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Abstract

In this paper, we develop a new estimation and valid inference method for single
or low-dimensional regression coeflicients in high-dimensional generalized linear mod-
els. The number of the predictors is allowed to grow exponentially fast with respect
to the sample size. The proposed estimator is computed by solving a score function.
We recursively conduct model selection to reduce the dimensionality from high to a
moderate scale and construct the score equation based on the selected variables. The
proposed confidence interval (CI) achieves valid coverage without assuming consis-
tency of the model selection procedure. When the selection consistency is achieved,
we show the length of the proposed CI is asymptotically the same as the CI of the
“oracle” method which works as well as if the support of the control variables were
known. In addition, we prove the proposed CI is asymptotically narrower than the
CIs constructed based on the de-sparsified Lasso estimator (van de Geer et al., 2014)
and the decorrelated score statistic (Ning and Liu, 2017). Simulation studies and real
data applications are presented to back up our theoretical findings.

Keywords: Confidence interval; Ultrahigh dimensions; Generalized linear models; Online
estimation.



1 Introduction

Statistical inference for high-dimensional linear regression models has received more and
more attention in the recent literature. Lee et al. (2016) proposed a valid post-selection-
inference procedure for linear regression models. They targeted on the regression coeffi-
cients conditional on the model selected by the Lasso (Tibshirani, 1996), rather than the
coefficients in the true model. The resulting confidence interval may change with the se-
lected model and is hence difficult to interpret. Zhang and Zhang (2014) and Javanmard
and Montanari (2014) proposed bias-corrected linear estimators based on the Lasso to form
confidence intervals for individual regression coefficients. Liu and Yu (2013) and Liu et al.
(2017) developed inference procedures by bootstrapping the Lasso+modified least squares
estimator and the Lasso+partial ridge estimator, respectively. All these work, however,
only considers linear regression models.

In this paper, we consider the class of generalized liner models (GLM, McCullagh and
Nelder, 1989), which assumes the following conditional probability density function of the

response Yy given the covariate vector Xy,

exp (YonTﬁo — b(B{ Xo)

N ) ctva) 1)

for some By = (Bo1,Bo2s---,B0p)" € RP, some positive nuisance parameter ¢y and some
convex function b(-). We focus on constructing confidence intervals (Cls) for a univariate
parameter of interest 3 ;, for some jo € {1,...,p}. The main challenge in high-dimensional
statistical inference lies in that the nonzero support set of the control variables (variables
other than X ;) is unknown and needs to be estimated. Consider the following standard
post-model-selection-inference procedure that first estimates the support of the controls
based on some regularization methods, and then fits a generalized linear regression of the
response on the variable of interest and the set of selected control variables. The validity
of such a procedure typically relies on the perfect model selection at the first step, which
is not guaranteed under the “small n, large p” settings.

Alternatively, one may apply sample-splitting estimation to allow for imperfect model



selection. The idea of applying sample-splitting to high-dimensional statistical inference is
implicitly contained in Wasserman and Roeder (2009). To construct CI for f ;,, we can
split the samples into two equal halves, use the first half to select the controls and evaluate
Bj, on the remaining second half of the data. Such methods are very similar to the single
sample-splitting procedure described in Dezeure et al. (2015). However, the resulting CI
will be approximately v/2 times wider than the CI of our proposed procedure, since Bo.jo
is estimated based only on half of the samples. One can also average two such estimators
by swapping the two sub-datasets that are split apart. However, the CI based on the
aggregated estimator will fail when model selection consistencies are not guaranteed.

van de Geer et al. (2014) extended Zhang and Zhang (2014)’s methods to the GLM
setup and proposed to construct Cls based on the de-sparsified Lasso estimator. Ning
and Liu (2017) proposed to construct Cls for high-dimensional penalized M-estimators
based on the decorrelated score statistic. These Cls are valid. However, the de-sparsified
Lasso estimator and the decorrelated score statistic are computed by debiasing the Lasso
estimator and the Rao’s score test statistic, respectively. Their variances tend to increase
after the de-biasing procedure, resulting in increased lengths of the corresponding Cls.

In this paper, we develop a new estimation and valid inference procedure for 3,
under ultrahigh dimensional setting where the number of predictors p is allowed to grow
exponentially fast with respect to the sample size. The idea originates from online learning
algorithms for streaming datasets that recursively update estimators using new observations
(see for example, Wang et al., 2016; Schifano et al., 2016). The proposed method differs from
standard sample-splitting estimation. It divides the data into a series of non-overlapping
“chunks”. The target parameter [, is estimated by solving a score equation. We first
conduct model selection using a small chunk of data. Based on the selected control variables,
we construct the score equation with the second chunk of data. Then we select the controls
using the first two chunks of data and construct the estimating equation with the next
chunk of data. We iterate this procedure until the last chunk of data is used. Note that we
recursively conduct variable selection to construct the score equation. The accuracy of the

proposed estimator gets improved with the dimensionality reduced from high to a moderate



scale. As a result, we prove the Wald-type CI based on our estimator is asymptotically
narrower than those based on the de-sparsified Lasso estimator and the decorrelated score
statistic.

In addition, the proposed CI achieves valid coverage without assuming consistency of
the model selection procedure. When the selection consistency is achieved, we show the
length of the proposed CI is asymptotically the same as the CI of the “oracle” method
which works as well as if the support of the control variables were known.

The rest of the paper is organized as follows. We consider a linear regression setup and
introduce our methods in Section 2. In Section 3, we consider extensions to GLMs and
investigate the asymptotic properties of the CI of our proposed procedure. Simulations
studies are presented in Section 4.1 and Section 4.2. In Section 4.3, we apply the proposed
method to a real dataset. Section 5 closes the paper with a summary and discusses some

extensions of the proposed method. All the proofs are given in the supplementary material.

2 High-dimensional linear models

To better illustrate the idea, we begin by considering the following linear regression model:
}/E) = Xgﬁo + €0,

where By = (50,1, 80,2, - - -, Bop) is a p-dimensional vector of regression coeflicients, ¢ is in-
dependent of the covariates X, and satisfies E(gg) = 0. Suppose { X, Y;}? ; are a random
sample from (X, Yy) and the dimension p satisfies logp = o(n). We focus on construct-
ing a confidence interval for a univariate parameter 3y j,. Extension to multi-dimensional
parameters are given in Section 5.

Before presenting our approach, some notations are introduced. Let 3 = EX, X and
> = S, X, X /n. For any r x ¢ matrix ® and any sets J; C [1,...,7], Jo C[1,...,q], we
denoted by @, s, the submatrix of ® formed by rows in J; and columns in J,. Similarly,
for any ¢-dimensional vector 1, 1), stands for the subvector of @ formed by elements in

Ji. Let |Ji| be the number of elements in J;. Denote by M, = {j # jo : Bo,; # 0}. Let



I={1,...,p}and I;, =1 — {jo}. For any set M C I, , define wy,;, = ZX/%,MEMJO and

2 — . . —_— T .
O M. jo — 23]0,‘70 EM,jowMJO‘

Let ||Z||y, be the Orlicz norm of any random variable Z,

A |Z|P
E ZE) <ol
|Z]]y, y;g{EeXp< o ) < 2}

2.1 An online estimator

Before we present our algorithm, let us present the motivation of the online estimator.
Suppose that we are interested in a constructing confidence interval for 3 j,, we construct an
estimating equation for [y j,. To this end, we propose to construct an estimating equation

based on partial residual. Notice that

E(Yo|Xom;,) = 50,jOE(X0,jO|X0,MjO) + ,3({Mj0 Xo.Mj, -

Thus, it follows that

Yo — E(Yo | Xo,m;,) = Bojo{Xojo — E(Xojo| Xoa;,) } + €0,

and we define the partial residual score equation
D AKX = E(X ol X))} (Yo = Bojo Xejo — Boany, Xemy,) = 0. (2)
t=1

To use (2) for constructing statistical inference procedure for fy j,, we need an estimate
for Bo.a,,, Mj, and E(Xy ;| X nm,, ). We propose using regularization methods, such as
the LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), MCP (Zhang, 2010) and Dantzig
(Candes and Tao, 2007) etc., to obtain an initial estimate ,(§ of By. This corresponds to Step
2 in our proposed algorithm below. We may estimate M, by (iterative) sure independence

screening ((I)SIS, Fan and Lv, 2008) or some regularized regression procedure. Suppose



M is the selected model, then we can set
:{]GM]%30}7

as an estimate of M;,. Due to ultrahigh dimensionality, some spuriously correlated pre-
dictors may be retained in the selected model (Fan et al., 2012), making it challenging to
consistently estimate the variance of the solution computed by (2).

To address these concerns, we propose using data-splitting strategy for model selection
and partial residual score evaluation. That is, we propose separately conducting model
selection and evaluating the partial residual scores in (2) using different data subsets.
Specifically, we use the sub-dataset F; = {(X1,Y1),..., (X}, Y:)} for model selection and
update the contribution of the (¢ + 1)-th sample (X1, Y;41) to the estimating equation by

1

O'M(t) o

{Xiv1o — E(Xt+1,jo|Xt+1M DHY — 50,30Xt+1,yo—ﬁ/Tm)XtHﬁ;?)a
Jo

where M\Sz) denotes the model selected based on F;, &/2\7“’ ~is the estimated variance of
Jo »JO

the residual X; j, — E(X;;,| X and 5 hoi) is the subvector of 5 formed by elements in

n M\(‘t) )

Mgt) As a result, we propose using the followmg estimating equation

n

1 .
Z { X140 — E(Xt+1,jo|Xt+1,/\7%>)}(Y — BojoXt+1,50 — 5M<t>Xt+1 o ) =0, (3)

t
t=sn M§0) Jo

where s, is a pre-specified integer in order for us to do model selection reasonably well based
on Fs, . This corresponds to Step 4 in our proposed algorithm below. The above estimating
equation was motivated from the online estimator proposed in Luedtke and van der Laan

(2016). The inclusion of the factor 1/6 is necessary for theoretical development of

W g
asymptotic normality of the resulting estimate (See Step 4 of the proof of Theorem 2.1 for

details). If one excludes the factor 1/6 and set ﬁ/l\gz) = [,,, it leads to the decorrelated

(®) j
MJO ’ 0

score function.

Finally, we may use a linear regression model to approximate E(X, ;| X ) for any



M C M. This leads to its linear approximation w/T\,l,joXt, M- The regression coefficients
WMo = E/_\/}’MEM,J-U can be estimated by plugging the estimators f]j\iM, fJM,jO for E/_v%,/vt
and X v j,. The estimating equation in (3) results in a root n consistent estimator regardless
of whether the linear approximation is valid or not.

We can summarize our procedures in the following algorithm.
Step 1. Input {X;,Y;}7, and an integer 1 < s,, < n.
Step 2. Compute an initial estimator B for By, based on {X;,Y;}",
Step 3. Fort =s,,5,+1,...,n—1,

(i) Estimate M, via some model selection procedure based on the sub-dataset
Fi={(X1,Y1),...,(X:,Y:)}. Denoted by /T/l\g? the corresponding estimator.
We require |./\/l( )| <mn, jo ¢ ./\/l(t).

~

(i) Estimate w o . by @ =3l .5

® ; W o -
M) M; o MY MY T Mo
iii) Estimate o2 by 62 =3 . —XL D=
(i) M;B>’ Y M;?,jo JosJjo ;_g) do MG

Step 4. Define Bjo to be the solution to the following equation,

n—1

1 - _
> - Zi1,jo (Yerr — Xer1,joBogo — X,y gioBriw) =0, (4)
t=s, ,/\/l(t) "o Jo

~ o
where Zii 150 = Xeg150 — Wi,y X, . =@
+1,j0 +1,50 M;g)7j0 t+1,M

Due to its nature, (4) is referred to as online-score equation in order to distinguish
it from the decorrelated score equation in Ning and Liu (2017). Step 3 essentially is to

recursively calculate & and

_ for Step 4. Thus, we refer this algorithm to as
MY o MY o p 8
recursive online-score estimation (ROSE) algorithm.
Let
1 — Xt+1j
I = n—s, e vi0) ~ (K — M(“ Xt+1 M



Under certain conditions, we can show that

n—1

2 1 Et41 T
\/n—s. T R A E X, = Wy .
n n(ﬁ]o 507]0) m < U/T/(\(_t) B t+1,70 M;g) o

—_on ]07

Xt+17//\/1\§-?) +0,(1). (5)

The first term on the right-hand-side (RHS) of (5) corresponds to a mean zero martingale
with respect to the filtration {o(F;) : t > s, } where o(F;) denotes the o-algebra generated
by F;. Note that

2

1
T X —
Xi11.4o wﬂ;?,jo t+1,/\7§3 Et+1 |]:t =1

70 g
By the martingale central limit theorem, we have as n — s, — o0,
3 d
v = sul'n(Bjy — Boo) = N(0, 7).
Therefore, a two-sided 1 — « CI for fy 4, is given by

_ r-t
Bjo £ 22 N (6)

where ¢ is some consistent estimator for og.

2.2 Refinements

The CI in (6) is asymptotically valid. However, it has one drawback. Its length is equal to

F—l
2za n

;b (7)

In general, (7) increases as s, increases. Nonetheless, s,, should be large enough to guarantee
the sure screening property of M\gzn) For small n, this will result in a large CI. To address
these concerns, we propose the following refined estimator. The estimation procedure is

described below.



Step 1. Input {X;,Y;}”, and an integer 1 < s, < n.

Step 2. Compute an initial estimator 3 for By, based on {X;, Y;}", .

A A1) A~ 2
Step 3. Compute M, w/\//T%),jo =

w . fort=s,,...,n—1as described in Section 2.1.
MjO »JO

, O

Step 4. Estimate M, based on the sub-dataset {(Xs,+1,Ys,41),-.., (X5, Ys)}. The re-
sulting estimator /T/l\g-o_s") shall satisfy |M\§;S")| <n, jo ¢ ./\//75-0_5").

A~ A~

. ~ Sl
Step 5. Estimate wM;gs"),jo by wﬂ%sm’jo = Eﬂ§_5"),ﬁ4\§,_s">EMggS"),jo'
0 0

Step 6. Estimate o2, by 62 -3 3T @ (sn) o -
Y Mgo Sn)7j0 y Mgo Sn)7j0 J0,J0 MSO Sn)’jo Mjos ,JO

Step 7. Define ,@jo to be the solution to the following equation,

Spn—1

o 1 ~ ~

E — Zy1,jo(Yer1 — Xev15oBojo — Xy gic-sm Brgsm)
O (—sn) . o} J0

t=0 M ,Jo

Jo

O (t) .
t=sn Mg()) »JO

1 ~ ~
+ E A Zt+1,j0 (Y;H-l - Xt-i-l,joﬁodo - Xt+1 /T/(\@IB//\A\(.”) =0,
700 Jo

~ o ~
where Zy11 5, = Xoa1jo— Wy X, oo fort =s,,...,n—1and Z;11,, = Xpi1.5,—
»JO »JO M;z)) Jo t+1’Mj0 n ) ,JO »JO
~T - o
W )JOXHLM%W fort=0,...,s, — 1.

When s,, = o(n), the first s,, terms in the estimating equation in Step 7 is negligible.

As a result, Bjo is asymptotically the same as Bjo- Define

1 Sn—1 1 n—1 1
. ~ ~
Tn=— > 5 XerrioZerrde T > 5 X et | - (8)
=0 " MSe) o t=sn © MG o

Below, we prove

R *—1

n o
Bj() + Z% g, (9)

vn

is a valid two-sided CI for Sy j,. We need the following conditions.



(A1) Assume /(/l\gg) satisfies Pr(|./\//7§§)| < k) =1 for some 1 < k,, = o(n). Besides,

Pr (M, C M) > 1-0 (é) ,

for some constant ag > 1.

(A2) Assume there exists some constant ¢ > 0 such that for any M C I and |M| < &k,
Amin (ZjouMm,joum) = C.

(A3) Assume there exists some constant ¢ > 0 such that || X a|y, < cllall2 for any
a c RP.

(A4) Assume (i) Pr(||8 — Boll2 < mn) — 1 for some 1, > 0; (ii) 7,1/5n logp = o(1); (iii)
Pr(”ﬁMg - 50,/\/15

for the support of By and M denotes its complement.

1 < k0||§MO — Bom,ll1) = 1 for some constant ky > 0, where M, stands

(A5) Assume & L oo

Assumption (A1) essentially requires the sure screening property of the procedure for
obtaining ﬁ/l\gg) Typically conditions to guarantee the sure screening property are weaker
than those for the oracle property. Assume (A1) holds and s, — oo. Then it follows from

Bonferroni’s inequality that

n—1 o0
Pr (Mjo <N /\7%*1)) >1-0 (Z %) = 1.
t=sy,
Hence, all the selected models possess the sure screening property with probability tending
to 1.

When M, is estimated via SIS, we can show (A1) holds for any arbitrary oy > 1 (see
Theorem 1 in Fan and Lv, 2008). The validity of such sure screening property typically
relies on certain minimum-signal-strength conditions on By, . A counterexample is given
in Section B.1.1 of the supplementary article where we show our CI is no longer valid
when these conditions are violated. We note that van de Geer et al. (2014) and Ning
and Liu (2017) do not require these conditions. However, these authors impose some
additional assumptions on the design matrix. We discuss this further in Section B.1 of the

supplementary article. Moreover, in Section 5.4, we present a variant of our method that

10



is valid without the minimal-signal-strength conditions.

Condition (A2) is similar to the restricted eigenvalue condition (Bickel et al., 2009)
imposed to derive the oracle inequalities for the Lasso estimator and the Dantzig selector.
Condition (A3) requires X, to be a sub-Gaussian vector. This condition is used in Ning
and Liu (2017) and van de Geer et al. (2014) as well. See Section 4.1 of Ning and Liu
(2017) and Condition (B1) in van de Geer et al. (2014) for details.

When ,5 is estimated via the Lasso or the Dantzig selector, then the first part of Condi-
tion (A4) holds with 7, = cn\/w where ¢, is an arbitrary diverging sequence and s*
is the number of nonzero elements in 3. The second part holds as long as ,s* log? p = o(n).
Under (A1), we have , > s* — 1. This further implies (s*)?log®p = o(n). Such a sample
size requirement is consistent with those in van de Geer et al. (2014) and Ning and Liu
(2017). See Condition (B2) of van de Geer et al. (2014), and Corollary 4.1 in Ning and Liu
(2017) for details. The last condition in (A4) holds with ky = 3 for the Lasso estimator,
ko = 1 for the Dantzig selector and ky = 0 for the non-convex penalized regression estimator
(when the “oracle property” is achieved).

Condition (A5) holds when ¢ is computed by refitted cross-validation (Fan et al., 2012)
or scaled lasso (Sun and Zhang, 2013). In Section B.3 of the supplementary article, we
further introduce a simple plug-in estimator for o2 based on ,5 and show (A5) holds under
(A3), (A4) and the conditions that logp = O(n*?), Elgg|> = O(1). The last moment
condition is also needed in the following theorem to guarantee the asymptotic normality of

Bj()'

Theorem 2.1. Under Conditions (A1)-(A5), assume s, — 00, s, = o(n), klogp =
O(n/log?n) and Eley|*> = O(1). Then, we have

Vil (Bj, — Boo) 4 N (0, 1)
a_ ) )

where I'Y is defined in (8).

11



3 High-dimensional generalized linear models

3.1 Estimation and inference

Suppose that (X1,Y1),...,(X,,Y,) is a random sample from (X, Yp) in (1). The function
b(-) is assumed to be thrice continuously differentiable. We further assume 0”(-) > 0
and 0" (-) is Lipschitz continuous. Denoted by u(-) the derivative of b(-). As in Section
2, our focus is to construct a CI for fy;,. Let M, = {j # jo : fo; # 0} and ¥ =

EXob"(XTBo) X, we describe our estimating procedure below.
Step 1. Input {X;,Y;}7; and an integer 1 < s, < n.

Step 2. Compute an initial estimator 5 for By. Compute

~ 1< ~
=) XV XI'p)xT. 10
W X XIB)X, (10)

Step 3. For t = s,,s, +1,...,n — 1, estimate M, based on the sub-dataset F, =
{(X1,Y1),...,(X,Y:)}. Denoted by ﬂg? the corresponding estimator. We require
]Mg?] <n, jo ¢ Mg? Compute

~ -1
W) . = > A(t)E

.9 ~ ar R
_Z and 0 — = 2 0 A0 2 —~ W — ..
s (t) (t) - 70,J0 (t) (®
MJO »JO M].O ’Mjo MjO ,J0 MJO ,JO

)
MjO »JO MJO ,JO

Step 4. Estimate M, based on the sub-dataset {(X;, 1, Y5, 41),.-.,(X,,Ys)}. Denoted

M) i ~ T i)
by M ™" the resulting estimator. We require |[M; ™| < n, jo ¢ M; ™. Compute
o~ /\_1 ~ .9 R /\T N
W(sn) . =22 oy Dy - and 0%, S TR AU SN
M;O Sn),]o M§O S”),M;O sn) Mg'o n)Jo Mg‘o n>7j0 0,90 Mgo ”),jo M;O "),Jo

12



Step 5. Define Bjo to be the solution to the following equation,

Z\H—l 1 3
Yo S Jy - 000 + Xy 1 M
p ] 1 il Xt+17j060’30 + t+1,M§gSn)BM§';Sn>
0

L1 ~
+17J0
+ E —— = Yo — o | XevajoBogo + X,y o B =0,
O —(t) . R[] 70
t=sn MjO »JO
A _ ~T _
where Zt+17j0 = XtJrLjO — wﬂ(,m) joXt‘H ./\/l —sn) fort = O —1.
Jo >

The estimating function in Step 5 can be solved via the Newton-Raphson method with
the initial value BJ(-S) = Ejo. More specifically, for [ = 1,2,..., we can iteratively update Bjo
by

- Zi41,jo {Y¥+1 (Xt+1 Joﬁu s Xt+1,/\7§t>§/ﬂ§‘s")> }
~ ~ = M7 0 0
B =B e

1 ! -
> - Zi+1,jo X 41,50 (Xt+1 By X, ﬂ;t)ﬁﬂ(_t))
o

t=0 M<t),]0 J0

where we use a shorthand and write M\E? = /\//\lg-o_s"), fort=0,...,s, — 1. Define

H

1 — 1
n 0 —
t

F:(l_l) —

~ (1) ~
Zi1,jo X410 (Xt+1,goﬁjo + X, oo Bgo
) Jjo

M<t) 7j0 70

I
=)

A two-sided 1 — o CI for fy , is given by

21/2
0 4 739"

Biy £ —=u
Jo \/ﬁrz,(l—l)

(12)

where gg is some consistent estimator for ¢y. We state the following conditions.
(A1*) Assume M\SZ) satisfies Pr(|./T/l\§Z)| < Kk,) =1 for some 1 < k,, = o(n). Besides, there
exists some constant ag > 1 such that

Pr(Mjog/\?§.’g))z1—0( ! >

noeo

13



(A2*%) Assume there exists some constant ¢ > 0 such that for any M C I and |M| < k,,
Amin Ej()UM,joUM) 2 C.

(A3*) Assume there exists some constant ¢y > 0 such that || Xally, < collall2 for any
a c RP.

-----

some constant w > 0.

(A5*) Assume (i) Pr(||8 — Boll2 < 1) — 1 for some 1, > 0; (ii) 7,v/%nlogp = o(1) and
V2 = o(1); (iii) Pr(|Bas — Bowe 1 < FollBato — Boasll1) — 1 for some constant ko > 0.
(A6*) Assume [|Yy — w(X{ Bo)lly1|x, is uniformly bounded for all Xy, where || - [|yx,
denotes the Orlicz norm conditional on X,.

(AT*) Assume ¢ L .

Conditions (A1*)-(A3*) are very similar to (A1)-(A3). In (A4*), for technical conve-
nience, we assume X ;’s and X{ B are bounded. In (A5*), we further assume /nn2 = o(1).
Note that such assumption doesn’t appear in (A4). This is because we focus on a more
general class of models here. Assume (A4*) holds. Then (A6*) is automatically satisfied
for logistic and Poisson regression models. In logistic or Poisson regression models, we have

¢o = 1. Condition (A7*) thus automatically holds by setting b= 1.

Theorem 3.1. Assume (A1%)-(A7*) hold. Assume s, — 00, s, = o(n), xilogp =
O(n/log?n) and k3 = O(n). Then, for any fived | > 1, we have

\/HFZ’U_D (1 d
W(@(’o) — Bojo) — N(0,1).

Theorem 3.1 proves the validity of the two-sided CI in (12), for any [ > 1. When [ = 1,
Bj(f)) corresponds to the solution of the first-order approximation of the score equation. We
note that Bickel (1975) and Ning and Liu (2017) used a similar one-step approximation to
ensure the consistency of the resulting estimator. In practice, we can update B]((l)) for a few

Newton steps. In our numerical experiments, we find that B](é) converges very fast and it

suffices to set [ = 3,4 or 5.

14



3.2 Asymptotic efficiency
Theorem 3.1 proves the validity of the CI in (12). The length of the CI is given by

~

1/2
(13)

Under the given conditions in Theorem 3.1, it follows from the law of large numbers for

martingales (Csorgd, 1968) that
s 1 n—1
#(1-1) _ °n 1 N
I = UM%S")JO + - (t_z UM%),jo) + op(l), (14)

where

2 . o T —1 )
OM.jo = EJoJo ZM,J’OEM,MEMJOJ

for any M C Ij,.
By Assumption (A1*) and (A2*), we have almost surely,

2 — 2 _
T 4, 2 C and T 4, 2 C Vt=8u,...,n— 1. (15)

~

Under (AT*), ¢ is consistent. This together with (13)-(15) yields

22&/2¢é/2

-1
3”0/\7§-;S”),jo/n + > TR o /n

\/EL(BJ'(MO‘) = +Op(1)' (16)

Based on (16), we compare the length of the CI of the proposed method with the de-

sparsified Lasso method, the decorrelated score method and the “oracle” method below.

15



3.2.1 Comparison with the de-sparsified Lasso and the decorrelated score

Consider the Lasso estimator
~ 1 <&
L . T T
= — b(X; - Y, X; + Ay )
B arg min (n ;:1{ (X, B) B} Hﬁlh)

The de-sparsified Lasso estimator is defined by

n

g s o] L3 (xr - xrd) |

i=1

where the matrix © is computed by the nodewise Lasso (see Section 3.1.1 in van de Geer

et al., 2014). Theorem 3.1 in van de Geer et al. (2014) proved that

\/ﬁ( AJ'DOL - BOJO)/ e};,erjoJJ ~ N(O, 1): (17)
where
~ ~[(1& ~ ~
N=0|- XAY, — w(XTain2xTr | @f
(nZ Yo — (X7 B} ) ,
and

€i1j2 = (07...,0,1,0,...,0).

J1i—1 J2—Jj1

for any integer 1 < j; < 7s.

Based on the de-sparsified Lasso estimator, the corresponding CI for f j, is given by

T Oo. T O,
- \ €y p$2€jop . \ €jop$2€0p
DL _ o ¥ 7~ 7 gPLy ¥V -7 7 (18)
J0 2 NG 7o B NG ’
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Moreover, it follows from Theorem 3.2 in van de Geer et al. (2014) that

jo,pﬂejoyp ]0 pz eJO»pgbO + Op( )

Therefore, the length of (18) satisfies

\/EL< Aj[O)La a) - 2ZO¢/2¢(1)/2 \/ Jo p23 18]0717 + Op(]') (19)

Ning and Liu (2017) proposed to construct the CI for high-dimensional parameters
in GLM based on the one-step estimator that solves a first-order approximation of the

decorrelated score equation. Specifically, the one-step estimator is given by

,_.

n—

(Xit150 — W Xipa L) {Yt+1 - <X£r1 ~> }
BJO = — ) (20>
(Xt+1,j0 — B X1, Xt (X718)

t=0

O

where 3 and w are some consistent estimators for 8y and 2]1; 1 I
0°7J0

respectively. The

Zﬂjo ,Jo s

corresponding CI is given by

[ADS . ¢1/2(Us) 12 DS | -, ¢1/2( ) 2]

Jo

where 6, is the denominator of the second term on the RHS of (20) and ¢ is some consistent

estimator for ¢y. Under certain conditions, we can show

1/2

5 2259y 1/2
VAL, 0) = 2= 4 0p(1) = 22500\ [ B lenp T 0p(1), (21)

) 7.]0

where the last equality follows from the matrix inversion formula (see Lemma A.5 in the
supplementary material). This together with (19) implies that the lengths of Cls based on

DL and BDS are asymptotically the equivalent.
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For any M C I, let

Emgo = BE(Xoj, — Wiy o Xor)b" (X Bo)(Xo,mugoh — BmugiopemEnmXom)

= B(MUljo})edo — D(MULjo})e, MWM,jo-

We have the following results.

Theorem 3.2. Assume (16), (19), (21), (A3*) and (A4*) hold. Let k = SUp|, < 0(2).

Then for any 0 < a<1,1>1,

VRL(BPE ) = VRL(BY®, ) + 0,(1)
A() 0" za2 [ 5 ., 1= )
> VnL(B ) + 55 g”ﬁﬂ%sm,joﬂz +- > H€/\7§g>,j0||2 +0p(1).

k3/2¢3

t=sn

Theorem 3.2 implies that the proposed CI is asymptotically shorter than those based on
the de-sparsified Lasso and the decorrelated score statistic. The difference depends on the

Ly norm of & , which measures the partial dependence between Xy ;, and X

S
MjO »JO

after adjusted by XO,/W;?'

0,(M Ujo)e”
For linear regression models, we have £, = 0 when X j, is

independent of other predictors. However, ||§4,5 (|2 can be positive when X ;, is partially
correlated with X (vuje)e given Xo .
Although our method yields narrower CI on average, its validity relies on certain

minimal-signal-strength conditions on Byy, , as discussed in Section 2.2. This is a po-

Jo?
tential disadvantage of our method. Moreover, our procedure can be more time consuming
than the existing methods, as it requires to recursively estimate the support set based on
different data subsets. A variant of our method is proposed in Section 3.3 to reduce the

computational cost.
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3.2.2 Comparison with the oracle method

We compare the proposed CI with the CI of the oracle method. The oracle knew the set
M, ahead of time. It estimates (3 j, by 60"““6 defined as

n

o 1
(Boracle j)\zqde) = argmin — Z <b(Xi,j06j0 —+ XgMjOBM.70> — Y;(Xi,joﬁjo + XZM]'O’BMJ'O)> .

Jo
(ﬁ]o ’ﬁMjO) n =1
Let
Soracle § 1/ oracle T Joracle
E - X b 1j0 + Xi,MjOﬂMjo )XZ

The asymptotic variance of \/ﬁﬁ’%“de can be consistently estimated by

-1

Aqra;:le Eorc;f/lle 1 -1
2T J0,J0 J0,M 4 oracle Soracle Soracle SSoracle
e e . > — 3¢ b b -
¢ LIMjo|+1 f}oracle. Eoracle LIMjo[+1 = Qb { JosJjo Jo:Mjq Mio:Mig Mig.jo ’
Mjo ,JO M]o 7Mj0

where the equality follows by the matrix inversion formula (see Lemma A.5). Let

—1 ~
~oracle __ oracle oracle oracle oracle
O-Mjo 7.j0 - \/E]OJO 2]07/\/[]0 <EM]0 M]U) EMJO 7j0 ’
The corresponding confidence interval is given by
oracle 21/2 ~oracle oracle 71/2 ~oracle
[orecte — 2 6112/ (Vmogacts ), B2 + 25 0M2 (o ct, )] (22)

where ¢ is some constant estimator for ¢.

Under certain conditions, the length of (22) satisfies

Qoracle 22@/2¢(1]/2
VnL(BY o) = — =+ 0,(1). (23)

Jo .
JMjO »JO

Theorem 3.3. Assume (16) and (23) hold. Assume s, — 0o, n — s, — 00, and there
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exists some ag > 1 such that

neo

Pr (Mjo _ M§O>) >1-0 ( ) . (24)
Then for any 0 < a < 1,1 > 1, we have

VLAY @) = VrL(BIe, a) + 0,(1).

Condition (24) in Theorem 3.3 requires the variable selection procedure to be consistent.
Under this condition, we prove the “oracle” property of our method, which means that the

length of the proposed CI is asymptotically equivalent to the CI of the oracle method.

3.3 Computationally efficient procedure

The proposed estimation procedure in Section 3.1 requires to estimate M, (n — s, + 1)
times. This will be time consuming for large n. To address this concern, for a given integer
S > 1, we can compute /T/l\g? approximately (n — s,,)/S times based on the sub-dataset F;
fort = s,,8,+ 5,8, +2S,...,8,+ |(n—1—s5,)/S|S where | z| denotes the largest integer
smaller than or equal to z. For any s, <t < n, define

/T/l\(t) — .A//l\(sn +ZOS)
Jo )

Jo

for some nonnegative integer Iy such that s, + oS < t < s, + (lp + 1)S. The resulting
estimator B](é) is computed by (11). The corresponding CI can be similarly derived as in

(12).

4 Numerical examples

4.1 Linear regression

In this section, we conduct some simulation studies to examine the performance of the

proposed CI in high dimensional linear regression models. Suppose that {X;, Y}, i =
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1,...,n is a sample from the following model:
Y = X[ B + ¢, (25)

where g; ~ N(0,1), X; ~ N(0,3).

Consider the following four settings: (A) n = 100, Bp1 = Bo2 = 1.0 and fy; = 0 for
Jj > 2; (B) n =100, Bop = Poz = 2.0 and fy; = 0 for j > 2; (C) n = 200, fy; = 2.0,
Po2 = —2.0 and fy; = 0 for j > 2; (D) n =200, Bo1 = Bo2 = Bos = Boa = Pos = 1.0 and
Bo,; > 0 for j > 5. For each setting, we set p = 1000, and consider two different covariance
scenarios. For the first three settings, the objective is to construct 95% two-sided Cls for
Bo2 and [y 3. For the last setting, we aim to construct 95% two-sided Cls for By 3, Bo.4, Bos

and fye. Comparison is made among the following Cls:

(i) The proposed CI in (9), labeled by ROSE in Tables 1 and 2;

(ii) The CI constructed by the de-sparsified Lasso (DLASSO) method;

(iii) The CI constructed by the Bootstrap Lasso+Partial Ridge (BLPR) method (Liu et al.,
2017);

(iv) The CI constructed by the simple sample-splitting (S3) method.

To calculate the CI in (9), we set s, = [2n/log(n)]. Such a choice of s, satisfies the
conditions in Theorem 2.1. The set M, is estimated by ISIS. The estimation procedure
is implemented by the R package SIS (Saldana and Feng, 2016). To compute the initial
estimator B, we first apply ISIS based on all observations and then fit a penalized linear
regression model using the R package ncvreg (Breheny and Huang, 2011) with SCAD
penalty function for the variables picked by ISIS. The variance estimator ¢ is computed
by refitted cross-validation. We implement the CI in (ii) by the R package hdi (Dezeure
et al., 2015). BLPR estimates [ j, by the Lasso+Partial Ridge (LPR) estimator. More
specifically, it first uses the Lasso to select important predictors and then refit the model
using partial ridge regression based on the selected variables. The corresponding CI for
Bo,j, 1s constructed by bootstrapping the LPR estimator. We implement the BLPR method
by the R package HDCI. To compute the CI in (iv), we randomly split the samples into two
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equal halves, use ISIS to estimate the support of control variables and construct the CI
based on the remaining second half of the data. In Table 1 and 2, we report the empirical
coverage probability (ECP) and average length (AL) of these Cls. Results are averaged
over 500 simulations.

It can be seen from Table 1 that ECPs of our procedure and the S3 method are close
to the nominal level in all cases. However, Cls constructed by the S3 method are approx-
imately v/2 times wider than our proposed method, according to Table 2. As commented
in the introduction, this is because S3 only uses half of the samples to evaluate [ j, .

Under the settings where ¥ = {0.5791}, ;. ECPs of the DLASSO method are signifi-
cantly smaller than the nominal level. For example, in Setting (A) and (B), ECPs of the
DLASSO method are smaller than 90% when X = {0.5/=7}, ;. Under the settings where
¥ = I,, CIs constructed by the DLASSO method have approximately nominal coverage
probabilities. However, we note these Cls are wider than the proposed Cls in all cases. Take
Setting (D) as an example. When 3 = I,,, ALs of the DLASSO method are approximately
10% larger than the proposed method.

We note that BLPR yields very narrow ClIs for zero parameters. For nonzero parameters
however, the CIs based on the BLPR method are much wider than the proposed Cls in
all cases. Moreover, under the settings where 3 = I,, ECPs of the BLPR method are

significantly smaller than the nominal level for nearly all nonzero parameters.

4.2 Logistic regression

We generate { X, Y;}i—1. ., from the following logistic regression model

logit{Pr(Y; = 1|X;)} = X7y,

where logit(z) = log{z/(1 — 2)} for 0 < z < 1.
We consider two settings: (A) n = 500, By1 = 2.0, B2 = —2.0 and fp; = 0 for
J > 2 (B) n =600, o1 = Bo2 = Boz = Poa = Bos = 1.0, Bo; = 0 for j > 6. As in

Section 4.1, we set p = 1000 and consider two different covariance matrices, ¥ = I and
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Table 1: ECP (%) of the CIs with standard errors in parenthesis

Setting (A) ROSE  DLASSO  BLPR S3
- By 93.0(1.1) 94.0 (1.1) 83.0 (1.7) 94.0 (1.1)
o By 96.4 (0.8) 96.0 (0.9) 97.4 (0.7) 95.2 (1.0)
= — {0581}, By 936 (1.1) 89.0 (1.4) 92.0 (1.2) 94.6 (1.0)
- "By 94.6 (1.0) 86.0 (1.6) 95.4 (0.9) 93.4 (1.1)
Setting (B) ROSE DLASSO BLPR S3
_ By 94.0 (1.1) 94.0 (1.1) 87.0 (1.5) 94.4 (1.0)
o Bs 96.8 (0.8) 96.0 (0.9) 97.4 (0.7) 95.2 (1.0)
= — {0561}, By 938 (1.1) 89.0 (1.4) 93.4 (1.1) 94.4 (1.0)
- "7 By 956 (0.9) 85.6 (1.6) 96.8 (0.8) 95.2 (1.0)
Setting (C) ROSE DLASSO  BLPR S3
S_7 By 95.6(0.9) 95.8(0.9) 94.6 (1.0) 93.8 (1.1)
o B 94.8 (1.0) 95.2 (1.0) 96.0 (0.9) 96.6 (0.8)
5 — (0.5 By 948 (1.0) 76.4 (1.9) 90.8 (4.0) 96.4 (0.8)
= {055, Bs 94.0 (1.1) 92.0 (1.2) 95.6 (0.9) 93.6 (1.1)
Setting (D) ROSE DLASSO BLPR S3
By 94.8 (1.0) 94.0 (1.1) 92.6 (1.2) 95.2 (1.0)
s_7 By 93.8(1.1) 93.4 (1.1) 91.0(1.3) 93.8 (1.1)
S Bs 96.2 (0.9) 954 (0.9) 91.0 (1.3) 95.2 (1.0)
Bs 94.4 (1.0) 952 (1.0) 95.0 (1.0) 95.6 (0.9)
5 — (0.5 By 96.0 (0.9) 81.2 (1.7) 93.2 (1.1) 94.6 (1.0)
= {055 By 93.4(1.1) 826 (1.7) 94.8 (1.0) 93.8 (1.1)
Bs 94.6 (1.0) 91.0 (1.2) 93.6 (1.1) 96.4 (0.8)
Bs 93.8 (1.1) 91.6 (1.3) 95.0 (1.0) 95.4 (0.9)
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Table 2: AL of the CIs with standard errors in parenthesis (numbers reported in the table are
multiplied by 100)

Setting (A) ROSE DLASSO  BLPR S3
s _7 B, 422(0.3) 454 (0.3) 885 (1.4) 63.1 (0.5)
o Bs 424 (0.3) 45.1(02) 26 (0.1) 64.1(0.5)
S - (05, P2 480 (0.3) 475 (0.2) 106.2 (1.9) 72.4 (0.5)
- W By 491 (0.3) 47.8(0.2) 5.4 (0.3)  74.8 (0.6)
Setting (B) ROSE DLASSO  BLPR S3
s _7 B, 406 (0.2) 454 (0.2) 1548 (34) 60.2 (0.5)
o Bs 40.7(0.2) 45.1(0.2) 3.4 (0.1) 60.5 (0.4)
5 — (05, & 467 (0.2) 476 (0.2) 1935 (4.4) 69.2 (0.5)
- W By 47.6(0.3) 47.8 (0.2) 6.8 (0.3) 70.9 (0.6)
Setting (C) ROSE DLASSO  BLPR S3
s_7 B, 27.9(0.1) 30.1(0.1) 14238 (3.3) 40.0 (0.2)
o Bs 28.0 (0.1) 302 (0.1) 4.7(0.1) 40.5 (0.2)
5o oy, 2 322 (0.1) 345 (0.1) 161.6 (2.8) 46.3 (0.2)
- W By 324 (0.1) 34.7(0.1) 9.8(0.3) 46.6 (0.2)
Setting (D) ROSE DLASSO  BLPR S3
B; 284 (0.1) 31.4(0.1) 656 (1.6) 42.7 (0.2)
7 By 285(0.1) 314(0.1) 65.6(1.6) 42.6 (0.2)
— Bs 28.3(0.1) 31.3(0.1) 639 (1.6) 42.3(0.2)
Bs 285 (0.1) 31.4(0.1) 38(0.1) 42.7(0.2)
5 — (05, 08 370 (0.1) 340 (0.1) 55.1(1.3) 55.6 (0.3)
- “ B, 36.9(0.1) 33.9(0.1) 689 (1.4) 55.7 (0.3)
Bs 33.2(0.1) 33.9(0.1) 845 (16) 50.3(0.2)
Bs 33.1(0.1) 338(0.1) 6.5(0.2) 50.1(0.3)
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Table 3: ECP and AL of the Cls, with standard errors in parenthesis

Setting (A) ROSE DLASSO S3
by ECP(%) AL*100 ECP(%) AL*100 ECP(%) AL*100
I By 95.8(0.9) 80.5(0.3) 13.0 (1.5) 53.4(0.2) 93.6 (1.1) 118.8 (0.8)
P By 94.8 (1.0) 51.2 (0.1) 97.2 (0.7) 45.2(0.1) 93.8 (1.1) 75.5(0.3)
0.5 By 958 (0.9) 77.1(0.3) 26.6 (2.0) 529 (0.1) 95.2 (1.0) 113.0 (0.6)
{05545 Bs 94.8 (1.0) 52.9 (0.1) 95.4 (0.9) 47.5(0.1) 95.8 (0.9) 76.9 (0.2)
Setting (B) ROSE DLASSO S3
B3 94.0 (1.1) 51.1 (0.1) 30.8 (1.1) 39.9 (0.1) 952 (1.0) 76.2 (0.3)
I By 932 (1.1) 50.9 (0.1) 26.0 (1.1) 39.8 (0.1) 95.6 (0.9) 75.7 (0.3)
P Bs 96.2 (0.9) 50.9 (0.1) 30.6 (0.9) 39.8 (0.1) 94.8 (1.0) 76.2 (0.3)
Bs 93.4 (1.0) 43.9 (0.1) 96.4 (1.0) 38.1(0.1) 92.4 (1.2) 64.9 (0.2)
0.5 Bs 956 (0.9) 71.5(0.2) 88.2(1.4) 55.7(0.2) 95.0 (1.0) 107.5 (0.5)
{055 By 932 (1.1) 71.5(0.2) 84.6 (1.6) 54.9 (0.2) 93.8 (1.1) 108.0 (0.5)
Bs 93.8 (1.1) 65.5(0.2) 67.6(2.1) 53.1(0.1) 93.6 (1.1) 99.1 (0.5)
Bs 94.0 (1.1) 585 (0.2) 95.0 (1.0) 50.8 (0.1) 94.0 (1.1) 88.2 (0.4)

= {05} e
( ) and fog, 50,4750,5, Bo,6 in Setting (B).
To implement the proposed CI in (12), we set s, = [2n/log(n)| and [ = 5. We use the

. The objective is to construct two-sided ClIs for By, o3 in Setting

R package SIS and estimate M, by ISIS. The initial estimator B is computed by fitting a
penalized logistic regression model with SCAD penalty function for the variables picked by
ISIS. We implement the penalized logistic regression by the R package ncvreg. For Setting
(B), we update /T/l\g? using the method discussed in Section 3.3 with S = 2.

We further compare the proposed CI with the CI constructed by the DLASSO method
and the S3 method. In Table 3, we report the ECP and AL of the proposed CI and the
Cls constructed by DLASSO and S3. It can been seen that DLASSO performs poorly for
nonzero parameters. On the contrary, ECPs of the proposed Cls are close to the nominal
level in almost all cases. In addition, our Cls are much narrower than those based on the

S3 method in all cases.

4.3 Real data analysis

We apply the proposed methods to a real dataset riboflavin (vitamin B2) production in
Bacillus subtilis. This dataset is provided by DSM (Kaiseraugst, Switzerland) and is pub-
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licly available in the R package hdi. It consists of a response variable which is the logarithm
of the riboflavin production rate and 4088 predictors measuring the logarithm of the ex-
pression level of 4088 genes. There are a total of 71 observations. We model this data with
a linear regression model, center the response and standardize all the covariates before
analysis. To identify genes that are significantly associated with the response, we construct
CIs for each individual coefficient and apply Bonferroni’s method for multiple adjustment.
We compare the proposed method with the de-sparsified Lasso method and implement both
methods as discussed in Section 4.1. At the 5% significance level, the proposed method
finds three important genes (the 1588th, 3154th and 4004th) while the de-sparsified Lasso

procedure claims no variables are significant.

5 Discussion

5.1 Statistical inference via online estimation

In this paper, we develop an online estimation procedure for high-dimensional statistical
inference, to account for model selection uncertainty in subsequent inferences. Such an
online inference method can be applied to some other non-regular problems as well. Vari-
ations of this approach has been used by Luedtke and van der Laan (2016) to provide a
CI for the mean outcome under a non-unique optimal treatment regime, and by Luedtke
and van der Laan (2017) to construct a CI for the maximal absolute correlation between

responses and covariates.

5.2 Multi-dimensional extensions

We focus on constructing Cls for a single regression coefficient in GLMs. The proposed
procedure can be naturally extended to form confidence regions for multi-dimensional pa-
rameters as well. Let Jy be an arbitrary subset of I with |Jo| > 1. The confidence region

for By j, can be constructed as follows.
Let My, = {j ¢ Jo : Boj, # 0}. We first estimate My, by some model selection
procedure based on the sub-dataset F; = {(X1,Y1),...,(X:,Yy)} for t = sp,,...,n — 1
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and {(Xs,+1,Ys,+1), -+, (Xn, Yn)}. Denoted by /(4\52"), /\//\léznﬂ), . MEIO and MJo on)
the corresponding estimators. We calculate > asin (10) based on some consistent initial

estimator ,5 and compute

1/2
a1 ~ N ~ ar N
(t) =2 2 —(t) T —(t) = EJ Jo — b —(t) + W)
M Jo M MY T My do? My, Jo ( 0-Jo MG 30 My Jo ’
fort =s,,...,n—1 and
1/2

N o ~ N ~ <7 N

w/\fsn :EA — EAfsn O-Afsn - 2 _EA_g w/\—sn .

Mo 3o R Ao S M T’ Mo Jo ( JoJo ™ SR go " M o

Consider the following score equation:

Sn—1

.- -
E UA( ) 3, Zi1 g, {Ytﬂ — (Xt+1,ﬂoﬁ0,ﬂo + XHlﬁ}smﬁwsm) }
0 0

+ Z ‘TAm Z 113, {Yt+1 — p (Xt+1,Joﬁo,Jo + Xtﬂ,wwﬁﬂjgw) } =0,
0 0

- /\T A~
where Z; 115, = X135, — W JOXt-‘rl vl fort =s,,....,n—1and Z;11 5, = X413, —
Jo ’ 0
QTA( o) - X, oi—sn) for t =0,...,s, —1. The estimator B4, can be computed by solving
M; Jo t+1,MJO

the score equation via Newton’s method with initial value ,@ 7- The corresponding 1 — «

100% confidence region is given by

{IBJO S RN}O‘ : n(ﬁﬂo - B\JO)T(F:;)TF:L(ﬁJO - B\Jo) S (’JOD} (26>

where ¢ denotes some constant estimator for ¢o, x2(]Jo|) is the upper a-quantile of a central

x? distribution with |Jo| degrees of freedom, and

sn—l

* VZi fon ~
r, = - E :UA< =) 3, Zt+1 Job (Xt+1,Joﬂo,Jo +Xt+1ﬁ;gs")ﬂ/\7§];9">)

//
- E :UAu) Z11,3,b (Xt+1 50Bog, + XHlM(wﬁMm)

tsn
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To guarantee the validity of (26), the number of elements in J needs to be much smaller
than n. It would be interesting to construct confidence regions for the entire regression
coefficient vector By based on some multiple comparison procedures. However, this is

beyond the scope of the current paper.

5.3 Extension to generic penalized M-estimators

The proposed method can also be extended beyond the class of GLMs to a general frame-
work with a convex loss function. Specifically, given a high-dimensional random vector U,

define

Bo = argmin E4(U,, 3),
BERP

for some convex loss function ¢. An initial estimator for By can be computed by minimizing

n p
B = arg min (125(Ui,ﬁ)+sz(lﬁjl)>a (27)
perr \ M j=1

where Uy, ..., U, are i.i.d random vectors generated according as Uy, and py(-) denotes
some penalty function. In addition to estimating the regression coefficients in GLMs, such
a generic framework includes some other important applications such as estimation of the
precision matrix in Gaussian graphical models (as illustrated in Section 2.1.4 of Ning and
Liu, 2017).

Here, we focus on constructing the CI for a univariate parameter [ ;,. Let M\%) denote
the estimated support of the control variables based on {U;},_, for t = s,,,8,+1,...,n—1
and /\/l ) the estimated support based on {U}i_, 1. Define

where 5 corresponds to the initial estimator in (27). Given ﬁ, we compute @) i and
Jo ’
w R, 38 in Section 3.1. For any model M C 1., suppose we have some consistent
Jjo ik

Jo s
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estimator 63, ;o for

oL(Uy, Bo) (U, Bo)
2 R == LT
T M.jo ( aﬁjo w./\/l,]o aIBM

For any c€ R, M C I, and o € RMI we define a p-dimensional vector 8 = h(c, M, @)
such that 0;, = ¢, O, = a and O e_g;,, = 0. Let /\/l(t) /T/l\g-o_s") fort=0,1,...,s, —1
and ﬁjo = ﬁjo, we update Bjo as

A() _ A-1)
/6]0 _/BJO

n- U, (B MG Bg)) U (B MG, B o)
0 . ‘:‘\JArO
tzn ,Jo 9B, M( o 86/\7(”

|_|

n- PUUw 0B,V M) Bgo)) LU (G M) Bg)
0 - w/\to J0
no g 052 MG o 55]'035A7§_t>

7.70

M

-
F:‘la(lfl)

for I =1,2,... The corresponding CI for £ ;, is given by

BY 4 G A
0

In Section C of the supplementary article, we sketch a few lines to show that the above CI

achieves nominal coverage under certain conditions.

5.4 Doubly-robust procedure

The proposed ROSE algorithm constructs the score equation for [ ;, by recursively esti-
mating the support of control variables. As commented in (2.2), such a procedure requires
certain minimal-signal-strength conditions on ﬁojjo.

We now introduce a variant of our method that is valid even when the minimal-signal-
strength conditions fail. At the ¢-th iteration, instead of estimating M, only, we might

apply another variable selection procedure to estimate the support of wy based on F;

J]O

and set ./\/lj0 to be a union of the two sets of important variables selected. The result-
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ing CI is doubly-robust in the sense that it achieves nominal coverage as long as either
Boy,, satisfies certain minimal-signal-strength conditions, or the ¢, norm of weak signals
in Bo,, and wr j, is o(n~'/%). The latter condition allows the existence of weak signals
in /60’]17.0. It automatically holds when variables with signals larger than or proportional to
(n/loglogn)~/4(s*)71/2 can be consistently identified by the model selection procedure.
In addition, it is considerably weaker than the zonal assumption (Bithlmann and Mandozzi,
2014) that requires the strength of weak signals to be o(n~'/2). More detailed discussions

are given in Section B.1.3 of the supplementary article.
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This supplementary article is organized as follows. In Section A, we present proofs of
Theorem 2.1, Theorem 3.1, Theorem 3.2, Theorem 3.3, Lemma A.1, Lemma A.2, Lemma
A.3 and Lemma A.4. In Section B, we provide detailed discussions on our technical con-
ditions and compare them with those imposed in the existing literature. In Section C, we

give more details on the extensions to the generic penalized M-estimators.

A Proofs
A.1 Proof of Theorem 2.1

Before proving Theorem 2.1, we present the following lemmas whose proofs are given in

the supplementary material.

Lemma A.1. Under conditions in Theorem 2.1, we have

Mg[lli,l.l..,p] I M.jo = \/57 Mg%.}?,p] ”wMJOHQ < (E)_1/2007 (Al)
j(]%MylMISHTL ]0¢M7|M|S"in

1 T 4 c% 2\*
max E Y (XO,jo — wMJOXQM) < ) 1+ — s (AQ)
MC]L,...,p] TM.jo c C
JoEMIM|<kn ’

E|| X 2 < ket y
Mg%laj.}.(.,p] [ Xomll5 < Kncp, s



where ¢ and co are defined in Condition (A2) and (A3), respectively. Moreover, we have

with probability tending to 1 that

max | Xo,;| < \/303 max(log p, logn). (A4)

JjEM,...,p
Lemma A.2. Under conditions in Theorem 2.1, the following events hold with probability
tending to 1,

N Vknlogp
p— L < e [ ——=2 A.
Mgﬁ?ﬁ,p] ||w/\/l7]0 wM,]ouz—CU( \/ﬁ ’ ( 5)
JoEM,|M|<kn
VEknlogp
Gag i — < ey | =22 A.
nax |G Mo O-M7J0|—CU( Jr ) (A.6)
JoEM|M|<kn

- R SRS PN o~
for some constant co > 0, where Wy j, = EM,MEM,J‘O and T jo = Yoo — EM,jOwM,jm
o B oA ~
WM.jo = WMo T Dt miZMjo — ZMojo — (Bam — Zmm)Wadjo }-

In addition, we have

. _ knlogp
o . — . A.
X [@n,jo — Dol Op( - ) (A7)
]U%leMlgffn

Lemma A.3. Under conditions in Theorem 2.1, the following events hold with probability
tending to 1,

n—1

Xty1,j T ()
max E — [ X1 — Wi . X, I(j e M) < é./1o AR
JElll | 4 /o g j e MG o 1L MG U )| S eVlogp, (A8
—on %
E xr B — B = < éonn? A9
= t+1,M§f)>( M o.M J|, = My (A9)

for some constant ¢, > 0.

Proof of Theorem 2.1: Under (A1), it follows from the Bonferroni’s inequality that

n—1 00
Pr (Mjo <N ﬂ%ﬂ)) >1-0 <Z t%) 1. (A.10)

t=sn t=sn



Besides,
Pr (Mjo C ﬂg.;sw) 1 (A.11)

Under the events defined in the left-hand-side (LHS) of (A.10) and (A.11), we have

n—1

~ Z,g_;,_l7 41 Zt+1 2
V5 (B0 = Poso) = Z gy, Z gy o (B ~ sy )
11 }; .
Snz_l Zt+1,]0 XT BA snz_l 2t+1,go~€t+1
\/_UA< ) e o) \ P OM< " \/_UA< )
Is A

In the following, we break the proof into four steps. In the first three steps, we show

I; = 0,(1), for j =2, 3,4, respectively. In the last step, we prove

I % N(0,02).

By Assumption (A6) and Slutsky’s theorem, we have

\/EFZ(BJO BOJO) N(O 1)

The assertion therefore follows.

Step 1: Let
n—1 1

=Y ——(Xejo—whw X, qo ) X5 o (Bgw =B, g

2 S t+1,j ) . () () (®) o |-
= VNG B 0 M jo ™ 1, M LM\ PMY; 0. M

|I; — 15| is upper bounded by

T
~ T =
W) . — W) X (1) X = (t) ﬂ/\(t) — ,8 (1) .
( M »Jo Mi, ,Jo> t+ LM 1M M, 0,M;,

Under the given conditions, we have k, log p = o(n). Under the events defined in (A.1) and



(A.6), we have for sufficiently large n,

min OM.jo = min
JoEMIM|<kn JoEM,|M|<kn
and hence
1
max -
MCI1,...,p] O M.jo
JoEMIM|<kn

Under the events defined in Condition (A1) and (A.12), |I; —

n—1

1 1 -
max n E — W) . —
CMC[epl  Opgjo NLD Mg »Jo
JoEM,IM|<kn -

( WD o

_MZ

O M,jo

<%

T
W X, . o0
M JO) 1M

T
weo | X, oo
MjO 7]0) t+1’MjO

>

[

—o(1)

2

(A.12)

13| can be upper bounded by

o)

X" ., (Bew—B. =
(t) (t) (t) .
t+1’MJ'o Mio O’Mjo

T . ,BA
X (t) (t)
t+1,M].O M].O

By Cauchy-Schwarz inequality, we have with probability tending to 1 that

I — | < 2(6) 2\ nIV I, (A.13)
where
1 n—1 2
(1) 3
I n 2 [ (ﬂ/q%) - ﬁoﬁg?) ,
1 n—1 T
(2 _ "
1 = 23 (@, —wmg) X
t=sn
It follows from (A.9) that
1Y = o). (A14)

with probability tending to 1.

For any a,b € R, we have by Cauchy-Schwarz inequality that (a + b)* < 2a? + 202, It



follows that [2(2) < 2]2(3) + 2]54) where

n—1 T 2
I(S) - l E &3 (1) - EA@) X (1)
2 n MjO 7j0 MjO 7j0 t+1»MjO
t=sn
n—1 T 2
W = l W . — W X, ., o
2 n MjO 7j0 MjO 7j0 t+1’MjO
t=sn

By Condition (A1), (A.7) and Cauchy-Schwarz inequality, ]2(3) can be bounded by

1 — A~ — 2 2 -2 2 2 1 — 2
- > ||w,\7;_g>,j0 - wﬁ§g>,j0||2||Xt+1,/\7§g>||2 = Op(n"r;, log™p) > ||Xt+1,/\7§,g>||z-

t=snp t=sn

In the following, we show

n—1
1
=T IX, gl = Oyl (A15)
t=sn
This further implies
3102
3 ki, log™ p ki log p

under the condition that x2logp = O(n/log?n). To prove (A.15), it suffices to show

n—1

1
- > E|X,,, A 12 = O(kn). (A.17)

t=sn

Since X1 and /(/l\g? is independent, we have by Condition (A1) that

n—1 n—1

1 2 1 2
- > E||Xt+1,/\7%>||2 < > Sup Ef| X132

t=sn t—g,, ME[Lep]
The RHS is O(k,,) by (A.3).
Consider [2(4). Fori=1,...,n and any M C [1,...,p|, define

—(=i) n—1
w./\/(,jo = WM,jo +

2/_\/%,/\/({25\7(30 — Mo — (E(AZ)M — XMW Mo}



where

s 1 a1
EMio = n—1 Z XimXpj, and Xy 00 = —
1#i o

It follows that
_ I T
@ p o — By ll2 < EM AKX jo — Bmjo — (XX — Zmm)wWadjo }-

Under the event defined in (A.4), it follows from Condition (A2) and (A.1) that

T oD o[ logp + Ky logn A8
Me[l,..r.?;%zxe[l ..... n 1o r30 = @ l2 ( n ' (A-18)
jO¢M:|M|Sﬂn

The condition k2 logp = O(n/log®n) implies that O,(n"'k,logp) = o0,(n"%\/k, logp).
By (A.7), we have with probability tending to 1 that

1/2
max @ — Bacl, < (0P
Mg[l 7777 p] »JO Jo 12 — n :
JoEMIM|<kn

Combining this together with (A.5), (A.18) and the condition 2 logp = O(n/ log® n) yields

A.19
Me[l’%ﬁi[l ..... n] ||wM7‘70 wM ]0”2 ( )
jO¢M,‘M‘§nn

O (/@nlogp+/<anlogn N \//-inlogp) _0 (\/mnlogp)
n NG B ’

with probability tending to 1. Define

1 n—1 T
5) —(—t-1)
A S—— g W — W . X .~
2 n MY o M jo LM |

t=sn
1 n—1 T 2
6) — —(—t—1)
S W . — W D, G
i "= Mg 70 MG o LM

By Cauchy-Schwarz inequality, we can similarly show 1'54) < 2[2(5) + 2[2(6). Using similar

arguments in bounding [2(3), we can similarly show that
3 (1no2 2
6 tin(log”p + log” n)
Y =0, ( — , (A.20)



by (A.15) and (A.18). Under the events defined in Condition (A1) and (A.19), we have

o
gg_z

2

—(—t-1) . Knlogp
2{I@5is") ~wey I =0 (—V) 3

T
( A(t) _w/\//\l<.t),jo> Xt+1,fvt\§g> ¢ NG
07

Jo

where Z{-} denote the indicator function. Since X, is independent of w wﬂw ) and /\/l

we have

n—1 2
G 1 1/2 —(—t—1) —(—t—=1) B V Ky logp
Bl = o Z E Hzﬂm %) <wﬂ4\(” o ‘*’M;?,jo) I{”wﬂu) o wﬂ;ﬁ>,j0||2 =0 (—\/ﬁ :
Jjo ” 2

t=sn 707750

For any random variable Z, it follows from the definition of the Orlicz norm that

72 7?2
1+E—— <Eexp <2,
1217, <||Z||zz>

and hence
EZ? < HZHfb2 (A.21)

Note that X is positive definite, we have by Condition (A3) that

|£]2 = sup a’Za = sup Ela’ X,|* < sup la” Xoll7, < <, (A.22)
acRP acRP
lal2=1 lal2=1 ||a||2 )

It follows from (A.22) that

n—1
) 1 t-1) i Vkn logp
EL < ﬁt;Exmax(zﬂ%)@?)uwA% W, N z{y\wA(t LW, ( )}
= O(n 'k, logp),

with probability tending to 1. This further implies 155) = Op(n"'k, log p). Combining this
together with (A.20) and the condition 2 logp = O(n/log?n) yields that

M=o, (“n logp i (logp +log” n)> _o, <mn logp> .

n n? n

This together with (A.13), (A.14) and (A.16) yields that

[l — I5| = Op(1ny/ kn log p).
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It follows from Condition (A4) that |Is — I;] = 0,(1).

Let

By definition, we have

n—1 |O-/\(t)

— | Xoi1, — wr. X o~ xT B" — B, =
41, @ ® @ ® @ |-
S O ( Jo T WO jo e X | e \ Py T Poal

M\gt) 7j0 |

15— 1L I—Z

Using similar arguments in bounding /5 —

I; —
|2 \/ﬁ

’<200 Vknlogp nz_l
c

o
(X 0. th;?) X (ﬁﬂ;z:

)|

M(t) ,Jo

I5, we can show

X

Xt-‘rLjO —w t+1’ﬂ§?

X" ., (Beow—B. -
(t) (t) (t) .
t+1,MJ.0 Mdo O’Mjo

T
//Vl\(-t),jo
t=sn J0

By Cauchy-Schwarz inequality, we have

n—1
g X —whw X, ol | XD 0 (Bow — B, oo
,Jo M;O),JO LM t+1,M§O> M, 0,M;,
t=snp
n—1 N\ V2 /pq o\ 1/2
< E X1 —wh X = E xXT o — 0O, o
> t+1,50 M;g) Jo t+1,M§'? t+1,M§? /BMS)) /607/\/15’(5))
t=sn t=sn
By (A.1), (A.21) and Condition (A3), we can show
n—1 2
§ E| X1, —who . X, ool =0(n
t+1,50 M%)JO t+17M§_g) ( )7
t=sn
and hence
n—1 2
T _
E Xt-&-l,jo - UJM\@ j Xt+1 ,/\//T(.t) = Op(n) <A23>
t:Sn 0 ’ 7 70

This together with (A.9) yields

nz—i

t=sn

T
Xit14o — W

X
MjO »JO

(\/ﬁnn)

X — ,3/\ — ,3 o = O
(t) (t) (t) p
‘ t+1,/\/t].0 Mjo 0,/\/lj0

i)
1,0



It follows that

|[; - [;*‘ = Op(nn V Rn logp),

which is 0,(1) under (A4).
Thus, to prove Iy = 0,(1), it suffices to show I;* = 0,(1). Define

n—1
1 —_~ t
L= ——— Xt —who X, go | Xp1 L0 € MY)).
»J \/ﬁo-/\(t) ' +1.50 M;g)do t+1ij0 +1, ( _]0)
t=sn MjO ,JO

We have I;* = 37%_| I (Bj — Bo;). Therefore,

57| < max 12,118 = Bolh- (A.24)

----- 7]

Let o(F;) be the o-algebra generated by {(X1,Y7),...,(X:,Y:)}. Then, each I, ; forms a
mean zero martingale with respect to o(F;). To see this, note that /WE? is fixed given F;.

If j ¢ ./\/l%), we have

1 . 0
E o (Xt—f—l,jo - wﬂ(t)7j0Xt+1,/T/l\(vt)) Xt‘*‘lva(j € Mjo )|‘Ft
M) 0 "
0
- ! Xipigo —why X, co | XerrglF p ZG e MP) =0
= — trbhjo — YRG0 s e MG | ALl 02U do/
TR o o 70 0
Jjo ”

If j e Mg-?, then we have

B2 (X, —why X, oo ||F Y = —0.
O —) . ./\/1]-0 ,Jjo tJrLMjO O —(t)
MjO »JO MjO »JO

By some exponential inequalities for martingales, we show in (A.8) that Pr(max; |5 ;| >
év/Iog p) — 0. Tt follows from Condition (A4) that [|8 — Boll1 < (ko + 1)|Bm, —Bomoll1 <

VMol (ko + DIBrty — Boollz < /JMo|(ko + 1)1, with probability tending to 1. Under
(A1), we have | My| < k,, — 1. It follows that

18 — Bolli = O(v/Fna), (A.25)



with probability tending to 1. Since 7,v/knlogp = o(1), we have max; |I;|||8 — Boll1 =
0p(1). This together with (A.24) gives I3* = o,(1).

Step 2: Using similar arguments in Step 1, we can show that I3 is asymptotically
equivalent to I3*, defined as

sp—1

I = Z \/_0

Zt xXT B — B
+1,50 (—sn) (—sn) (—sn) |
M( .y 1M M, 0,M5

X

where Z;11 j, = Xit1,, —wﬂgo o) jo K1 AL Hence, it suffices to show I5* = 0,(1). Note
that |I;*| is upper bounded by
57| = max 5,118 = Bolh, (A.26)

(—sn)
(Xt"rlij ./\/l( Sn) Xt_i_l’ﬁ/(\;;s")) Xt+1j (.] € M )

Given {(X,+1: Yars1)s - - -+ (X, Yo)}, the set M) is fixed. Forany j € [1,...,p], Is;
corresponds to a sum of mean zero i.i.d random variables. Similar to the proof of Lemma

A.3, we can show

Pr(max|I3 ;| < ci/logp) — 1,
J

for some constant ¢, > 0 that is independent of ./\/l 5"). By (A.26) and Condition (A4),
we have |[3*| — 0 with probability tending to 1. This proves I3 = 0,(1).

Step 3: Let

sp—1

T
E Sn)A (Xt+1,go wﬂ(5n>7j0Xt+1,M§.gS")) Et+1,
»JO

Jo

we have

Sp—1

E ~T
A=) X Gl — Wian . X, gp—sn) | €t
\/_UM( on) ( M, LM, MG ™G0 LM,
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We first show I, — I} = 0,(1). Since €y,...,¢&,, are independent of { X}, it follows
from the Chebyshev’s inequality that

PI‘(|I4 — IZ| > t*’XI;--‘7Xn;€sn+17'--75n)

1 *
< WE{(LL - [4)2‘X17 cee 7Xn758n+17 s 7€n}
sn—1 o2 T 2
< 0 W(sn) . — W (—sm X, (s ) A.27
ST {( g0~ B ) Koo )} (A.27)

By (A.5), (A.12) and (A.15), we can show that

2
Sp—1 2 T 2
o Kz logp

0 A~ n

E —_— W —(—spn) . — Wii(—sn) - X —(—sn) =0 .
né_ ' {( Mjo »J0 Mjo ,JO 15—}-1,/\/1].0 P n

= " do

0

In view of (A.27), this further implies that |I, — I}| = O,(n"'/%k,y/Togp). Under the

given conditions, we obtain that Iy — I} = o0,(1). Similarly, we can show I} — I}* = 0,(1),
where

Sn—1

kK ]'
I = Z NITE—

T
- (Xt+1,jo - w/\?;OS"),joXHLﬂEES")) Et+1-

Thus, it suffices to show I;* = 0,(1). Note that we have

8,08

E[(IZ*)2|{(XSTL+1> €5n+1)7 SRR (Xnv En)}] = T7

and hence E(I;*)? < s,0%/n. Since s, = o(n), it follows from Chebyshev’s inequality that
I;* = 0,(1).

Step 4: Fort =s,,...,n — 1, define
. _ Ky logp
A= {oag, < Vi o, -y, <2}

By (A.5), (A.12) and Condition (A1), we have Pr(N, A;) — 1. Hence, we have Pr(I; =
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I}) = 1 and Pr(I3* = I;**) = 1 where

n—1
1
I = E ——— ( Xiprjo — @ X, o | anZ(A
1 \/ﬁg/\ B »Jo M;O)JO t+1’MJ‘o ( )7
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(t)
t=s Mj
n—1 1
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n—1 1
I***—E X1 —why X ® | Et1
1 - ~ +1,90 — () . o +1-
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In the following, we prove I; = I{* + 0,(1). This further implies [; = I** + 0,(1). For any

to > 0,
1 n—1 1 T
* kk AN
Pr(|ff =L > to) < —5EQ > 5— (wﬂ§g>,jo - wﬂg;xjo) X, e (A)
0 t=sn M]-O ,Jo

2

1 n—1 1 T
= —FE W () . —&\)/\(t) . X —(t)Et 1I -At
nt2 2: . MG o M; /o t+1, M) (Ar)
=Sn

2 ol fwge . —@ge 3
0—0 M]‘O »JO MjO ,J0 9
: n_t%E 2 62 LA)NX, zgollz

t=sn MQ)JO

1303 (VraTogp)” o
ent? Jn EZ”XtHﬂ;glsz(n k2 logp) = o(1),

t=spn

where the second equality is due to (A.17) and the last equality is due to the condition
that x2logp = O(n/log>n). This implies I = I;* + 0,(1) and hence I, = I}** + 0,(1).

Similarly, we can show I; is asymptotically equivalent to

1

T
(XtJrl,]o WD o XHL/Q%)) Ett1-

1 n—1
Vi S g g,
Observe that I7*** is a mean zero martingale with respect to the filtration {o(F;)}:. Since

s, = o(n), we have

2
n—1

€41 T
E —<Xt+1- Wl X o) S FE| =
»JO MWD t+1. MW t
No —(t) . i 5J0 >
Vv MY jo 0 70

t=sn

n— S,
o8 — 0.

12



Let Zii1jo = Xiv1jo — w%@) joX oo for t > s,. It follows from Condition (A1) and
Jjo Jo

t+1,
(A.2) that

1 4 ck 2\ 2
E X —why X oo |Fpy<2(1+2) .
4 t+1,50 M%) jo t+17./\/l§-0) ’ t =~ 52 c

0 _—
M§€)) ,Jo

By Holder’s inequality, we have

3/4
1 3 1 4 a4 a3 2
El 55— I1Zil’|F | SQE | o Zi0l 7 <zp(tt=) -
o5 yiOf ¢ ¢
M; 7 g0 M, g0
Jo Jo
By condition, Ele; 41> = O(1). Since gy and X are independent, we have
E Lz 317 | <Elei]’E L zapE | <c
———Zer1 e [P Fe | < Elestal P | ZeaI°|F | < o,y
/\72-? »Jo /\7;? »J0

for some constant ¢,, > 0. Therefore, for any oy > 0, it follows from Markov’s inequality

that

2

n—1
Et412 1,j Et412¢ 1,j
> BV T | T\ [ Jrraa | 200 R
no =) no <)
M) do M)

t=sn Jo »JO
) 3
e
1 Zt11,joEt41 @
<) a5 b 2 i p < \/_5 — 0.
t=sn n 0 O—/TA\;;)JO noo

This verifies the Lindeberg’s condition for /7***. It follows from the martingale central limit

theorem that
soxxk @ 2

As a result, we have I; -5 N(0,02). This completes the proof.
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A.2 Proof of Theorem 3.1

We use a shorthand and write ﬂ§? = ./(/l\gs") fort=0,...,s, — 1. Let

1 & 1
== ZXMX? Bo) X[ and WY =~ X" (X[ Bo) X[ X,

=1

for any j € {1,2,...,p}. For any M C I define

_ —1 2 _ T
WM,jo = EM,MEM,jov OM.jo = 2]'o,jo - wM,jOZM,jov

A~

~ -1 A2 ST
WM,jo = EM MZM ,J0 UM,]O - E]O»]O 2/vl oMo

Ak o *—1 * A %2 . *
WMo = EM,MZMJN IM.jo = 2]0,10 EMJO M,jo>
p
~ Nk Sk—1 () &) * 7
Do = D j, + E :EM,M (‘I’ + W @ MJ()) (85 = Boj),

% ~xT > o ~T
Zfirgy = Xevvgo — W ; X Ao = Xevrgo = @go o X o,
Jjo ”

3 () ~+T (4) ) =
5/\/1 Jo T lIlyo Jo — “ Mo (2\11/\4 Jo +w MMP M JO> )
OM]O_ Aj\%ljo—l—zg/\/l]o BOJ)

Here, waqj, and G4 5, correspond to first-order approximations of Way j, and G4 5, around
Bo. We introduce the following lemmas before proving Theorem 3.1. The proof of Lemma

A.4 is given in Section A.8.

Lemma A.4. Under conditions in Theorem 3.1, we have

. . < (5)-1/2 .
W o 2 Ve max el < (6)7 e, (A.28)
jOgMJMlSH'n ]OnglMIS’fn

where ¢ and ¢y are defined in Condition (A2%) and (A3*). Besides, the following events

14



hold with probability tending to 1,

VEnl

2 [[@ango = wansll < (T

IM|<kn

MCI,
IM|<kn

Venl0gp
Fn 08D nn) , (A.30)

max |G, — oM.l < Co < N

~ = 2
Jax 1@, = Do lla < o, ax |30 = Thago| < Comns (A1)
|M|<“n |M‘§"4n

max 16350 — Ohaio| < oy (A.32)

for some constant ¢o > 0. Moreover, we have

" i ] >, €Y R0 o (B — Boy) i T e
Z - 3 = Z " + 0p(1).
NZD ox %3, —~ /no'—,

. o*_
t=0 M(t> ,Jo MEO ) o M;g 3o

Similar to (A.25), we have

18 — Bolly = O(VFntn), (A.33)

with probability tending to 1, under Condition (A5*).

For simplicity, we only consider the case where [ = 1. When [ > 1, assume we’ve shown
the asymptotic normality of B;é_l). Under the given conditions, we can show 02 s
lower bounded by +/¢/2, with probability tending to 1. This implies B(-l_l) converges to
Bo, at a rate of O,(n~/2). As a result, the estimator 30~Y = 3 + em,p(ﬁj(é Y _ 8,) also
satisfies the conditions in (A5*). The asymptotic normality of ﬁjo can be similarly derived.

In the following, we omit the superscript and write Bj(;) and FZ’(O) as Bjo and I'7. Let

gi =Y — u(XIBy) for i =0,1,...,n. By definition, we have

VT3 (Bj, = Bjy) = Z ey Zt—l—Ljo {Yt+1 - (Xt+150,yo +X,, M(tﬁﬂ%)) }(A-34)
By Condition (A1), we can show the following events occur with probability tending to 1,

My, C MY MY <k, t=0,...,n—1. (A.35)

15



Besides, similar to (A.6) and (A.12), we can show

%2 2 _ [ VEnlogp
e 6350 = Tjol < o (T) : (A.36)
‘M‘S’fn

for some constant ¢y > 0, and

N G > E/2 in 6% . >+/¢/2 A.37
AR Gy > V)2 and AR Oy 2 Ve/2, (A.37)
[M|<kn [M|<kn

with probability tending to 1.
Under the events defined in (A.35), we have for t =0,1,...,n — 1,

T _ T
X180 = Xig1jofogo + X, ﬂmﬁoﬁgg-
b ]0 !

Hence, using a second order Taylor expansion, we have
(X 1B0) = 1 | XevrjoBogo + X =By g
t+1 +1,50/70,jo0 e+ Po, A

_ 3 T a 1 3 T a
- (Xtﬂ’jOﬁjO + Xt+1 M\(t)ﬁﬁ’l\%)) o (Xtﬂ’j()ﬂjo + Xt+1 /\7@’6/{/‘\2‘3)
) Jjo ’ J0

2 T
X (Xt+1,jo(5o,jo — Bio) + X, 0 (507,\753 - 5@5@))

0 0

1 " T F* T 3 2
+ §b (Xt+1,{jo}uf7/l\§3ﬁt Xt+1,{jo}UM\§B>(BO’UO}UK/’\%) _ﬁ{j"}UM\%}) 7

~ ()
for some 3; € R Mo lying on the line segment joining 3 Let

o gipum @4 Bz
R} be the second order Remainder term. Under the events defined in (A.35), we have

’XT B

t+1,{jo JuMS})

< |xT _ - x7T = o — B
—‘ t+1,{jo}uM§-g)ﬁU:{JO}UM%) + t+1,{jo}UM§-g)(ﬁ 0. {jo yUM;) Bi)

T

_ T . _
= [ X Bol + ‘Xtﬂ,{jo}uﬂ;g) (ﬂo,{jo}uﬂﬁ} Bi)| <&+ wo

N*
Bo,wo}uﬂ;g) P ,

< GH-W()Hﬁo—B‘

)
1

where the second inequality is due to Condition (A4*). By Condition (A5*) and (A.33),

16



we have with probability tending to 1,

wollB = Boli < won' < @.

Since b"(-) is continuous, supy,<y [0”(2)| is upper bounded by some constant ¢, > 0.

Therefore, we have with probability tending to 1 that

/11 T Tk
b <Xt+1,{jo}u/\7§.g)ﬂt>‘ = G (A.38)

Under the event defined in (A.38), we have

max
t=0,...,n—1

2

* Cx T 2
<5 X i1 Gyl By iopori) ~ Briyom)| - (A.39)
for any t. Note that
7 ~ T
‘Zt+1,jo < | Xigagol + H‘*’M\S_? W ) HXHlﬁgz>||2 + |“’A7;.;>Xt+1ﬁ;g> :
By Condition (A1*) and (A4*), we have almost surely,
74 a T
| Zi41,5o| < wo + /Knwo max [@r.j0 — Wtollo + ’wﬂ%)XHLM\%ﬁ- (A.40)

|M|<kn

The second term on the RHS of (A.40) is o(1) with probability tending to 1, by (A.29) and
Condition (A5*). Thus, we have with probability tending to 1 that

| Ze1 ol < 200 + W]

H;B)Xt+17//\4\%> , Vvt (A.41)

17



Under the events defined in (A.35), (A.37), (A.39) and (A.41), we have

1 «— 1 ~ - _
7 Z PO Zi11,jo {K&H — M <Xt+1ﬁo,jo + X;il,ﬂ%h@/\?g?) }

Zt+1 J05t+1 /Z\t-&-l,jo 1/
Z o Z = b t+1 {jo}UM(t)ﬁ{Jo}UM(t>

M(t) M(t)
x (mHM%W B+ XE s Bz~ B )| < = §j IRl
I
n—1 2
T T 3
NP @ﬁmwwﬁmwm%MW$”www‘“m
Similar to (A.9), we can show
n—1 2
T By — Braw)| =0,
pr t+1,{GoyuM; M0, {jo UM {goyuM;] m
n—1 2
T T 2 _ 2
- |°"A7§.f)>Xt+1,/\7§3| Xt+1,{jo}uﬁ2§g> (60,{jo}uﬂ§g’ B ﬁ{jo}uﬂ%)) = O,
t—
with probability tending to 1. It follows that
Ci P ?
\/_ Z 2wy + |wA(t)Xt+1 M(t) |) t+1 {]O}UM(t> (’60,{j0}U/(/l\§-g) - ﬁ{jO}UM\;g)) 0p(1)<A43)

under the condition v/nn? = o(1) in (A5*). Hence, we've shown

—1
Z Zt—i—l,jo {Yi-H —H (Xt+150,g0 + Xt+1 M(t)IBA(_t)) }
JO

7]0

Z t+1 Py 3
_ Lttlgo an'd - xT N — .
Z t+L{j0}UM§? B {joyuM) t4+1,M) 'BMS(? BO’M%)

TR o

IZ%WM¢T%0MHM

M(t),]

18



In view of (A.34), we have

« Zt -
* — § : +1,j0€t+1
\/EFH(BJ'O - ﬁ(],jo) = (t)
I
Zt N

E “t+ljo b XT B

JviC) t+1 {Jo}u/\/l“)ﬁ{ao}UM t+1,M) ﬁM;? BO,M%) .

]0 7]

Ip)

In the following, we break the proof into two steps. In the first step, we prove Iy = o0,(1).
In the second step, we show ; - N(0, ¢p). This implies \/HI’;:(BJ»O — Bojo) A N(0, ¢p). By
Condition (A7*), ¢ is consistent to ¢g. It follows from Slutsky’s theorem that

\/ﬁr; (BJO BO:]O)
¢21/2

4 N(0,1).

The proof is hence completed.

Step 1: Under the events defined in (A.35), using a first order Taylor expansion, we

have

b (Xt+1 {JO}UM(t ﬁ{J }UM“)> - b/,(XtTJFI’B())

T 2 111
- Xt+1,{jo}u/\7§? (B{jo}U/T/l\%) _QO,{jo}Uﬂﬁ-g)) b (Xt+1 {]0}UM<t)'B )’

N J/
-

e
Rt

Rl-HM

for some B;‘ *e o) lying on the line segment joining 3 Let

0,{j }th) andﬁ{ }U/\/l(t

1 Zia

I = Z »J0 Zttljo g (xT - ~A(,) . 0
2 \/ﬁ M(i) ( t+1/30) t+1,./\/l;-g) ﬂM :) ﬁO’M 2) ;

we have

Z
|]2 I*|<_Z‘ t+17]0||R |

o | Boo — B, o
\/_ —0 M(t) jo H'l M(> ( Mjo O’Mjo)

2
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Similar to (A.39), (A.42) and (A.43), we can show

2

= o(1),

2

Cx |Zt+1 jol
I I* < )
’ 2 | \/— Z M\(i)

Xt+1 M(t) <,3/\7§g> - 50,/(4\%))

with probability tending to 1. Thus, to prove Iy = 0,(1), it suffices to show I3 = 0,(1).

Similar to the proof of Theorem 2.1, we can show under the given conditions that

7 -7 3
T 8 e Bay (x1.) X, g (P~ Py )| -0

M\(t)’]
_ T
where Zt+1,j0 = Xt+1,j0 - wﬁ/[\(,t) joXt+17M\;’g>7 and
Jo’
1
1 « Zt—i—l Ziy1 3
»J0 t+1,50 Z T _
vn N b (X4150) X, o | Bgo — By o ) = op(1).
N0 Jjo 1]

=0 M(” go MY o
This implies I = I3* + 0,(1), where

o A
12 _ \/_ Z t+1,50 b// (X,alﬁo) t+1, M(t) <ﬁM(t) ’BO,M\%)) .

A(i)

Note that /3* can be further bounded from above by max; |Ig7j|\|§ — Bolly where

1 Z . T
L= \/— Z v (X +1ﬁ0) Xit1,;L (J S M§?> .

TTAL o
Similar to Lemma A.3, we can show max; |5 ;| = Op(v/logp). This together with (A.33)
and Condition (A5*) implies max; |Ig,j’||5 — Bolli = 0,(1) and hence I;* = 0,(1). This
proves Iy = 0,(1).

Step 2: By Taylor’s theorem, we have for any M C I;

7o

~9 ~ %9 _Ax2 2
1 . 1 I M,jo — I M,jo _ <0M Jo — IM JO)
~ . o~k ~ k3 ok 57
UM’JO O-Mvjo JM:jO 2{pMO-M7jO _'_ (1 pM)UM:JO}

for some 0 < pp < 1. By (A.32) and (A.37), the second-order remainder term satisfies

ma (UM Jo a-j\%l j0)2 16637]7% <A44)
oM< | 2{paOang + (1 PM)OA G 1P| T O
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with probability tending to 1.
Besides, it follows from (A.31) and (A.37) that

~2 ~ %2 ~2  ~9 _ 9

Mo — IMjo — Z g/vt,go< — Bo,) _ IM.jo — TIM.jo 8con,,
max — = max 3 S =
MCEL 9 M,jo MELj I M.jo ¢
|IM|<kn IM|<kn

with probability tending to 1. Combining this together with (A.44) yields

1 1 Z 5 (5 Bo,5)
Pr| max |- - = M{O*gj Sl <en | =1,
MQHJO O-M’jo O-MJO O—MJO
[M|<kn

for some constant ¢; > 0. By Condition (A1*), we have

Z €0 (B; = Boy)
1 Zt+1 Et4+1 1 J J J
Tn E Ajo E :Zt+1d0€t+1 — ?*3

(t) [ g =
t=0 /Vl o +J0 M;’;),]o M<t),]0

n—1

<\/_0177nmax Z|Et+1||Zt+1,yo|

with probability tending to 1. Similar to (A.23), we can show ) ;" |wA(t> Xt+1,/\7§g) 2 =
O,(n). This together with (A.41) and Cauchy-Schwarz inequality yields
n—1 n—1
| Zys150|> < 8nw? + 2 > \wM(t)Xt+1 Mmy O,(n). (A.45)
=0 =0

In addition, we have 31" €Z.; = O,(n), under (A6*). It follows from Cauchy-Schwarz
inequality that

1 n—1 1 n—1 1/2 ) n—1 1/2
E Z ‘5t+1HZt+1,j0‘ < (ﬁ Z |Zt+1,j0|2> (ﬁ Z 6?—}-1) = Op(l)a
t=0 t=0

t=0

and hence

1 Zt+1 €41 1
% Z AJO ZZHl,JOEtH 5 A*3 :Op(\/ﬁm%)

(t) = (t) .
t=0 M JO M;g) ,Jo M(t>,]o
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under Condition (A5*).

Using similar arguments in bounding 12(2) in the proof of Theorem 2.1, we can show

1 n—1 R . 1 Z SM(T‘) (BJ - /807j>
NG (Ziv1jo = Zi41,0)Et41 S &*3 = 0p(1).
t=0 M(t)JO M\(t) Jo

It follows that

-1 ~ ﬁ _ ﬁ&.
Zt+1gg5t+1 _ 1 Z fM(t) ( J J) B
§ & - Zt+1,305t+1 ~x - A*3 - 0p<\/ﬁ>‘
=0 A(t) Jo O/\?(t) 77w
’ 7]0 M 7.70

Therefore, we've shown I, = I + 0,(1) where

1 n—1 . 1 Z gM(t) ( BOJ)
=— E Ziv1goEt+1 | = -
\/ﬁ * 0.*3
t=0 MY jo M o
In Lemma A.4, we further show I is equivalent to
n—1
AN
K’k § : t+1,50 t+1
t=0 M\(t)ﬂo
Hence, we have I} = I7* + 0,(1). Unlike Z; 14 ;, and & ;o i Lo and &;7@ ~ didn’t de-
Jjo 7o’
o . . . .
pend on the initial estimator 3. As aresult, Z7,, ; and 0o, Are fixed given { X, ..., X, }
Jo ”

and /\7%) Following the arguments in the proof of Theorem 2.1, we can show

Z Z
I** o \/_ Z t+1,]05t+1 Op and _Z t+1,30€t+1 d ( ¢0)

t=sp, M<t> tf Sn

By Slutsky’s theorem, we have I; AN (0, ¢). The proof is hence completed.

A.3 Proof of Theorem 3.2

Recall that I =[1,...,p] and I;, =1 — {jo}. By (19) and Lemma A.5, we have

A 2za /o
VnL( Jl'gL’ a) = 224 \/qboeijpE_lejo,p +o0p(1) = ——— +0,(1). (A.46)

O-]Ijo 7j0
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It follows from (16) that

2Za/zv ®o

-1
Snaﬂ§_;5n)’jo/n + Z:L:sn Uﬂ;g) jo /n

\/EL<Bj07 @) = + op(1). (A.47)

With some calculations, we have

2Za/2V/ 0 220/2V/ Q0

- n_l
Ol.0 5”0//\4\%%)73'0 /n+ Zt:S” UM\%) Jo /n

-1
SulOg-om) jo = Oliguio}/1 + 2055 AT 5, = Oigio}/0

= 220(/2\/ ¢0 po— . <A48)
o1, ,j0{5n0ﬂ§gsn)7j0/n + Zt:sn O-J(/l\;g) .Jo /n}
For any M C I, we have
Tige = ElXog — Wi, XomlV'(Xg Bo) = arg R E| X5, — a’ Xom[*V" (X Bo)

> arg min E[Xo;, — aTXO,HjOFb”(XOTﬁO) =07

- acRP— doJ0”

This shows o5, > o1, j, for any M C . Hence, the numerator of the RHS of (A.48) is
nonnegative.
On the other hand, by Condition (A4*), we have | XI Bo| < @ and hence b"(X{'By) < k.

Therefore,

afwo =arg min E|Xy;, —a” Xoum|*V (X{ Bo) < EE|X3JO| < 12||X0,j0||§,2 = kc), (A.49)

acRIM]

where the last inequality is due to Condition (A3*). This implies

2Za/2V G0 220/2V P0

o1, S0 /n+3S o /n (4.50)
Lg.d0 n M§D—Sn)’j0 t=sn M;f)),jo
n—1
2204/2 \% ¢0 '
a2 sn{aﬂ(_sn>7jo — O']I]-OJO}/TL + Z{UA/Z(vt),jo — aﬂjOJO}/n )
0 Jo t—sn Jo
Besides, it follows from (A.49) that
2 2 2 _ 2
oM o . 9 M,jo O—HjOJO > 9 M.jo U]IjO,Jo
Jo — Ylig.go — = =
0 T M,jo + UI[jO ,J0 2\/EC(]
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for any M C 1. This together with (A.50) gives

2Za/2VP0 224/2V Po

p— Tnt Zn_l ] (A.51)
Hjo:]O Snaﬁggsn)7j0 n t=sn O-M\EB)JO n
n—1

SCTENTY —o? Mmook —ob Y/n

k3/20(3) n M;;-ﬁn)do Hj07,70 = M;?JO Hjov]O
For any M C I, define
Qi = (2 > »l.® -
M,jo — ]IjoﬁMC,HjOﬁMC HjOﬁMC,M MM M,HjOﬁMC .
It follows from Lemma A.5 that

Y mm 3 M 1 nMe o X¥um O

Xr,nme M B AMe L nMe O O
-1 -1 -1

_ ( MMM Mo g e B pian ~ Sy ) .
— Qo B nme ME g Qo
Therefore,
T -1 T 1 _
2]1j07j02]1j0,]1j0 Eﬂjo,jo - EM,]'OEM,MEMJO = (Ejoyf\/b Ejo,ﬂjoﬂ/\/lc>
-1 -1 1
y ( EM,MEMJIjOQMCQMJOEHJ'OQ-ATC,MEM,M _EM7MZM7H]'OHMCQM7]'O > < z)/‘\/l,jo )

_QMajOEHjOOMC7MEM,M QM7j0 Z]IjomMcmjo

T T T
= (Ejoyﬂjoﬂ/\/(c - wM,jonyﬂjoﬂMc)QM,jo(Ejoﬂjoﬁ/\/lc = Wt o 2M7HjoﬁMC)

g - )‘miH(QMJo) HEMJO Hg

T
> Amin (2o ) |01, nMe — Wi jo B 1, nme
By definition, we have

/\min<QM,j0) > )‘min {(Z]Ijom/\/[g]ljomMC)_l} = {)\max (E]IjOOMC,]IjOﬁMC)}_l > {/\max(z)}_l >

oﬁwl =

where the last inequality follows from (A.22). It follows that
1

T —1 T -1 2

Eﬂj07jozﬂjo,ﬂjo E]IJ'OJO - E./\/l,jo2/\/1,/\/12/\/17% > 0_(2)||€M7j0||2'

Note that we have

2 2 _ o c —1 o o c —1 )
IM.jo — UI[jg Jo EJOJO M, jo EM,MZMUO (EJOJO Eﬂjo 7j02ﬂj0 Lig EH]’OJO)'
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This further implies

1
TMjo ~ OL o 2 C—%||€M,jo||§,

for any M C I,,. By (A.51), we have

220/2V/ D0 _ 2202/ D0 S VG0Za)2 (

. n—1 = .3/2:5
O—Hj() »JO Sngﬂ;gsn)’jo /n + Zt:sn O-M\;g) ,jo/n k c0

s 1 n—1
f”iﬂgsm,joﬂg + > ||€,\7§_g>’jol|§> :

t=sn

In view of (A.46) and (A.47), we’ve shown

VAL(BDY ) > AL(B,, ) + YO0ar2 (

n—1
Sn s, 1 2
];?3/208 E”éﬂg;sn)JOHQ + E Z H&f\}(\;gdo‘b) + 0}7(1)'

t=sn

The proof is completed by noting that /nL(3P, a) = /nL(BP5, a) + 0,(1).

Jo Jjo 7
A.4 Proof of Theorem 3.3

Under the given conditions, using similar arguments in (A.10), we can show the following

event occurs with probability tending to 1,

M = MO = . = MO = M,

Jo Jo Jo

Under these events, we have

2202V P0 _ 2z0p2v ®o

n—1
o _ OM. i
v n>7j0/n + D s, UM%),J'O/” Moo

(A.52)

By (16) and (23), for any sufficiently small £y > 0, the following events occur with proba-
bility tending to 1,

. 2 vV
limsup |vnL(3Y, a) — Zaj2¥ b0 <% (A.53)
P Jo ? n—1 2 )
n SnO'M\ggsn)J.O/n + Et:sn O'M\%)’jo/n
A 2 vV
lim sup |[v/nL( %“Cle,a) _ 22a/2v/%0 < S (A.54)
n O-Mjoyjo 2
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Conditional on the events defined in (A.52)-(A.54), we have

limsup |v/nL(BY), @) — VAL(35*", a)| < <.

The proof is hence completed.

A.5 Proof of Lemma A.1

We first prove (A.1). Condition (A2) states that

min inf  a’3;umiuma > C.
MCi,p]  acRIMI+L
JogMIM|<kn  lall2>1

Note that

2107]'0

2 _ o ) -1 R - .
OM.jo = 23]0,30 2307/\42/\4,/\42/\4,30 - (1a wM,Jo) ( DI
M’]O
: T
Z lnf a EjoUM,joUMa"
a€R|M|+1
lallz>1

By (A.55), this implies

. 2 _

min 04, . > C

MCl,ep) MO =T
JoEM,|M|<knp,

and hence

min OM,jo = \/E
MC[1,...,p]
JoEM,|M|<kn

It follows from (A.21) and Assumption (A3) implies that

= E)Xaj0

E S ||X07j0||72112 S C(Q)'

J0,J0

In view of (A.56), this further implies that

-1 v 2 2
EjoyMEM,MEMJo - EJOJO O M. jo < ¢p-
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Note that 3, mE 5 v Emjo = Wiy jo B Mm@ jo- Hence, we have

2
C
0 <

9] |OQN;

lomollf < 5

Y

min(ZM,M)
where the last inequality is due to Condition (A2). Therefore, (A.1) is proven.

Similar to (A.21), we can show for any random variable Z,
EZ' <2||Z],,.

It follows from Condition (A3) that

T 4 T 4
Mg?ﬁp} E|X0,jo - WM,J-OXO,M| <2 Mfgﬂ[%?ip] HXo,jo - WM,jOXO,M”wz
]0¢M7|M|SHTL ]0¢M7|M|§5n
<2 max (L) < 2650+ )
JoEM,|M|<knp

Moreover, by (A.1),

1
max —
MC[l, p O-M’]O \/_
JoE M, |M|<kn
Thus, we have
2
1 2ch c?
T 4 0 0
max E|XQ o wM7j0X07M| S — 1+ — .
Mg[:[:vp] O—MJO c

jO¢M:‘M|§Hn

(A.57)

(A.58)

(A.59)

For any random variable Z with ||Z]|,, < w, it follows from the definition of the Orlicz

norm that ||Z||y, < w?. Under Condition (A3), this implies

max |12 o, < max(Xo,.)? <

(A.60)

For any random variable Z, we have E|Z| < ||Z]|,. This together with (A.60) yields that

max E||Xoum|5 = max Z EXJ, < ky maxEng < K, max 1X5 i1y, < KncA61)

MCIL,...,p] MCIL,....p
|IM|<tin IM|<kn JEM
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Finally, notice that

Pr (]X”| > \/303 max(log p, log n)> < exp{—3max(logp, logn)}E exp(| X, ;|*/c¢)

< 2exp{—3max(log p,logn)} < 2min(p~*,n"?),

where the first inequality follows from Markov’s inequality and the second inequality follows

from the definition of the Orlicz norm. Now it follows from Bonferroni’s inequality that

Pr <max | X5 > \/363 max(log p, log n)) < 2pnmin(p~?,n"?) = 2min(np 2, pn~?) — 0.
i
The proof is hence completed.

A.6 Proof of Lemma A.2

We first prove (A.5). Note that

lax - Oao —wmollz = | max 150 Ban — Eatm B llz
JOgM’|MIS”ﬂ ]0¢M’|M|S“n
S-S $i-1 -1
< Mg%?f’p] ||EM,M<EM,J‘0 — S mgolll2 + Mgl[%?ip} H(EM,M - EM,M)ZMJOHQ .
ZO%MJMlgﬁn . ZO%leM‘S’{n ,
m n

Hence, it suffices to show that with probability tending to 1,

Upper bound for ny: Since

S (i — S
JoEM,|M|<kn
< e S —
< max [p2yvaviiE X 1(Zrtjo — Znto)ll2,
JOgMJM‘SHn ‘]OgM’V\/{‘SHn

it suffices to show with probability tending to 1 that,

1 —0(1 A .62
nax 130 a2 (1), (A.62)
JoEM,|M|<kn
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and

> Vi logp
o = 2ol = C T ) Al
e (o — Ento) 2 o( N (A.63)
JoEM, | M|<knp

Note that 37} Mo 18 symmetric. To prove (A.62), it is equivalent to show that the
eigenvalues of > M are uniformly bounded with probability tending to 1. Hence, it

suffices to prove

~ C
min - Am (2 )> < A.64
Mg[177p} mn M7M 2 ( )
JoEMIM|<kn
with probability tending to 1.
Observe that
min A (f] )z inf inf a3 a
MCTL g R ATMM MC[L,...p]  acRiMI MM
jOng‘Mlgﬁn jOgéMv‘-/\/”SHn
> min min a’X a— max max ‘aT (E -3 ) a‘ .
= MCD..p] aerimi MM MC[1,p]  acRIM MM MM
JoEMIM|<kn JogM,|M|<kn

By Condition (A2), the first term on the second line is greater than or equal to ¢. Since

YXMM— > M.m 1s symmetric, the second term can be bounded by

sup  |a" (2 - S)al. (A.65)
acRP
lallz=T-llallo<r

Define the stochastic process
X(a) = a’ (2 — ¥)a.
For any a,as € R? with ||a;||2, ||az|ls < 1, we have

X(a1) — X(a2)| < [(a1 — a)" (2 — Z)(a1 + ay)],

since a, (i Y)a; = a’(E — X)as, by the symmetricity of the matrix 3 — 3. Recall that
=Y " (XX —EXoX[)/n. It follows from Condition (A3) and Cauchy-Schwarz
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inequality that

(a1 — a2)" XoX{ (a1 + @s)[ly, < V2[lar — @slla  sup  [|af XoX{ aully,

as,as€RP
lasll2;llaall2<1
TX 2 TX 2
<Voar—asp  sup W@ Xo)]+ (@ Ko,
a3,as€RP 2
llasll2,llaal|2<1
< \/5”6'/1 —asl2 sup 1(a3 X0)* ||, + [/(ai Xo)* ||,

a3,as€RP 2
llazll2,|lasll2<1

CLTXO 2 + G,TXO 2
<V2|a; —aslls  sup las Xolly, + llas Xolly, <V2||ay — aslls. (A.66)

a3,a4€RP 2
llas]2,]|a4ll2<1

By Jensen’s inequality, we have

(a1 — a2)" (X0 X[ — EXoX( ) (a1 + a2)ly, <2|(a1 — a2)" XX (a1 + a2)|y,

S 2\/50(2)”(11 — a:2||2.

It follows from Bernstein’s inequality (Theorem 3.1, Klartag and Mendelson, 2005) that

Pr(|X(a;) — X(az)| > t) < 2ex {_O(l)min ( nt? nt )}
oo o — aalf o —aali) 1

for some positive constant O(1) that is independent of a; and a,. Let S = {a € R :
lalls < 1, |lallo < kyn}. It follows from Theorem 1.2.7 of Talagrand (2005) that
B sup [X(a1) = X(ap)| = O{n(S, n= L (L) (S, 7 1203,
al,a2c

where the definitions of the ~,-functionals are given in Definition 1.2.5 of Talagrand (2005).
Since X(0,) = 0, we have

Esup [X(a)| = O{72(S,n 2| - 2) + (S, - [l2)}- (A.67)

a€s

By Lemma 2.3 of Mendelson et al. (2008), for any 0 < ¢ < 1/2, there exists an e-cover of

S with cardinality at most (5/2¢)% ( Ifn) Using similar arguments in proving Lemma G.8
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of Shi et al. (2018), we can show that
V(8,072 o) < 07 Pa(S, - [l2) = O(n ™2k log p),
NS l2) < n7In(S, - ll2) = O(n 'k log p).

Under the given conditions, it follows from (A.67) that Esup,.s |X(a)| = O(n"Y2\/k, logp).
By Markov’s inequality, we obtain sup,.s |X(a)| = O,(n"'/%\/k, logp) = 0,(1) and hence
(A.65) is 0,(1). Under Condition (A2), we have

min min aTEM,Ma > cC.
MC[L,....p]  acRIMI
]0¢M7|M|S”/"‘n

Assertion (A.62) thus follows.
Recall that §j1,j2 — E]’th = Zi(XiJlXiJz — EXijlXOJQ)/n. Combining (AGO) with

Cauchy-Schwarz inequality, we have

”X§,j1 +X§,j2”¢1 < HXg,ﬁHdJl + HXO%]Q”#H < 02 <A68)

1 X051 X0,z [l < 5 < 5 =

for all ji,jo € [1,...,p]. By Jensen’s inequality, we have

Eexp( | Xo.5, 0J2|) gEexp(| 0.71 0,J2|>S2_
W

2 2
Wo 0

This implies [|EXo o X0, |lyy < ¢, Vj1,j2. Combining this together with (A.68) gives

1 X0, Xo.g2 — BXojoXoallur < 11 Xo01 Xogallun + 1EX05 Xojo lly < 265,

Therefore, it follows from Bernstein’s inequality that

ot
> < — i —_—, .
1§r;1x<gpPr < > t) < 2exp ( O(1) min (4710%’ 200)) , (A.69)

for any t > 0, where O(1) denotes some positive constant.

Take to = 3v/nlogpco/+/ci. Since logp = o(n), we have for sufficiently large n,

ty  9logp < 3ynlogp o
dncd 4y 2/ 2¢

> (XinXig — i)

i
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It follows from (A.69) that

max Pr
J1,J2

By Bonferroni’s inequality, we have

t3 91
> to) < 2exp (_Z;LCOQ) < 2exp (— ng> .
0

Z(Xi,jl Xi,jz - Ejl,jz)

%

Pr ( max Z(Xi7j1Xi7j2 - Ejl,]é) Z to) (A?O)

J1.32€1,....p] p
< > Pr ( D (X Xig, — B, 5)| > to)
J1,J2€[L,....p] g
1 91 1
< p*2exp (—9 ng) = 2exp (—# + 2logp) = 2exp (— in) — 0.

Under the event defined in (A.70), we have

max  [[(Bajo — Bmgo)ll2 < Ve max | )Ejl,jz — X

MCI1,...,p] j1,J2€[L,....p n
jO¢M:|M|Sﬂn
This proves (A.63).
Upper bound for ny: Observe that
) PP Sys IN) SIV
Mgifp] II( MM M,M) M,JoH2
JoEM,IM|<kn
= max [ X5 v (Erm — Eman) En S ol
MCI1,...,p] ’
JoEM,|M|<kn
< )3y Sum—3 o
S e 1350t all2 ax [(Erm = Bpa)wat,joll2
]0¢M1|M‘Sﬁn j0¢M1|M‘SHn

By (A.62), it suffices to show

N Vknlogp

> .y M, =0 =X A.7T1
Mglﬁ?’ip] [ (Zmm MMM o2 < N ; ( )
JoEM,IM|<kn

with probability tending to 1.
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LHS of (A.71) can be upper bounded by

PP

max sup @’ (X m — ZMm) W o l-
MCL,...pl  cRIMI
JoEMIMI<En |all2=1

For any subset M such that j, ¢ M, | M| < &, define the stochastic process
Z gm(Xi, a) Z a’ (Xi X — Tm) Watjo-

Using similar arguments in bounding (A.65), we can show

max E sup |Tiw(a)| = O(n Y% /k,). (A.72)

Mg[l ~~~~~ p] GGR‘M‘
JoEMIM|<kn  |all2=1

The envelope function of |g| is bounded by

Gan(Xi) 2 1 X ml2| X i ntol2 + IS mtmllallwont ol

Combing (A.22) together with (A.1), we have

Gam(Xi) < [ Xioml |2l X pqwatol2 + 5/ Ve

The || - ||y, Orlicz norm of G can be upper bounded by

G (X) oy < e/ Vel + 111X anll2) X pqnt gl (A.73)
< CO/\/_+ HHXzMH |X MPM J0|||¢1

Notice that

1 Xoaall | VEAXLonnl
2./kKn, 2
P1
< M3l N V(X pw o)l
- 2./Kn 2
< zje/\/l ||X3j||¢1 n \/’anXZMwMJoH?pQ
- 2./Kn 2

where the first inequality follows from Cauchy-Schwarz inequality, the equality follows from

12X 2| X jawan o L2l < ‘

= O(v/rw),
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(A.60), (A.1) and Condition (A3). This together with (A.73) yields that

max {|Ga(Xi)llv, = O(Vhn).

i€[l,...,n

Hence, it follows from Lemma 2.2.2 in van der Vaart and Wellner (1996) that

< Kilog(l+n) max [[Ga(Xi)lly, = O(vhnlogn),
W e|l,..., n

for some constant K that is independent of M.

Moreover, it follows from Cauchy-Schwarz inequality that

o?=  max sup Egum(Xo,a)?
. Mg[l aaaa p] aeR‘M‘
JoEMIM|<kn ||alls=1

T T 2
< max sup Ela” (XomXoym — X)Wt jol
) Mg[sz] a6R|M|
JOEMIM|<kn ||aflp=1

< max sup E|aTX07MXOT7MwM,jO|2

MCIL,....p] M|
. = i acR
JOEMIM|<kn ||aflp=1

< max sup 1/Ela?Xom|*  max \/E|w3:4j0X07M|4.
Mg[l ,,,, p] aER|M| Mg[1)7p] ’

JOEMIM|<kn ||a|2=1 JoEM,IM|<kn

Using similar arguments in proving (A.59), we can show

max su Ela” Xo m|* max \/EwT - Xom|t =0(1),
IV no e TR |a” Xom] e @t jo X o.M (1)

JO%Mv‘M‘SHn ||a||2:1 jO%MalM‘SH’”

and hence 2 = O(1).

(A.74)

Therefore, it follows from Theorem 4 in Adamczak (2008) that there exists some con-

stant Ky, K3 > 0 such that

3 t
e Pr| sup [Tm(a)| = 5B sup [Tam(a)| = ~

Cll,.., D M| M| n
JoEM M| <rn b el

2 t
— 3 S —
o (“g052) 300 (o)

t? t
< — _— Vvt > 0.
= P ( 3K3n) 3 exp < Kg\/ﬁlogn> ’

IN
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Define

4
to = max (2\/[(371/1” log ,§K2m2/2 log plog n) ,

we have
3 lo
max Pr| sup |Tm(a)l—zE sup |[Tum(a)| > —
MC[L,...p] acRIMI 2 LerMI n
JoEMIM|<kn llall2=1 llall2=1

4Ksnk, logp 4K,5k2 logplog(n + 1) 4
< itttk Cnd =¥ 3 — n <4 ——Kpl .
= &P ( Sk, ) 0P 3Karnlog(l+n) ) = P\ 73Mmio8P

The number of subset M with less than or equal to k, elements is upper bounded by

Cy» < p". Hence, it follows from Bonferroni’s inequality that

3 t

Pr max  sup |Tw(a)|—=E sup |Tu(a) > =

MC[Lp]  Gepimi 2 geriM n

JoEMIM|<kn | afjo=1 llall2=1
3 3 to
< p™ max Pr| sup |Tm(a)l—=zE sup |[Tu(a)| > —
MC[L,...,p] acRIMI 2 acRIMI n
JoEM I M|<kn llall2=1 llallz=1

4 4 1
< 4p"mexp (—g/@n 1ogp) = 4 exp (—g%n logp + Ky logp) =4exp (—g/{n logp) — 0.
This together with (A.72) implies that

t

max sup [Tw(a)] < O()n~ V2 /rm, + =, (A.75)
MC[L,....p] G cRIMI n

]0¢M7‘M‘§5n ||a,||2:1

with probability tending to 1, where O(1) denotes some positive constant.

Under the given conditions, we have

4
gKQIi?L/2 logplogn = O(\/nky, logp),

and hence tg = O(y/nk, logp). Under the event defined in (A.75), we have for sufficiently
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large n,

B Vknlogp
max sup |Tm(a)| =0 ———|.
MC[Lop]  gepimi Vn

JOEMIM|<kn |a|la=1

This proves (A.71). The upper bound for 7, is thus given.

Consider (A.6). Assume for now, we’ve shown

9 5 Vknlogp
o = vyl A.
Maﬁ?ﬁm] |‘7/v1,go UM,30| O( NG >, (A.76)
JO¢M7‘M|§’$n

with probability tending to 1. Then, under the event defined in (A.76), we have

‘O_M,jo - O—M,jo‘

max O Mo — OM.io|l = max
MCIL,...p) Ot o MC[L] |Gy + Tpjol
JogMIM|<kn JoEMIM|<kn
2 2
|0M Jo — IM.jo | 1 ~2 9 Vknlogp
< max <—= max |0, — Omul = — ),

GBS ol S Ve i 1T T Vi
JoEMIM|<kn JoEMIM|<kn

where the last inequality follows from (A.1) and the last equality is due to (A.76). Hence,
it suffices to show (A.76).

By definition, we have

165450 = Tzl < 1500 = Siogol + 1Z 0450 @rio — Zheso@atol (A.77)
< [Zh0do = ool + 15500 @i — Wato)| + 1B atso — Zato) Wil
+ 1(Zage = Zato)T @ango — watgo)l < oo — Zioil
+ 1B rio 2@ — Wt ll2 + 1By — S lallwaroll2
+ 1@ — Wato 2B ago — Entollo-
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It follows from (A.1), (A.5), (A.63) and (A.70) that with probability tending to 1,

a VEnlogp
max _ ||Z v, — 2molle =0 (_g) , (A.78)
P Vn

N Vknlogp
max ] Hw-/\/l,jo — wM,jOHQ = O (T s <A79)

MC[L,...p

JoEM M| <ky

S logp

Soso = Zal =0 (VL) max sl =00). (A0
S0 M M|k,

By Condition (A2), ¥ is invertible for any subset M such that |M| < k,,. Hence,
it follows from (A.22) that

. -1 —-1/2
min Amin (2 > ¢ .
et min (X1 01) = €
j0¢M7|M‘S’€n

Using similar arguments in proving (A.1), we can show that
2
mac [Supli< mex 0 <

1 >
) Mg[l 77777 p} . Mg[l ~~~~~ p] )\mln(EM M)
JoEM,|M|<kn JogEM,|M|<kn ’

Under the given conditions, we have k,logp = o(n). Under the events defined in (A.77)-
(A.79), we obtain that

5 log p 32~ [ VEnlogp
5, = e <0 (VIR ) o (YRR
JO¢M3|M|§"‘3n
| I I .
+ oo (YEERY 4 o (VrloEp) o (VedlorRY _p (VAaToEDY
v v NG Jn

This proves (A.76).

We now focus on proving (A.7). By definition, we have

Do — Wgo = Bt (Ertgo — Bmgo) + (Bt — St Eno

= Xt Emie — e — Ermm — Bmam)wato )
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for any M and hence the LHS of (A.7) can be upper bounded by

(A.81)

max H(EH,M — E I ZE Mo — Zmo — (Brmm — Bmor)wWrto ) ’2-

MCIL,....p|
JoEMIM|<kn

It suffices to provide an upper bound for (A.81). Using similar arguments in bounding 7,

and 7o, we can show the following event occurs with probability tending to 1,

> S VEnlogp
Mrgn[ifp] HEMJO = mgo = Bmam = )W o s O (T . (A82)
JoEMIM|<kn

Notice that

il .
max b)) -y
MCL,....pl ) MM MM,
JoEM,|M|<kKn
< max Hf]_l H max HEMM — EMMH max >t )
> MC[L,...,p] MM 2 MC[L,...,p] ) ) 9 MCL,..p] ” M,M||2
JogM | M|<kn JoE M| M| <rin Jo M| M| <rin

To bound 7, we have shown that

max HEM’M_ZM’MH :Op
MCIL,....p] 2
JogEM,|M|<kKn

V57
NG

By (A.64) and Condition (A2), we obtain

~ _ vV Enlogp

S _nl H — 0, [ VEn 08D A.
X H M = Bpium|, = O Jn (A.83)
JogEM,|M|<kn

Combining this together with (A.82) and Cauchy-Schwarz inequality yields that

‘ 2

knlogp
o (=)

X H(EE,M — Z A ZE M — e — Ermm — Emam)@Wato )
oM IM|<kn

This completes the proof.
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A.7 Proof of Lemma A.3

Let

L = \/— Z

Similar to (A.66), we can show

T . /\(t)
<Xt+1,jo - w/(,l\(_t)’jOXHl’/(,,\(_t)) Xip1;Z(5 € M;)).
M(t) Jo Jo

1 — c? 2
Xijrjo —who X, < | X1, Z(j € MY <0 (1420
O-M\(t) A ( t+1,70 M%),JO t+17M§_;) t+1,5 (] ]0> < \/E z ,
Jo »JO
1| F

almost surely, under Condition (Al). For any random variable Z, it follows from the
definition of the Orlicz norm that 1+E|Z|*/|| Z||}, < Eexp(|Z]/|Z||y,) = 2 for any integer
k > 0 and hence E|Z|* < E![|Z]|} . As a result, we have

k
E L (X T X, oo ) X, 20 € M) |7
R Nt e v e ) R e e
Jjo’
2k 2 k
! =2
<kck/2 (1+ c) , (A.84)

almost surely, for any k£ > 1.

Let ¢ = ¢ Y/2c2(1 + éc?). Tt follows from Theorem 9.12 in de la Pefia et al. (2009) that

2
T 2 *\ 2
{(Xt+17j0 —wWom jOXt+1 M\@) XtJrl,j“Ft} < 2n(cp)
Jo ? (i}

22
<2 — .
= ex"( 2<2(c6)2+cz§z/ﬁ>)’ Ve 0

Pr | [I3%] > 2, ZE
’\(t)

In view of (A.84), we have

Pr(1551 > 2) <200 (g o)

Let 29 = 3c¢j/logp, we have by the condition logp = o(n) that

- 9logp 3
Pr (|I3%] > z) < 2exp (—4+ 6n—1/2\/@) < 2exp <—§logp) :
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for sufficiently large n. It follows from Bonferroni’s inequality that

p L < Pr (|15 <2 31 =2 11 0
r mjax| 53l > 20 _Zj: r (1155 > 20) < 2pexp —5logp ) =2exp | —7logp ) — 0.

This completes the first part of the proof.

For t € [sn,...,n— 1] and j € [1,...,p], let Wy1; = Xpo1,Z(j € M®) and W,y =
(Wit11,++ s Wig1p)'. Tt follows that

n—1 n—1

1 ~ 1 ~ ~

- Z 1X,,1 50 (Brio — Boan)lla = - Z(IH — Bo)" Wi u WL, (B - Bo)
t=sn t=sn

n—1
< % > (B = Bo) E(W WL |F) (B — Bo)

N\ t=sn J
s
1 n—1 . "
|5 2B = B) W Wiy = E(Wia WL IF)HB = Bo)|.
t=sn
P
Notice that
1 n—1 " .
N3 = E t_Z(ﬁ - /BO)TE<Wt+1VVtZ-1’Ft)<IB - ﬁo)

1 n—1 . " "
- E Z(ﬁﬂ(t) - 6o,ﬂ(t))Tzﬂ(t),ﬂ(t> (6&7&) - B(),/T/T(t)) < )‘max(gﬂ(txﬂ(t))Hﬁ/\?(t) - /307/\7&)”%‘

t=spn

It follows from Condition (A1), (A4) and (A.22) that n3 = O(n?), with probability tending

to 1. As for 74, we have

n—1
~ 1
1 < |18 = Boll max | > W1, Wi, — E(Wt+1,j1Wt+1,jz|ft)}| - (A.85)
3J2 t=sn

For any ji, o, Z?:_;{Wtﬂm Wit — EWig1 j,Wigr5,|Fi) forms a mean zero martingale
with respect to the filtration {o(F;)}. Using similar arguments in bounding max; |Z5%|, we

can show the following holds with probability tending to 1,

n—1
o [n Z{Wt-f—leWt-‘rl,jz - E(Wt+1,j1Wt+1,jz|]:t)}‘ = O(n"*\/log p). (A.86)
’ t=sn
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Combining (A.25) with (A.85), (A.86) and the condition x2 logp = O(n/log®n) yields that

=0 (nin*”ﬁn\/logp) =0(n2),

with probability tending to 1. (A.9) is hence proven.

A.8 Proof of Lemma A.4

Assertion (A.28) can be proven in a similar manner as (A.1). We omit its proof for brevity.
To prove (A.29) and (A.30), we first show the following events occur with probability
tending to 1,

Cs+\/ Kin logp

= c
max ||Syum -3 H < GV 08P | o A.87
Mgﬂi MM MM||, = vn " ( )
[M|<kn
A sV knlogp
S — S| < SV S LG A
Mnlgl}]-{o M, jo M, jo 5 = \/ﬁ + & ( 88)
[M|<kn
BN CsV knlogp
Sy —3 ) || < SV 08P A A.89
ax ( MM = Bmm | Wanl|, S 00 + ¢ (A.89)
IM|<kn

Using similar arguments

constant ¢,, > 0 such that the following events occur with probability tending to 1,

S Css\ K lOg p
max  ||Sh oy — Spn|| < SV 08P
MCL, | M|<kn : 2 vn
O Cax V Bn Ing
MCI | M|<kn ’ 2 NLD
s <§* > ) wor || < GoVhnlogp
MCLy [ M|<hy [INTMM T SMM Mo = N

in the proof of Lemma A.2, we can show that there exists some

Therefore, it suffices to show the following events occur with probability tending to 1,

i T~ > WMjol[, = € A.90
Mgﬂ]ov‘/\/qgﬁn ( MM MM M, jo 9 = ***TITH ( )
S v | S~ B MH s¢ A91
MCL | M|<kn MM M|, = — ( )
max SOLPI S JO <é¢ A.92
MCTjg | M[<kn Mo Mijo]|, = sk Ty ( )
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for some constant ¢, > 0.

Similar to (A.39), we can show that with probability tending to 1 that
V(XTB) = b"(XT Bo)| < e X[ (B = o),
where the constant ¢, is defined in (A.38). With some calculations, we have

max
MCT,
IM|<kn

. .
(EM,M - EM,M> W |,

(A.93)

IN

max sup ‘aT (Zj\/t/\/t — EM7M> WMo
MCEI, G erIMI ’
IM|<kn ||a]l2<1

1 . 1" a 11
max  sup — »  |a’ X vllwly g, Xoml [V (XTB) = V(X o)l
MELy gerim T 2=
IM|<kn [lall<1

IN

IN

1 ~
Cx mMax sup — Z a” X w0 Ximl| X7 (B = Bo)| < /D56,

MELy gerim T A=
IM|<kn |laf2<1

where the last inequality follows from Cauchy-Schwarz inequality and

1 n
T 2, T
N5 = max sup — E la” X5 pm|” W o Ximl,
MCT5, acRIMI T

IM|<kn [afa<t 1
1 & >
m= max 3wl Xoul | X7 (B — o)l
= ]0

IM[<rn 1

Consider 75. By (A.28), (A3*) and (A4*), we have for any M and a € R that

lla™ Xom I X5 am@rtiollon < € 2eov/mntoll|a” Xoml*[ly, < & 2ey/mnto.

Using similar arguments in bounding (A.65), we can show for any M with |M| < k,,, we

have that

acRIMI n i=1
llall2<1

1 n
E sup <— Z ]aTXLM]Q\wK,l’jOXi,M\ — E\aTX07M]2|w/€[J0XO,M\> =o(1),

under the given conditions on k,. Hence, using similar arguments in proving (A.75), we

42



can show

1 n
max — sup (ﬁ D la" Xl lwi o Ximl — E‘aTXO,M|2|w/1CA,jOXO,M|> (A.94)

*]Ijo acRIMI i=1
| Kp ].O K/Z 10 10 n

[IM|<kn |laf2<1
5/2

which is 0,(1) under the condition that #,/~logp = O(n/log®n). In addition, similar to
(A.59), we can show

V Ela” Xo [ {(Elw}y, Xoad ) = 0(1), Va € RM with [|afl, = 1,

by (A.4) and Condition (A3*). It follows from Cauchy-Schwarz inequality that

Ela” Xo 2wy Xom| < \/Ela” Xo '\ /Elwh,;, Xoul?

< /Ela” X m|*(Elwl , Xom] )" = O(1), Va € RM with [la], = 1.
This together with (A.94) yields that
ns = O(1), (A.95)

with probability tending to 1.
Recall that s* is the number of nonzero elements in By. Under Condition (A5*), it

follows from Lemma G.9 of Shi et al. (2018) that

IS =~
o < (ko +2)° max sup = |a” X @k s, Xioml 1B = Boll3
a7

with probability tending to 1. Condition (A1*) implies that s* < k,. It follows that

1 & ~
6 < (ko +2)” max sup o > 1a" Xl lw ke s Ximl 1B = Boll3,
>~hn q n .
lallo<1 =1

with probability tending to 1. Similar to (A.95), we can show
16 = O(|1B — Boll2),
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with probability tending to 1. Under (A5*), we obtain

6 = O(n;), (A.96)

with probability tending to 1. This together with (A.93) and (A.95) proves (A.90). Simi-
larly, we can show (A.91) and (A.92) hold. We omit the technical details to save space.

This further implies (A.87)-(A.89) hold. Based on these results, following the arguments
in the proof of Lemma A.2, we can show (A.29) and (A.30) hold. Besides, based on (A.90)-
(A.92), we can similarly show (A.32) holds.

Now, we focus on proving (A.31). Similar to (A.83), we can show

- R
Ym — Bmm

x—1 -1
EM,M - EM,M

max
Mgﬂj(ylMlSH'n

)

S — Sntad|, < @ (A.97)

=0 max
2 MC,|M|<kn

with probability tending to 1. In view of (A.91), we obtain

max
MCL | M|<kn

for some constant ¢ > 0, with probability tending to 1.

For any M C I, we have

J0>

I
+ Ezﬁ,M = 30 Cago — Zhaye) = I+ Tt (Enm — S @

J

15
+ =T+ I+ (Shum— Sui) Eavm — )@, + S (Eam — o) @i,

I 13

By (A.92) and (A.97), it is immediate to see that |I| is upper bounded by ¢C.wn?, with
probability tending to 1.

Similar to (A.5), we can show

e K logp
e @i, — ol = 0y (L) —o,) (A.98)
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By (A.28), this further implies that
A~k -\—1/2
Pr (MCHjnol,ﬁA}/(Knn 1@ joll2 < 2(2) / CO) — 1. (A.99)
This together with (A.91) and (A.97) yields that
4—2 2
Pr <|1;;| < @2(5)%@ 1.
¢

Recall that

~ o~k
wMajO - wM,jO

II M“@

() 2
< M. jo ‘Il./{/l/\/l Mjo) (/BJ_B07]>
Hence, in order to prove

e (|@xgo — Dol < ol (A.100)

\M|<Hn
it suffices to show the following events occur with probability tending to 1,

P

e > ST, (B = fog)|| = OGR), (A.101)
|M|<kn =1 9

Ld AN o~
e |17 =3 S U@ (55— Bog)| = O0R). (A102)
IM|<rn =1 9

We first prove (A.101). Similar to (A.62), we can show

* —
AI,I[%X ”EMM”? = 0(1),
|M|<I{n

with probability tending to 1. By the definition of \/I\IS{/% jo» 1t suffices to show

< cn? .
pax < iy, (A103)

IM|<rn

S o — Sivtjo — Z X" (XTBo) X {XT (B — Bo)}

2
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for some constant c¢; > 0, with probability tending to 1. This is equivalent to show

max sup
MCELjg geriMml
[M|<kn ||a]l2=1

* 2
S Clnna

~ . 1 <& -
a’ (EMJO — X T > X mb" (X Bo) X {XT (B - ﬁo)})
i=1

with probability tending to 1. For any a € R™! | it follows from Taylor’s theorem that
T [ SV 1 ¢ T 111 T % T/
0" (Satio — S ) =+ D 0" Xoadd(XT B) X {XT (B~ Bo)},
i=1

for some B lying on the line segment joining B, and ,[; The function b is Lipschitz
continuous. Similar to (A.39), we can show

sup [B"(X[B;) = V(X[ Bo)| < Lo X[ (Bo — B)] < Lol X (Bo — Bo),

acRIM|

for some constant Ly > 0, with probability tending to 1. This together with Condition
(A4*) yields that

max sup
MCLjy qeriM|
[M|<En ||af2=1

~ . 1 < -
Sndo ~ Bt ~ D X" (X Bo) X {XT (B — Bo)}
i=1

2

< Ly max sup

MCELy qerlM|
[M|<tn ||af2=1

1 & -
- > la" Xl X5 KX (B = Bo)}?
=1

LS 6 X i [{XT(B - Bo))?

n “—

< Lowy max sup

€Ly gerMI
[M|<tn ||laf2=1

. (A.104)

with probability tending to 1. Now (A.103) can be proven in a similar manner as (A.96).
This further implies (A.101) holds.
The proof of (A.102) is more involved. Define

*k Sx—1 - Sk
Iy = ZM,M(E/\/LM = )@ Mo
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Using similar arguments in proving (A.101), we can show

max (A.105)
MClIj,

|M|<kn

P
I = 3" SO vwnio (B — Boy)

j=1

1 ~
n Z ‘aTXLMXZMwMJO‘{XiT(B - ﬁo)}2
=1

< O(1) max sup
MCl, acRIMI
IM|<Kn ||all2=1

?

with probability tending to 1, where O(1) denotes some positive constant. Using similar
arguments in proving (A.75) and (A.96), we can show the last term is upper bounded
by O(n?) with probability tending to 1, under the condition that x2 = O(n), Ko/? logp =
O(n/log?n). Hence, to prove (A.102), it suffice to show

p
max |\~ Ip" — ST M@y — wami) By — Bog)|| = 0p(i2). (A.106)
=270 .
M| <rin 7=l

Using similar arguments in proving (A.105), we have by (A.98) that the LHS of (A.106)
can be upper bounded by

Zra X, wl[{X (B - Bo))?

i=1

|Ro| max sup
./\/lC]IJO ER‘M
IM|<kn ||a|2=1

for some random variable Ry = Op(nfl/ 2knv/logp). Under the condition that K2 logp =
O(n/log® n), we can show similarly that the above expression is 0,(n2). This proves (A.106).
As a result, (A.102) and (A.100) are proven. Similarly, we can show

~2 = 2
e (|03 = 0o, < ot

\M\<nn

This together with (A.100) proves (A.31). We omit the details to save space.

Finally, we show

-1 7 f — Po 17
n Zt+17j05t+1 1 Z M(t) ( ]) nz: Z;_l ]05t+1 <1) (A 107)
n lopi c}’ﬁ S
t=0 M jo Mo o D o
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With some calculations, we have

—

n—

1 Z S/\/l(t) ( BO,]) n—1 Z\*

Zt+1,j05t+1 t+1 j05t+1
N4D lops 6’§ Z V/né*.
— (t) . () . (t)
=0 MjO »JO MjO »JO MjO ,Jo
P -1 Z €t+1f ¢ 7k

B Ljo Mo ~ (Zt+1 Jo — Ziy1 j0)5t+1

= E \/_&*3 (ﬁj — Boj) | + E o
=1\ t= Am o Jo t=0 Amuo

Ui 2

n—1 (Zt+1,j0 - Zt+1 30)5t+1fA@>

j=1 \ t=0 Vo MY

-~

n3

" (B35 = Boy)

In the following, we first prove 7{ = 0,(1). Note that 57| < max; |n; || 18 — Bol|; Where

n-1 Zt+1 g05t+15A<t>
]O

*
T, = §
’ no*s
=0 \/— Mg-?,jo

By Condition (A5*), it suffices to show max; [n; ;| = O,(v/logp).
It follows from the Lipschitz continuity of /() that

V" (X Bo) = "(0)] < Lo| X/ Bol.

Hence, under Condition (A4*), max;<;<, 0" (X} Bo)| is bounded by some universal con-

stant. Since X ;’s are uniformly bounded, we obtain

EEJE%J\IIJO’M = max |~ ZX3 V'( X By)| = O(1). (A.108)
Similarly, we can show
v = a" vl a
max max | Ul = juax max azu‘%‘l Mm@l
|M|<nn \M\<nn lall2=1
1 n
< O(1) max sup —Z:(LLTX»M)2
MCEIjy gerlml [T i1 b ’

[MI<rn |[af2=1
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where O(1) denotes some positive constant. Using similar arguments in bounding 75, we

can show
max  sup ! (a” X;m)?| = O(1),
MELjg gepimi |1 4T
IM|<kn Jlalla=1 ' =
with probability tending to 1 and hence,
o) _
jax, max 1 Rl = O(1), (A.109)
|M|<kn
with probability tending to 1. Similarly, we can show
v =001 A1l
max max Wi, [l = OQ), (A.110)
|M|<kn

with probability tending to 1. This together with (A.99), (A.108) and (A.109) yields

Ul =00 A1l
g?éﬂﬂ/lgﬂgﬁ\)fqgﬁn €550 (1), (A.111)

with probability tending to 1.

Note that
Zx 2(5) 7 £(5)
sn—1 Zt+1,j05t+1§A<t> 4 n—1 Zt+1’j0€t+1€/\(t) .
* MjO »JO + MjO »JO
Th,j - A %3 ~ %3
= V%o, = Vo,
G ~ J0 (. ~ J0 /
i my

We first prove max; [n7%| = Op(v/kn log p).

Define o(F}) = o(X1, Xa, ..., Xy, Y1, Yo, ..., Y3), 91 corresponds to a mean-zero mar-
tingale with respect to the filtration {o(F}") : t > s,,}. By Condition (A1*) and (A4*), we
have for any t =0,...,n — 1,

|20l < wo max (14 vk [|@3 g ll2)- (A-112)

=40
|IM|<kn
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Let

(14 VE G050 l12)] | 27)

&) = -1/2

C = wWon max Imax .

n 0 i<j<p MCI,, ‘ MJO‘ |£,/\/l,]0’
‘M‘Sﬁzn

Under Condition (A6*), [|e;41(|yy 7 < L* for some constant L* > 0. Similar to (A.84), we

can show
E{len ' 7} < RI(LY,
for any k and ¢. By Condition (A1*) and (A.112), we have

~ k ~ N 2
Z;Zrl ]05t+1£A(t> Z:H jogjij,l\)(ﬂ 1
E Fio < RULOFED) 2 (A113)

\/_UA(t - \/_UAm

for any j,t and k > 2.

Let
2
0 nz—: Zin gof Viee
V) =2 _
o\ Ve /\im
Similar to (A.41) and (A.12), we can show » ;" (Zt*H]O) = Op(n) and min, aﬂ(t) <
Jo”’

2/+/¢, respectively. It follows from (A.111) that

max V9 = 0,(1). (A.114)

j
It follows from Theorem 9.12 in de la Pena et al. (2009) that for any 1 < j < p,
2 2

z z
7 >zV <z)<2exp|— . <2exp | — . )
Pr(is ) 2(L*)2z + 2L+ed) max{4(L*)2z,4L*cd 2}

Take z(()]) = max(3L*y/z log ,8L*c(]) log p), we have

Pr(ji| > 257, V.Y < nz) < 2exp(—2logp) = —

20



It follows from Bonferroni’s inequality that
- 2
Pr (ﬂ {\n***] > 20])} maxV < nz) < ZPr 07 > 2 =2 0.
. p
j=1
By (A.114), for any € > 0, there exists some z > 0 such that Pr(max; v < nz) >1—e.
This implies that
m%lx 7] < miax zéj), (A.115)
j:
with probability tending to 1 —e. By (A.37) and (A.99), we have max; &d) = O,(y/kn) and
hence

*** |

= Op(V/10gp), (A.116)

by (A.115) and the condition that k2 logp = O(n/log*n).
Recall that

max G

Zx £(7)
sn—1 Zt+1,j05t+1§A(;sm j
JO

*k ’
M, =
=0 Vo’ M

Given Xi,..., X, and Y, 11,...,Y,, each term in 77 is independent of others. Using
similar arguments, we can show max; [nj*| = O,(v/Iog p). This together with (A.116) gives
max; |1} ;| = Op(v/Iog p). By Condition (A5*), we obtain |n}| < max; max; |7]1*J|||,§—,6()||1 =
0p(1). Similarly, we can show 75 = 0,(1). It remains to show 15 = 0,(1).

Note that [n;] can be upper bounded by max; [n; ;| 18 — Bo||; where

n—1 (Zt+1uo - Z;+1,go)5t+1§/\(t>

Since

* - *—1 ) )
Zt+1 Jo = Zit1go = ZXtJrl M‘”EMM M() (‘Ilﬂ§g>7j0 + ‘I’/Qa) Mg’;)w/\/l(”u (53 Boj)-

Jjo”’
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Using similar arguments in proving max; 7% = O,(v/log p), we can show

sl (e A ‘L 2
ma zf sy Ty (%o PP ) oS T
NN b ﬁ&%§3)7j0 P
Hence, we have |nj| = O,(v/1ogp(yv/Fnnn)?) = 0,(1), by (A5¥). The proof is hence com-
pleted.

A.9 Technical lemmas
Lemma A.5. For any positive definite matrix
Wy Wy
v = ,
( Wy Wy
denote its inverse matriz as & and partition it into 1, ..., Qa9 accordingly. Then,
Q= (P — W0y Uy ) !

Besides, let ¥, = Wyy — \1121\111_11\1112, we have
Q_ \Il T 2T \IllglIl \Ilgl\I' —U [ ,w!
—\Il* 1\1121\11 v, '

B More on the technical conditions
B.1 More on (Al) and (A1%)

The validity of the sure screening property assumed in (A1) or (A1*) relies typically on the
following minimum-signal-strength condition:
i | > o B.1
Jmin ol 2 on, (B.1)
for some monotonically nonincreasing sequence {o*},, that satisfies o > n="/? and % — 0
as n — oo. Although such conditions are not assumed in van de Geer et al. (2014) or Ning
and Liu (2017), these authors imposed some additional assumptions on the design matrix.

For instance, consider the decorrelated score statistic proposed by Ning and Liu (2017). For
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linear regression models, its validity depends on the sparsity of a high-dimensional vector
w*. When the covariates follow a Gaussian graphical model, the sparsity assumption on

w”* requires the degree of a particular node in the graph to be relatively small. See Remark

6 of Ning and Liu (2017) for details.

B.1.1 A counterexample

Assume Xy ~ N(0, {p=1}; ;=) for some 0 < p < 1, Yy = X' Bo+eo where gy ~ N(0,1)

that is independent of X, and y; = 0, Boo = n~ 2, By; = 0 for all j > 2. The minimum-

signal-strength condition (B.1) is thus violated. Our goal is to construct a CI for Sy .
Suppose we use SIS to determine the set of important variables based on their marginal

correlations with the response. Specifically, set

t
M\gt) = {jEQit_lz‘YiX@j‘ZUt}, Vs, <t <n,
i=1

M = {j >2:(n—s)7h Y ViXigl 2 Un—Sn}7

i=snp+1

for some sequence {o}, that satisfies o, > n~/2log"?n.
Notice that for any j > 2, we have EY(Xy; = nil/ZEX[)’QXO?j = nfl/zpj*Q. Using
Bernstein’s inequality, we can show that the following events occur with probability tending

to 1 that

t

1Y VX, <Ot logt +logp, Vs, <t<n,2<j<p,

i=1
n

(n—s,)"" > |[¥iXi;| <O(1)(n— s,)"*\/log(n — s,,) +logp, ¥2<j<p,

i=sp+1

where O(1) denotes some positive constant. Suppose p = O(n) and the sequence s, is set
to be |en] for some 0 < € < 1. It follows that

max ¢ Y2y/logt +logp = O(n"?1og"? n),

sn<t<n,2<j<p

(n — Sn)*1/2 \/Iog(n - sn) +logp = O<n71/2 10g1/2 n)
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— — /\(

Hence, for sufficiently large n, we have /\75‘5") = Mﬁs") = M?"*” = ./\/lln_l) = (), with
probability tending to 1.

As a result, our score equation for fj; is given by
n
> X (Yi— X[ Bo1) =0,
i=1

with probability tending to 1. Therefore, the proposed CI for Sy equals

—-1/2

n —-1/2 n

N 1 A 1

ﬁl — Za/g’n_l/Q <E Z Xil) 751 + Za/2n_1/2 <ﬁ Z Xil) )
i=1 =1

where

n -1 n
i (z X,a) (z xi,m> |
=1 =1

It follows that

n 1/2 n -1/2 , ,
(Z X?,l) (b1 — Boa) = (Z X;%1> (Z X1 (Y; — Xi,lﬁo,o)
=1 =1 =1
n —1/2 n n —1/2 n
= <Z X’L2,1> <Z Xi71€i) + n71/2 <Z X21> <Z X’i,lX’i,Q) . (B2)
=1 =1 =1 =1

By the central limit theorem, the first term on the RHS of (B.2) converges to N(0,1)
in distribution. The second term converges to p, according to the law of large numbers.
Hence, our CI is not valid as long as p > 0. This implies that the minimal-signal-strength

condition is necessary to guarantee the validity of our procedure.

B.1.2 Extension to many small but weak signals

Moreover, one could relax the minimum-signal-strength condition in (B.1) by assuming
there are many small but weak signals in By. Specifically, assume M;; is a union of two

disjoint subsets M7 and M7 such that

MG, =1 €Ly : [Bosl = 0.}, (B.3)
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and

2 = O(n*”*), (B4)

M;: = Mjo N (M;O)c Wlth H/BO,M;J

for some sequence n~'/? < ¢ < 1 and some constant £* > 1/2. We require | M, | is much
smaller than n while | M| can be much larger than the sample size. Such conditions are
very similar to the zonal assumption imposed by Bithlmann and Mandozzi (2014). When

(B.3) and (B.4) hold, Condition (A1) or (A1*) can then be replaced by the following:

(A1**) Assume .//\/\I%L) satisfies Pr(\ﬁ/l\gm < kp) = 1 for some 1 < k,, = o(n). Besides,

Pr(M;, M) >1-0 (n;) ,

for some constant o > 1.

That is, we require the selected model will contain all those strong signals with proba-
bility tending to 1. This assumption can be satisfied under the condition in (B.3). In the
following, we sketch a few lines to show the proposed method works. For simplicity, we
focus on linear regression models.

By (A1**) and Bonferroni’s inequality, the following event occurs with probability tend-
ing to 1,

n—1
Mjo < m Mjo ) (B'5)

t=sn

Under the event defined in (B.5), we have

\/EFZ(BJ'O - 50,jo) =hL+L+ 13+ 14

~ - ~ T
n=1 L1150 X oy B S -1 Ziy1,, X B
s t+1jo%, 1,(M‘§-0 n)ye O,(M§.0 e 1 t+1jo<>, 1,(/\/(%))0 Oy(M;O))c

~ ~ )
NG S(-sn) . no =
=0 v Mo o t=sn v M jo
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and

~ ' T N
sn—1 Zt+17]0Xt+17(ﬂ§gsn))C/B()’(Mg.gsn))c sn—1 ’Zt+17.70 H t+1 (M< Sn))c/B (M;;5n>)6’

Z 5 - Z )
no - . no - .
t=0 \/_ M;Q Sn)JO t=0 \/_ M;Q Sn)JO

~ T
A Zea XT S L \Z y
n t+17]0 t-‘rl,(M;O n))CIBO’(M;O )) _ n— | t-‘rlJOH +1 (M n))c

~ — Y
NO —(-sn) . no ) .
\/_ M-EO n)JO = \/_ Mito) »JO

t=sn

By 0,(M{ o)

t=sn

where Iy, I, I3 and I are defined in Section A.l, ZHJO, M\§;S”), MY and

Jo? a-ﬂ;gs"),jo
o T o are defined in Section 2.

7o »JO

Note that we have shown in Section A.1 that I; + I, + I3+ I, is asymptotically normal.

It suffices to show

|Zt+1,yo|| t+1 (FAD)e ,30,(;/7;3))0|

Z \/_U T(—sn) .
t=0 M g0

= 0p(1), (B.6)

where ./\/lg? = Mg-gs"), fort =0,...,s, —1. Under the event defined in (A.12) and (A1**),
the LHS of (B.6) is upper bounded by

_ 2|Zt+1730|| t+1 (M(t)) ’8 7('/T/[\§f)))c|

ven

By Cauchy-Schwarz inequality, we have

5 [zl 1/2 1 1/2
5 o
< N (; | Zt41.o ) <Z 1, (M§g))c| > . (B.7)

t=0

Similar to (A.45), we can show Y1 |2t+1,jo|2 = O,(n) under the given conditions in
Theorem 2.1. Under (A1*¥), we have |3, (ﬁm)cHg < ||50,M;5 2, almost surely for any
) jD

t=0,1,...,n — 1. This together with (A.22) and (B.4) yields that

n—1

T
BY X7, o Bo i

t=0

2=0(n"") =0o(1). (B.8)

2 S n)\maX(E)EHlBO’(K/[\(t))C
Jo

By Markov’s inequality, we obtain Y7 | X7, ae=Bo e 2 = 0,(1). In view of (B.7), we
} 7o

have shown I5 = 0,(1). The proof is hence completed.
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B.1.3 Additional details regarding the doubly-robust procedure

To better understand the proposed algorithm in Section 5.4, we decompose M, into M3,
and Mj* as in Section B.1.2, where Mj denotes the set of strong signals that satisfies
(B.3) and M3r = M, N (M,)¢ is the set of weak signals.

In case the set M3 is nonempty, we can apply another model selection procedure

to estimate the support of wy, j, (denoted by M,,), in order to gain some robustness.

For linear regression models, M, can be estimated by (I)SIS or regularized regression,
with Xj j,’s being the responses and X1, ’s being the covariates. Similarly, we decompose

M, into M and M?;

o, corresponding to the set of strong and weak signals in wr,

502300

respectively.
ot T rL(—sn .
Let Mjo(t),sn <t < n and Mjo( ) denote the estimated supports of By, , and

M\?(;(t), S, <t < n and M\?(’J(_s”) the estimated supports of wy, We will assume the

J0 »jO °

following occurs with probability tending to 1,

M, & { ﬁ M\}g(t)} M and Mg, C { ﬁ /ng(“} Az

t=sn t=sn

Set M\E? = /\7%“%@3“’, for s, <t <nand ﬂg.(jsﬂ) = /T/l\;(’)(fsn)uﬁ/l\i’](*s"). We propose to

use the union of these two sets in our algorithm to construct the CI for /3, j,. The number of
elements in /(/l\ﬁo_s"), ./(/l\gi"), e ,M\§-Z_1) shall be bounded by &,, almost surely. We require
Nnv/Fin log p = 0(1), k2 logp = O(n/log®n) and k2 log® p = O(n). In the following, we focus
on linear regression models and show the resulting CI for 3y j, is valid as long as either one

of the following two conditions holds:

(i) M3 =0.
(i) [|Bo,rs: 12 = o(n~'/4) and g o atzz 1|2 = o(n~1/%), where wr,, jo.M: 18 the sub-vector
of wy, j, formed by elements in M.

When (i) holds, the assertion can be proven in similar manner as Theorem 2.1. Consider
the case where (ii) holds. Using similar arguments in Section B.1.2, it suffices to show

ZivrjgXT o
n t+1,50 t+1,(M;?)C60’(M§?)C

> = 0,(1). (B.9)

-1
G =
t=0 M; . wdo
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We decompose the LHS of (B.9) into I + I7 + Ig where

~ T ~ T
-1 [ Zyi1.,X . B o Zii1jo X — . B o
n t+1,j0 t+1’(M§'?)c 0’(M§'?)C t+1,50 t+1,(./\/l§g))c 07(M§;))c

IG - - ’

t=0 naﬂg? ,J0 \/ﬁaf\//\l;g) ,Jo

T -~ T

1 X' o (Waw . —woe )X . =
By Fon 1) @ a0~ 00 50 XLy 10y By
7 = Y

NT ()
t=0 \/_O-M;?JO
T

1 L1450 X" =
s o “ttLio t+1,(M§.g))C’807(M§-[t)))C
8 p—

i Vg 5,
Under the event defined in (A.6) and (A.12), we have almost surely that

n—1
26 VEnlo Z =

- 0 < gp) ’Zt+1’jOXZ|—1 (,/\//T(t))cﬂo (M\('t))c|.
C\/ﬁ \/ﬁ —0 EASAAST 0

Using similar arguments in bounding I in Section B.1.2, we can show

| Is] <

—_

n—

|Zt+17j0X "3/4)~

T —
t t+1,(ﬂ§f)>)c60,(/w§-g))c| =

i
=)

Under the condition x2log? p = O(n), it follows that I = 0,(1).
Using similar arguments in bounding 12(2) in the proof of Theorem 2.1, we have

n—1

T ~ 2
; |Xt+1,ﬂ§,g> (wﬂ;?JO — ""/\7;340” = O, (knlogp).

In addition, similar to (B.8), we can show

—_

3

T _
|Xt+1,(/\7§.g))cﬁ0,(/\7§.g>)c|2 = op(n 1/2)' (B.10)
t

Il
o

By (A.1) and Cauchy-Schwarz inequality, we obtain I; = 0,(n~Y4y/k, logp) = 0,(1), under
the condition that x2log? p = O(n).
It remains to show Ig = 0,(1). Since E(Xg ;, — w],IZ;O’jOXO’HjO)XO’HjO = 0, we have for any

M C I, that E(Xy , — w]ITjO,jOXO,HjO)XO,M = 0. Thus, for any M that contains M,,, we

o8



have
T
E(Xojo — wr,, jo mXo0.1m) Xom =0,

where wy.

jojo-M 18 the sub-vector of wy, j, formed by elements in M. This further implies

WI;, jo,M = WA,jy, for any M that contains M, and hence
T
E(Xojo — i joXom) Xop, = 0.
For an arbitrary set M* that contains M,, define M** = M* U M. It follows that
T
E(XO,jo - ijOJO,M**XO’M**)XO’[[jO = O, (Bll)

T T —
al’ld henCe E(XOJO - wﬂjo,jo,M*XO’M* - w]IJO,]Q,M**—M*XO,M***M*)XO,M* — O By (A22)’

(i) and Cauchy-Schwarz inequality, we have

sup E|aTX07M*

T
A wﬂjo,jO,M**fM*XovM**_M*
acRIM*| lal|2=1

2) 1/2

2 =o(n~ %)

1/2
T 2 T
< ( sup  Ela’ Xou- ) <E|w11j0JO,M**—M*XO,M**—M*

a€RIM | [|a]2=1

< )\max(E)Hwﬂjo,jo,M**fM* 2 < )\max(z)ylwﬂjo,jo,/\/l:,*

2 = o(n~'/*) and hence

. . T
ThlS yleldS |’EwH]0,]O7M**_M* XO,M***M* XO}M*

HE(XO,jO - wio,jo,M*XO,M*)XQM* 9 = 0(n71/4).

Notice that E(Xoj, — @iy« j, Xom=)Xom+ = 0. For any M* that satisfies |M*| < &y, it
follows from Condition (A2) that

IE(wWrtejo = Wiy omt=) T Xome(xo )7 12
Amin (Z e )
B~ @l e Koae) Xose

B Amin (B ree m+)

HwM*Jb - w]:[j()’j():M* 2 S

2
= o(n~Y4).
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To summarize, we have shown that

. —1/4
MH,}%EO HwM*:jO — W, jo,M* H2 - O(n / )
IM*|<kp,MECM*

Under the given conditions, we obtain
—1/4
max R =o(n
te{0,1,....,n—1} | Mey»jo Ljg-d0- M) I2 ( )

almost surely. By (A.22), this yields

n—1

T 2
Z ElXt+1,M\<t) <wﬂ/l\(t)7j0 - wﬂjo JQ’,K/[\(t) ) | - O(\/ﬁ) :
t=0

Similarly, we can show

n—1

EXT _ w = —-XI _ W, .o 2 = o(+/n).
Z | H1L,Myy LigajosMy LM () UME T Ligjo, M) UMES (\/_)
t=0

This together with (A.1), (B.10) and Cauchy-Schwarz inequality yields that

T T T
(X~ w s =X W, . o o)X . —
n ( t4+1, My Lig»josM) t+1,M () UMEF Hjo,]o,M(z)UMw> t+1,(M§,g))c’30,(M§.3)c (1)
= 0 .
\/ﬁJAm ) P
t=0 MjO »JO

Thus, to show Ig = 0,(1), it suffices to show

1 (X0 — XTI Wr .o xr =
n 1( t+1,70 1My UM Hjo,]o,M(t)UMf;*) t+1,(M;B))C'BOa(M§g))C

\/ﬁo-/\(t) .
t=0 MjO »JO

= 0,(1).

We first show

1 (X1 — XT Wy XT =
n 1( t+1,j0 t4+1,M ) UM ]Ijo,]o,./\/l(ﬂuMzJ*) t+1,(M;g>)Cﬁo’(M;t0))c

\/ﬁaﬂ(t) .

Jjo »JO

—o,(1). (B.12)

t=sn

By (B.11), the LHS of (B.12) forms a mean zero martingale with respect to the filtration
{o(Ft) : t > s, }. Moreover, it follows from (ii) that Hﬁo(

a0yl = o(1) and hence

T _ 2(xT 2
1A E{(Xt10 = Xt+17M\(t)UML*ijO’jO’M(t)UMz)*) <Xt+1,(ﬂ§g))cﬁ07(/\/l§f)))6) |72}
-y 5 = o(1).
" iss viCl
n M2 do




This proves (B.12). Similarly, we can show

1 (X1 — XTI w, o XT =
Sn 1( t+1,50 t41,M ) UM HjO’jO’M@)UMZZ*) t+1,(M§~?)cﬁo»(M§?)c

no — .
t=0 \/— M;-? ,Jo

= op(1).
The proof is hence completed.

B.2 More on (A2) and (A2%*)

Condition (A2) requires Amin (Xj0um joum) > € for some constant ¢ > 0 and any M C I
and M| < k,, where ¥ = EX,X{. This condition is similar to the restricted eigenvalue
condition (Bickel et al., 2009) used to derive the oracle inequalities of the Lasso estimator
and the Dantzig selector. Notice that this condition is weaker compared to the one used in
van de Geer et al. (2014) or Ning and Liu (2017), which requires the minimum eigenvalue
of ¥ to be strictly positive. See Section 4.1 of Ning and Liu (2017), Condition (A2) and
(B3) in van de Geer et al. (2014) for details.

B.3 More on (A5)

In this section, we provide a consistent estimator for o2. Specifically, define
=Ly Xy
i3 Z z ‘

In the following, we show |62 — | = 0,(1). Notice that

n

1 ~
EZ(E_XZTQO‘}'X?/@O_X?/B)Q_O_S

i=1

BN 2\ SO -
— E;E?—FE;&X?(ﬁo—ﬁ)—kﬁ;{XiT(Ig_ﬁo)}z_ag

1 n
< —E e} — og
(L

Under the condition E|gg|* = O(1), the first term on the RHS of (B.13) is 0,(1) by the law

6%~ o] =

+

% > X! (Bo— B)
=1

1< ~
+ = E{X? (B-06)}.  (B.13)
of large numbers.
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Suppose we can show

= O,(y/logp). (B.14)

[e o]

1 n
ﬁ;ng

It follows from Condition (A4) and (A.25) that the second term on the RHS of (B.13) is

0p(1), since

‘ ZélXT ﬁO Zgz

The third term is O,(n2) by (A.9). Under the given conditions, it is o0,(1).

IIBO = Bl = Op(n2\/knlog p) = 0,(1).

Therefore, to complete the proof, it suffices to show (B.14), or equivalently,

Y ex

by Markov’s inequality. It follows from Lemma A.3 in Chernozhukov et al. (2013) that

1 n
5;&}){

O(+/logp), (B.15)

[ee]

1)(o/logp + Mlogp),

oo

,,,,,

E maxiy<j<p Maxj<i<n Xz 351 /n Notice that

-1 -1_2 2

o5 max EXJ. <n 10(2) max HXOJH¢2 <n oycg,

0? = max n 1E53Xg] =n
1<;<p

1<5<p

where the last equality is due to the independence between ¢y and X, the first inequality
is due to the fact that E|Z|* < [|Z%(|y, = [|Z]|7, for any random variable Z and the last
inequality is due to (A3).

Similarly, we can show

1<i<n 1<i<n 1<i<n 1<i<n
1<5<p 1<5<p

2/3
n’M? = E max £/E max X2, < (E max \€z|3> E max X7,

2/3
< (E E ]5i|3> E max X7, < (Eleo| $)23n?E max X725,
1<i<n 1<i<n
1<i<n 1<5<p 1<5<p
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where the first equality is due to the independence between ¢y, and X, and the first in-
equality follows from Holder’s inequality. Using similar arguments in (A.60), (A.61) and
(A.74), we can show

B max X2 < || max X2y, = K {log(1 + pn)} max | X2,

1<i<n
1<j<p 1<J<P 1<j<p
= Ki{log(1 + pn)} max [|X; [}, = O(logp + logn),
1<j<p

by (A3). Under the condition E|gg|> = O(1), it follows that M? = O(n~*3logp +

n~%31ogn). Therefore, we obtain

Under the condition that logp = O(n??), we have E|| Y7, &:.X:/n|l = O(y/Iogp). This
proves (B.15). The proof is hence completed.

= O(n"Y%10g"? p) + O(n=2*10g*? p) + O(n=2/*log p\/logn).

o0

C Additional details regarding extensions to generic
M-estimators

It this section, we sketch a few lines to show that the CI proposed in Section 5.3 is valid.

It suffices to show that

VAl B g0 S N0, 1).

It follows from Taylor’s theorem that

-1 OU(Uy1,h(Bo jo, M o ,ﬁMm)) - (U1, h(Bo sy, M It ’ﬁM(t)))

=0 n&A?;? Jo 9Bjo - wﬂg’?)’jo B8 aa

g (AU M) Bge) 0t b M) Bg)
= s 9, e 9B
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where the second-order remainder term satisfies Rem = o0,(n~'/?) under certain local
smoothness assumption on the loss function /.

By the definition of B](-é), we obtain that

\/_F* = 1)( ]0 — Bo.jo) = 0p(1)

el DU Ups1, (5o jo, MY, Baw)) . OUi,h(Bog, M, Bao))
t 2 ap; ~ YR o 98-
t=0 MWD ,Jo Jo ’ e

Jjo’

It suffices to show

OUrer W(Bojo My Brge)) 0T W(Bo s My Brzo))\
= "0 9B, T LR o B O = N0,
— oo i
Under certain local smoothness assumptions on ¢, it follows from Taylor’s theorem that
by (0O B MG Bge)) 0T, h(Bose, M) Bio)
t=0 \/ﬁ& /\753) »Jo 8670 wﬂ%m’ 70 86/‘7;2)
n-l 1 (U1, 0(Bojo M\%), ﬁ()’/q%) ) - (U1, h(Bo,o /\75»?, ,307/(4\%) )
B — \/né D o 9Bjo iR 9,3/\7@
n-l 1 O*l(Us1,h (50,;0, JO 7ﬁ0 M(t))) - (U1, h(Bojo. M, ,ﬂ07/\7§g>>)
b g, 95108, 0 R 0B 0,

X (,BM\%) - ﬂ[)’ﬂ;g)) + 0p<n_1/2).

Suppose the model selection procedure satisfies the sure screening property. Then we have
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(50 ,Jo s JO aﬁo K/t\(.”) = ,30, Vt and hence
El 7o

”Zl 1 aE(Ut-Ha (/60]0> Jjo 7/8/\/1(”)) oy ot (Ut'i‘l’ (/BOJO’ Jo ’BM(t)))
~ — W
— \/ﬁaﬁ;g)’jo 9B, M0 o 35@%)
n—1
1 aﬁ(UtH, ,BO) —~ a€<Ut+17 /80)
t 2 Vo o B, 5 9B
=0 VIR0 o o 0 i
&
n—1
1 82€(Ut+1 ,60) ~T a2€(Ut+1 /60) 2 1
+ = d — Wy . B — B @) +o,(n~ /2y,
;ﬁ o500 \ 00008 o "0 OB 0B o By = Py eslr )
@

Using similar arguments in the proof of Theorem 3.1, we can show that ¢, = 0,(1) when

0= . and W=« . satisfy certain uniform convergence rates, and
MjO »JO M]'O »JO
n—1
1 ae(Ut-i-h/@O) T ag(Utﬂ-lalBO)
Q=2 P v R T eyl IO
t=sn Mgg) ,Jo Jo ’0 M;?

The first term on the RHS of the above expression is asymptotically normal under certain

regularity conditions, according to the martingale central limit theorem. Thus, we obtain

ag(Ut—‘rla h(ﬁo,jm 'K-/l\g/))? Eﬂ;t) )) ol (Ut—l-la (60 ,Joos E?’ Bﬂ;t) ))

d
— —w/\<t) . %N(O,l),
Zt:o Vidgo j, 0B Mg’ o OBz

by Slutsky’s theorem.
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