estimate Mj0 based on the sub-dataset {(Xsn+1, Ysn+1), . . . , (Xn, Yn)}. Denoted

by M̂(−sn)
j0

the resulting estimator. We require |M̂(−sn)
j0
| ≤ n, j0 /∈ M̂(−sn)

j0
. Compute

ω̂M̂(−sn)
j0

,j0
= Σ̂−1

M̂(−sn)
j0

,M̂(−sn)
j0

Σ̂M̂(−sn)
j0

,j0
and σ̂2

M̂(−sn)
j0

,j0
= Σ̂j0,j0 − Σ̂T

M̂(−sn)
j0

,j0
ω̂M̂(−sn)

j0
,j0
.
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Step 5. Define β̂j0 to be the solution to the following equation,

sn−1∑
t=0

Ẑt+1,j0

σ̂M̂(−sn)
j0

,j0

{
Yt+1 − µ

(
Xt+1,j0β0,j0 +X

t+1,M̂(−sn)
j0

β̃M̂(−sn)
j0

)}

+
n−1∑
t=sn

Ẑt+1,j0

σ̂M̂(t)
j0
,j0

{
Yt+1 − µ

(
Xt+1,j0β0,j0 +X

t+1,M̂(t)
j0

β̃M̂(t)
j0

)}
= 0,

where Ẑt+1,j0 = Xt+1,j0 − ω̂TM̂(−sn)
j0

,j0
X

t+1,M̂(−sn)
j0

for t = 0, . . . , sn − 1.

The estimating function in Step 5 can be solved via the Newton-Raphson method with

the initial value β̂
(0)
j0

= β̃j0 . More specifically, for l = 1, 2, . . . , we can iteratively update β̂j0

by

β̂
(l)
j0

= β̂
(l−1)
j0

+

n−1∑
t=0

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0

{
Yt+1 − µ

(
Xt+1,j0 β̂

(l−1)
j0

+X
t+1,M̂(t)

j0

β̃M̂(−sn)
j0

)}
n−1∑
t=0

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0Xt+1,j0b
′′
(
Xt+1,j0 β̂

(l−1)
j0

+X
t+1,M̂(t)

j0

β̃M̂(t)
j0

) , (11)

where we use a shorthand and write M̂(t)
j0

= M̂(−sn)
j0

, for t = 0, . . . , sn − 1. Define

Γ∗,(l−1)
n =

1

n

n−1∑
t=0

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0Xt+1,j0b
′′
(
Xt+1,j0 β̂

(l−1)
j0

+X
t+1,M̂(t)

j0

β̃M̂(t)
j0

)
.

A two-sided 1− α CI for β0,j0 is given by

β̂
(l)
j0
±

zα
2
φ̂1/2

√
nΓ
∗,(l−1)
n

, (12)

where φ̂ is some consistent estimator for φ0. We state the following conditions.

(A1*) Assume M̂(n)
j0

satisfies Pr(|M̂(n)
j0
| ≤ κn) = 1 for some 1 ≤ κn = o(n). Besides, there

exists some constant α0 > 1 such that

Pr
(
Mj0 ⊆ M̂

(n)
j0

)
≥ 1−O

(
1

nα0

)
,

13



(A2*) Assume there exists some constant c̄ > 0 such that for any M ⊆ I and |M| ≤ κn,

λmin (Σj0∪M,j0∪M) ≥ c̄.

(A3*) Assume there exists some constant c0 > 0 such that ‖XT
0 a‖ψ2 ≤ c0‖a‖2 for any

a ∈ Rp.

(A4*) Assume maxj∈[1,...,p] |X0,j| ≤ ω0 for some constant ω0 > 0. Assume |XT
0 β0| ≤ ω̄ for

some constant ω̄ > 0.

(A5*) Assume (i) Pr(‖β̃ − β0‖2 ≤ ηn) → 1 for some ηn > 0; (ii) ηn
√
κn log p = o(1) and

√
nη2

n = o(1); (iii) Pr(‖β̃Mc
0
−β0,Mc

0
‖1 ≤ k0‖β̃M0−β0,M0‖1)→ 1 for some constant k0 > 0.

(A6*) Assume ‖Y0 − µ(XT
0 β0)‖ψ1|X0 is uniformly bounded for all X0, where ‖ · ‖ψ1|X0

denotes the Orlicz norm conditional on X0.

(A7*) Assume φ̂
P→ φ0.

Conditions (A1*)-(A3*) are very similar to (A1)-(A3). In (A4*), for technical conve-

nience, we assumeX0,j’s andXT
0 β0 are bounded. In (A5*), we further assume

√
nη2

n = o(1).

Note that such assumption doesn’t appear in (A4). This is because we focus on a more

general class of models here. Assume (A4*) holds. Then (A6*) is automatically satisfied

for logistic and Poisson regression models. In logistic or Poisson regression models, we have

φ0 = 1. Condition (A7*) thus automatically holds by setting φ̂ = 1.

Theorem 3.1. Assume (A1*)-(A7*) hold. Assume sn → ∞, sn = o(n), κ
5/2
n log p =

O(n/ log2 n) and κ3
n = O(n). Then, for any fixed l ≥ 1, we have

√
nΓ
∗,(l−1)
n

φ̂1/2
(β̂

(l)
j0
− β0,j0)

d→ N(0, 1).

Theorem 3.1 proves the validity of the two-sided CI in (12), for any l ≥ 1. When l = 1,

β̂
(l)
j0

corresponds to the solution of the first-order approximation of the score equation. We

note that Bickel (1975) and Ning and Liu (2017) used a similar one-step approximation to

ensure the consistency of the resulting estimator. In practice, we can update β̂
(l)
j0

for a few

Newton steps. In our numerical experiments, we find that β̂
(l)
j0

converges very fast and it

suffices to set l = 3, 4 or 5.
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3.2 Asymptotic efficiency

Theorem 3.1 proves the validity of the CI in (12). The length of the CI is given by

L(β̂
(l)
j0
, α) = 2zα/2

φ̂1/2

Γ
∗,(l−1)
n

√
n
. (13)

Under the given conditions in Theorem 3.1, it follows from the law of large numbers for

martingales (Csörgö, 1968) that

Γ∗,(l−1)
n =

sn
n
σM̂(−sn)

j0
,j0

+
1

n

(
n−1∑
t=sn

σM̂(t)
j0
,j0

)
+ op(1), (14)

where

σ2
M,j0

= Σj0,j0 −ΣT
M,j0

Σ−1
M,MΣM,j0 ,

for any M⊆ Ij0 .

By Assumption (A1*) and (A2*), we have almost surely,

σ2

M̂(−sn)
j0

,j0
≥ c̄ and σ2

M̂(t)
j0
,j0
≥ c̄, ∀t = sn, . . . , n− 1. (15)

Under (A7*), φ̂ is consistent. This together with (13)-(15) yields

√
nL(β̂j0 , α) =

2zα/2φ
1/2
0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n

+ op(1). (16)

Based on (16), we compare the length of the CI of the proposed method with the de-

sparsified Lasso method, the decorrelated score method and the “oracle” method below.
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3.2.1 Comparison with the de-sparsified Lasso and the decorrelated score

Consider the Lasso estimator

β̂L = arg min
β

(
1

n

n∑
i=1

{b(XT
i β)− YiXT

i β}+ λn‖β‖1

)
.

The de-sparsified Lasso estimator is defined by

β̂DL = β̂L + Θ̂

{
1

n

n∑
i=1

(
XT

i {Yi − µ(XT
i β̂

L)}
)}

,

where the matrix Θ̂ is computed by the nodewise Lasso (see Section 3.1.1 in van de Geer

et al., 2014). Theorem 3.1 in van de Geer et al. (2014) proved that

√
n(β̂DLj0 − β0,j0)/

√
eTj0,pΩ̂ej0,p ∼ N(0, 1), (17)

where

Ω̂ = Θ̂

(
1

n

n∑
i=1

Xi{Yi − µ(XT
i β̂

L)}2XT
i

)
Θ̂T ,

and

ej1,j2 = (0, . . . , 0︸ ︷︷ ︸
j1−1

, 1, 0, . . . , 0︸ ︷︷ ︸
j2−j1

).

for any integer 1 ≤ j1 < j2.

Based on the de-sparsified Lasso estimator, the corresponding CI for β0,j0 is given by

β̂DLj0 − zα2
√
eTj0,pΩ̂ej0,p√

n
, β̂DLj0 + zα

2

√
eTj0,pΩ̂ej0,p√

n

 , (18)
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Moreover, it follows from Theorem 3.2 in van de Geer et al. (2014) that

eTj0,pΩ̂ej0,p = eTj0,pΣ
−1ej0,pφ0 + op(1).

Therefore, the length of (18) satisfies

√
nL(β̂DLj0 , α) = 2zα/2φ

1/2
0

√
eTj0,pΣ

−1ej0,p + op(1). (19)

Ning and Liu (2017) proposed to construct the CI for high-dimensional parameters

in GLM based on the one-step estimator that solves a first-order approximation of the

decorrelated score equation. Specifically, the one-step estimator is given by

β̂DSj0 = β̃j0 +

n−1∑
t=0

(Xt+1,j0 − ŵTXt+1,Ij0 )
{
Yt+1 − µ

(
XT

t+1β̃
)}

n−1∑
t=0

(Xt+1,j0 − ŵTXt+1,Ij0 )Xt+1,j0b
′′
(
XT

t+1β̃
) , (20)

where β̃ and ŵ are some consistent estimators for β0 and Σ−1
Ij0 ,Ij0

ΣIj0 ,j0 , respectively. The

corresponding CI is given by

[
β̂DSj0 − zα2 φ̂

1/2(σ̂s)
−1/2, β̂DSj0 + zα

2
φ̂1/2(σ̂s)

−1/2
]
,

where σ̂s is the denominator of the second term on the RHS of (20) and φ̂ is some consistent

estimator for φ0. Under certain conditions, we can show

√
nL(β̂DSj0 , α) =

2zα
2
φ

1/2
0

σIj0 ,j0
+ op(1) = 2zα

2
φ

1/2
0

√
eTj0,pΣ

−1ej0,p + op(1), (21)

where the last equality follows from the matrix inversion formula (see Lemma A.5 in the

supplementary material). This together with (19) implies that the lengths of CIs based on

β̂DLj0 and β̂DSj0 are asymptotically the equivalent.
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For any M⊆ Ij0 , let

ξM,j0 = E(X0,j0 − ωTM,j0
X0,M)b′′(XT

i β0)(X0,(M∪{j0})c −Σ(M∪{j0})c,MΣ−1
M,MX0,M)

= Σ(M∪{j0})c,j0 −Σ(M∪{j0})c,MωM,j0 .

We have the following results.

Theorem 3.2. Assume (16), (19), (21), (A3*) and (A4*) hold. Let k̄ = sup|z|≤ω̄ b
′′(z).

Then for any 0 < α < 1, l ≥ 1,

√
nL(β̂DLj0 , α) =

√
nL(β̂DSj0 , α) + op(1)

≥
√
nL(β̂

(l)
j0
, α) +

φ
1/2
0 zα/2

k̄3/2c5
0

(
sn
n
‖ξM̂(−sn)

j0
,j0
‖2

2 +
1

n

n−1∑
t=sn

‖ξM̂(t)
j0
,j0
‖2

2

)
+ op(1).

Theorem 3.2 implies that the proposed CI is asymptotically shorter than those based on

the de-sparsified Lasso and the decorrelated score statistic. The difference depends on the

L2 norm of ξM̂(t)
j0
,j0

, which measures the partial dependence between X0,j0 and X
0,(M̂(t)

j0
∪j0)c

,

after adjusted by X
0,M̂(t)

j0

. For linear regression models, we have ξM,j0 = 0 when X0,j0 is

independent of other predictors. However, ‖ξM,j0‖2 can be positive when X0,j0 is partially

correlated with X0,(M∪j0)c given X0,M.

Although our method yields narrower CI on average, its validity relies on certain

minimal-signal-strength conditions on β0,Ij0 , as discussed in Section 2.2. This is a po-

tential disadvantage of our method. Moreover, our procedure can be more time consuming

than the existing methods, as it requires to recursively estimate the support set based on

different data subsets. A variant of our method is proposed in Section 3.3 to reduce the

computational cost.

18



3.2.2 Comparison with the oracle method

We compare the proposed CI with the CI of the oracle method. The oracle knew the set

Mj0 ahead of time. It estimates β0,j0 by β̂oraclej0
defined as

(β̂oraclej0
, β̂oracleMj0

) = arg min
(βj0 ,βMj0

)

1

n

n∑
i=1

(
b(Xi,j0βj0 +XT

i,Mj0
βMj0

)− Yi(Xi,j0βj0 +XT
i,Mj0

βMj0
)
)
.

Let

Σ̂oracle =
1

n

n∑
i=1

Xib
′′(Xi,j0 β̂

oracle
j0

+XT
i,Mj0

β̂oracleMj0
)Xi.

The asymptotic variance of
√
nβ̂oraclej0

can be consistently estimated by

φ̂eT1,|Mj0
|+1

 Σ̂oracle
j0,j0

Σ̂oracle
j0,Mj0

Σ̂oracle
Mj0

,j0
Σ̂oracle
Mj0

,Mj0

−1

e1,|Mj0
|+1 = φ̂

{
Σ̂oracle
j0,j0

− Σ̂oracle
j0,Mj0

(
Σ̂oracle
Mj0

,Mj0

)−1

Σ̂oracle
Mj0

,j0

}−1

,

where the equality follows by the matrix inversion formula (see Lemma A.5). Let

σ̂oracleMj0
,j0

=

√
Σ̂oracle
j0,j0

− Σ̂oracle
j0,Mj0

(
Σ̂oracle
Mj0

,Mj0

)−1

Σ̂oracle
Mj0

,j0
.

The corresponding confidence interval is given by

[
β̂oraclej0

− zα
2
φ̂1/2/(

√
nσ̂oracleMj0

,j0
), β̂oraclej0

+ zα
2
φ̂1/2/(

√
nσ̂oracleMj0

,j0
)
]
, (22)

where φ̂ is some constant estimator for φ0.

Under certain conditions, the length of (22) satisfies

√
nL(β̂oraclej0

, α) =
2zα/2φ

1/2
0

σMj0
,j0

+ op(1). (23)

Theorem 3.3. Assume (16) and (23) hold. Assume sn → ∞, n − sn → ∞, and there
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exists some α0 > 1 such that

Pr
(
Mj0 = M̂(n)

j0

)
≥ 1−O

(
1

nα0

)
. (24)

Then for any 0 < α < 1, l ≥ 1, we have

√
nL(β̂

(l)
j0
, α) =

√
nL(β̂oraclej0

, α) + op(1).

Condition (24) in Theorem 3.3 requires the variable selection procedure to be consistent.

Under this condition, we prove the “oracle” property of our method, which means that the

length of the proposed CI is asymptotically equivalent to the CI of the oracle method.

3.3 Computationally efficient procedure

The proposed estimation procedure in Section 3.1 requires to estimate Mj0 (n − sn + 1)

times. This will be time consuming for large n. To address this concern, for a given integer

S > 1, we can compute M̂(t)
j0

approximately (n− sn)/S times based on the sub-dataset Ft
for t = sn, sn +S, sn + 2S, . . . , sn + b(n− 1− sn)/ScS where bzc denotes the largest integer

smaller than or equal to z. For any sn < t < n, define

M̂(t)
j0

= M̂(sn+l0S)
j0

,

for some nonnegative integer l0 such that sn + l0S ≤ t < sn + (l0 + 1)S. The resulting

estimator β̂
(l)
j0

is computed by (11). The corresponding CI can be similarly derived as in

(12).

4 Numerical examples

4.1 Linear regression

In this section, we conduct some simulation studies to examine the performance of the

proposed CI in high dimensional linear regression models. Suppose that {Xi, Yi}, i =

20



1, . . . , n is a sample from the following model:

Yi = XT
i β0 + εi, (25)

where εi ∼ N(0, 1), Xi ∼ N(0,Σ).

Consider the following four settings: (A) n = 100, β0,1 = β0,2 = 1.0 and β0,j = 0 for

j > 2; (B) n = 100, β0,1 = β0,2 = 2.0 and β0,j = 0 for j > 2; (C) n = 200, β0,1 = 2.0,

β0,2 = −2.0 and β0,j = 0 for j > 2; (D) n = 200, β0,1 = β0,2 = β0,3 = β0,4 = β0,5 = 1.0 and

β0,j > 0 for j > 5. For each setting, we set p = 1000, and consider two different covariance

matrices Σ, corresponding to Σ = I and Σ = {0.5|i−j|}i,j=1,...,p. This yields a total of 8

scenarios. For the first three settings, the objective is to construct 95% two-sided CIs for

β0,2 and β0,3. For the last setting, we aim to construct 95% two-sided CIs for β0,3, β0,4, β0,5

and β0,6. Comparison is made among the following CIs:

(i) The proposed CI in (9), labeled by ROSE in Tables 1 and 2;

(ii) The CI constructed by the de-sparsified Lasso (DLASSO) method;

(iii) The CI constructed by the Bootstrap Lasso+Partial Ridge (BLPR) method (Liu et al.,

2017);

(iv) The CI constructed by the simple sample-splitting (S3) method.

To calculate the CI in (9), we set sn = b2n/ log(n)c. Such a choice of sn satisfies the

conditions in Theorem 2.1. The set Mj0 is estimated by ISIS. The estimation procedure

is implemented by the R package SIS (Saldana and Feng, 2016). To compute the initial

estimator β̃, we first apply ISIS based on all observations and then fit a penalized linear

regression model using the R package ncvreg (Breheny and Huang, 2011) with SCAD

penalty function for the variables picked by ISIS. The variance estimator σ̂ is computed

by refitted cross-validation. We implement the CI in (ii) by the R package hdi (Dezeure

et al., 2015). BLPR estimates β0,j0 by the Lasso+Partial Ridge (LPR) estimator. More

specifically, it first uses the Lasso to select important predictors and then refit the model

using partial ridge regression based on the selected variables. The corresponding CI for

β0,j0 is constructed by bootstrapping the LPR estimator. We implement the BLPR method

by the R package HDCI. To compute the CI in (iv), we randomly split the samples into two
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equal halves, use ISIS to estimate the support of control variables and construct the CI

based on the remaining second half of the data. In Table 1 and 2, we report the empirical

coverage probability (ECP) and average length (AL) of these CIs. Results are averaged

over 500 simulations.

It can be seen from Table 1 that ECPs of our procedure and the S3 method are close

to the nominal level in all cases. However, CIs constructed by the S3 method are approx-

imately
√

2 times wider than our proposed method, according to Table 2. As commented

in the introduction, this is because S3 only uses half of the samples to evaluate β0,j0 .

Under the settings where Σ = {0.5|i−j|}i,j, ECPs of the DLASSO method are signifi-

cantly smaller than the nominal level. For example, in Setting (A) and (B), ECPs of the

DLASSO method are smaller than 90% when Σ = {0.5|i−j|}i,j. Under the settings where

Σ = Ip, CIs constructed by the DLASSO method have approximately nominal coverage

probabilities. However, we note these CIs are wider than the proposed CIs in all cases. Take

Setting (D) as an example. When Σ = Ip, ALs of the DLASSO method are approximately

10% larger than the proposed method.

We note that BLPR yields very narrow CIs for zero parameters. For nonzero parameters

however, the CIs based on the BLPR method are much wider than the proposed CIs in

all cases. Moreover, under the settings where Σ = Ip, ECPs of the BLPR method are

significantly smaller than the nominal level for nearly all nonzero parameters.

4.2 Logistic regression

We generate {Xi, Yi}i=1,...,n from the following logistic regression model

logit{Pr(Yi = 1|Xi)} = XT
i β0,

where logit(z) = log{z/(1− z)} for 0 < z < 1.

We consider two settings: (A) n = 500, β0,1 = 2.0, β0,2 = −2.0 and β0,j = 0 for

j > 2; (B) n = 600, β0,1 = β0,2 = β0,3 = β0,4 = β0,5 = 1.0, β0,j = 0 for j > 6. As in

Section 4.1, we set p = 1000 and consider two different covariance matrices, Σ = I and
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Table 1: ECP (%) of the CIs with standard errors in parenthesis

Setting (A) ROSE DLASSO BLPR S3

Σ = Ip
β2 93.0 (1.1) 94.0 (1.1) 83.0 (1.7) 94.0 (1.1)
β3 96.4 (0.8) 96.0 (0.9) 97.4 (0.7) 95.2 (1.0)

Σ = {0.5|i−j|}i,j
β2 93.6 (1.1) 89.0 (1.4) 92.0 (1.2) 94.6 (1.0)
β3 94.6 (1.0) 86.0 (1.6) 95.4 (0.9) 93.4 (1.1)

Setting (B) ROSE DLASSO BLPR S3

Σ = Ip
β2 94.0 (1.1) 94.0 (1.1) 87.0 (1.5) 94.4 (1.0)
β3 96.8 (0.8) 96.0 (0.9) 97.4 (0.7) 95.2 (1.0)

Σ = {0.5|i−j|}i,j
β2 93.8 (1.1) 89.0 (1.4) 93.4 (1.1) 94.4 (1.0)
β3 95.6 (0.9) 85.6 (1.6) 96.8 (0.8) 95.2 (1.0)

Setting (C) ROSE DLASSO BLPR S3

Σ = Ip
β2 95.6 (0.9) 95.8 (0.9) 94.6 (1.0) 93.8 (1.1)
β3 94.8 (1.0) 95.2 (1.0) 96.0 (0.9) 96.6 (0.8)

Σ = {0.5|i−j|}i,j
β2 94.8 (1.0) 76.4 (1.9) 90.8 (4.0) 96.4 (0.8)
β3 94.0 (1.1) 92.0 (1.2) 95.6 (0.9) 93.6 (1.1)

Setting (D) ROSE DLASSO BLPR S3

Σ = Ip

β3 94.8 (1.0) 94.0 (1.1) 92.6 (1.2) 95.2 (1.0)
β4 93.8 (1.1) 93.4 (1.1) 91.0 (1.3) 93.8 (1.1)
β5 96.2 (0.9) 95.4 (0.9) 91.0 (1.3) 95.2 (1.0)
β6 94.4 (1.0) 95.2 (1.0) 95.0 (1.0) 95.6 (0.9)

Σ = {0.5|i−j|}i,j
β3 96.0 (0.9) 81.2 (1.7) 93.2 (1.1) 94.6 (1.0)
β4 93.4 (1.1) 82.6 (1.7) 94.8 (1.0) 93.8 (1.1)
β5 94.6 (1.0) 91.0 (1.2) 93.6 (1.1) 96.4 (0.8)
β6 93.8 (1.1) 91.6 (1.3) 95.0 (1.0) 95.4 (0.9)
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Table 2: AL of the CIs with standard errors in parenthesis (numbers reported in the table are
multiplied by 100)

Setting (A) ROSE DLASSO BLPR S3

Σ = Ip
β2 42.2 (0.3) 45.4 (0.3) 88.5 (1.4) 63.1 (0.5)
β3 42.4 (0.3) 45.1 (0.2) 2.6 (0.1) 64.1 (0.5)

Σ = {0.5|i−j|}i,j
β2 48.0 (0.3) 47.5 (0.2) 106.2 (1.9) 72.4 (0.5)
β3 49.1 (0.3) 47.8 (0.2) 5.4 (0.3) 74.8 (0.6)

Setting (B) ROSE DLASSO BLPR S3

Σ = Ip
β2 40.6 (0.2) 45.4 (0.2) 154.8 (3.4) 60.2 (0.5)
β3 40.7 (0.2) 45.1 (0.2) 3.4 (0.1) 60.5 (0.4)

Σ = {0.5|i−j|}i,j
β2 46.7 (0.2) 47.6 (0.2) 193.5 (4.4) 69.2 (0.5)
β3 47.6 (0.3) 47.8 (0.2) 6.8 (0.3) 70.9 (0.6)

Setting (C) ROSE DLASSO BLPR S3

Σ = Ip
β2 27.9 (0.1) 30.1 (0.1) 142.8 (3.3) 40.0 (0.2)
β3 28.0 (0.1) 30.2 (0.1) 4.7 (0.1) 40.5 (0.2)

Σ = {0.5|i−j|}i,j
β2 32.2 (0.1) 34.5 (0.1) 161.6 (2.8) 46.3 (0.2)
β3 32.4 (0.1) 34.7 (0.1) 9.8 (0.3) 46.6 (0.2)

Setting (D) ROSE DLASSO BLPR S3

Σ = Ip

β3 28.4 (0.1) 31.4 (0.1) 65.6 (1.6) 42.7 (0.2)
β4 28.5 (0.1) 31.4 (0.1) 65.6 (1.6) 42.6 (0.2)
β5 28.3 (0.1) 31.3 (0.1) 63.9 (1.6) 42.3 (0.2)
β6 28.5 (0.1) 31.4 (0.1) 3.8 (0.1) 42.7 (0.2)

Σ = {0.5|i−j|}i,j
β3 37.0 (0.1) 34.0 (0.1) 55.1 (1.3) 55.6 (0.3)
β4 36.9 (0.1) 33.9 (0.1) 68.9 (1.4) 55.7 (0.3)
β5 33.2 (0.1) 33.9 (0.1) 84.5 (1.6) 50.3 (0.2)
β6 33.1 (0.1) 33.8 (0.1) 6.5 (0.2) 50.1 (0.3)
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Table 3: ECP and AL of the CIs, with standard errors in parenthesis

Setting (A) ROSE DLASSO S3
Σ ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100

Ip
β2 95.8 (0.9) 80.5 (0.3) 13.0 (1.5) 53.4 (0.2) 93.6 (1.1) 118.8 (0.8)
β3 94.8 (1.0) 51.2 (0.1) 97.2 (0.7) 45.2 (0.1) 93.8 (1.1) 75.5 (0.3)

{0.5|i−j|}i,j
β2 95.8 (0.9) 77.1 (0.3) 26.6 (2.0) 52.9 (0.1) 95.2 (1.0) 113.0 (0.6)
β3 94.8 (1.0) 52.9 (0.1) 95.4 (0.9) 47.5 (0.1) 95.8 (0.9) 76.9 (0.2)

Setting (B) ROSE DLASSO S3

Ip

β3 94.0 (1.1) 51.1 (0.1) 30.8 (1.1) 39.9 (0.1) 95.2 (1.0) 76.2 (0.3)
β4 93.2 (1.1) 50.9 (0.1) 26.0 (1.1) 39.8 (0.1) 95.6 (0.9) 75.7 (0.3)
β5 96.2 (0.9) 50.9 (0.1) 30.6 (0.9) 39.8 (0.1) 94.8 (1.0) 76.2 (0.3)
β6 93.4 (1.0) 43.9 (0.1) 96.4 (1.0) 38.1 (0.1) 92.4 (1.2) 64.9 (0.2)

{0.5|i−j|}i,j
β3 95.6 (0.9) 71.5 (0.2) 88.2 (1.4) 55.7 (0.2) 95.0 (1.0) 107.5 (0.5)
β4 93.2 (1.1) 71.5 (0.2) 84.6 (1.6) 54.9 (0.2) 93.8 (1.1) 108.0 (0.5)
β5 93.8 (1.1) 65.5 (0.2) 67.6 (2.1) 53.1 (0.1) 93.6 (1.1) 99.1 (0.5)
β6 94.0 (1.1) 58.5 (0.2) 95.0 (1.0) 50.8 (0.1) 94.0 (1.1) 88.2 (0.4)

Σ = {0.5|i−j|}i,j=1,...,p. The objective is to construct two-sided CIs for β0,2, β0,3 in Setting

(A) and β0,3, β0,4, β0,5, β0,6 in Setting (B).

To implement the proposed CI in (12), we set sn = b2n/ log(n)c and l = 5. We use the

R package SIS and estimateMj0 by ISIS. The initial estimator β̃ is computed by fitting a

penalized logistic regression model with SCAD penalty function for the variables picked by

ISIS. We implement the penalized logistic regression by the R package ncvreg. For Setting

(B), we update M̂(t)
j0

using the method discussed in Section 3.3 with S = 2.

We further compare the proposed CI with the CI constructed by the DLASSO method

and the S3 method. In Table 3, we report the ECP and AL of the proposed CI and the

CIs constructed by DLASSO and S3. It can been seen that DLASSO performs poorly for

nonzero parameters. On the contrary, ECPs of the proposed CIs are close to the nominal

level in almost all cases. In addition, our CIs are much narrower than those based on the

S3 method in all cases.

4.3 Real data analysis

We apply the proposed methods to a real dataset riboflavin (vitamin B2) production in

Bacillus subtilis. This dataset is provided by DSM (Kaiseraugst, Switzerland) and is pub-
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licly available in the R package hdi. It consists of a response variable which is the logarithm

of the riboflavin production rate and 4088 predictors measuring the logarithm of the ex-

pression level of 4088 genes. There are a total of 71 observations. We model this data with

a linear regression model, center the response and standardize all the covariates before

analysis. To identify genes that are significantly associated with the response, we construct

CIs for each individual coefficient and apply Bonferroni’s method for multiple adjustment.

We compare the proposed method with the de-sparsified Lasso method and implement both

methods as discussed in Section 4.1. At the 5% significance level, the proposed method

finds three important genes (the 1588th, 3154th and 4004th) while the de-sparsified Lasso

procedure claims no variables are significant.

5 Discussion

5.1 Statistical inference via online estimation

In this paper, we develop an online estimation procedure for high-dimensional statistical

inference, to account for model selection uncertainty in subsequent inferences. Such an

online inference method can be applied to some other non-regular problems as well. Vari-

ations of this approach has been used by Luedtke and van der Laan (2016) to provide a

CI for the mean outcome under a non-unique optimal treatment regime, and by Luedtke

and van der Laan (2017) to construct a CI for the maximal absolute correlation between

responses and covariates.

5.2 Multi-dimensional extensions

We focus on constructing CIs for a single regression coefficient in GLMs. The proposed

procedure can be naturally extended to form confidence regions for multi-dimensional pa-

rameters as well. Let J0 be an arbitrary subset of I with |J0| > 1. The confidence region

for β0,J0 can be constructed as follows.

Let MJ0 = {j /∈ J0 : β0,j0 6= 0}. We first estimate MJ0 by some model selection

procedure based on the sub-dataset Ft = {(X1, Y1), . . . , (Xt, Yt)} for t = sn, . . . , n − 1
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and {(Xsn+1, Ysn+1), . . . , (Xn, Yn)}. Denoted by M̂(sn)
J0 , M̂(sn+1)

J0 , . . . ,M̂(n−1)
J0 and M̂(−sn)

J0

the corresponding estimators. We calculate Σ̂ as in (10) based on some consistent initial

estimator β̃ and compute

ω̂M̂(t)
J0
,J0

= Σ̂−1

M̂(t)
J0
,M̂(t)

J0

Σ̂M̂(t)
J0
,J0
, σ̂M̂(t)

J0
,J0

=

(
Σ̂J0,J0 − Σ̂T

M̂(t)
J0
,J0
ω̂M̂(t)

J0
,J0

)1/2

,

for t = sn, . . . , n− 1 and

ω̂M̂(−sn)
J0

,J0
= Σ̂−1

M̂(−sn)
J0

,M̂(−sn)
J0

Σ̂M̂(−sn)
J0

,J0
, σ̂M̂(−sn)

J0
,J0

=

(
Σ̂J0,J0 − Σ̂T

M̂(−sn)
J0

,J0
ω̂M̂(−sn)

J0
,J0

)1/2

.

Consider the following score equation:

sn−1∑
t=0

σ̂−1

M̂(−sn)
J0

,J0
ẐT
t+1,J0

{
Yt+1 − µ

(
Xt+1,J0β0,J0 +X

t+1,M̂(−sn)
J0

β̃M̂(−sn)
J0

)}

+
n−1∑
t=sn

σ̂−1

M̂(t)
J0
,J0
ẐT
t+1,J0

{
Yt+1 − µ

(
Xt+1,J0β0,J0 +X

t+1,M̂(t)
J0
β̃M̂(t)

J0

)}
= 0,

where Ẑt+1,J0 = Xt+1,J0 − ω̂TM̂(t)
J0
,J0
X

t+1,M̂(t)
J0

for t = sn, . . . , n − 1 and Ẑt+1,J0 = Xt+1,J0 −

ω̂T
M̂(−sn)

J0
,J0
X

t+1,M̂(−sn)
J0

for t = 0, . . . , sn− 1. The estimator β̂J0 can be computed by solving

the score equation via Newton’s method with initial value β̃J0 . The corresponding 1 − α

100% confidence region is given by

{
βJ0 ∈ R|J0| : n(βJ0 − β̂J0)

T (Γ∗n)TΓ∗n(βJ0 − β̂J0)φ̂ ≤ χ2
α(|J0|)

}
, (26)

where φ̂ denotes some constant estimator for φ0, χ2
α(|J0|) is the upper α-quantile of a central

χ2 distribution with |J0| degrees of freedom, and

Γ∗n =
1

n

sn−1∑
t=0

σ̂−1

M̂(−sn)
J0

,J0
ẐT
t+1,J0b

′′
(
Xt+1,J0β̂0,J0 +X

t+1,M̂(−sn)
J0

β̃M̂(−sn)
J0

)

+
1

n

n−1∑
t=sn

σ̂−1

M̂(t)
J0
,J0
ẐT
t+1,J0b

′′
(
Xt+1,J0β̂0,J0 +X

t+1,M̂(t)
J0
β̃M̂(t)

J0

)
.
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To guarantee the validity of (26), the number of elements in J0 needs to be much smaller

than n. It would be interesting to construct confidence regions for the entire regression

coefficient vector β0 based on some multiple comparison procedures. However, this is

beyond the scope of the current paper.

5.3 Extension to generic penalized M-estimators

The proposed method can also be extended beyond the class of GLMs to a general frame-

work with a convex loss function. Specifically, given a high-dimensional random vector U0,

define

β0 = arg min
β∈Rp

E`(U0,β),

for some convex loss function `. An initial estimator for β0 can be computed by minimizing

β̃ = arg min
β∈Rp

(
1

n

n∑
i=1

`(Ui,β) +

p∑
j=1

ρλ(|βj|)

)
, (27)

where U1, . . . ,Un are i.i.d random vectors generated according as U0, and ρλ(·) denotes

some penalty function. In addition to estimating the regression coefficients in GLMs, such

a generic framework includes some other important applications such as estimation of the

precision matrix in Gaussian graphical models (as illustrated in Section 2.1.4 of Ning and

Liu, 2017).

Here, we focus on constructing the CI for a univariate parameter β0,j0 . Let M̂(t)
j0

denote

the estimated support of the control variables based on {Ui}ti=1 for t = sn, sn + 1, . . . , n−1

and M̂(−sn)
j0

the estimated support based on {Ui}ni=sn+1. Define

Σ̂ =
1

n

n∑
i=1

∂2

∂β∂βT
`(Ui, β̃),

where β̃ corresponds to the initial estimator in (27). Given Σ̂, we compute ω̂M̂(t)
j0
,j0

, and

ω̂M̂(−sn)
j0

,j0
as in Section 3.1. For any model M ⊆ Ij0 , suppose we have some consistent

28



estimator σ̂2
M,j0

for

σ2
M,j0

= E

(
∂`(U0,β0)

∂βj0
− ωTM,j0

∂`(U0,β0)

∂βM

)2

.

For any c ∈ R, M ⊆ Ij0 and α ∈ R|M|, we define a p-dimensional vector θ = h(c,M,α)

such that θj0 = c, θM = α and θMc−{j0} = 0. Let M̂(t)
j0

= M̂(−sn)
j0

for t = 0, 1, . . . , sn − 1

and β̂
(0)
j0

= β̃j0 , we update β̂j0 as

β̂
(l)
j0

= β̂
(l−1)
j0

−

n−1∑
t=0

1

nσ̂M̂(t)
j0
,j0

∂`(Ut+1, h(β̂
(l−1)
j0

,M̂(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β̂
(l−1)
j0

,M̂(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0


n−1∑
t=0

1

nσ̂M̂(t)
j0
,j0

∂2`(Ut+1, h(β̂
(l−1)
j0

,M̂(t)
j0
, β̃M̂(t)

j0

))

∂β2
j0

− ω̂T
M̂(t0)

j0
,j0

∂2`(Ut+1, h(β̂
(l−1)
j0

,M̂(t)
j0
, β̃M̂(t)

j0

))

∂βj0∂βM̂(t)
j0


︸ ︷︷ ︸

Γ
∗,(l−1)
n

,

for l = 1, 2, . . . The corresponding CI for β0,j0 is given by

β̂
(l)
j0
±

zα
2√

nΓ
∗,(l−1)
n

.

In Section C of the supplementary article, we sketch a few lines to show that the above CI

achieves nominal coverage under certain conditions.

5.4 Doubly-robust procedure

The proposed ROSE algorithm constructs the score equation for β0,j0 by recursively esti-

mating the support of control variables. As commented in (2.2), such a procedure requires

certain minimal-signal-strength conditions on β0,Ij0 .

We now introduce a variant of our method that is valid even when the minimal-signal-

strength conditions fail. At the t-th iteration, instead of estimating Mj0 only, we might

apply another variable selection procedure to estimate the support of ωIj0 ,j0 based on Ft
and set M̂(t)

j0
to be a union of the two sets of important variables selected. The result-
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ing CI is doubly-robust in the sense that it achieves nominal coverage as long as either

β0,Ij0 satisfies certain minimal-signal-strength conditions, or the `2 norm of weak signals

in β0,Ij0 and ωIj0 ,j0 is o(n−1/4). The latter condition allows the existence of weak signals

in β0,Ij0 . It automatically holds when variables with signals larger than or proportional to

(n/ log log n)−1/4(s∗)−1/2 can be consistently identified by the model selection procedure.

In addition, it is considerably weaker than the zonal assumption (Bühlmann and Mandozzi,

2014) that requires the strength of weak signals to be o(n−1/2). More detailed discussions

are given in Section B.1.3 of the supplementary article.
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This supplementary article is organized as follows. In Section A, we present proofs of

Theorem 2.1, Theorem 3.1, Theorem 3.2, Theorem 3.3, Lemma A.1, Lemma A.2, Lemma

A.3 and Lemma A.4. In Section B, we provide detailed discussions on our technical con-

ditions and compare them with those imposed in the existing literature. In Section C, we

give more details on the extensions to the generic penalized M-estimators.

A Proofs

A.1 Proof of Theorem 2.1

Before proving Theorem 2.1, we present the following lemmas whose proofs are given in

the supplementary material.

Lemma A.1. Under conditions in Theorem 2.1, we have

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

σM,j0 ≥
√
c̄, max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

‖ωM,j0‖2 ≤ (c̄)−1/2c0, (A.1)

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

E

{
1

σ4
M,j0

(
X0,j0 − ωTM,j0

X0,M
)4

}
≤ c4

0

c̄2

(
1 +

c2
0

c̄

)2

, (A.2)

max
M⊆[1,...,p]
|M|≤κn

E‖X0,M‖2
2 ≤ κnc

2
0, (A.3)
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where c̄ and c0 are defined in Condition (A2) and (A3), respectively. Moreover, we have

with probability tending to 1 that

max
j∈[1,...,p]

|X0,j| ≤
√

3c2
0 max(log p, log n). (A.4)

Lemma A.2. Under conditions in Theorem 2.1, the following events hold with probability

tending to 1,

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖ω̂M,j0 − ωM,j0‖2 ≤ c̄0

(√
κn log p√
n

)
, (A.5)

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

|σ̂M,j0 − σM,j0 | ≤ c̄0

(√
κn log p√
n

)
, (A.6)

for some constant c̄0 > 0, where ω̂M,j0 = Σ̂−1
M,MΣ̂M,j0 and σ̂2

M,j0
= Σ̂j0,j0 − Σ̂T

M,j0
ω̂M,j0,

ωM,j0 = ωM,j0 + Σ−1
M,M{Σ̂M,j0 −ΣM,j0 − (Σ̂M,M −ΣM,M)ωM,j0}.

In addition, we have

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖ω̂M,j0 − ωM,j0‖2 = Op

(
κn log p

n

)
. (A.7)

Lemma A.3. Under conditions in Theorem 2.1, the following events hold with probability

tending to 1,

max
j∈[1,...,p]

∣∣∣∣∣∣
n−1∑
t=sn

Xt+1,j√
nσM̂(t)

j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
I(j ∈ M̂(t)

j0
)

∣∣∣∣∣∣ ≤ c̄∗
√

log p, (A.8)

n−1∑
t=sn

∥∥∥∥XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∥∥∥∥2

2

≤ c̄∗nη
2
n, (A.9)

for some constant c̄∗ > 0.

Proof of Theorem 2.1: Under (A1), it follows from the Bonferroni’s inequality that

Pr

(
Mj0 ⊆

n−1⋂
t=sn

M̂(t+1)
j0

)
≥ 1−O

(
∞∑
t=sn

1

tα0

)
→ 1. (A.10)

2



Besides,

Pr
(
Mj0 ⊆ M̂

(−sn)
j0

)
→ 1. (A.11)

Under the events defined in the left-hand-side (LHS) of (A.10) and (A.11), we have

√
nΓ∗n(β̂j0 − β0,j0) =

n−1∑
t=sn

Ẑt+1,j0εt+1√
nσ̂M̂(t)

j0
,j0︸ ︷︷ ︸

I1

−
n−1∑
t=sn

Ẑt+1,j0√
nσ̂M̂(t)

j0
,j0

XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)
︸ ︷︷ ︸

I2

−
sn−1∑
t=0

Ẑt+1,j0√
nσ̂M̂(−sn)

j0
,j0

XT

t+1,M̂(−sn)
j0

(
β̃M̂(−sn)

j0

− β
0,M̂(−sn)

j0

)
︸ ︷︷ ︸

I3

+
sn−1∑
t=0

Ẑt+1,j0εt+1√
nσ̂M̂(−sn)

j0
,j0︸ ︷︷ ︸

I4

.

In the following, we break the proof into four steps. In the first three steps, we show

Ij = op(1), for j = 2, 3, 4, respectively. In the last step, we prove

I1
d→ N(0, σ2

0).

By Assumption (A6) and Slutsky’s theorem, we have

√
nΓ∗n(β̂j0 − β0,j0)

σ̂

d→ N(0, 1).

The assertion therefore follows.

Step 1: Let

I∗2 =
n−1∑
t=sn

1√
nσ̂M̂(t)

j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)
.

|I2 − I∗2 | is upper bounded by

n−1∑
t=sn

1√
nσ̂M̂(t)

j0
,j0

∣∣∣∣∣
(
ω̂M̂(t)

j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣ .
Under the given conditions, we have κn log p = o(n). Under the events defined in (A.1) and

3



(A.6), we have for sufficiently large n,

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

σ̂M,j0 ≥ min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

σM,j0 − o(1) ≥
√
c̄

2
,

and hence

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

1

σ̂M,j0

≤ 2√
c̄
. (A.12)

Under the events defined in Condition (A1) and (A.12), |I2− I∗2 | can be upper bounded by

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

1

σ̂M,j0

n−1∑
t=sn

1√
n

∣∣∣∣∣
(
ω̂M̂(t)

j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣
≤ 2√

c̄n

n−1∑
t=sn

∣∣∣∣∣
(
ω̂M̂(t)

j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣ .
By Cauchy-Schwarz inequality, we have with probability tending to 1 that

|I2 − I∗2 | ≤ 2(c̄)−1/2

√
nI

(1)
2 I

(2)
2 , (A.13)

where

I
(1)
2 =

1

n

n−1∑
t=sn

∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣2 ,
I

(2)
2 =

1

n

n−1∑
t=sn

∣∣∣∣∣
(
ω̂M̂(t)

j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
2

.

It follows from (A.9) that

I
(1)
2 = O(η2

n), (A.14)

with probability tending to 1.

For any a, b ∈ R, we have by Cauchy-Schwarz inequality that (a + b)2 ≤ 2a2 + 2b2. It

4



follows that I
(2)
2 ≤ 2I

(3)
2 + 2I

(4)
2 where

I
(3)
2 =

1

n

n−1∑
t=sn

∣∣∣∣∣
(
ω̂M̂(t)

j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
2

I
(4)
2 =

1

n

n−1∑
t=sn

∣∣∣∣∣
(
ωM̂(t)

j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
2

.

By Condition (A1), (A.7) and Cauchy-Schwarz inequality, I
(3)
2 can be bounded by

1

n

n−1∑
t=sn

‖ω̂M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0
‖2

2‖Xt+1,M̂(t)
j0

‖2
2 = Op(n

−2κ2
n log2 p)

1

n

n−1∑
t=sn

‖X
t+1,M̂(t)

j0

‖2
2.

In the following, we show

1

n

n−1∑
t=sn

‖X
t+1,M̂(t)

j0

‖2
2 = Op(κn). (A.15)

This further implies

I
(3)
2 = Op

(
κ3
n log2 p

n2

)
= Op

(
κn log p

n

)
, (A.16)

under the condition that κ2
n log p = O(n/ log2 n). To prove (A.15), it suffices to show

1

n

n−1∑
t=sn

E‖X
t+1,M̂(t)

j0

‖2
2 = O(κn). (A.17)

Since Xt+1 and M̂(t)
j0

is independent, we have by Condition (A1) that

1

n

n−1∑
t=sn

E‖X
t+1,M̂(t)

j0

‖2
2 ≤

1

n

n−1∑
t=sn

sup
M≤[1,...,p]
|M|≤κn

E‖Xt+1,M‖2
2.

The RHS is O(κn) by (A.3).

Consider I
(4)
2 . For i = 1, . . . , n and any M⊆ [1, . . . , p], define

ω
(−i)
M,j0

= ωM,j0 +
n− 1

n
Σ−1
M,M{Σ̂

(−i)
M,j0
−ΣM,j0 − (Σ̂

(−i)
M,M −ΣM,M)ωM,j0},

5



where

Σ̂
(−i)
M,j0

=
1

n− 1

∑
l 6=i

Xl,MXl,j0 and Σ̂
(−i)
M,j0

=
1

n− 1

∑
l 6=i

Xl,MX
T
l,M.

It follows that

‖ωM,j0 − ω
(−i)
M,j0
‖2 ≤

1

n
Σ−1
M,M{Xl,MXl,j0 −ΣM,j0 − (Xl,MX

T
l,M −ΣM,M)ωM,j0}.

Under the event defined in (A.4), it follows from Condition (A2) and (A.1) that

max
M∈[1,...,p],i∈[1,...,n]
j0 /∈M,|M|≤κn

‖ωM,j0 − ω
(−i)
M,j0
‖2 = O

(
κn log p+ κn log n

n

)
. (A.18)

The condition κ2
n log p = O(n/ log2 n) implies that Op(n

−1κn log p) = op(n
−1/2
√
κn log p).

By (A.7), we have with probability tending to 1 that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖ω̂M,j0 − ωM,j0‖2 ≤
(
κn log p

n

)1/2

.

Combining this together with (A.5), (A.18) and the condition κ2
n log p = O(n/ log2 n) yields

max
M∈[1,...,p],i∈[1,...,n]
j0 /∈M,|M|≤κn

‖ωM,j0 − ω
(−i)
M,j0
‖2 (A.19)

= O

(
κn log p+ κn log n

n
+

√
κn log p√
n

)
= O

(√
κn log p√
n

)
,

with probability tending to 1. Define

I
(5)
2 =

1

n

n−1∑
t=sn

∣∣∣∣∣
(
ω

(−t−1)

M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
2

,

I
(6)
2 =

1

n

n−1∑
t=sn

∣∣∣∣∣
(
ωM̂(t)

j0
,j0
− ω(−t−1)

M̂(t)
j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
2

.

By Cauchy-Schwarz inequality, we can similarly show I
(4)
2 ≤ 2I

(5)
2 + 2I

(6)
2 . Using similar

arguments in bounding I
(3)
2 , we can similarly show that

I
(6)
2 = Op

(
κ3
n(log2 p+ log2 n)

n2

)
, (A.20)

6



by (A.15) and (A.18). Under the events defined in Condition (A1) and (A.19), we have

I
(5)
2 ≤ 1

n

n−1∑
t=sn

∣∣∣∣∣
(
ω

(−t−1)

M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

∣∣∣∣∣
2

I
{
‖ω(−t−1)

M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0
‖2 = O

(√
κn log p√
n

)}
,

where I{·} denote the indicator function. Since Xt+1 is independent of ω
(−t−1)

M̂(t)
j0
,j0

and M̂(t)
j0

,

we have

EI
(5)
2 =

1

n

n−1∑
t=sn

E

∥∥∥∥Σ1/2

M̂(t)
j0
,M̂(t)

j0

(
ω

(−t−1)

M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0

)∥∥∥∥2

2

I
{
‖ω(−t−1)

M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0
‖2 = O

(√
κn log p√
n

)}
.

For any random variable Z, it follows from the definition of the Orlicz norm that

1 + E
Z2

‖Z‖2
ψ2

≤ E exp

(
Z2

‖Z‖2
ψ2

)
≤ 2,

and hence

EZ2 ≤ ‖Z‖2
ψ2
. (A.21)

Note that Σ is positive definite, we have by Condition (A3) that

‖Σ‖2 = sup
a∈Rp
‖a‖2=1

aTΣa = sup
a∈Rp
‖a‖2=1

E|aTX0|2 ≤ sup
a∈Rp
‖a‖2=1

‖aTX0‖2
ψ2
≤ c2

0, (A.22)

It follows from (A.22) that

EI
(5)
2 ≤ 1

n

n−1∑
t=sn

Eλmax(ΣM̂(t)
j0
,M̂(t)

j0

)‖ω(−t−1)

M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0
‖2

2I
{
‖ω−t−1

M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0
‖2 = O

(√
κn log p√
n

)}
= O(n−1κn log p),

with probability tending to 1. This further implies I
(5)
2 = Op(n

−1κn log p). Combining this

together with (A.20) and the condition κ2
n log p = O(n/ log2 n) yields that

I
(4)
2 = Op

(
κn log p

n
+
κ3
n(log2 p+ log2 n)

n2

)
= Op

(
κn log p

n

)
.

This together with (A.13), (A.14) and (A.16) yields that

|I2 − I∗2 | = Op(ηn
√
κn log p).
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It follows from Condition (A4) that |I2 − I∗2 | = op(1).

Let

I∗∗2 =
n−1∑
t=sn

1√
nσM̂(t)

j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)
.

By definition, we have

|I∗2 − I∗∗2 | =
n−1∑
t=sn

|σM̂(t)
j0
,j0
− σ̂M̂(t)

j0
,j0
|

√
nσM̂(t)

j0
,j0
σ̂M̂(t)

j0
,j0

∣∣∣∣(Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

)
XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣ .
Using similar arguments in bounding I2 − I∗2 , we can show

|I∗2 − I∗∗2 | ≤
2c̄0

c̄

(√
κn log p√
n

) n−1∑
t=sn

∣∣∣∣Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

∣∣∣∣ ∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣ .
By Cauchy-Schwarz inequality, we have

n−1∑
t=sn

∣∣∣∣Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

∣∣∣∣ ∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣
≤

(
n−1∑
t=sn

∣∣∣∣Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

∣∣∣∣2
)1/2(n−1∑

t=sn

∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣2
)1/2

.

By (A.1), (A.21) and Condition (A3), we can show

n−1∑
t=sn

E

∣∣∣∣Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

∣∣∣∣2 = O(n),

and hence

n−1∑
t=sn

∣∣∣∣Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

∣∣∣∣2 = Op(n). (A.23)

This together with (A.9) yields

n−1∑
t=sn

∣∣∣∣Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

∣∣∣∣ ∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣ = Op(
√
nηn).
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It follows that

|I∗2 − I∗∗2 | = Op(ηn
√
κn log p),

which is op(1) under (A4).

Thus, to prove I2 = op(1), it suffices to show I∗∗2 = op(1). Define

I2,j =
n−1∑
t=sn

1√
nσM̂(t)

j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
Xt+1,jI(j ∈ M̂(t)

j0
).

We have I∗∗2 =
∑p

j=1 I2,j(β̃j − β0,j). Therefore,

|I∗∗2 | ≤ max
j∈[1,...,p]

|I2,j|‖β̃ − β0‖1. (A.24)

Let σ(Ft) be the σ-algebra generated by {(X1, Y1), . . . , (Xt, Yt)}. Then, each I2,j forms a

mean zero martingale with respect to σ(Ft). To see this, note that M̂(t)
j0

is fixed given Ft.

If j /∈M(t)
j0

, we have

E

 1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
Xt+1,jI(j ∈ M̂(t)

j0
)|Ft


= E

 1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
Xt+1,j|Ft

 I(j ∈ M̂(t)
j0

) = 0.

If j ∈M(t)
j0

, then we have

E

 Xt+1,j

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
|Ft

 =
ΣM̂(t)

j0
,j0
−ΣM̂(t)

j0
,j0

σM̂(t)
j0
,j0

= 0.

By some exponential inequalities for martingales, we show in (A.8) that Pr(maxj |I2,j| ≥

c̄∗
√

log p)→ 0. It follows from Condition (A4) that ‖β̃−β0‖1 ≤ (k0 +1)‖β̃M0−β0,M0‖1 ≤√
|M0|(k0 + 1)‖β̃M0 − β0,M0‖2 ≤

√
|M0|(k0 + 1)ηn, with probability tending to 1. Under

(A1), we have |M0| ≤ κn − 1. It follows that

‖β̃ − β0‖1 = O(
√
κnηn), (A.25)
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with probability tending to 1. Since ηn
√
κn log p = o(1), we have maxj |I2,j|‖β̃ − β0‖1 =

op(1). This together with (A.24) gives I∗∗2 = op(1).

Step 2: Using similar arguments in Step 1, we can show that I3 is asymptotically

equivalent to I∗∗3 , defined as

I∗∗3 =
sn−1∑
t=0

1√
nσM̂(−sn)

j0
,j0

Zt+1,j0X
T

t+1,M̂(−sn)
j0

(
β̃M̂(−sn)

j0

− β
0,M̂(−sn)

j0

)
,

where Zt+1,j0 = Xt+1,j0−ωTM̂(−sn)
j0

,j0
X

t+1,M̂(−sn)
j0

. Hence, it suffices to show I∗∗3 = op(1). Note

that |I∗∗3 | is upper bounded by

|I∗∗3 | ≤ max
j∈[1,...,p]

|I3,j|‖β̃ − β0‖1, (A.26)

where

I3,j =
sn−1∑
t=0

1√
nσM̂(−sn)

j0
,j0

(
Xt+1,j0 − ωTM̂(−sn)

j0
,j0
X

t+1,M̂(−sn)
j0

)
Xt+1,jI(j ∈ M̂(−sn)

j0
).

Given {(Xsn+1, Ysn+1), . . . , (Xn, Yn)}, the set M̂(−sn)
j0

is fixed. For any j ∈ [1, . . . , p], I3,j

corresponds to a sum of mean zero i.i.d random variables. Similar to the proof of Lemma

A.3, we can show

Pr(max
j
|I3,j| ≤ c∗

√
log p)→ 1,

for some constant c∗ > 0 that is independent of M̂(−sn)
j0

. By (A.26) and Condition (A4),

we have |I∗∗3 | → 0 with probability tending to 1. This proves I3 = op(1).

Step 3: Let

I∗4 =
sn−1∑
t=0

1√
nσ̂M̂(−sn)

j0
,j0

(
Xt+1,j0 − ωTM̂(−sn)

j0
,j0
X

t+1,M(−sn)
j0

)
εt+1,

we have

I4 − I∗4 =
sn−1∑
t=0

1√
nσ̂M̂(−sn)

j0
,j0

(
ωT
M̂(−sn)

j0
,j0
X

t+1,M̂(−sn)
j0

− ω̂T
M̂(−sn)

j0
,j0
X

t+1,M̂(−sn)
j0

)
εt+1.

10



We first show I4 − I∗4 = op(1). Since ε1, . . . , εsn are independent of {Xi}ni=1, it follows

from the Chebyshev’s inequality that

Pr (|I4 − I∗4 | > t∗|X1, . . . ,Xn, εsn+1, . . . , εn)

≤ 1

(t∗)2
E{(I4 − I∗4 )2|X1, . . . ,Xn, εsn+1, . . . , εn}

≤
sn−1∑
t=0

σ2
0

(t∗)2nσ̂2

M̂(−sn)
j0

,j0

{(
ωM̂(−sn)

j0
,j0
− ω̂M̂(−sn)

j0
,j0

)T
X

t+1,M̂(−sn)
j0

}2

. (A.27)

By (A.5), (A.12) and (A.15), we can show that

sn−1∑
t=0

σ2
0

nσ̂2

M̂(−sn)
j0

,j0

{(
ωM̂(−sn)

j0
,j0
− ω̂M̂(−sn)

j0
,j0

)T
X

t+1,M̂(−sn)
j0

}2

= Op

(
κ2
n log p

n

)
.

In view of (A.27), this further implies that |I4 − I∗4 | = Op(n
−1/2κn

√
log p). Under the

given conditions, we obtain that I4 − I∗4 = op(1). Similarly, we can show I∗4 − I∗∗4 = op(1),

where

I∗∗4 =
sn−1∑
t=0

1√
nσM̂(−sn)

j0
,j0

(
Xt+1,j0 − ωTM̂(−sn)

j0
,j0
X

t+1,M̂(−sn)
j0

)
εt+1.

Thus, it suffices to show I∗∗4 = op(1). Note that we have

E[(I∗∗4 )2|{(Xsn+1, εsn+1), . . . , (Xn, εn)}] =
snσ

2
0

n
,

and hence E(I∗∗4 )2 ≤ snσ
2
0/n. Since sn = o(n), it follows from Chebyshev’s inequality that

I∗∗4 = op(1).

Step 4: For t = sn, . . . , n− 1, define

At =

{
σ̂M̂(t)

j0
,j0
≤
√
c̄/2

}⋂{∥∥∥∥ω̂M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0

∥∥∥∥
2

≤ c̄0

√
κn log p√
n

}
.

By (A.5), (A.12) and Condition (A1), we have Pr(∩n−1
t=snAt)→ 1. Hence, we have Pr(I1 =

11



I∗1 )→ 1 and Pr(I∗∗1 = I∗∗∗1 )→ 1 where

I∗1 =
n−1∑
t=sn

1√
nσ̂M̂(t)

j0
,j0

(
Xt+1,j0 − ω̂TM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
εt+1I(At),

I∗∗1 =
n−1∑
t=sn

1√
nσ̂M̂(t)

j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
εt+1I(At),

I∗∗∗1 =
n−1∑
t=sn

1√
nσ̂M̂(t)

j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
εt+1.

In the following, we prove I∗1 = I∗∗1 + op(1). This further implies I1 = I∗∗∗1 + op(1). For any

t0 > 0,

Pr (|I∗1 − I∗∗1 | > t0) ≤ 1

nt20
E


n−1∑
t=sn

1

σ̂M̂(t)
j0
,j0

(
ωM̂(t)

j0
,j0
− ω̂M̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

εt+1I(At)


2

=
1

nt20
E

n−1∑
t=sn

 1

σ̂M̂(t)
j0
,j0

(
ωM̂(t)

j0
,j0
− ω̂M̂(t)

j0
,j0

)T
X

t+1,M̂(t)
j0

εt+1I(At)


2

≤ σ2
0

nt20
E

n−1∑
t=sn

‖ωM̂(t)
j0
,j0
− ω̂M̂(t)

j0
,j0
‖2

2

σ̂2

M̂(t)
j0
,j0

I(At)‖Xt+1,M̂(t)
j0

‖2
2


≤ 4c̄2

0σ
2
0

c̄nt20

(√
κn log p√
n

)2

E
n−1∑
t=sn

‖X
t+1,M̂(t)

j0

‖2
2 = O(n−1κ2

n log p) = o(1),

where the second equality is due to (A.17) and the last equality is due to the condition

that κ2
n log p = O(n/ log2 n). This implies I∗1 = I∗∗1 + op(1) and hence I1 = I∗∗∗1 + op(1).

Similarly, we can show I1 is asymptotically equivalent to

I∗∗∗∗1 =
1√
n

n−1∑
t=sn

1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
εt+1.

Observe that I∗∗∗∗1 is a mean zero martingale with respect to the filtration {σ(Ft)}t. Since

sn = o(n), we have

n−1∑
t=sn

E

 εt+1√
nσM̂(t)

j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
2

|Ft

 =
n− sn
n

σ2
0 → σ2

0.

12



Let Zt+1,j0 = Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

for t ≥ sn. It follows from Condition (A1) and

(A.2) that

E

 1

σ4

M̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)4

|Ft

 ≤ c4
0

c̄2

(
1 +

c2
0

c̄

)2

.

By Hölder’s inequality, we have

E

 1

σ3

M̂(t)
j0
,j0

|Zt+1,j0 |3|Ft

 ≤
E

 1

σ4

M̂(t)
j0
,j0

Z4
t+1,j0

|Ft


3/4

≤ c3
0

c̄3/2

(
1 +

c2
0

c̄

)3/2

.

By condition, E|εt+1|3 = O(1). Since ε0 and X0 are independent, we have

E

 1

σ3

M̂(t)
j0
,j0

|Zt+1|3|εt+1|3|Ft

 ≤ E|εt+1|3E

 1

σ3

M̂(t)
j0
,j0

|Zt+1|3|Ft

 ≤ c̄∗∗,

for some constant c̄∗∗ > 0. Therefore, for any δ0 > 0, it follows from Markov’s inequality

that

n−1∑
t=sn

E


∣∣∣∣∣∣ εt+1Zt+1,j0√
nσM̂(t)

j0
,j0

∣∣∣∣∣∣
2

I

∣∣∣∣∣∣ εt+1Zt+1,j0√
nσM̂(t)

j0
,j0

∣∣∣∣∣∣ ≥ δ0

|Ft


≤
n−1∑
t=sn

1

n3/2δ0

E


∣∣∣∣∣∣Zt+1,j0εt+1

σM̂(t)
j0
,j0

∣∣∣∣∣∣
3

|Ft

 ≤ c̄∗∗√
nδ0

→ 0.

This verifies the Lindeberg’s condition for I∗∗∗∗1 . It follows from the martingale central limit

theorem that

I∗∗∗∗1
d→ N(0, σ2

0).

As a result, we have I1
d→ N(0, σ2

0). This completes the proof.
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A.2 Proof of Theorem 3.1

We use a shorthand and write M̂(t)
j0

= M̂(−sn)
j0

for t = 0, . . . , sn − 1. Let

Σ̂∗ =
1

n

n∑
i=1

Xib
′′(XT

i β0)XT
i and Ψ̂(j) =

1

n

n∑
i=1

Xib
′′′(XT

i β0)XT
i Xi,j,

for any j ∈ {1, 2, . . . , p}. For any M⊆ I, define

ωM,j0 = Σ−1
M,MΣM,j0 , σ2

M,j0
= Σj0,j0 − ωTM,j0

ΣM,j0 ,

ω̂M,j0 = Σ̂−1
M,MΣ̂M,j0 , σ̂2

M,j0
= Σ̂j0,j0 − Σ̂T

M,j0
ω̂M,j0 ,

ω̂∗M,j0
= Σ̂∗−1

M,MΣ̂∗M,j0
, σ̂∗2M,j0

= Σ̂∗j0,j0 − Σ̂∗TM,j0
ω̂∗M,j0

,

ω̃M,j0 = ω̂∗M,j0
+

p∑
j=1

Σ̂∗−1
M,M

(
Ψ̂

(j)
M,j0

+ Ψ̂
(j)
M,Mω̂

∗
M,j0

)
(β̃j − β0,j),

Ẑ∗t+1,j0
= Xt+1,j0 − ω̂∗TM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

, Z̃t+1,j0 = Xt+1,j0 − ω̃TM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

,

ξ̂
(j)
M,j0

= Ψ̂
(j)
j0,j0
− ω̂∗TM,j0

(
2Ψ̂

(j)
M,j0

+ Ψ̂
(j)
M,Mω̂

∗
M,j0

)
,

σ̃2
M,j0

= σ̂∗2M,j0
+

p∑
j=1

ξ̂
(j)
M,j0

(β̃j − β0,j).

Here, ω̃M,j0 and σ̃M,j0 correspond to first-order approximations of ω̂M,j0 and σ̂M,j0 around

β0. We introduce the following lemmas before proving Theorem 3.1. The proof of Lemma

A.4 is given in Section A.8.

Lemma A.4. Under conditions in Theorem 3.1, we have

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

σM,j0 ≥
√
c̄, max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

‖ωM,j0‖2 ≤ (c̄)−1/2c0, (A.28)

where c̄ and c0 are defined in Condition (A2*) and (A3*). Besides, the following events
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hold with probability tending to 1,

max
M⊆Ij0
|M|≤κn

‖ω̂M,j0 − ωM,j0‖2 ≤ c̄0

(√
κn log p√
n

+ ηn

)
, (A.29)

max
M⊆Ij0
|M|≤κn

|σ̂M,j0 − σM,j0 | ≤ c̄0

(√
κn log p√
n

+ ηn

)
, (A.30)

max
M⊆Ij0
|M|≤κn

‖ω̂M,j0 − ω̃M,j0‖2 ≤ c̄0η
2
n, max

M⊆Ij0
|M|≤κn

∣∣σ̂2
M,j0
− σ̃2

M,j0

∣∣ ≤ c̄0η
2
n, (A.31)

max
M⊆Ij0
|M|≤κn

∣∣σ̂2
M,j0
− σ̂∗2M,j0

∣∣ ≤ c̄0ηn, (A.32)

for some constant c̄0 > 0. Moreover, we have

n−1∑
t=0

Z̃t+1,j0εt+1√
n

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(−sn)

j0
,j0

 =
n−1∑
t=0

Ẑ∗t+1,j0
εt+1√

nσ̂∗
M̂(t)

j0
,j0

+ op(1).

Similar to (A.25), we have

‖β̃ − β0‖1 = O(
√
κnηn), (A.33)

with probability tending to 1, under Condition (A5*).

For simplicity, we only consider the case where l = 1. When l > 1, assume we’ve shown

the asymptotic normality of β̂
(l−1)
j0

. Under the given conditions, we can show Γ
∗,(l−2)
n is

lower bounded by
√
c̄/2, with probability tending to 1. This implies β̂

(l−1)
j0

converges to

β0,j0 at a rate of Op(n
−1/2). As a result, the estimator β̂(l−1) = β̃ + ej0,p(β̂

(l−1)
j0

− β̃j0) also

satisfies the conditions in (A5*). The asymptotic normality of β̂
(l)
j0

can be similarly derived.

In the following, we omit the superscript and write β̂
(1)
j0

and Γ
∗,(0)
n as β̂j0 and Γ∗n. Let

εi = Yi − µ(XT
i β0) for i = 0, 1, . . . , n. By definition, we have

√
nΓ∗n(β̂j0 − β̃j0) =

1√
n

n−1∑
t=0

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0

{
Yt+1 − µ

(
Xt+1β̃0,j0 +XT

t+1,M̂(t)
j0

β̃M̂(t)
j0

)}
.(A.34)

By Condition (A1), we can show the following events occur with probability tending to 1,

Mj0 ⊆ M̂
(t)
j0
, |M̂(t)

j0
| ≤ κn, t = 0, . . . , n− 1. (A.35)
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Besides, similar to (A.6) and (A.12), we can show

max
M⊆Ij0
|M|≤κn

|σ̂∗2M,j0
− σ2

M,j0
| ≤ c̄0

(√
κn log p√
n

)
, (A.36)

for some constant c̄0 > 0, and

min
M⊆Ij0
|M|≤κn

σ̂M,j0 ≥
√
c̄/2 and min

M⊆Ij0
|M|≤κn

σ̂∗M,j0
≥
√
c̄/2, (A.37)

with probability tending to 1.

Under the events defined in (A.35), we have for t = 0, 1, . . . , n− 1,

XT
t+1β0 = Xt+1,j0β0,j0 +XT

t+1,M̂(t)
j0

β
0,M̂(t)

j0

.

Hence, using a second order Taylor expansion, we have

µ(XT
t+1β0) = µ

(
Xt+1,j0β0,j0 +XT

t+1,M̂(t)
j0

β
0,M̂(t)

j0

)
= µ

(
Xt+1,j0 β̃j0 +XT

t+1,M̂(t)
j0

β̃M̂(t)
j0

)
+ b′′

(
Xt+1,j0 β̃j0 +XT

t+1,M̂(t)
j0

β̃M̂(t)
j0

)
×

(
Xt+1,j0(β0,j0 − β̃j0) +XT

t+1,M̂(t)
j0

(β
0,M̂(t)

j0

− β̃M̂(t)
j0

)

)
+

1

2
b′′′
(
XT

t+1,{j0}∪M̂(t)
j0

β̃∗t

)(
XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃{j0}∪M̂(t)
j0

)

)2

,

for some β̃∗t ∈ R1+|M̂(t)
j0
| lying on the line segment joining β

0,{j0}∪M̂(t)
j0

and β̃{j0}∪M̂(t)
j0

. Let

R∗t be the second order Remainder term. Under the events defined in (A.35), we have∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

β̃∗t

∣∣∣∣ ≤ ∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

β
0,{j0}∪M̂(t)

j0

∣∣∣∣+

∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃∗t )
∣∣∣∣

= |XT
t+1β0|+

∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃∗t )
∣∣∣∣ ≤ ω̄ + ω0

∥∥∥∥β0,{j0}∪M̂(t)
j0

− β̃∗t
∥∥∥∥

1

≤ ω̄ + ω0

∥∥∥β0 − β̃
∥∥∥

1
,

where the second inequality is due to Condition (A4*). By Condition (A5*) and (A.33),
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we have with probability tending to 1,

ω0‖β̃ − β0‖1 ≤ ω0η
(1)
n ≤ ω̄.

Since b′′′(·) is continuous, sup|z|≤2ω̄ |b′′′(z)| is upper bounded by some constant c∗ > 0.

Therefore, we have with probability tending to 1 that

max
t=0,...,n−1

∣∣∣∣b′′′(XT

t+1,{j0}∪M̂(t)
j0

β̃∗t

)∣∣∣∣ ≤ c∗. (A.38)

Under the event defined in (A.38), we have

|R∗t | ≤
c∗
2

∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃{j0}∪M̂(t)
j0

)

∣∣∣∣2 , (A.39)

for any t. Note that∣∣∣Ẑt+1,j0

∣∣∣ ≤ |Xt+1,j0 |+
∥∥∥∥ω̂M̂(t)

j0

− ωM̂(t)
j0

∥∥∥∥
2

‖X
t+1,M̂(t)

j0

‖2 + |ωT
M̂(t)

j0

X
t+1,M̂(t)

j0

|.

By Condition (A1*) and (A4*), we have almost surely,

|Ẑt+1,j0 | ≤ ω0 +
√
κnω0 max

M⊆I
|M|≤κn

‖ω̂M,j0 − ωM,j0‖2 + |ωT
M̂(t)

j0

X
t+1,M̂(t)

j0

|. (A.40)

The second term on the RHS of (A.40) is o(1) with probability tending to 1, by (A.29) and

Condition (A5*). Thus, we have with probability tending to 1 that

|Ẑt+1,j0 | ≤ 2ω0 + |ωT
M̂(t)

j0

X
t+1,M̂(t)

j0

|, ∀t. (A.41)
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Under the events defined in (A.35), (A.37), (A.39) and (A.41), we have∣∣∣∣∣∣ 1√
n

n−1∑
t=0

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0

{
Yt+1 − µ

(
Xt+1β̃0,j0 +XT

t+1,M̂(t)
j0

β̃M̂(t)
j0

)}

− 1√
n

n−1∑
t=0

Ẑt+1,j0εt+1

σ̂M̂(t)
j0
,j0

− 1√
n

n−1∑
t=0

Ẑt+1,j0

σ̂M̂(t)
j0
,j0

b′′
(
XT

t+1,{j0}∪M̂(t)
j0

β̃{j0}∪M̂(t)
j0

)

×
(
Xt+1,j0(β0,j0 − β̃j0) +XT

t+1,M̂(t)
j0

(β
0,M̂(t)

j0

− β̃M̂(t)
j0

)

)∣∣∣∣ ≤ 1√
n

n−1∑
t=0

1

σ̂M̂(t)
j0
,j0

|R∗t ||Ẑt+1,j0 |

≤ c∗√
nc̄

n−1∑
t=0

(2ω0 + |ωT
M̂(t)

j0

X
t+1,M̂(t)

j0

|)
∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃{j0}∪M̂(t)
j0

)

∣∣∣∣2 . (A.42)

Similar to (A.9), we can show

n−1∑
t=0

∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃{j0}∪M̂(t)
j0

)

∣∣∣∣2 = O(nη2
n),

n−1∑
t=0

|ωT
M̂(t)

j0

X
t+1,M̂(t)

j0

|
∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃{j0}∪M̂(t)
j0

)

∣∣∣∣2 = O(nη2
n),

with probability tending to 1. It follows that

c∗√
nc̄

n−1∑
t=0

(2ω0 + |ωT
M̂(t)

j0

X
t+1,M̂(t)

j0

|)
∣∣∣∣XT

t+1,{j0}∪M̂(t)
j0

(β
0,{j0}∪M̂(t)

j0

− β̃{j0}∪M̂(t)
j0

)

∣∣∣∣2 = op(1),(A.43)

under the condition
√
nη2

n = o(1) in (A5*). Hence, we’ve shown

1√
n

n−1∑
t=0

1

σ̂M̂(t)
j0
,j0

Ẑt+1,j0

{
Yt+1 − µ

(
Xt+1β̃0,j0 +XT

t+1,M̂(t)
j0

β̃M̂(t)
j0

)}

=
1√
n

n−1∑
t=0

Ẑt+1,j0

σ̂M̂(t)
j0
,j0

b′′
(
XT

t+1,{j0}∪M̂(t)
j0

β̃{j0}∪M̂(t)
j0

)
XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)

+
1√
n

n−1∑
t=0

Ẑt+1,j0εt+1

σ̂M̂(t)
j0
,j0

+
√
nΓ∗n(β0,j0 − β̃j0) + op(1).
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In view of (A.34), we have

√
nΓ∗n(β̂j0 − β0,j0) = op(1) +

1√
n

n−1∑
t=0

Ẑt+1,j0εt+1

σ̂M̂(t)
j0
,j0︸ ︷︷ ︸

I1

+
1√
n

n−1∑
t=0

Ẑt+1,j0

σ̂M̂(t)
j0
,j0

b′′
(
XT

t+1,{j0}∪M̂(t)
j0

β̃{j0}∪M̂(t)
j0

)
XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)
︸ ︷︷ ︸

I2

.

In the following, we break the proof into two steps. In the first step, we prove I2 = op(1).

In the second step, we show I1
d→ N(0, φ0). This implies

√
nΓ∗n(β̂j0−β0,j0)

d→ N(0, φ0). By

Condition (A7*), φ̂ is consistent to φ0. It follows from Slutsky’s theorem that

√
nΓ∗n(β̂j0 − β0,j0)

φ̂1/2

d→ N(0, 1).

The proof is hence completed.

Step 1: Under the events defined in (A.35), using a first order Taylor expansion, we

have

b′′
(
XT

t+1,{j0}∪M̂(t)
j0

β̃{j0}∪M̂(t)
j0

)
= b′′(XT

t+1β0)

+ XT

t+1,{j0}∪M̂(t)
j0

(
β̃{j0}∪M̂(t)

j0

− β
0,{j0}∪M̂(t)

j0

)
b′′′
(
XT

t+1,{j0}∪M̂(t)
j0

β̃∗∗t

)
︸ ︷︷ ︸

R∗∗t

,

for some β̃∗∗t ∈ R1+|M̂(t)
j0
| lying on the line segment joining β

0,{j0}∪M̂(t)
j0

and β̃{j0}∪M̂(t)
j0

. Let

I∗2 =
1√
n

n−1∑
t=0

Ẑt+1,j0

σ̂M̂(t)
j0
,j0

b′′
(
XT

t+1β0

)
XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)
,

we have

|I2 − I∗2 | ≤
1√
n

n−1∑
t=0

|Ẑt+1,j0 |
σ̂M̂(t)

j0
,j0

|R∗∗t |
∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣
2

.
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Similar to (A.39), (A.42) and (A.43), we can show

|I2 − I∗2 | ≤
c∗√
n

n−1∑
t=0

|Ẑt+1,j0 |
σ̂M̂(t)

j0
,j0

∣∣∣∣XT

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣2
2

= o(1),

with probability tending to 1. Thus, to prove I2 = op(1), it suffices to show I∗2 = op(1).

Similar to the proof of Theorem 2.1, we can show under the given conditions that∣∣∣∣∣∣ 1√
n

n−1∑
t=0

Ẑt+1,j0 − Zt+1,j0

σ̂M̂(t)
j0
,j0

b′′
(
XT

t+1β0

)
X

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)∣∣∣∣∣∣ = op(1),

where Zt+1,j0 = Xt+1,j0 − ωTM̂(t)
j0
,j0
X

t+1,M̂(t)
j0

, and

1√
n

n−1∑
t=0

 Zt+1,j0

σ̂M̂(t)
j0
,j0

− Zt+1,j0

σM̂(t)
j0
,j0

 b′′
(
XT

t+1β0

)
X

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)
= op(1).

This implies I∗2 = I∗∗2 + op(1), where

I∗∗2 =
1√
n

n−1∑
t=0

Zt+1,j0

σM̂(t)
j0
,j0

b′′
(
XT

t+1β0

)
X

t+1,M̂(t)
j0

(
β̃M̂(t)

j0

− β
0,M̂(t)

j0

)
.

Note that I∗∗2 can be further bounded from above by maxj |I2,j|‖β̃ − β0‖1 where

I2,j =
1√
n

n−1∑
t=0

Zt+1,j0

σM̂(t)
j0
,j0

b′′
(
XT

t+1β0

)
Xt+1,jI

(
j ∈ M̂(t)

j0

)
.

Similar to Lemma A.3, we can show maxj |I2,j| = Op(
√

log p). This together with (A.33)

and Condition (A5*) implies maxj |I2,j|‖β̃ − β0‖1 = op(1) and hence I∗∗2 = op(1). This

proves I2 = op(1).

Step 2: By Taylor’s theorem, we have for any M⊆ Ij0 ,

1

σ̂M,j0

− 1

σ̂∗M,j0

+
σ̂2
M,j0
− σ̂∗2M,j0

σ̂∗3M,j0

=
(σ̂2
M,j0
− σ̂∗2M,j0

)2

2{ρMσ̂M,j0 + (1− ρM)σ̂∗M,j0
}5
,

for some 0 < ρM < 1. By (A.32) and (A.37), the second-order remainder term satisfies

max
M⊆Ij0 ,|M|≤κn

∣∣∣∣∣ (σ̂2
M,j0
− σ̂∗2M,j0

)2

2{ρMσ̂M,j0 + (1− ρM)σ̂∗M,j0
}5

∣∣∣∣∣ ≤ 16c̄2
0η

2
n

c̄5/2
, (A.44)
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with probability tending to 1.

Besides, it follows from (A.31) and (A.37) that

max
M⊆Ij0
|M|≤κn

∣∣∣∣∣ σ̂2
M,j0
− σ̂∗2M,j0

−
∑

j ξ̂
(j)
M,j0

(β̃j − β0,j)

σ̂∗3M,j0

∣∣∣∣∣ = max
M⊆Ij0
|M|≤κn

∣∣∣∣∣ σ̂2
M,j0
− σ̃2

M,j0

σ̂∗3M,j0

∣∣∣∣∣ ≤ 8c̄0η
2
n

c̄3/2
,

with probability tending to 1. Combining this together with (A.44) yields

Pr

 max
M⊆Ij0
|M|≤κn

∣∣∣∣∣ 1

σ̂M,j0

− 1

σ̂∗M,j0

+

∑
j ξ̂

(j)
M,j0

(β̃j − β0,j)

σ̂∗3M,j0

∣∣∣∣∣ ≤ c̄1η
2
n

→ 1,

for some constant c̄1 > 0. By Condition (A1*), we have

1√
n

∣∣∣∣∣∣∣
n−1∑
t=0

Ẑt+1,j0εt+1

σ̂M̂(t)
j0
,j0

−
n−1∑
t=0

Ẑt+1,j0εt+1

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(t)

j0
,j0


∣∣∣∣∣∣∣

≤
√
nc̄1η

2
n max

t

1

n

n−1∑
t=0

|εt+1||Ẑt+1,j0 |,

with probability tending to 1. Similar to (A.23), we can show
∑n−1

t=0 |ωTM̂(t)
j0

X
t+1,M̂(t)

j0

|2 =

Op(n). This together with (A.41) and Cauchy-Schwarz inequality yields

n−1∑
t=0

|Ẑt+1,j0 |2 ≤ 8nω2
0 + 2

n−1∑
t=0

|ωT
M̂(t)

j0

X
t+1,M̂(t)

j0

|2 = Op(n). (A.45)

In addition, we have
∑n−1

t=0 ε
2
t+1 = Op(n), under (A6*). It follows from Cauchy-Schwarz

inequality that

1

n

n−1∑
t=0

|εt+1||Ẑt+1,j0 | ≤

(
1

n

n−1∑
t=0

|Ẑt+1,j0 |2
)1/2(

1

n

n−1∑
t=0

ε2
t+1

)1/2

= Op(1),

and hence

1√
n

∣∣∣∣∣∣∣
n−1∑
t=0

Ẑt+1,j0εt+1

σ̂M̂(t)
j0
,j0

−
n−1∑
t=0

Ẑt+1,j0εt+1

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(t)

j0
,j0


∣∣∣∣∣∣∣ = Op(

√
nη2

n)

= op(1),
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under Condition (A5*).

Using similar arguments in bounding I
(2)
2 in the proof of Theorem 2.1, we can show

1√
n

∣∣∣∣∣∣∣
n−1∑
t=0

(Ẑt+1,j0 − Z̃t+1,j0)εt+1

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(t)

j0
,j0


∣∣∣∣∣∣∣ = op(1).

It follows that∣∣∣∣∣∣∣
n−1∑
t=0

 Ẑt+1,j0εt+1

σ̂M̂(t)
j0
,j0

− Z̃t+1,j0εt+1

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(t)

j0
,j0



∣∣∣∣∣∣∣ = op(

√
n).

Therefore, we’ve shown I1 = I∗1 + op(1) where

I∗1 =
1√
n

n−1∑
t=0

Z̃t+1,j0εt+1

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(−sn)

j0
,j0

 .

In Lemma A.4, we further show I∗1 is equivalent to

I∗∗1 ≡
√
n
n−1∑
t=0

Ẑ∗t+1,j0
εt+1

σ̂∗
M̂(t)

j0
,j0

.

Hence, we have I1 = I∗∗1 + op(1). Unlike Z̃t+1,j0 and σ̃M̂(t)
j0
,j0

, Ẑ∗t+1,j0
and σ̂∗

M̂(t)
j0
,j0

didn’t de-

pend on the initial estimator β̃. As a result, Ẑ∗t+1,j0
and σ̂∗

M̂(t)
j0
,j0

are fixed given {X1, . . . ,Xn}

and M̂(t)
j0

. Following the arguments in the proof of Theorem 2.1, we can show

I∗∗1 =
1√
n

n−1∑
t=sn

Zt+1,j0εt+1

σM̂(t)
j0
,j0

+ op(1) and
1√
n

n−1∑
t=sn

Zt+1,j0εt+1

σM̂(t)
j0
,j0

d→ N(0, φ0).

By Slutsky’s theorem, we have I1
d→ N(0, φ0). The proof is hence completed.

A.3 Proof of Theorem 3.2

Recall that I = [1, . . . , p] and Ij0 = I− {j0}. By (19) and Lemma A.5, we have

√
nL(β̂DLj0 , α) = 2zα

2

√
φ0eTj0,pΣ

−1ej0,p + op(1) =
2zα

2

√
φ0

σIj0 ,j0
+ op(1). (A.46)

22



It follows from (16) that

√
nL(β̂j0 , α) =

2zα/2
√
φ0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n

+ op(1). (A.47)

With some calculations, we have

2zα/2
√
φ0

σIj0 ,j0
−

2zα/2
√
φ0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n

= 2zα/2
√
φ0

sn{σM̂(−sn)
j0

,j0
− σIj0 ,j0}/n+

∑n−1
t=sn
{σM̂(t)

j0
,j0
− σIj0 ,j0}/n

σIj0 ,j0{snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n}

. (A.48)

For any M⊆ Ij0 , we have

σ2
M,j0

= E|X0,j0 − ωTM,j0
X0,M|2b′′(XT

0 β0) = arg min
a∈R|M|

E|X0,j0 − aTX0,M|2b′′(XT
0 β0)

≥ arg min
a∈Rp−1

E|X0,j0 − aTX0,Ij0 |
2b′′(XT

0 β0) = σ2
Ij0 ,j0

.

This shows σM,j0 ≥ σIj0 ,j0 for any M⊆ Ij0 . Hence, the numerator of the RHS of (A.48) is

nonnegative.

On the other hand, by Condition (A4*), we have |XT
0 β0| ≤ ω̄ and hence b′′(XT

0 β0) ≤ k̄.

Therefore,

σ2
M,j0

= arg min
a∈R|M|

E|X0,j0 − aTX0,M|2b′′(XT
0 β0) ≤ k̄E|X2

0,j0
| ≤ k̄‖X0,j0‖2

ψ2
= k̄c2

0, (A.49)

where the last inequality is due to Condition (A3*). This implies

2zα/2
√
φ0

σIj0 ,j0
−

2zα/2
√
φ0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n

(A.50)

≥
2zα/2

√
φ0

k̄c2
0

(
sn{σM̂(−sn)

j0
,j0
− σIj0 ,j0}/n+

n−1∑
t=sn

{σM̂(t)
j0
,j0
− σIj0 ,j0}/n

)
.

Besides, it follows from (A.49) that

σM,j0 − σIj0 ,j0 =
σ2
M,j0
− σ2

Ij0 ,j0

σM,j0 + σIj0 ,j0
≥
σ2
M,j0
− σ2

Ij0 ,j0

2
√
k̄c0

,
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for any M⊆ Ij0 . This together with (A.50) gives

2zα/2
√
φ0

σIj0 ,j0
−

2zα/2
√
φ0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n

(A.51)

≥
zα/2
√
φ0

k̄3/2c3
0

(
sn{σ2

M̂(−sn)
j0

,j0
− σ2

Ij0 ,j0
}/n+

n−1∑
t=sn

{σ2

M̂(t)
j0
,j0
− σ2

Ij0 ,j0
}/n

)
.

For any M⊆ Ij0 , define

ΩM,j0 =
(
ΣIj0∩Mc,Ij0∩Mc −ΣIj0∩Mc,MΣ−1

M,MΣM,Ij0∩Mc

)−1
.

It follows from Lemma A.5 that(
ΣM,M ΣM,Ij0∩Mc

ΣIj0∩Mc,M ΣIj0∩Mc,Ij0∩Mc

)−1

−
(

Σ−1
M,M O
O O

)
=

(
Σ−1
M,MΣM,Ij0∩McΩM,j0ΣIj0∩Mc,MΣ−1

M,M −Σ−1
M,MΣM,Ij0∩McΩM,j0

−ΩM,j0ΣIj0∩Mc,MΣ−1
M,M ΩM,j0

)
.

Therefore,

ΣT
Ij0 ,j0

Σ−1
Ij0 ,Ij0

ΣIj0 ,j0 −ΣT
M,j0

Σ−1
M,MΣM,j0 = (Σj0,M,Σj0,Ij0∩Mc)

×
(

Σ−1
M,MΣM,Ij0∩McΩM,j0ΣIj0∩Mc,MΣ−1

M,M −Σ−1
M,MΣM,Ij0∩McΩM,j0

−ΩM,j0ΣIj0∩Mc,MΣ−1
M,M ΩM,j0

)(
ΣM,j0

ΣIj0∩Mc,j0

)
= (Σj0,Ij0∩Mc − ωTM,j0

ΣM,Ij0∩Mc)ΩM,j0(Σj0,Ij0∩Mc − ωTM,j0
ΣM,Ij0∩Mc)T

≥ λmin(ΩM,j0)‖Σj0,Ij0∩Mc − ωTM,j0
ΣM,Ij0∩Mc‖2

2 = λmin(ΩM,j0)‖ξM,j0‖2
2.

By definition, we have

λmin(ΩM,j0) ≥ λmin

{(
ΣIj0∩Mc,Ij0∩Mc

)−1
}

=
{
λmax

(
ΣIj0∩Mc,Ij0∩Mc

)}−1 ≥ {λmax(Σ)}−1 ≥ 1

c2
0

,

where the last inequality follows from (A.22). It follows that

ΣT
Ij0 ,j0

Σ−1
Ij0 ,Ij0

ΣIj0 ,j0 −ΣT
M,j0

Σ−1
M,MΣM,j0 ≥

1

c2
0

‖ξM,j0‖2
2.

Note that we have

σ2
M,j0
− σ2

Ij0 ,j0
= Σj0,j0 −Σc

M,j0
Σ−1
M,MΣM,j0 − (Σj0,j0 −Σc

Ij0 ,j0
Σ−1

Ij0 ,Ij0
ΣIj0 ,j0).
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This further implies

σ2
M,j0
− σ2

Ij0 ,j0
≥ 1

c2
0

‖ξM,j0‖2
2,

for any M⊆ Ij0 . By (A.51), we have

2zα/2
√
φ0

σIj0 ,j0
−

2zα/2
√
φ0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n
≥
√
φ0zα/2

k̄3/2c5
0

(
sn
n
‖ξM̂(−sn)

j0
,j0
‖2

2 +
1

n

n−1∑
t=sn

‖ξM̂(t)
j0
,j0
‖2

2

)
.

In view of (A.46) and (A.47), we’ve shown

√
nL(β̂DLj0 , α) ≥

√
nL(β̂j0 , α) +

√
φ0zα/2

k̄3/2c5
0

(
sn
n
‖ξM̂(−sn)

j0
,j0
‖2

2 +
1

n

n−1∑
t=sn

‖ξM̂(t)
j0
,j0
‖2

2

)
+ op(1).

The proof is completed by noting that
√
nL(β̂DLj0 , α) =

√
nL(β̂DSj0 , α) + op(1).

A.4 Proof of Theorem 3.3

Under the given conditions, using similar arguments in (A.10), we can show the following

event occurs with probability tending to 1,

M̂(−sn)
j0

= M̂(sn)
j0

= · · · = M̂(n)
j0

=Mj0 .

Under these events, we have

2zα/2
√
φ0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n

=
2zα/2

√
φ0

σMj0
,j0

. (A.52)

By (16) and (23), for any sufficiently small ε0 > 0, the following events occur with proba-

bility tending to 1,

lim sup
n

∣∣∣∣∣∣√nL(β̂
(l)
j0
, α)−

2zα/2
√
φ0

snσM̂(−sn)
j0

,j0
/n+

∑n−1
t=sn

σM̂(t)
j0
,j0
/n

∣∣∣∣∣∣ ≤ ε0

2
, (A.53)

lim sup
n

∣∣∣∣∣√nL(β̂oraclej0
, α)−

2zα/2
√
φ0

σMj0
,j0

∣∣∣∣∣ ≤ ε0

2
. (A.54)
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Conditional on the events defined in (A.52)-(A.54), we have

lim sup
n

∣∣∣√nL(β̂
(l)
j0
, α)−

√
nL(β̂oraclej0

, α)
∣∣∣ ≤ ε0.

The proof is hence completed.

A.5 Proof of Lemma A.1

We first prove (A.1). Condition (A2) states that

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

inf
a∈R|M|+1

‖a‖2≥1

aTΣj0∪M,j0∪Ma ≥ c̄. (A.55)

Note that

σ2
M,j0

= Σj0,j0 −Σj0,MΣ−1
M,MΣM,j0 = (1,−ωM,j0)

(
Σj0,j0 Σj0,M
ΣM,j0 ΣM,M

)(
1

−ωTM,j0

)
≥ inf

a∈R|M|+1

‖a‖2≥1

aTΣj0∪M,j0∪Ma.

By (A.55), this implies

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

σ2
M,j0
≥ c̄, (A.56)

and hence

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

σM,j0 ≥
√
c̄.

It follows from (A.21) and Assumption (A3) implies that

Σj0,j0 = EX2
0,j0
≤ ‖X0,j0‖2

ψ2
≤ c2

0.

In view of (A.56), this further implies that

Σj0,MΣ−1
M,MΣM,j0 = Σj0,j0 − σ2

M,j0
≤ c2

0.
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Note that Σj0,MΣ−1
M,MΣM,j0 = ωTM,j0

ΣM,MωM,j0 . Hence, we have

‖ωM,j0‖2
2 ≤

c2
0

λmin(ΣM,M)
≤ c2

0

c̄
, (A.57)

where the last inequality is due to Condition (A2). Therefore, (A.1) is proven.

Similar to (A.21), we can show for any random variable Z,

EZ4 ≤ 2‖Z‖4
ψ2
. (A.58)

It follows from Condition (A3) that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

E|X0,j0 − ωTM,j0
X0,M|4 ≤ 2 max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

‖X0,j0 − ωTM,j0
X0,M‖4

ψ2
(A.59)

≤ 2c4
0 max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖(1,ωTM,j0
)T‖4

2 ≤ 2c4
0(1 + c̄−1c2

0)2.

Moreover, by (A.1),

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

1

σM,j0

≤ 1√
c̄
.

Thus, we have

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

1

σ4
M,j0

E|X0,j0 − ωTM,j0
X0,M|4 ≤

2c4
0

c̄2

(
1 +

c2
0

c̄

)2

.

For any random variable Z with ‖Z‖ψ2 ≤ ω, it follows from the definition of the Orlicz

norm that ‖Z‖ψ1 ≤ ω2. Under Condition (A3), this implies

max
j
‖X2

0,j‖ψ1 ≤ max
j

(‖X0,j‖ψ2)
2 ≤ c2

0. (A.60)

For any random variable Z, we have E|Z| ≤ ‖Z‖ψ1 . This together with (A.60) yields that

max
M⊆[1,...,p]
|M|≤κn

E‖X0,M‖2
2 = max

M⊆[1,...,p]
|M|≤κn

∑
j∈M

EX2
0,j ≤ κn max

j
EX2

0,j ≤ κn max
j
‖X2

0,j‖ψ1 ≤ κnc
2
0.(A.61)
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Finally, notice that

Pr

(
|Xi,j| >

√
3c2

0 max(log p, log n)

)
≤ exp{−3 max(log p, log n)}E exp(|Xi,j|2/c2

0)

≤ 2 exp{−3 max(log p, log n)} ≤ 2 min(p−3, n−3),

where the first inequality follows from Markov’s inequality and the second inequality follows

from the definition of the Orlicz norm. Now it follows from Bonferroni’s inequality that

Pr

(
max
i,j
|Xi,j| >

√
3c2

0 max(log p, log n)

)
≤ 2pnmin(p−3, n−3) = 2 min(np−2, pn−2)→ 0.

The proof is hence completed.

A.6 Proof of Lemma A.2

We first prove (A.5). Note that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖ω̂M,j0 − ωM,j0‖2 = max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖Σ̂−1
M,MΣ̂M,j0 −Σ−1

M,MΣM,j0‖2

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖Σ̂−1
M,M(Σ̂M,j0 −ΣM,j0)‖2

︸ ︷︷ ︸
η1

+ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖(Σ̂−1
M,M −Σ−1

M,M)ΣM,j0‖2

︸ ︷︷ ︸
η2

.

Hence, it suffices to show that with probability tending to 1,

η1 = O

(√
κn log p√
n

)
and η2 = O

(√
κn log p√
n

)
.

Upper bound for η1: Since

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖Σ̂−1
M,M(Σ̂M,j0 −ΣM,j0)‖2

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖Σ̂−1
M,M‖2 max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

‖(Σ̂M,j0 −ΣM,j0)‖2,

it suffices to show with probability tending to 1 that,

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖Σ̂−1
M,M‖2 = O(1), (A.62)
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and

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖(Σ̂M,j0 −ΣM,j0)‖2 = O

(√
κn log p√
n

)
. (A.63)

Note that Σ̂−1
M,M is symmetric. To prove (A.62), it is equivalent to show that the

eigenvalues of Σ̂−1
M,M are uniformly bounded with probability tending to 1. Hence, it

suffices to prove

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

λmin

(
Σ̂M,M

)
>
c̄

2
, (A.64)

with probability tending to 1.

Observe that

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

λmin

(
Σ̂M,M

)
= inf

M⊆[1,...,p]
j0 /∈M,|M|≤κn

inf
a∈R|M|

aT Σ̂M,Ma

≥ min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

min
a∈R|M|

aTΣM,Ma− max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

max
a∈R|M|

∣∣∣aT (ΣM,M − Σ̂M,M

)
a
∣∣∣ .

By Condition (A2), the first term on the second line is greater than or equal to c̄. Since

ΣM,M − Σ̂M,M is symmetric, the second term can be bounded by

sup
a∈Rp

‖a‖2=1,‖a‖0≤κn

|aT (Σ− Σ̂)a|. (A.65)

Define the stochastic process

X(a) = aT (Σ̂−Σ)a.

For any a1,a2 ∈ Rp with ‖a1‖2, ‖a2‖2 ≤ 1, we have

|X(a1)− X(a2)| ≤ |(a1 − a2)T (Σ̂−Σ)(a1 + a2)|,

since aT2 (Σ̂−Σ)a1 = aT1 (Σ̂−Σ)a2, by the symmetricity of the matrix Σ̂−Σ. Recall that

Σ̂−Σ =
∑n

i=1(XiX
T
i −EX0X

T
0 )/n. It follows from Condition (A3) and Cauchy-Schwarz
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inequality that

‖(a1 − a2)TX0X
T
0 (a1 + a2)‖ψ1 ≤

√
2‖a1 − a2‖2 sup

a3,a4∈Rp
‖a3‖2,‖a4‖2≤1

‖aT3X0X
T
0 a4‖ψ1

≤
√

2‖a1 − a2‖2 sup
a3,a4∈Rp

‖a3‖2,‖a4‖2≤1

‖(aT3X0)2 + (aT4X0)2‖ψ1

2

≤
√

2‖a1 − a2‖2 sup
a3,a4∈Rp

‖a3‖2,‖a4‖2≤1

‖(aT3X0)2‖ψ1 + ‖(aT4X0)2‖ψ1

2

≤
√

2‖a1 − a2‖2 sup
a3,a4∈Rp

‖a3‖2,‖a4‖2≤1

‖aT3X0‖2
ψ2

+ ‖aT4X0‖2
ψ2

2
≤
√

2c2
0‖a1 − a2‖2. (A.66)

By Jensen’s inequality, we have

‖(a1 − a2)T (X0X
T
0 − EX0X

T
0 )(a1 + a2)‖ψ1 ≤ 2‖(a1 − a2)TX0X

T
0 (a1 + a2)‖ψ1

≤ 2
√

2c2
0‖a1 − a2‖2.

It follows from Bernstein’s inequality (Theorem 3.1, Klartag and Mendelson, 2005) that

Pr(|X(a1)− X(a2)| > t) ≤ 2 exp

{
−O(1) min

(
nt2

‖a1 − a2‖2
2

,
nt

‖a1 − a2‖2

)}
,

for some positive constant O(1) that is independent of a1 and a2. Let S = {a ∈ Rp :

‖a‖2 ≤ 1, ‖a‖0 ≤ κn}. It follows from Theorem 1.2.7 of Talagrand (2005) that

E sup
a1,a2∈S

|X(a1)− X(a2)| = O{γ2(S, n−1/2‖ · ‖2) + γ1(S, n−1‖ · ‖2)},

where the definitions of the γp-functionals are given in Definition 1.2.5 of Talagrand (2005).

Since X(0p) = 0, we have

E sup
a∈S
|X(a)| = O{γ2(S, n−1/2‖ · ‖2) + γ1(S, n−1‖ · ‖2)}. (A.67)

By Lemma 2.3 of Mendelson et al. (2008), for any 0 ≤ ε ≤ 1/2, there exists an ε-cover of

S with cardinality at most (5/2ε)κn
(
p
κn

)
. Using similar arguments in proving Lemma G.8
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of Shi et al. (2018), we can show that

γ2(S, n−1/2‖ · ‖2) ≤ n−1/2γ2(S, ‖ · ‖2) = O(n−1/2
√
κn log p),

γ1(S, n−1‖ · ‖2) ≤ n−1γ1(S, ‖ · ‖2) = O(n−1κn log p).

Under the given conditions, it follows from (A.67) that E supa∈S |X(a)| = O(n−1/2
√
κn log p).

By Markov’s inequality, we obtain supa∈S |X(a)| = Op(n
−1/2
√
κn log p) = op(1) and hence

(A.65) is op(1). Under Condition (A2), we have

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

min
a∈R|M|

aTΣM,Ma ≥ c̄.

Assertion (A.62) thus follows.

Recall that Σ̂j1,j2 − Σj1,j2 =
∑

i(Xi,j1Xi,j2 − EX0,j1X0,j2)/n. Combining (A.60) with

Cauchy-Schwarz inequality, we have

‖X0,j1X0,j2‖ψ1 ≤
‖X2

0,j1
+X2

0,j2
‖ψ1

2
≤
‖X2

0,j1
‖ψ1

2
+
‖X2

0,j2
‖ψ1

2
≤ c2

0, (A.68)

for all j1, j2 ∈ [1, . . . , p]. By Jensen’s inequality, we have

E exp

(
E|X0,j1X0,j2|

ω2
0

)
≤ E exp

(
|X0,j1X0,j2|

ω2
0

)
≤ 2.

This implies ‖EX0,j0X0,j2‖ψ1 ≤ c2
0, ∀j1, j2. Combining this together with (A.68) gives

‖X0,j1X0,j2 − EX0,j0X0,j2‖ψ1 ≤ ‖X0,j1X0,j2‖ψ1 + ‖EX0,j1X0,j2‖ψ1 ≤ 2c2
0.

Therefore, it follows from Bernstein’s inequality that

max
1≤j1,j2≤p

Pr

(∣∣∣∣∣∑
i

(Xi,j1Xi,j2 −Σj1,j2)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−O(1) min

(
t2

4nc2
0

,
t

2c0

))
, (A.69)

for any t > 0, where O(1) denotes some positive constant.

Take t0 = 3
√
n log pc0/

√
c1. Since log p = o(n), we have for sufficiently large n,

t20
4nc2

0

=
9 log p

4c1

� 3
√
n log p

2
√
c1

=
t0

2c0

.

31



It follows from (A.69) that

max
j1,j2

Pr

(∣∣∣∣∣∑
i

(Xi,j1Xi,j2 −Σj1,j2)

∣∣∣∣∣ ≥ t0

)
≤ 2 exp

(
− c1t

2
0

4nc2
0

)
≤ 2 exp

(
−9 log p

4

)
.

By Bonferroni’s inequality, we have

Pr

(
max

j1,j2∈[1,...,p]

∣∣∣∣∣∑
i

(Xi,j1Xi,j2 −Σj1,j2)

∣∣∣∣∣ ≥ t0

)
(A.70)

≤
∑

j1,j2∈[1,...,p]

Pr

(∣∣∣∣∣∑
i

(Xi,j1Xi,j2 −Σj1,j2)

∣∣∣∣∣ ≥ t0

)

≤ p22 exp

(
−9 log p

4

)
= 2 exp

(
−9 log p

4
+ 2 log p

)
= 2 exp

(
− log p

4

)
→ 0.

Under the event defined in (A.70), we have

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖(Σ̂M,j0 −ΣM,j0)‖2 ≤
√
κn max

j1,j2∈[1,...,p]

∣∣∣Σ̂j1,j2 −Σj1,j2

∣∣∣ ≤ √κnt0
n

.

This proves (A.63).

Upper bound for η2: Observe that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖(Σ̂−1
M,M −Σ−1

M,M)ΣM,j0‖2

= max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖Σ̂−1
M,M(Σ̂M,M −ΣM,M)Σ−1

M,MΣM,j0‖2

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖Σ̂−1
M,M‖2 max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

‖(Σ̂M,M −ΣM,M)ωM,j0‖2.

By (A.62), it suffices to show

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖(Σ̂M,M −ΣM,M)ωM,j0‖2 = O

(√
κn log p√
n

)
, (A.71)

with probability tending to 1.
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LHS of (A.71) can be upper bounded by

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

|aT (Σ̂M,M −ΣM,M)ωM,j0 |.

For any subset M such that j0 /∈M, |M| ≤ κn, define the stochastic process

TM(a) =
1

n

n∑
i=1

gM(Xi,a) =
1

n

n∑
i=1

aT
(
Xi,MX

T
i,M −ΣM,M

)
ωM,j0 .

Using similar arguments in bounding (A.65), we can show

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

E sup
a∈R|M|
‖a‖2=1

|TM(a)| = O(n−1/2√κn). (A.72)

The envelope function of |g| is bounded by

GM(Xi)
∆
= ‖Xi,M‖2|XT

i,MωM,j0 |2 + ‖ΣM,M‖2‖ωM,j0‖.

Combing (A.22) together with (A.1), we have

GM(Xi) ≤ ‖Xi,M‖2|XT
i,MωM,j0 |2 + c3

0/
√
c̄.

The ‖ · ‖ψ1 Orlicz norm of G can be upper bounded by

‖GM(Xi)‖ψ1 ≤ ‖c3
0/
√
c̄‖ψ1 + ‖‖Xi,M‖2|XT

i,MωM,j0 |‖ψ1 (A.73)

≤ c3
0/
√
c̄+ ‖‖Xi,M‖2|XT

i,MωM,j0 |‖ψ1 .

Notice that

‖‖Xi,M‖2|XT
i,MωM,j0 |2‖ψ1 ≤

∥∥∥∥∥‖Xi,M‖2
2

2
√
κn

+

√
κn|XT

i,MωM,j0 |2

2

∥∥∥∥∥
ψ1

≤ ‖‖Xi,M‖2
2‖ψ1

2
√
κn

+

√
κn‖(XT

i,MωM,j0)
2‖ψ1

2

≤
∑

j∈M ‖X2
i,j‖ψ1

2
√
κn

+

√
κn‖XT

i,MωM,j0‖2
ψ2

2
= O(

√
κn),

where the first inequality follows from Cauchy-Schwarz inequality, the equality follows from
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(A.60), (A.1) and Condition (A3). This together with (A.73) yields that

max
i∈[1,...,n]

‖GM(Xi)‖ψ1 = O(
√
κn).

Hence, it follows from Lemma 2.2.2 in van der Vaart and Wellner (1996) that∥∥∥∥ max
i∈[1,...,n]

|GM(Xi)|
∥∥∥∥
ψ1

≤ K1 log(1 + n) max
i∈[1,...,n]

‖GM(Xi)‖ψ1 = O(
√
κn log n), (A.74)

for some constant K1 that is independent of M.

Moreover, it follows from Cauchy-Schwarz inequality that

σ2
∗ ≡ max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

EgM(X0,a)2

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

E|aT (X0,MX
T
0,M −ΣM,M)ωM,j0 |2

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

E|aTX0,MX
T
0,MωM,j0 |2

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

√
E|aTX0,M|4 max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

√
E|ωTM,j0

X0,M|4.

Using similar arguments in proving (A.59), we can show

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

√
E|aTX0,M|4 max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

√
E|ωTM,j0

X0,M|4 = O(1),

and hence σ2
∗ = O(1).

Therefore, it follows from Theorem 4 in Adamczak (2008) that there exists some con-

stant K2, K3 > 0 such that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

Pr

 sup
a∈R|M|
‖a‖2=1

|TM(a)| − 3

2
E sup

a∈R|M|
‖a‖2=1

|TM(a)| ≥ t

n


≤ exp

(
− t2

3nσ2
∗

)
+ 3 exp

(
− t

K2
√
κn log n

)
≤ exp

(
− t2

3K3n

)
+ 3 exp

(
− t

K2
√
κn log n

)
, ∀t > 0.
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Define

t0 = max

(
2
√
K3nκn log p,

4

3
K2κ

3/2
n log p log n

)
,

we have

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

Pr

 sup
a∈R|M|
‖a‖2=1

|TM(a)| − 3

2
E sup

a∈R|M|
‖a‖2=1

|TM(a)| ≥ t0
n


≤ exp

(
−4K3nκn log p

3nK3

)
+ 3 exp

(
−4K2κ

2
n log p log(n+ 1)

3K2κn log(1 + n)

)
≤ 4 exp

(
−4

3
κn log p

)
.

The number of subset M with less than or equal to κn elements is upper bounded by

Cκn
p ≤ pκn . Hence, it follows from Bonferroni’s inequality that

Pr

 max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

|TM(a)| − 3

2
E sup

a∈R|M|
‖a‖2=1

|TM(a)| ≥ t0
n


≤ pκn max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

Pr

 sup
a∈R|M|
‖a‖2=1

|TM(a)| − 3

2
E sup

a∈R|M|
‖a‖2=1

|TM(a)| ≥ t0
n


≤ 4pκn exp

(
−4

3
κn log p

)
= 4 exp

(
−4

3
κn log p+ κn log p

)
= 4 exp

(
−1

3
κn log p

)
→ 0.

This together with (A.72) implies that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

|TM(a)| ≤ O(1)n−1/2√κn +
t0
n
, (A.75)

with probability tending to 1, where O(1) denotes some positive constant.

Under the given conditions, we have

4

3
K2κ

3/2
n log p log n = O(

√
nκn log p),

and hence t0 = O(
√
nκn log p). Under the event defined in (A.75), we have for sufficiently
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large n,

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

sup
a∈R|M|
‖a‖2=1

|TM(a)| = O

(√
κn log p√
n

)
.

This proves (A.71). The upper bound for η2 is thus given.

Consider (A.6). Assume for now, we’ve shown

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

|σ̂2
M,j0
− σ2

M,j0
| = O

(√
κn log p√
n

)
, (A.76)

with probability tending to 1. Then, under the event defined in (A.76), we have

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

|σ̂M,j0 − σM,j0 | = max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

|σ̂2
M,j0
− σ2

M,j0
|

|σ̂M,j0 + σM,j0 |

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

|σ̂2
M,j0
− σ2

M,j0
|

|σM,j0 |
≤ 1√

c̄
max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

|σ̂2
M,j0
− σ2

M,j0
| = O

(√
κn log p√
n

)
,

where the last inequality follows from (A.1) and the last equality is due to (A.76). Hence,

it suffices to show (A.76).

By definition, we have

|σ̂2
M,j0
− σ2

M,j0
| ≤ |Σ̂j0,j0 −Σj0,j0 |+ |Σ̂T

M,j0
ω̂M,j0 −ΣT

M,j0
ωM,j0 | (A.77)

≤ |Σ̂j0,j0 −Σj0,j0 |+ |ΣT
M,j0

(ω̂M,j0 − ωM,j0)|+ |(ΣM,j0 − Σ̂M,j0)
TωM,j0 |

+ |(ΣM,j0 − Σ̂M,j0)
T (ω̂M,j0 − ωM,j0)| ≤ |Σ̂j0,j0 −Σj0,j0 |

+ ‖ΣM,j0‖2‖ω̂M,j0 − ωM,j0‖2 + ‖ΣM,j0 − Σ̂M,j0‖2‖ωM,j0‖2

+ ‖ω̂M,j0 − ωM,j0‖2‖ΣM,j0 − Σ̂M,j0‖2.
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It follows from (A.1), (A.5), (A.63) and (A.70) that with probability tending to 1,

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖ΣM,j0 − Σ̂M,j0‖2 = O

(√
κn log p√
n

)
, (A.78)

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖ωM,j0 − ω̂M,j0‖2 = O

(√
κn log p√
n

)
, (A.79)

|Σ̂j0,j0 −Σj0,j0 | = O

(√
log p√
n

)
, max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

‖ωM,j0‖2 = O(1). (A.80)

By Condition (A2), ΣM,M is invertible for any subset M such that |M| ≤ κn. Hence,

it follows from (A.22) that

min
M⊆[1,...,p]

j0 /∈M,|M|≤κn

λmin(Σ−1
M,M) ≥ c

−1/2
0 .

Using similar arguments in proving (A.1), we can show that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

‖ΣM,j0‖2
2 ≤ max

M⊆[1,...,p]
j0 /∈M,|M|≤κn

c2
0

λmin(Σ−1
M,M)

≤ c
5/2
0 .

Under the given conditions, we have κn log p = o(n). Under the events defined in (A.77)-

(A.79), we obtain that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

|σ̂2
M,j0
− σ2

M,j0
| ≤ O

(√
log p√
n

)
+ c

3/2
0 O

(√
κn log p√
n

)

+ O(1)O

(√
κn log p√
n

)
+O

(√
κn log p√
n

)
O

(√
κn log p√
n

)
= O

(√
κn log p√
n

)
.

This proves (A.76).

We now focus on proving (A.7). By definition, we have

ω̂M,j0 − ωM,j0 = Σ̂−1
M,M(Σ̂M,j0 −ΣM,j0) + (Σ̂−1

M,M −Σ−1
M,M)ΣM,j0

= Σ̂−1
M,M{Σ̂M,j0 −ΣM,j0 − (Σ̂M,M −ΣM,M)ωM,j0},
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for any M and hence the LHS of (A.7) can be upper bounded by

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥(Σ̂−1
M,M −Σ−1

M,M){Σ̂M,j0 −ΣM,j0 − (Σ̂M,M −ΣM,M)ωM,j0}
∥∥∥

2
. (A.81)

It suffices to provide an upper bound for (A.81). Using similar arguments in bounding η1

and η2, we can show the following event occurs with probability tending to 1,

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥Σ̂M,j0 −ΣM,j0 − (Σ̂M,M −ΣM,M)ωM,j0

∥∥∥
2

= O

(√
κn log p√
n

)
. (A.82)

Notice that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥Σ̂−1
M,M −Σ−1

M,M

∥∥∥
2

≤ max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥Σ̂−1
M,M

∥∥∥
2

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥Σ̂M,M −ΣM,M

∥∥∥
2

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥Σ−1
M,M

∥∥
2
.

To bound η2, we have shown that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥Σ̂M,M −ΣM,M

∥∥∥
2

= Op

(√
κn log p√
n

)
.

By (A.64) and Condition (A2), we obtain

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥Σ̂−1
M,M −Σ−1

M,M

∥∥∥
2

= Op

(√
κn log p√
n

)
. (A.83)

Combining this together with (A.82) and Cauchy-Schwarz inequality yields that

max
M⊆[1,...,p]

j0 /∈M,|M|≤κn

∥∥∥(Σ̂−1
M,M −Σ−1

M,M){Σ̂M,j0 −ΣM,j0 − (Σ̂M,M −ΣM,M)ωM,j0}
∥∥∥

2

= Op

(
κn log p

n

)
.

This completes the proof.
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A.7 Proof of Lemma A.3

Let

I2,j =
1√
n

n−1∑
t=sn

1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
Xt+1,jI(j ∈ M̂(t)

j0
).

Similar to (A.66), we can show∥∥∥∥∥∥ 1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
Xt+1,jI(j ∈ M̂(t)

j0
)

∥∥∥∥∥∥
ψ1|Ft

≤ c2
0√
c̄

(
1 +

c2
0

c̄

)
,

almost surely, under Condition (A1). For any random variable Z, it follows from the

definition of the Orlicz norm that 1 + E|Z|k/‖Z‖kψ1
≤ E exp(|Z|/‖Z‖ψ1) = 2 for any integer

k > 0 and hence E|Z|k ≤ k!‖Z‖kψ1
. As a result, we have

E


∣∣∣∣∣∣ 1

σM̂(t)
j0
,j0

(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)
Xt+1,jI(j ∈ M̂(t)

j0
)

∣∣∣∣∣∣
k
∣∣∣∣∣∣∣Ft


≤ k!
c2k

0

c̄k/2

(
1 +

c2
0

c̄

)k
, (A.84)

almost surely, for any k ≥ 1.

Let c∗0 = c̄−1/2c2
0(1 + c̄c2

0). It follows from Theorem 9.12 in de la Peña et al. (2009) that

Pr

|I∗∗2,j| > z,
n−1∑
t=sn

E
1

σ2

M̂(t)
j0
,j0

{(
Xt+1,j0 − ωTM̂(t)

j0
,j0
X

t+1,M̂(t)
j0

)2

X2
t+1,j|Ft

}
≤ 2n(c∗0)2


≤ 2 exp

(
− z2

2(2(c∗0)2 + c∗0z/
√
n)

)
, ∀z > 0.

In view of (A.84), we have

Pr
(
|I∗∗2,j| > z

)
≤ 2 exp

(
− z2

2(2(c∗0)2 + c∗0z/
√
n)

)
.

Let z0 = 3c∗0
√

log p, we have by the condition log p = o(n) that

Pr
(
|I∗∗2,j| > z0

)
≤ 2 exp

(
− 9 log p

4 + 6n−1/2
√

log p

)
≤ 2 exp

(
−3

2
log p

)
,

39



for sufficiently large n. It follows from Bonferroni’s inequality that

Pr

(
max
j
|I∗∗2,j| > z0

)
≤
∑
j

Pr
(
|I∗∗2,j| > z0

)
≤ 2p exp

(
−3

2
log p

)
= 2 exp

(
−1

2
log p

)
→ 0.

This completes the first part of the proof.

For t ∈ [sn, . . . , n − 1] and j ∈ [1, . . . , p], let Wt+1,j = Xt+1,jI(j ∈ M̂(t)) and Wt+1 =

(Wt+1,1, · · · ,Wt+1,p)
T . It follows that

1

n

n−1∑
t=sn

‖Xt+1,M̂(t)(β̃M̂(t) − β0,M̂(t))‖2
2 =

1

n

n−1∑
t=sn

(β̃ − β0)TWt+1W
T
t+1(β̃ − β0)

≤ 1

n

n−1∑
t=sn

(β̃ − β0)TE(Wt+1W
T
t+1|Ft)(β̃ − β0)︸ ︷︷ ︸

η3

+

∣∣∣∣∣ 1n
n−1∑
t=sn

(β̃ − β0)T{Wt+1W
T
t+1 − E(Wt+1W

T
t+1|Ft)}(β̃ − β0)

∣∣∣∣∣︸ ︷︷ ︸
η4

.

Notice that

η3 =
1

n

n−1∑
t=sn

(β̃ − β0)TE(Wt+1W
T
t+1|Ft)(β̃ − β0)

=
1

n

n−1∑
t=sn

(β̃M̂(t) − β0,M̂(t))
TΣM̂(t),M̂(t)(β̃M̂(t) − β0,M̂(t)) ≤ λmax(ΣM̂(t),M̂(t))‖β̃M̂(t) − β0,M̂(t)‖2

2.

It follows from Condition (A1), (A4) and (A.22) that η3 = O(η2
n), with probability tending

to 1. As for η4, we have

η4 ≤ ‖β̃ − β0‖2
1 max
j1,j2

∣∣∣∣∣ 1n
n−1∑
t=sn

{Wt+1,j1Wt+1,j2 − E(Wt+1,j1Wt+1,j2 |Ft)}

∣∣∣∣∣ . (A.85)

For any j1, j2,
∑n−1

t=sn
{Wt+1,j1Wt+1,j2 − E(Wt+1,j1Wt+1,j2 |Ft) forms a mean zero martingale

with respect to the filtration {σ(Ft)}. Using similar arguments in bounding maxj |I∗∗2,j|, we

can show the following holds with probability tending to 1,

max
j1,j2

∣∣∣∣∣ 1n
n−1∑
t=sn

{Wt+1,j1Wt+1,j2 − E(Wt+1,j1Wt+1,j2 |Ft)}

∣∣∣∣∣ = O(n−1/2
√

log p). (A.86)
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Combining (A.25) with (A.85), (A.86) and the condition κ2
n log p = O(n/ log2 n) yields that

η4 = O
(
η2
nn
−1/2κn

√
log p

)
= O(η2

n),

with probability tending to 1. (A.9) is hence proven.

A.8 Proof of Lemma A.4

Assertion (A.28) can be proven in a similar manner as (A.1). We omit its proof for brevity.

To prove (A.29) and (A.30), we first show the following events occur with probability

tending to 1,

max
M⊆Ij0
|M|≤κn

∥∥∥Σ̂M,M −ΣM,M

∥∥∥
2
≤ c̄∗
√
κn log p√
n

+ c̄∗ηn, (A.87)

max
M⊆Ij0
|M|≤κn

∥∥∥Σ̂M,j0 −ΣM,j0

∥∥∥
2
≤ c̄∗
√
κn log p√
n

+ c̄∗ηn, (A.88)

max
M⊆Ij0
|M|≤κn

∥∥∥(Σ̂M,M −ΣM,M

)
ωM,j0

∥∥∥
2
≤ c̄∗
√
κn log p√
n

+ c̄∗ηn. (A.89)

Using similar arguments in the proof of Lemma A.2, we can show that there exists some

constant c̄∗∗ > 0 such that the following events occur with probability tending to 1,

max
M⊆Ij0 ,|M|≤κn

∥∥∥Σ̂∗M,M −ΣM,M

∥∥∥
2
≤ c̄∗∗

√
κn log p√
n

,

max
M⊆Ij0 ,|M|≤κn

∥∥∥Σ̂∗M,j0
−ΣM,j0

∥∥∥
2
≤ c̄∗∗

√
κn log p√
n

,

max
M⊆Ij0 ,|M|≤κn

∥∥∥(Σ̂∗M,M −ΣM,M

)
ωM,j0

∥∥∥
2
≤ c̄∗∗

√
κn log p√
n

.

Therefore, it suffices to show the following events occur with probability tending to 1,

max
M⊆Ij0 ,|M|≤κn

∥∥∥(Σ̂∗M,M − Σ̂M,M

)
ωM,j0

∥∥∥
2
≤ c̄∗∗∗ηn, (A.90)

max
M⊆Ij0 ,|M|≤κn

∥∥∥Σ̂∗M,M − Σ̂M,M

∥∥∥
2
≤ c̄∗∗∗ηn, (A.91)

max
M⊆Ij0 ,|M|≤κn

∥∥∥Σ̂∗M,j0
− Σ̂M,j0

∥∥∥
2
≤ c̄∗∗∗ηn, (A.92)
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for some constant c̄∗∗∗ > 0.

Similar to (A.39), we can show that with probability tending to 1 that

|b′′(XT
i β̃)− b′′(XT

i β0)| ≤ c∗|XT
i (β̃ − β0)|,

where the constant c∗ is defined in (A.38). With some calculations, we have

max
M⊆Ij0
|M|≤κn

∥∥∥(Σ̂∗M,M − Σ̂M,M

)
ωM,j0

∥∥∥
2

(A.93)

≤ max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2≤1

∣∣∣aT (Σ̂∗M,M − Σ̂M,M

)
ωM,j0

∣∣∣
≤ max

M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2≤1

1

n

n∑
i=1

|aTXi,M||ωTM,j0
Xi,M||b′′(XT

i β̃)− b′′(XT
i β0)|

≤ c∗ max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2≤1

1

n

n∑
i=1

|aTXi,M||ωTM,j0
Xi,M||XT

i (β̃ − β0)| ≤ c∗
√
η5η6,

where the last inequality follows from Cauchy-Schwarz inequality and

η5 = max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2≤1

1

n

n∑
i=1

|aTXi,M|2|ωTM,j0
Xi,M|,

η6 = max
M⊆Ij0
|M|≤κn

1

n

n∑
i=1

|ωTM,j0
Xi,M||XT

i (β̃ − β0)|2.

Consider η5. By (A.28), (A3*) and (A4*), we have for any M and a ∈ R|M| that

‖|aTX0,M|2|XT
0,MωM,j0 |‖ψ1 ≤ c̄−1/2c0

√
κnω0‖|aTX0,M|2‖ψ1 ≤ c̄−1/2c3

0

√
κnω0.

Using similar arguments in bounding (A.65), we can show for any M with |M| ≤ κn, we

have that

E sup
a∈R|M|
‖a‖2≤1

(
1

n

n∑
i=1

|aTXi,M|2|ωTM,j0
Xi,M| − E|aTX0,M|2|ωTM,j0

X0,M|

)
= o(1),

under the given conditions on κn. Hence, using similar arguments in proving (A.75), we
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can show

max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2≤1

(
1

n

n∑
i=1

|aTXi,M|2|ωTM,j0
Xi,M| − E|aTX0,M|2|ωTM,j0

X0,M|

)
(A.94)

= Op

(√
κn log p

n
+
κ2
n log p log n

n

)
,

which is op(1) under the condition that κ
5/2
n log p = O(n/ log2 n). In addition, similar to

(A.59), we can show√
E|aTX0,M|4(E|ωTM,j0

X0,M|4)1/4 = O(1), ∀a ∈ R|M| with ‖a‖2 = 1,

by (A.4) and Condition (A3*). It follows from Cauchy-Schwarz inequality that

E|aTX0,M|2|ωTM,j0
X0,M| ≤

√
E|aTX0,M|4

√
E|ωTM,j0

X0,M|2

≤
√

E|aTX0,M|4(E|ωTM,j0
X0,M|4)1/4 = O(1), ∀a ∈ R|M| with ‖a‖2 = 1.

This together with (A.94) yields that

η5 = O(1), (A.95)

with probability tending to 1.

Recall that s∗ is the number of nonzero elements in β0. Under Condition (A5*), it

follows from Lemma G.9 of Shi et al. (2018) that

η6 ≤ (k0 + 2)2 max
|M|≤s∗

sup
a∈Rs∗
‖a‖2≤1

1

n

n∑
i=1

|aTXi,M|2|ωTM,j0
Xi,M|‖β̃ − β0‖2

2,

with probability tending to 1. Condition (A1*) implies that s∗ ≤ κn. It follows that

η6 ≤ (k0 + 2)2 max
|M|≤κn

sup
a∈Rκn
‖a‖2≤1

1

n

n∑
i=1

|aTXi,M|2|ωTM,j0
Xi,M|‖β̃ − β0‖2

2,

with probability tending to 1. Similar to (A.95), we can show

η6 = O(‖β̃ − β0‖2
2),
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with probability tending to 1. Under (A5*), we obtain

η6 = O(η2
n), (A.96)

with probability tending to 1. This together with (A.93) and (A.95) proves (A.90). Simi-

larly, we can show (A.91) and (A.92) hold. We omit the technical details to save space.

This further implies (A.87)-(A.89) hold. Based on these results, following the arguments

in the proof of Lemma A.2, we can show (A.29) and (A.30) hold. Besides, based on (A.90)-

(A.92), we can similarly show (A.32) holds.

Now, we focus on proving (A.31). Similar to (A.83), we can show

max
M⊆Ij0 ,|M|≤κn

∥∥∥Σ̂∗−1
M,M − Σ̂−1

M,M

∥∥∥
2

= O

(
max

M⊆Ij0 ,|M|≤κn

∥∥∥Σ̂∗M,M − Σ̂M,M

∥∥∥
2

)
,

with probability tending to 1. In view of (A.91), we obtain

max
M⊆Ij0 ,|M|≤κn

∥∥∥Σ̂∗−1
M,M − Σ̂−1

M,M

∥∥∥
2
≤ c̄∗0ηn, (A.97)

for some constant c̄∗0 > 0, with probability tending to 1.

For any M⊆ Ij0 , we have

ω̂M,j0 − ω̂∗M,j0
= Σ̂∗−1

M,M(Σ̂M,j0 − Σ̂∗M,j0
)︸ ︷︷ ︸

I∗1

+(Σ̂−1
M,M − Σ̂∗−1

M,M)Σ̂∗M,j0

+ (Σ̂−1
M,M − Σ̂∗−1

M,M)(Σ̂M,j0 − Σ̂∗M,j0
)︸ ︷︷ ︸

I∗2

= I∗1 + Σ̂−1
M,M(Σ̂M,M − Σ̂∗M,M)ω̂∗M,j0

+ I∗2 = I∗1 + I∗2 + (Σ̂−1
M,M − Σ̂∗−1

M,M)(Σ̂M,M − Σ̂∗M,M)ω̂∗M,j0︸ ︷︷ ︸
I∗3

+ Σ̂∗−1
M,M(Σ̂M,M − Σ̂∗M,M)ω̂∗M,j0︸ ︷︷ ︸

I∗4

By (A.92) and (A.97), it is immediate to see that |I∗2 | is upper bounded by c̄∗0c̄∗∗∗η
2
n, with

probability tending to 1.

Similar to (A.5), we can show

max
M⊆Ij0 ,|M|≤κn

‖ω̂∗M,j0
− ωM,j0‖2 = Op

(√
κn log p√
n

)
= op(1). (A.98)
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By (A.28), this further implies that

Pr

(
max

M⊆Ij0 ,|M|≤κn
‖ω̂∗M,j0

‖2 ≤ 2(c̄)−1/2c0

)
→ 1. (A.99)

This together with (A.91) and (A.97) yields that

Pr

(
|I∗3 | ≤

4c̄2
∗∗∗η

2
n

c̄2
2(c̄)−1/2c0

)
→ 1.

Recall that

ω̃M,j0 = ω̂∗M,j0
+

p∑
j=1

Σ̂∗−1
M,M

(
Ψ̂

(j)
M,j0

+ Ψ̂
(j)
M,Mω̂

∗
M,j0

)
(β̃j − β0,j).

Hence, in order to prove

max
M⊆Ij0
|M|≤κn

‖ω̂M,j0 − ω̃M,j0‖2 ≤ c̄0η
2
n, (A.100)

it suffices to show the following events occur with probability tending to 1,

max
M⊆Ij0
|M|≤κn

∥∥∥∥∥I∗1 −
p∑
j=1

Σ̂∗−1
M,MΨ̂

(j)
M,j0

(β̃j − β0,j)

∥∥∥∥∥
2

= O(η2
n), (A.101)

max
M⊆Ij0
|M|≤κn

∥∥∥∥∥I∗4 −
p∑
j=1

Σ̂∗−1
M,MΨ̂

(j)
M,Mω̂

∗
M,j0

(β̃j − β0,j)

∥∥∥∥∥
2

= O(η2
n). (A.102)

We first prove (A.101). Similar to (A.62), we can show

max
M⊆Ij0
|M|≤κn

‖Σ̂∗−1
M,M‖2 = O(1),

with probability tending to 1. By the definition of Ψ̂
(j)
M,j0

, it suffices to show

max
M⊆Ij0
|M|≤κn

∥∥∥∥∥Σ̂M,j0 − Σ̂∗M,j0
− 1

n

n∑
i=1

Xi,Mb
′′′(XT

i β0)Xi,j0{XT
i (β̃ − β0)}

∥∥∥∥∥
2

≤ c∗1η
2
n, (A.103)
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for some constant c∗1 > 0, with probability tending to 1. This is equivalent to show

max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∣∣∣∣∣aT
(

Σ̂M,j0 − Σ̂∗M,j0
− 1

n

n∑
i=1

Xi,Mb
′′′(XT

i β0)Xi,j0{XT
i (β̃ − β0)}

)∣∣∣∣∣ ≤ c∗1η
2
n,

with probability tending to 1. For any a ∈ R|M|, it follows from Taylor’s theorem that

aT
(
Σ̂M,j0 − Σ̂∗M,j0

)
=

1

n

n∑
i=1

aTXi,Mb
′′′(XT

i β
∗
a)Xi,j0{XT

i (β̃ − β0)},

for some β∗a lying on the line segment joining β0 and β̃. The function b′′′ is Lipschitz

continuous. Similar to (A.39), we can show

sup
a∈R|M|

|b′′′(XT
i β
∗
a)− b′′′(XT

i β0)| ≤ L0|XT
i (β0 − β∗a)| ≤ L0|XT

i (β̃0 − β0)|,

for some constant L0 > 0, with probability tending to 1. This together with Condition

(A4*) yields that

max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∥∥∥∥∥Σ̂M,j0 − Σ̂∗M,j0
− 1

n

n∑
i=1

Xi,Mb
′′′(XT

i β0)Xi,j0{XT
i (β̃ − β0)}

∥∥∥∥∥
2

≤ L0 max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∣∣∣∣∣ 1n
n∑
i=1

|aTXi,M||Xi,j0 |{XT
i (β̃ − β0)}2

∣∣∣∣∣
≤ L0ω0 max

M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∣∣∣∣∣ 1n
n∑
i=1

|aTXi,M|{XT
i (β̃ − β0)}2

∣∣∣∣∣ , (A.104)

with probability tending to 1. Now (A.103) can be proven in a similar manner as (A.96).

This further implies (A.101) holds.

The proof of (A.102) is more involved. Define

I∗∗4 = Σ̂∗−1
M,M(Σ̂M,M − Σ̂∗M,M)ωM,j0
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Using similar arguments in proving (A.101), we can show

max
M⊆Ij0
|M|≤κn

∥∥∥∥∥I∗∗4 −
p∑
j=1

Σ̂∗−1
M,MΨ̂

(j)
M,MωM,j0(β̃j − β0,j)

∥∥∥∥∥ (A.105)

≤ O(1) max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∣∣∣∣∣ 1n
n∑
i=1

|aTXi,MX
T
i,MωM,j0 |{XT

i (β̃ − β0)}2

∣∣∣∣∣ ,
with probability tending to 1, where O(1) denotes some positive constant. Using similar

arguments in proving (A.75) and (A.96), we can show the last term is upper bounded

by O(η2
n) with probability tending to 1, under the condition that κ3

n = O(n), κ
5/2
n log p =

O(n/ log2 n). Hence, to prove (A.102), it suffice to show

max
M⊆Ij0
|M|≤κn

∥∥∥∥∥I∗4 − I∗∗4 −
p∑
j=1

Σ̂∗−1
M,MΨ̂

(j)
M,M(ω̂∗M,j0

− ωM,j0)(β̃j − β0,j)

∥∥∥∥∥ = op(η
2
n). (A.106)

Using similar arguments in proving (A.105), we have by (A.98) that the LHS of (A.106)

can be upper bounded by

|R0| max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∣∣∣∣∣ 1n
n∑
i=1

|aTXi,M|{XT
i (β̃ − β0)}2

∣∣∣∣∣ .
for some random variable R0 = Op(n

−1/2κn
√

log p). Under the condition that κ
5/2
n log p =

O(n/ log2 n), we can show similarly that the above expression is op(η
2
n). This proves (A.106).

As a result, (A.102) and (A.100) are proven. Similarly, we can show

max
M⊆Ij0
|M|≤κn

∥∥σ̂2
M,j0
− σ̃2

M,j0

∥∥
2
≤ c̄0η

2
n.

This together with (A.100) proves (A.31). We omit the details to save space.

Finally, we show

n−1∑
t=0

Z̃t+1,j0εt+1√
n

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(−sn)

j0
,j0

 =
n−1∑
t=0

Ẑ∗t+1,j0
εt+1√

nσ̂∗
M̂(t)

j0
,j0

+ op(1). (A.107)
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With some calculations, we have

n−1∑
t=0

Z̃t+1,j0εt+1√
n

 1

σ̂∗
M̂(t)

j0
,j0

−

∑
j ξ̂

(j)

M̂(t)
j0
,j0

(β̃j − β0,j)

σ̂∗3
M̂(t)

j0
,j0

− n−1∑
t=0

Ẑ∗t+1,j0
εt+1√

nσ̂∗
M̂(t)

j0
,j0

=

p∑
j=1

n−1∑
t=0

Ẑ∗t+1,j0
εt+1ξ̂

(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0

(β̃j − β0,j)


︸ ︷︷ ︸

η∗1

+
n−1∑
t=0

(Z̃t+1,j0 − Ẑ∗t+1,j0
)εt+1√

nσ̂∗
M̂(t)

j0
,j0︸ ︷︷ ︸

η∗2

+

p∑
j=1

n−1∑
t=0

(Z̃t+1,j0 − Ẑ∗t+1,j0
)εt+1ξ̂

(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0

(β̃j − β0,j)


︸ ︷︷ ︸

η∗3

.

In the following, we first prove η∗1 = op(1). Note that |η∗1| ≤ maxj |η∗1,j|‖β̃ − β0‖1 where

η∗1,j =
n−1∑
t=0

Ẑ∗t+1,j0
εt+1ξ̂

(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0

.

By Condition (A5*), it suffices to show maxj |η∗1,j| = Op(
√

log p).

It follows from the Lipschitz continuity of b′′′(·) that

|b′′′(XT
i β0)− b′′′(0)| ≤ L0|XT

i β0|.

Hence, under Condition (A4*), max1≤i≤n |b′′′(XT
i β0)| is bounded by some universal con-

stant. Since X0,j’s are uniformly bounded, we obtain

max
1≤j≤p

|Ψ̂(j)
j0,j0
| = max

1≤j≤p

∣∣∣∣∣ 1n∑
i

X3
i,jb
′′′(XT

i β0)

∣∣∣∣∣ = O(1). (A.108)

Similarly, we can show

max
1≤j≤p

max
M⊆Ij0
|M|≤κn

‖Ψ̂(j)
M,M‖2 = max

1≤j≤p
max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

|aT Ψ̂
(j)
M,Ma|

≤ O(1) max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∣∣∣∣∣ 1n
n∑
i=1

(aTXi,M)2

∣∣∣∣∣ ,
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where O(1) denotes some positive constant. Using similar arguments in bounding η5, we

can show

max
M⊆Ij0
|M|≤κn

sup
a∈R|M|
‖a‖2=1

∣∣∣∣∣ 1n
n∑
i=1

(aTXi,M)2

∣∣∣∣∣ = O(1),

with probability tending to 1 and hence,

max
1≤j≤p

max
M⊆Ij0
|M|≤κn

‖Ψ̂(j)
M,M‖2 = O(1), (A.109)

with probability tending to 1. Similarly, we can show

max
1≤j≤p

max
M⊆Ij0
|M|≤κn

‖Ψ̂(j)
M,j0
‖2 = O(1), (A.110)

with probability tending to 1. This together with (A.99), (A.108) and (A.109) yields

max
1≤j≤p

max
M⊆Ij0 ,|M|≤κn

|ξ̂(j)
M,j0
| = O(1), (A.111)

with probability tending to 1.

Note that

η∗1,j =
sn−1∑
t=0

Ẑ∗t+1,j0
εt+1ξ̂

(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0︸ ︷︷ ︸

η∗∗1,j

+
n−1∑
t=sn

Ẑ∗t+1,j0
εt+1ξ̂

(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0︸ ︷︷ ︸

η∗∗∗1,j

.

We first prove maxj |η∗∗∗1,j | = Op(
√
κn log p).

Define σ(F∗t ) = σ(X1,X2, . . . ,Xn, Y1, Y2, . . . , Yt), η
∗∗∗
1,j corresponds to a mean-zero mar-

tingale with respect to the filtration {σ(F∗t ) : t ≥ sn}. By Condition (A1*) and (A4*), we

have for any t = 0, . . . , n− 1,

|Ẑ∗t+1,j0
| ≤ ω0 max

M⊆Ij0
|M|≤κn

(1 +
√
κn‖ω̂∗M,j0

‖2). (A.112)
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Let

c̄(j)
n ≡ ω0n

−1/2 max
1≤j≤p

max
M⊆Ij0
|M|≤κn

|(1 +
√
κn‖ω̂∗M,j0

‖2)|
|σ̂∗M,j0

|
|ξ̂(j)
M,j0
|.

Under Condition (A6*), ‖εt+1‖ψ1|F∗t ≤ L∗ for some constant L∗ > 0. Similar to (A.84), we

can show

E{|εt+1|k|F∗t } ≤ k!(L∗)k,

for any k and t. By Condition (A1*) and (A.112), we have

E


∣∣∣∣∣∣∣
Ẑ∗t+1,j0

εt+1ξ̂
(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0

∣∣∣∣∣∣∣
k∣∣∣∣∣∣∣F∗t

 ≤
Ẑ∗t+1,j0

ξ̂
(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0


2

k!(L∗)k(c̄(j)
n )k−2, (A.113)

for any j, t and k ≥ 2.

Let

V (j)
n = 2

n−1∑
t=sn

Ẑ∗t+1,j0
ξ̂

(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0


2

.

Similar to (A.41) and (A.12), we can show
∑n−1

t=sn
(Ẑ∗t+1,j0

)2 = Op(n) and mint σ̂
∗3
M̂(t)

j0
,j0
≤

2/
√
c̄, respectively. It follows from (A.111) that

max
j
V (j)
n = Op(1). (A.114)

It follows from Theorem 9.12 in de la Peña et al. (2009) that for any 1 ≤ j ≤ p,

Pr(|η∗∗∗1,j | > z, V (j)
n ≤ z̄) ≤ 2 exp

(
− z2

2(L∗)2z̄ + 2L∗c̄
(j)
n z

)
≤ 2 exp

(
− z2

max{4(L∗)2z̄, 4L∗c̄
(j)
n z}

)
.

Take z
(j)
0 = max(3L∗

√
z̄ log p, 8L∗c̄

(j)
n log p), we have

Pr(|η∗∗∗1,j | > z
(j)
0 , V (j)

n ≤ nz̄) ≤ 2 exp(−2 log p) =
2

p2
.
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It follows from Bonferroni’s inequality that

Pr

(
p⋂
j=1

{
|η∗∗∗1,j | > z

(j)
0

}
,max

j
V (j)
n ≤ nz̄

)
≤

p∑
j=1

Pr(|η∗∗∗1,j | > z
(j)
0 ) =

2

p
→ 0.

By (A.114), for any ε > 0, there exists some z̄ > 0 such that Pr(maxj V
(j)
n ≤ nz̄) ≥ 1− ε.

This implies that

p
max
j=1
|η∗∗∗1,j | ≤

p
max
j=1

z
(j)
0 , (A.115)

with probability tending to 1− ε. By (A.37) and (A.99), we have maxj c̄
(j)
n = Op(

√
κn) and

hence

max
j
|η∗∗∗1,j | = Op(

√
log p), (A.116)

by (A.115) and the condition that κ
5/2
n log p = O(n/ log2 n).

Recall that

η∗∗1,j =
sn−1∑
t=0

Ẑ∗t+1,j0
εt+1ξ̂

(j)

M̂(−sn)
j0

,j0√
nσ̂∗3
M̂(−sn)

j0
,j0

.

Given X1, . . . ,Xn and Ysn+1, . . . , Yn, each term in η∗∗1,j is independent of others. Using

similar arguments, we can show maxj |η∗∗1,j| = Op(
√

log p). This together with (A.116) gives

maxj |η∗1,j| = Op(
√

log p). By Condition (A5*), we obtain |η∗1| ≤ maxj maxj |η∗1,j|‖β̃−β0‖1 =

op(1). Similarly, we can show η∗2 = op(1). It remains to show η∗3 = op(1).

Note that |η∗3| can be upper bounded by maxj |η∗3,j|‖β̃ − β0‖1 where

η∗3,j =
n−1∑
t=0

(Z̃t+1,j0 − Ẑ∗t+1,j0
)εt+1ξ̂

(j)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0

.

Since

Ẑ∗t+1,j0
− Z̃t+1,j0 =

p∑
j=1

XT

t+1,M̂(t)
j0

Σ̂∗−1

M̂(t)
j0
,M̂(t)

j0

(
Ψ̂

(j)

M̂(t)
j0
,j0

+ Ψ̂
(j)

M̂(t)
j0
,M̂(t)

j0

ω̂∗
M̂(t)

j0
,j0

)
(β̃j − β0,j).
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Using similar arguments in proving maxj η
∗∗
1,j = Op(

√
log p), we can show

max
j1,j2

∣∣∣∣∣∣∣∣
n−1∑
t=0

XT

t+1,M̂(t)
j0

Σ̂∗−1

M̂(t)
j0
,M̂(t)

j0

(
Ψ̂

(j1)

M̂(t)
j0
,j0

+ Ψ̂
(j1)

M̂(t)
j0
,M̂(t)

j0

ω̂∗
M̂(t)

j0
,j0

)
εt+1ξ̂

(j2)

M̂(t)
j0
,j0√

nσ̂∗3
M̂(t)

j0
,j0

∣∣∣∣∣∣∣∣ = Op(
√

log p).

Hence, we have |η∗3| = Op(
√

log p(
√
κnηn)2) = op(1), by (A5*). The proof is hence com-

pleted.

A.9 Technical lemmas

Lemma A.5. For any positive definite matrix

Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
,

denote its inverse matrix as Ω and partition it into Ω11, . . . ,Ω22 accordingly. Then,

Ω11 = (Ψ11 −Ψ12Ψ
−1
22 Ψ21)−1.

Besides, let Ψ∗ = Ψ22 −Ψ21Ψ
−1
11 Ψ12, we have

Ω =

(
Ψ−1

11 + Ψ−1
11 Ψ12Ψ

−1
∗ Ψ21Ψ

−1
11 −Ψ−1

11 Ψ12Ψ
−1
∗

−Ψ−1
∗ Ψ21Ψ

−1
11 Ψ∗

)
.

B More on the technical conditions

B.1 More on (A1) and (A1*)

The validity of the sure screening property assumed in (A1) or (A1*) relies typically on the

following minimum-signal-strength condition:

min
j∈Mj0

|β0,j| ≥ σ∗n, (B.1)

for some monotonically nonincreasing sequence {σ∗n}n that satisfies σ∗n � n−1/2 and σ∗n → 0

as n→∞. Although such conditions are not assumed in van de Geer et al. (2014) or Ning

and Liu (2017), these authors imposed some additional assumptions on the design matrix.

For instance, consider the decorrelated score statistic proposed by Ning and Liu (2017). For
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linear regression models, its validity depends on the sparsity of a high-dimensional vector

w∗. When the covariates follow a Gaussian graphical model, the sparsity assumption on

w∗ requires the degree of a particular node in the graph to be relatively small. See Remark

6 of Ning and Liu (2017) for details.

B.1.1 A counterexample

AssumeX0 ∼ N(0, {ρ|i−j|}i,j=1,...,p) for some 0 < ρ < 1, Y0 = XT
0 β0+ε0 where ε0 ∼ N(0, 1)

that is independent of X0 and β0,1 = 0, β0,2 = n−1/2, β0,j = 0 for all j > 2. The minimum-

signal-strength condition (B.1) is thus violated. Our goal is to construct a CI for β0,1.

Suppose we use SIS to determine the set of important variables based on their marginal

correlations with the response. Specifically, set

M̂(t)
1 =

{
j ≥ 2 : t−1

t∑
i=1

|YiXi,j| ≥ σt

}
, ∀sn ≤ t < n,

M̂(−sn)
1 =

{
j ≥ 2 : (n− sn)−1

n∑
i=sn+1

|YiXi,j| ≥ σn−sn

}
,

for some sequence {σ}n that satisfies σn � n−1/2 log1/2 n.

Notice that for any j ≥ 2, we have EY0X0,j = n−1/2EX0,2X0,j = n−1/2ρj−2. Using

Bernstein’s inequality, we can show that the following events occur with probability tending

to 1 that

t−1

t∑
i=1

|YiXi,j| ≤ O(1)t−1/2
√

log t+ log p, ∀sn ≤ t < n, 2 ≤ j ≤ p,

(n− sn)−1

n∑
i=sn+1

|YiXi,j| ≤ O(1)(n− sn)−1/2
√

log(n− sn) + log p, ∀2 ≤ j ≤ p,

where O(1) denotes some positive constant. Suppose p = O(n) and the sequence sn is set

to be bεnc for some 0 < ε < 1. It follows that

max
sn≤t≤n,2≤j≤p

t−1/2
√

log t+ log p = O(n−1/2 log1/2 n),

(n− sn)−1/2
√

log(n− sn) + log p = O(n−1/2 log1/2 n).
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Hence, for sufficiently large n, we have M̂(−sn)
1 = M̂(sn)

1 = M̂(sn+1)
1 = M̂(n−1)

1 = ∅, with

probability tending to 1.

As a result, our score equation for β0,1 is given by

n∑
i=1

Xi,1(Yi −XT
i,1β0,1) = 0,

with probability tending to 1. Therefore, the proposed CI for β0,1 equalsβ̂1 − zα/2n−1/2

(
1

n

n∑
i=1

X2
i,1

)−1/2

, β̂1 + zα/2n
−1/2

(
1

n

n∑
i=1

X2
i,1

)−1/2
 ,

where

β̂1 =

(
n∑
i=1

X2
i,1

)−1( n∑
i=1

Xi,1Yi

)
.

It follows that(
n∑
i=1

X2
i,1

)1/2

(β̂1 − β0,1) =

(
n∑
i=1

X2
i,1

)−1/2( n∑
i=1

Xi,1(Yi −Xi,1β0,1)

)

=

(
n∑
i=1

X2
i,1

)−1/2( n∑
i=1

Xi,1εi

)
+ n−1/2

(
n∑
i=1

X2
i,1

)−1/2( n∑
i=1

Xi,1Xi,2

)
. (B.2)

By the central limit theorem, the first term on the RHS of (B.2) converges to N(0, 1)

in distribution. The second term converges to ρ, according to the law of large numbers.

Hence, our CI is not valid as long as ρ > 0. This implies that the minimal-signal-strength

condition is necessary to guarantee the validity of our procedure.

B.1.2 Extension to many small but weak signals

Moreover, one could relax the minimum-signal-strength condition in (B.1) by assuming

there are many small but weak signals in β0. Specifically, assume Mj0 is a union of two

disjoint subsets M∗
j0

and M∗∗
j0

such that

M∗
j0

= {j ∈ Ij0 : |β0,j| ≥ σ∗n}, (B.3)
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and

M∗∗
j0

=Mj0 ∩ (M∗
j0

)c with ‖β0,M∗∗j0
‖2 = O(n−κ

∗
), (B.4)

for some sequence n−1/2 � σ∗n � 1 and some constant κ∗ > 1/2. We require |M∗
j0
| is much

smaller than n while |M∗∗
j0
| can be much larger than the sample size. Such conditions are

very similar to the zonal assumption imposed by Bühlmann and Mandozzi (2014). When

(B.3) and (B.4) hold, Condition (A1) or (A1*) can then be replaced by the following:

(A1**) Assume M̂(n)
j0

satisfies Pr(|M̂(n)
j0
| ≤ κn) = 1 for some 1 ≤ κn = o(n). Besides,

Pr
(
M∗

j0
⊆ M̂(n)

j0

)
≥ 1−O

(
1

nα0

)
,

for some constant α0 > 1.

That is, we require the selected model will contain all those strong signals with proba-

bility tending to 1. This assumption can be satisfied under the condition in (B.3). In the

following, we sketch a few lines to show the proposed method works. For simplicity, we

focus on linear regression models.

By (A1**) and Bonferroni’s inequality, the following event occurs with probability tend-

ing to 1,

M∗
j0
⊆

n−1⋂
t=sn

M̂(t+1)
j0

. (B.5)

Under the event defined in (B.5), we have

√
nΓ∗n(β̂j0 − β0,j0) = I1 + I2 + I3 + I4

+
sn−1∑
t=0

Ẑt+1,j0X
T

t+1,(M̂(−sn)
j0

)c
β

0,(M̂(−sn)
j0

)c

√
nσ̂M̂(−sn)

j0
,j0

+
n−1∑
t=sn

Ẑt+1,j0X
T

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσ̂M̂(t)

j0
,j0

,
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and ∣∣∣∣∣∣∣
sn−1∑
t=0

Ẑt+1,j0X
T

t+1,(M̂(−sn)
j0

)c
β

0,(M̂(−sn)
j0

)c

√
nσ̂M̂(−sn)

j0
,j0

∣∣∣∣∣∣∣ ≤
sn−1∑
t=0

|Ẑt+1,j0 ||XT

t+1,(M̂(−sn)
j0

)c
β

0,(M̂(−sn)
j0

)c
|

√
nσ̂M̂(−sn)

j0
,j0

,

∣∣∣∣∣∣∣
n−1∑
t=sn

Ẑt+1,j0X
T

t+1,(M̂(−sn)
j0

)c
β

0,(M̂(−sn)
j0

)c

√
nσ̂M̂(−sn)

j0
,j0

∣∣∣∣∣∣∣ ≤
n−1∑
t=sn

|Ẑt+1,j0 ||XT

t+1,(M̂(−sn)
j0

)c
β

0,(M̂(−sn)
j0

)c
|

√
nσ̂M̂(t)

j0
,j0

,

where I1, I2, I3 and I4 are defined in Section A.1, Ẑt+1,j0 , M̂
(−sn)
j0

, M̂(t)
j0

, σ̂M̂(−sn)
j0

,j0
and

σ̂M̂(t)
j0
,j0

are defined in Section 2.

Note that we have shown in Section A.1 that I1 + I2 + I3 + I4 is asymptotically normal.

It suffices to show

n∑
t=0

|Ẑt+1,j0 ||XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
|

√
nσ̂M̂(−sn)

j0
,j0

= op(1), (B.6)

whereM(t)
j0

=M(−sn)
j0

, for t = 0, . . . , sn− 1. Under the event defined in (A.12) and (A1**),

the LHS of (B.6) is upper bounded by

I5 ≡
n−1∑
t=0

2|Ẑt+1,j0 ||XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
|

√
c̄n

.

By Cauchy-Schwarz inequality, we have

I5 ≤
2√
c̄n

(
n−1∑
t=0

|Ẑt+1,j0 |2
)1/2(n−1∑

t=0

|XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
|2
)1/2

. (B.7)

Similar to (A.45), we can show
∑n−1

t=0 |Ẑt+1,j0 |2 = Op(n) under the given conditions in

Theorem 2.1. Under (A1**), we have ‖β
0,(M̂(t)

j0
)c
‖2 ≤ ‖β0,M∗∗j0

‖2, almost surely for any

t = 0, 1, . . . , n− 1. This together with (A.22) and (B.4) yields that

E
n−1∑
t=0

|XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
|2 ≤ nλmax(Σ)E‖β

0,(M̂(t)
j0

)c
‖2

2 = O(n1−2κ∗) = o(1). (B.8)

By Markov’s inequality, we obtain
∑n−1

t=0 |XT
t+1,M∗∗j0

β0,M∗∗j0
|2 = op(1). In view of (B.7), we

have shown I5 = op(1). The proof is hence completed.
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B.1.3 Additional details regarding the doubly-robust procedure

To better understand the proposed algorithm in Section 5.4, we decompose Mj0 into M∗
j0

and M∗∗
j0

as in Section B.1.2, where M∗
j0

denotes the set of strong signals that satisfies

(B.3) and M∗∗
j0

=Mj0 ∩ (M∗
j0

)c is the set of weak signals.

In case the set M∗∗
j0

is nonempty, we can apply another model selection procedure

to estimate the support of ωIj0 ,j0 (denoted by Mω), in order to gain some robustness.

For linear regression models, Mω can be estimated by (I)SIS or regularized regression,

with Xi,j0 ’s being the responses and Xi,Ij0 ’s being the covariates. Similarly, we decompose

Mω into M∗
ω and M∗∗

ω , corresponding to the set of strong and weak signals in ωIj0 ,j0 ,

respectively.

Let M̂1,(t)
j0

, sn ≤ t < n and M̂1,(−sn)
j0

denote the estimated supports of β0,Ij0 , and

M̂2,(t)
j0

, sn ≤ t < n and M̂2,(−sn)
j0

the estimated supports of ωIj0 ,j0 . We will assume the

following occurs with probability tending to 1,

M∗
j0
⊆

{
n⋂

t=sn

M̂1,(t)
j0

}⋂
M̂1,(−sn)

j0
and M∗

ω ⊆

{
n⋂

t=sn

M̂2,(t)
j0

}⋂
M̂2,(−sn)

j0
.

Set M̂(t)
j0

= M̂1,(t)
j0
∪M̂2,(t)

j0
, for sn ≤ t < n and M̂(−sn)

j0
= M̂1,(−sn)

j0
∪M̂2,(−sn)

j0
. We propose to

use the union of these two sets in our algorithm to construct the CI for β0,j0 . The number of

elements in M̂(−sn)
j0

,M̂(sn)
j0

, · · · ,M̂(n−1)
j0

shall be bounded by κn, almost surely. We require

ηn
√
κn log p = o(1), κ2

n log p = O(n/ log2 n) and κ2
n log2 p = O(n). In the following, we focus

on linear regression models and show the resulting CI for β0,j0 is valid as long as either one

of the following two conditions holds:

(i) M∗∗
j0

= ∅.

(ii) ‖β0,M∗∗j0
‖2 = o(n−1/4) and ‖ωIj0 ,j0,M

∗∗
j0
‖2 = o(n−1/4), where ωIj0 ,j0,M

∗∗
j0

is the sub-vector

of ωIj0 ,j0 formed by elements in M∗∗
j0

.

When (i) holds, the assertion can be proven in similar manner as Theorem 2.1. Consider

the case where (ii) holds. Using similar arguments in Section B.1.2, it suffices to show

n−1∑
t=0

Ẑt+1,j0X
T

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσ̂M̂(t)

j0
,j0

= op(1). (B.9)
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We decompose the LHS of (B.9) into I6 + I7 + I8 where

I6 =
n−1∑
t=0

Ẑt+1,j0X
T

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσ̂M̂(t)

j0
,j0

−
Ẑt+1,j0X

T

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσM̂(t)

j0
,j0

 ,

I7 =
n−1∑
t=0

XT

t+1,M̂(t)
j0

(ω̂M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0

)XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσM̂(t)

j0
,j0

,

I8 =
n−1∑
t=0

Zt+1,j0X
T

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσM̂(t)

j0
,j0

.

Under the event defined in (A.6) and (A.12), we have almost surely that

|I6| ≤
2c̄0

c̄
√
n

(√
κn log p√
n

) n−1∑
t=0

|Ẑt+1,j0X
T

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
|.

Using similar arguments in bounding I5 in Section B.1.2, we can show

n−1∑
t=0

|Ẑt+1,j0X
T

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
| = op(n

3/4).

Under the condition κ2
n log2 p = O(n), it follows that I6 = op(1).

Using similar arguments in bounding I
(2)
2 in the proof of Theorem 2.1, we have

n−1∑
t=0

|XT

t+1,M̂(t)
j0

(ω̂M̂(t)
j0
,j0
− ωM̂(t)

j0
,j0

)|2 = Op(κn log p).

In addition, similar to (B.8), we can show

n−1∑
t=0

|XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
|2 = op(n

−1/2). (B.10)

By (A.1) and Cauchy-Schwarz inequality, we obtain I7 = op(n
−1/4
√
κn log p) = op(1), under

the condition that κ2
n log2 p = O(n).

It remains to show I8 = op(1). Since E(X0,j0 − ωTIj0 ,j0X0,Ij0 )X0,Ij0 = 0, we have for any

M ⊆ Ij0 that E(X0,j0 − ωTIj0 ,j0X0,Ij0 )X0,M = 0. Thus, for any M that contains Mω, we
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have

E(X0,j0 − ωTIj0 ,j0,MX0,M)X0,M = 0,

where ωIj0 ,j0,M is the sub-vector of ωIj0 ,j0 formed by elements in M. This further implies

ωIj0 ,j0,M = ωM,j0 , for any M that contains Mω, and hence

E(X0,j0 − ωTM,j0
X0,M)X0,Ij0 = 0.

For an arbitrary set M∗ that contains M∗
ω, define M∗∗ =M∗ ∪M∗∗

ω . It follows that

E(X0,j0 − ωTIj0 ,j0,M∗∗X0,M∗∗)X0,Ij0 = 0, (B.11)

and hence E(X0,j0 − ωTIj0 ,j0,M∗X0,M∗ − ωTIj0 ,j0,M∗∗−M∗X0,M∗∗−M∗)X0,M∗ = 0. By (A.22),

(ii) and Cauchy-Schwarz inequality, we have

sup
a∈R|M∗|,‖a‖2=1

E|aTX0,M∗ ||ωTIj0 ,j0,M∗∗−M∗X0,M∗∗−M∗ |

≤

(
sup

a∈R|M∗|,‖a‖2=1

E|aTX0,M∗ |2
)1/2 (

E|ωTIj0 ,j0,M∗∗−M∗X0,M∗∗−M∗ |2
)1/2

≤ λmax(Σ)‖ωIj0 ,j0,M∗∗−M∗‖2 ≤ λmax(Σ)‖ωIj0 ,j0,M∗∗ω ‖2 = o(n−1/4).

This yields ‖EωTIj0 ,j0,M∗∗−M∗X0,M∗∗−M∗X0,M∗‖2 = o(n−1/4) and hence

‖E(X0,j0 − ωTIj0 ,j0,M∗X0,M∗)X0,M∗‖2 = o(n−1/4).

Notice that E(X0,j0 − ωTM∗,j0X0,M∗)X0,M∗ = 0. For any M∗ that satisfies |M∗| ≤ κn, it

follows from Condition (A2) that

‖ωM∗,j0 − ωIj0 ,j0,M∗‖2 ≤
‖E(ωM∗,j0 − ωIj0 ,j0,M∗)

TX0,M∗(X0,M∗ )T ‖2

λmin(ΣM∗,M∗)

=
‖E(X0,j0 − ωTIj0 ,j0,M∗X0,M∗)X0,M∗‖2

λmin(ΣM∗,M∗)
= o(n−1/4).

59



To summarize, we have shown that

max
M∗⊆Ij0

|M∗|≤κn,M∗ω⊆M∗

‖ωM∗,j0 − ωIj0 ,j0,M∗‖2 = o(n−1/4).

Under the given conditions, we obtain

max
t∈{0,1,...,n−1}

‖ωM̂(t),j0
− ωIj0 ,j0,M̂(t)

‖2 = o(n−1/4),

almost surely. By (A.22), this yields

n−1∑
t=0

E|XT
t+1,M̂(t)

(ωM̂(t),j0
− ωIj0 ,j0,M̂(t)

)|2 = o(
√
n).

Similarly, we can show

n−1∑
t=0

E|XT
t+1,M̂(t)

ωIj0 ,j0,M̂(t)
−XT

t+1,M̂(t)∪M∗∗ω
ωIj0 ,j0,M̂(t)∪M∗∗ω

|2 = o(
√
n).

This together with (A.1), (B.10) and Cauchy-Schwarz inequality yields that

n−1∑
t=0

(XT
t+1,M̂(t)

ωIj0 ,j0,M̂(t)
−XT

t+1,M̂(t)∪M∗∗ω
ωIj0 ,j0,M̂(t)∪M∗∗ω

)XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσM̂(t)

j0
,j0

= op(1).

Thus, to show I8 = op(1), it suffices to show

n−1∑
t=0

(Xt+1,j0 −XT
t+1,M̂(t)∪M∗∗ω

ωIj0 ,j0,M̂(t)∪M∗∗ω
)XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσM̂(t)

j0
,j0

= op(1).

We first show

n−1∑
t=sn

(Xt+1,j0 −XT
t+1,M̂(t)∪M∗∗ω

ωIj0 ,j0,M̂(t)∪M∗∗ω
)XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσM̂(t)

j0
,j0

= op(1). (B.12)

By (B.11), the LHS of (B.12) forms a mean zero martingale with respect to the filtration

{σ(Ft) : t ≥ sn}. Moreover, it follows from (ii) that ‖β
0,(M̂(t)

j0
)c
‖2 = o(1) and hence

1

n

n−1∑
t=sn

E{(Xt+1,j0 −XT
t+1,M̂(t)∪M∗∗ω

ωIj0 ,j0,M̂(t)∪M∗∗ω
)2(XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c
)2|Ft}

σ2

M̂(t)
j0
,j0

= o(1).
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This proves (B.12). Similarly, we can show

sn−1∑
t=0

(Xt+1,j0 −XT
t+1,M̂(t)∪M∗∗ω

ωIj0 ,j0,M̂(t)∪M∗∗ω
)XT

t+1,(M̂(t)
j0

)c
β

0,(M̂(t)
j0

)c

√
nσM̂(t)

j0
,j0

= op(1).

The proof is hence completed.

B.2 More on (A2) and (A2*)

Condition (A2) requires λmin (Σj0∪M,j0∪M) ≥ c̄ for some constant c̄ > 0 and any M ⊆ I

and |M| ≤ κn, where Σ = EX0X
T
0 . This condition is similar to the restricted eigenvalue

condition (Bickel et al., 2009) used to derive the oracle inequalities of the Lasso estimator

and the Dantzig selector. Notice that this condition is weaker compared to the one used in

van de Geer et al. (2014) or Ning and Liu (2017), which requires the minimum eigenvalue

of Σ to be strictly positive. See Section 4.1 of Ning and Liu (2017), Condition (A2) and

(B3) in van de Geer et al. (2014) for details.

B.3 More on (A5)

In this section, we provide a consistent estimator for σ2
0. Specifically, define

σ̂2 =
1

n

n∑
i=1

(Yi −XT
i β̃)2.

In the following, we show |σ̂2 − σ2
0| = op(1). Notice that

|σ̂2 − σ2
0| =

∣∣∣∣∣ 1n
n∑
i=1

(Yi −XT
i β0 +XT

i β0 −XT
i β̃)2 − σ2

0

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

ε2
i +

2

n

n∑
i=1

εiX
T
i (β0 − β̃) +

1

n

n∑
i=1

{XT
i (β̃ − β0)}2 − σ2

0

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

ε2
i − σ2

0

∣∣∣∣∣+

∣∣∣∣∣ 2n
n∑
i=1

εiX
T
i (β0 − β̃)

∣∣∣∣∣+
1

n

n∑
i=1

{XT
i (β̃ − β0)}2. (B.13)

Under the condition E|ε0|3 = O(1), the first term on the RHS of (B.13) is op(1) by the law

of large numbers.
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Suppose we can show ∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
∞

= Op(
√

log p). (B.14)

It follows from Condition (A4) and (A.25) that the second term on the RHS of (B.13) is

op(1), since∣∣∣∣∣ 1n
n∑
i=1

εiX
T
i (β0 − β̃)

∣∣∣∣∣ ≤
∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
∞

‖β0 − β̃‖1 = Op(ηn
√
κn log p) = op(1).

The third term is Op(η
2
n) by (A.9). Under the given conditions, it is op(1).

Therefore, to complete the proof, it suffices to show (B.14), or equivalently,

E

∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
∞

= O(
√

log p), (B.15)

by Markov’s inequality. It follows from Lemma A.3 in Chernozhukov et al. (2013) that

E

∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
∞

≤ O(1)(σ
√

log p+ M log p),

where O(1) denotes some positive constant, σ2 = maxj∈{1,...,p}
∑n

i=1 Eε2
iX

2
i,j/n

2 and M2 =

E max1≤j≤p max1≤i≤nX
2
i,jε

2
i /n

2. Notice that

σ2 = max
1≤j≤p

n−1Eε2
0X

2
0,j = n−1σ2

0 max
1≤j≤p

EX2
0,j ≤ n−1σ2

0 max
1≤j≤p

‖X0,j‖2
ψ2
≤ n−1σ2

0c
2
0,

where the last equality is due to the independence between ε0 and X0, the first inequality

is due to the fact that E|Z|2 ≤ ‖Z2‖ψ1 = ‖Z‖2
ψ2

for any random variable Z and the last

inequality is due to (A3).

Similarly, we can show

n2M2 = E max
1≤i≤n

ε2
iE max

1≤i≤n
1≤j≤p

X2
i,j ≤

(
E max

1≤i≤n
|εi|3

)2/3

E max
1≤i≤n
1≤j≤p

X2
i,j

≤

(
E
∑

1≤i≤n

|εi|3
)2/3

E max
1≤i≤n
1≤j≤p

X2
i,j ≤ (E|ε0|3)2/3n2/3E max

1≤i≤n
1≤j≤p

X2
i,j,
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where the first equality is due to the independence between ε0 and X0 and the first in-

equality follows from Hölder’s inequality. Using similar arguments in (A.60), (A.61) and

(A.74), we can show

E max
1≤i≤n
1≤j≤p

X2
i,j ≤ ‖ max

1≤i≤n
1≤j≤p

X2
i,j‖ψ1 = K1{log(1 + pn)} max

1≤i≤n
1≤j≤p

‖X2
i,j‖ψ1

= K1{log(1 + pn)} max
1≤i≤n
1≤j≤p

‖Xi,j‖2
ψ2

= O(log p+ log n),

by (A3). Under the condition E|ε0|3 = O(1), it follows that M2 = O(n−4/3 log p +

n−4/3 log n). Therefore, we obtain

E

∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
∞

= O(n−1/2 log1/2 p) +O(n−2/3 log3/2 p) +O(n−2/3 log p
√

log n).

Under the condition that log p = O(n2/3), we have E‖
∑n

i=1 εiXi/n‖∞ = O(
√

log p). This

proves (B.15). The proof is hence completed.

C Additional details regarding extensions to generic

M-estimators

It this section, we sketch a few lines to show that the CI proposed in Section 5.3 is valid.

It suffices to show that

√
nΓ∗,(l−1)

n (β̂
(l)
j0
− β0,j0)

d→ N(0, 1).

It follows from Taylor’s theorem that

n−1∑
t=0

1

nσ̂M̂(t)
j0
,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0


=

n−1∑
t=0

1

nσ̂M̂(t)
j0
,j0

∂`(Ut+1, h(β̂
(l−1)
j0

,M̂(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β̂
(l−1)
j0

,M̂(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0


+ Γ∗,(l−1)

n (β0,j0 − β̂l−1
j0

) + Rem,
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where the second-order remainder term satisfies Rem = op(n
−1/2) under certain local

smoothness assumption on the loss function `.

By the definition of β̂
(l)
j0

, we obtain that

√
nΓ∗,(l−1)

n (β̂
(l)
j0
− β0,j0) = op(1)

+
n−1∑
t=0

1

nσ̂M̂(t)
j0
,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0

 .

It suffices to show

n−1∑
t=0

1

nσ̂M̂(t)
j0
,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0

 d→ N(0, 1).

Under certain local smoothness assumptions on `, it follows from Taylor’s theorem that

n−1∑
t=0

1√
nσ̂M̂(t)

j0
,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0


=

n−1∑
t=0

1√
nσ̂M̂(t)

j0
,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
,β

0,M̂(t)
j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
,β

0,M̂(t)
j0

))

∂βM̂(t)
j0


+

n−1∑
t=0

1√
nσ̂M̂(t)

j0
,j0

∂2`(Ut+1, h(β0,j0 ,M̂
(t)
j0
,β

0,M̂(t)
j0

))

∂βj0∂β
T

0,M̂(t)
j0

− ω̂T
M̂(t0)

j0
,j0

∂2`(Ut+1, h(β0,j0 ,M̂
(t)
j0
,β

0,M̂(t)
j0

))

∂βM̂(t)
j0

∂βT
0,M̂(t)

j0


× (β̃M̂(t)

j0

− β
0,M̂(t)

j0

) + op(n
−1/2).

Suppose the model selection procedure satisfies the sure screening property. Then we have
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h(β0,j0 ,M̂
(t)
j0
,β

0,M̂(t)
j0

) = β0, ∀t and hence

n−1∑
t=0

1√
nσ̂M̂(t)

j0
,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0


+

n−1∑
t=0

1√
nσ̂M̂(t)

j0
,j0

∂`(Ut+1,β0)

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1,β0)

∂βM̂(t)
j0


︸ ︷︷ ︸

ζ1

+
n−1∑
t=0

1√
nσ̂M̂(t)

j0
,j0

∂2`(Ut+1,β0)

∂βj0∂β
T

0,M̂(t)
j0

− ω̂T
M̂(t0)

j0
,j0

∂2`(Ut+1,β0)

∂βM̂(t)
j0

∂βT
0,M̂(t)

j0

 (β̃M̂(t)
j0

− β
0,M̂(t)

j0

)

︸ ︷︷ ︸
ζ2

+op(n
−1/2).

Using similar arguments in the proof of Theorem 3.1, we can show that ζ2 = op(1) when

σ̂M̂(t)
j0
,j0

and ω̂M̂(t)
j0
,j0

satisfy certain uniform convergence rates, and

ζ1 =
n−1∑
t=sn

1√
nσM̂(t)

j0
,j0

∂`(Ut+1,β0)

∂βj0
− ωT

M̂(t0)
j0

,j0

∂`(Ut+1,β0)

∂βM̂(t)
j0

+ op(1).

The first term on the RHS of the above expression is asymptotically normal under certain

regularity conditions, according to the martingale central limit theorem. Thus, we obtain

n−1∑
t=0

1√
nσ̂M̂(t)

j0
,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βj0
− ω̂T

M̂(t0)
j0

,j0

∂`(Ut+1, h(β0,j0 ,M̂
(t)
j0
, β̃M̂(t)

j0

))

∂βM̂(t)
j0

 d→ N(0, 1),

by Slutsky’s theorem.

References

Adamczak, R. a. (2008). A tail inequality for suprema of unbounded empirical processes

with applications to Markov chains. Electron. J. Probab. 13, no. 34, 1000–1034.
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van de Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure (2014). On asymptotically optimal

confidence regions and tests for high-dimensional models. Ann. Statist. 42 (3), 1166–1202.

van der Vaart, A. W. and J. A. Wellner (1996). Weak Convergence and Empirical Processes.

New York: Springer.

66


	HDCIv3un
	suppHDCIv3un

