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The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more
than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its perfor-
mance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver
queues with abandonment. In particular, we consider the M/GI/s+ GI queue and demonstrate that, in the
many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state,
to a preemptive two-class priority queue where customers with short service times (below a threshold) are
served without wait, and customers with long service times (above a threshold) eventually abandon without
service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all
scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the

effects of the patience-time and service-time distributions.
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1. Introduction

In this paper, we study scheduling decisions in multiserver queues with processing-time information.
In particular, we assume that the service requirements of individual jobs (customers) are known
upon arrival and may be used to determine the order in which these jobs are processed. When
processing times are known, it seems natural to give priority to the jobs with the shorter remaining
processing times in order to minimize the mean sojourn time, i.e., the time from arrival until
departure from the system. Indeed, a large body of literature shows that the shortest-remaining-
processing-time (SRPT) policy has, in general, superior performance; see, for example, Schrage

and Miller (1966), Lin et al. (2011), and Banerjee et al. (2020), to name a few.



The SRPT policy has been extensively studied for over 50 years, yet exclusively in single-server
queues with infinitely patient jobs. There is only one exception: The recent paper by Grosof et al.
(2018) studies the performance of the SRPT policy in a multiserver queueing system with Poisson
arrivals, general service times, and no abandonment. Grosof et al. (2018) prove that the SRPT
policy achieves an asymptotically optimal mean sojourn time in the conventional heavy traffic
regime, i.e., where the number of servers in a sequence of multiserver queues is held fixed, while
the arrival rates along that sequence approach the total service capacity.

In settings where jobs are human customers to be scheduled, e.g., in service systems, it is impor-
tant to account for finite customer patience times. That is, customers do not wait indefinitely for
service, and they abandon the queue if their waiting time exceeds their patience time. For example,
there is empirical evidence substantiating finite customer patience in emergency departments (Batt
and Terwiesch 2015) and call centers (Brown et al. 2005). Moreover, it is well known that incor-
porating customer impatience strongly affects performance in the system (Garnett et al. 2002).
Thus, there is a need to investigate whether the superior performance of SRPT continues to hold
in multiserver queues where patience times are finite. This investigation is the focus of our paper.
What is this paper about? To the best of our knowledge, the performance of SRPT in mul-
tiserver queues with abandonment is entirely open. In this paper, we take a step towards filling
that gap in the literature, by studying the steady-state performance of SRPT in the M/GI/s+ GI
queue. We adopt a many-server asymptotic mode of analysis and focus on the overloaded regime,
which is also known as the efficiency-driven regime. This regime is appropriate because queueing
times are negligible, in large systems with abandonment, under moderate or light load (i.e., criti-
cally loaded or underloaded regimes) (Garnett et al. 2002). In the many-server overloaded regime, a
non-negligible proportion of customers abandon the queue. Thus, carefully designing the scheduling
policy to optimize the throughput is crucial in this setting.

For multiserver queues with abandonment, under SRPT scheduling, we demonstrate a state-

space collapse in the many-server overloaded limit. In particular, we prove that only customers



with long service times (above a threshold) wait in the queue, and eventually abandon, whereas
customers with short service times are immediately served. We also derive closed-form expressions
for key steady-state performance measures in the limit. We prove that, asymptotically, among
all scheduling policies, SRPT maximizes the throughput in the system, minimizes the expected
waiting time conditional on being served, and maximizes the expected waiting time conditional
on abandoning. We focus on such measures, rather than the mean sojourn time as is common
in the extant literature, because not all customers are served in queues with abandonment. We
also show that performance in the SRPT queue is, asymptotically, insensitive to the patience-time
distribution beyond its mean, which is unlike performance under first-come-first-served (FCFS).
We compare SRPT to blind policies that do not use the processing-time information, such as
FCFS and last-come-first-served (LCFS). In addition to throughput, we also compare the expected
waiting times. Based on fluid approximations, we show that, when the patience-time distribution
has a non-decreasing failure rate, SRPT yields a smaller expected waiting time than any blind
policy. On the other hand, when the patience-time distribution has a decreasing failure rate, SRPT
yields a smaller expected waiting time than LCFS, but it may lead to longer expected waiting
time than FCFS. Either way, even when SRPT beats blind policies, it does not offer any order of
magnitude improvement in waiting times over those policies. This lies in contrast to the asymptotic
system performance in the conventional heavy-traffic regime, as the traffic intensity increases (Lin
et al. 2011, Puha et al. 2015, Chen and Dong 2020).
Why is this problem difficult? In general, analyzing SRPT is complicated because it requires
keeping track of the remaining processing time of each customer in the system. Even in single-server
queues, where closed-form expressions have been known for a while, comparing SRPT to other
scheduling disciplines is difficult because those closed-form expressions, e.g., for the mean sojourn
time, have complex forms and involve nested integrals. Asymptotic analysis, e.g., under heavy
traffic, generally allows for simpler descriptions of the system. However, the asymptotic analysis of
SRPT involves studying suitably scaled measure-valued system state descriptors, which imposes

substantial technical challenges (Banerjee et al. 2020).



Even without abandonment, when moving from a single server to multiple servers, there is a main
challenge in extending the existing single-server arguments. The difficulty arises from the fact that
multiserver queues are not work-conserving. Specifically, this makes the analysis of busy periods
and steady-state workload, both of which are central to the “tagged job approach” of analysing
SRPT single-server queues (Schrage and Miller 1966), difficult to extend to a multiserver setting;
see section 4.2 in Grosof et al. (2018).

In this paper, we allow for multiple servers, general service times, and general patience times,
which complicates the analysis even more. Scheduling decisions in systems with abandonment
is notoriously difficult, because the optimal scheduling policy can be complex and depends on
the patience-time distribution (Puha and Ward 2019). For example, when the system is critically
loaded, the optimal diffusion control may no longer follow a simple fixed priority rule (Kim and
Ward 2013, Kim et al. 2018). In this paper, we circumvent the difficulty of doing direct analysis on
the SRPT queue by relying on a properly coupled loss queueing system; see section 3 for details.
Literature review. Because of its optimality properties, the study of SRPT in single-server
queues has been the topic of hundreds of papers. Given the richness of that literature, we do not
attempt to be comprehensive in our review, and only mention a few key references instead.

Schrage and Miller (1966) and Schrage (1968) demonstrate optimality properties of SRPT in the
M/G/1 system. There is a notable stream of works that studies SRPT under heavy-traffic (Down
et al. 2009, Gromoll et al. 2011, Puha et al. 2015). Scully et al. (2018) develops a unified framework
to analyze several age-based scheduling policies in the M/G/1 queue.

Recently, Chen and Dong (2020) demonstrate that in the GI/GI/1 queue, under heavy traffic,
a preemptive two-class priority rule achieves asymptotically comparable performance to the SRPT
policy. In the two-class priority rule, customers whose service times are shorter than a certain
threshold are given preemptive priority over customers whose service times are above that thresh-
old. Chen and Dong (2020) establishes state-space collapse, under which only the low-priority

customers (with long service times) occupy the queue in the heavy-traffic limit. Similar results are



common in scheduling multi-class priority queues; e.g., see Reiman (1984), Bramson (1998), and
Dai and Tezcan (2011).

In stark contrast to the single-server setting, much less is known about the performance of SRPT
in a multiserver queueing model. With multiple servers, SRPT is not necessarily optimal (Leonardi
and Raz 2007). However, Grosof et al. (2018) recently show that it is asymptotically optimal under
heavy load. In Grosof et al. (2018), jobs are assumed to be infinitely patient. In this paper, we
consider finite patience times. To the best of our knowledge, we are the first to derive theoretical

results on the performance of SRPT in multiserver queues with abandonment.

2. Modeling Setup: The SRPT M/GI/s+ GI Queue

In this section, we set the stage for our subsequent theoretical development by describing our
modeling framework and defining our many-server asymptotic mode of analysis.

2.1. Model Description

We consider the M/GI/s+ GI queue in steady state, i.e., we assume that the arrival process is
Poisson with rate A, service times are independent and identically distributed (i.i.d.) with a general
cumulative distribution function (cdf) G and mean 1/u, and times to abandon are i.i.d. with cdf F
and mean 1/6. Let S denote a generic service time and T a generic patience time. In addition, let
S; and T; denote the service time and patience time of the i-th arriving customer. We assume that
the service-time distribution and the patience-time distribution are continuous with probability
density functions g and f, respectively. There are s homogeneous servers working in parallel.

We consider the SRPT queueing discipline. Specifically, a customer who arrives to find an empty
server goes to service immediately upon arrival. If all servers are busy at the arrival epoch, and
there exists at least one customer in service whose remaining processing time is longer than the
new arriving customer’s, then the customer in service with the longest remaining processing time
is preempted and joins the queue (this preempted customer may resume service later with the
corresponding remaining processing time). Otherwise, the new arrival joins the queue directly. Cus-

tomers have finite patience times, generated at the arrival epoch of the customer. If the cumulative



amount of the time that the customer spends in the queue exceeds her patience time, then the
customer abandons the system. In particular, if a customer enters service and is later preempted
back to queue, then we assume that her initial patience time (which had not fully elapsed since
she did not abandon previously) continues to elapse, i.e., we do not generate a new patience time
for the preempted customer at every preemption epoch. We assume that the arrival, service, and
abandonment processes are mutually independent. We define the traffic intensity p = \/spu.
Because abandonment is allowed in the system, it is not necessary to assume p < 1 for the system
to reach a steady state. To elaborate, with general service-time or patience-time distributions,
there is no finite-dimensional Markovian representation of the queue (Dai and He 2013). Indeed,
a Markovian description of the state of the system would require keeping track of the remaining
or elapsed patience times and the remaining or elapsed service times of each customer present in
the system (in service or in queue). We now present an infinite-dimensional state representation
which leads to a Markovian description of the dynamics of the system (with respect to a suitable
filtration). For ¢t > 0, let X (¢) € Ny :={0,1,...} denote the number of customers in the system
and R(t) € R®*> denote the remaining service times, remaining patience times, and initial service
times of customers in the system. Let R;(t) be the j-th column of R(t). When X(¢) > 0, for
je{l,...,X(t)}, R;(t) is a column vector whose first element is the remaining service time, the
second element is the remaining patience time, and the third element is the initial service time of
the j-th earliest arriving customer, among all customers currently in the system. For j > X (¢), R;(t)
is a column vector with zero entries. Then, the process R(t) is a Markov process which describes
system dynamics. Note that, in order to describe how the system evolves, we only need to know
the first two elements in R;(t), i.e., the remaining service time and the remaining patience time of
each customer. We add a third element, the initial service time, to facilitate the development of
the state-space collapse result. The invariant measure of the Markov process R(t) is referred to as

the steady-state distribution of the system.



2.2. Many-Server Overloaded Regime

To derive theoretical insights on the performance of SRPT, we consider a sequence of M/GI /sy +
GI queues, indexed by the arrival rate A. We fix the traffic intensity in system A to px = \/(s\p) =
p>1,i.e., we consider an overloaded setting. We hold the service-time and patience-time distribu-
tions fixed, independently of A\, and let A and s, increase without bound.

Define the threshold, 7, satisfying
A-P(S<7)-E[S|S<7]=AE[S1(S < T)] =5, (1)

where 1(-) denotes the indicator function. That is, we choose 7 such that the total workload of
customers with service times smaller than or equal to 7 matches the service capacity of the system.
In the following section, we prove state-space collapse, i.e., that the SRPT queue is asymptotically
equivalent to a two-class priority queue. The high-priority class, defined as jobs whose service times
are smaller than or equal to 7, has preemptive priority over the low-priority class, defined as jobs
whose service times are larger than 7. We emphasize that 7, as defined in (1), does not depend on

A since sy/A=1/(pp) is held fixed under our scaling.

3. Asymptotic Analysis

Direct analysis on the SRPT M/GI/s)+ GI queue is complicated, which partly explains why it has
eluded theoretical analysis for decades. Here, we overcome the technical challenges by proposing a
coupling argument. Specifically, we derive asymptotic results quantifying performance in the SRPT
queue by constructing a coupled two-class preemptive priority M/GI/sy/sx (loss) queue, with the
same arrival process and service-time distribution. Under the coupling, both systems see the same
arriving customers, i.e., with the same arrival times and service requirements. However, the service
disciplines in the two systems are different. In contrast to multiserver queues with abandonment
under SRPT, much more is known about loss queues.

3.1. A Sequence of Coupled Loss Systems

The coupled M/GI/sy/sy loss queue operates under the following preemptive two-class priority

rule. Recall the threshold 7 defined in (1). In the loss queue, customers whose service times are



less than or equal to 7 are grouped into the high-priority class, which we refer to as class 1. The
remaining customers are grouped into the low-priority class, which we refer to as class 2. There
are s, servers, and no waiting room.

Upon arrival, a high-priority, class 1, customer enters service immediately if there is an empty
server, or if there is at least one low-priority, class 2, customer in service (the class 2 customer with
the longest remaining processing time will be preempted). Otherwise, i.e., if all servers are busy with
class 1 customers, the newly arriving customer is lost. A class 2 customer enters service only if there
is an idle server upon arrival and, if all servers are busy, the class 2 customer is lost. A preempted
class 2 customer is also lost as there is no waiting room in the system. Because of preemption,
the high-priority customers do not “see” the low-priority customers: For class 1 customers, the
system behaves as a single-class M /G1 /sy /s, queue with arrival rate AG(7), resulting from thinned
Poisson arrivals, and service time distribution [S|S < 7.

In what follows, we refer to the M/GI /sy + GI SRPT queue as system O, where O stands for
original, and the two-class priority M /GI/sy/s loss queue as system L, where L stands for loss.
By a slight abuse of notation, in both systems, we refer to customers whose service times are less
than or equal to 7 as class 1 customers, and customers whose service times are longer than 7 as
class 2 customers.

For M e{L,0},i=1,2, and t >0, we let Np,(t) denote the number of class i customers served

(have successfully finished service) in system M by time t. We also define

Nt
Thy; = lim Nailt),
’ t—o0 t

(2)

Thpy, is the long-run departure rate (throughput) of class i customers in system M. Let Thp =
Tho 1 4+ The s to be the total throughput in system O.
The following proposition builds the foundation of our coupling argument and is the key to

deriving limiting performance measures in section 3.2.

PROPOSITION 1. For the coupled SRPT and loss queues, and the throughput defined as in (2):

Thy, < Tho. (3)



ProOOF. We consider two coupled systems which are empty initially and see exactly the same
customers. We next introduce a mechanism to match each class 1 customer served in system L to
a customer in system O who finishes service no later than the customer in system L. In particular,
we will show that, at any time ¢, for each class 1 customer who is in service in system L, there is
a matched customer who is either in service with an equal or shorter remaining processing time
in system O, or has already finished service in system O. In addition, each customer in system O
is matched with at most one class 1 customer in system L. We prove this claim and construct the
matching by induction on the consecutive arrival epochs of class 1 customers.

The above claim is trivially true before the arrival of the first class 1 customer. For the inductive
step, we suppose that it is true before the arrival of the k-th class 1 customer, and proceed to show
that it holds after that arrival. We refer to the k-th class 1 customer as customer k. If customer
k is lost in system L, then the claim is trivially true. If customer k enters service in system L (by
either joining an empty server or preempting a class 2 customer in service), then we consider the
following three scenarios that can happen in system O upon the arrival of customer k.

Case I. In system O, customer k joins an empty server or preempts a customer who is not
matched with any customer in system L. Then, we can match customer £ in system L with customer
k in system O.

Case 1I. In system O, customer k preempts a customer who is already matched with a class 1
customer in system L. We refer to this preempted customer in system O and the matched customer
in system L as customer k(, and customer k) respectively. Note that in this case, before the arrival
of customer k, system L has strictly fewer than s* class 1 customers in service, while there are
s* customers in service in system O. Based on the inductive assumption, in system O, there must
be a customer in service that has not been matched with any class 1 customer in system L yet.
We refer to this customer as customer k¢. As customer kg, is preempted instead of customer kg,
customer k/, must have a shorter remaining processing time than customer k;,. First, we rematch

customer k7 in system L with customer k) in system O. Note that as the remaining processing
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time of customer k} is larger than customer k;, based on our inductive assumption, customer k
will finish service before customer k7. Then, we match customer £ in system L with customer & in
system O.

Case III. In system O, customer k waits in the queue. Similar to Case 11, in this case, before the
arrival of customer k, system L has strictly fewer than s* class 1 customers in service, while there
are s customers in service in system O. Based on the inductive assumption, in system O, there
must be a customer who has not been matched with any class 1 customer in system L yet. We
refer to this customer as customer k(. In addition, this customer must have a shorter remaining
processing time than customer k. In this case, we match customer k in system L with customer

o in system O.
Under the matching mechanism described above, each class 1 customer who gets served in system
L is matched with a customer who gets served in system O, and this matched customer in system

O is not matched with any other customers in system L. Thus, Ny 1(t) < No1(t) + No2(t) for each

t > 0, sample path by sample path. Then, we have

lim Npa(t) < lim No.1(t) + Noa(t)

t—o00 t t—00 t ’

i.e., Thy ; <Thp, as desired. ®
3.2. Asymptotic Performance in the SRPT M/GI/s+ GI Queue
In what follows, we consider a particular “tagged” customer ¢ arriving to a random system state
drawn from the system’s steady-state distribution. We denote by “Serv.” the event that customer
c is served and “Aband.” the event that customer ¢ abandons the system. We also write V, as the
virtual waiting time assuming customer c¢ has infinite patience, and W, as her actual waiting time,
ie., W.=min{V,,T.}, where we recall that T, is the patience time of customer c.

In Theorem 1, we derive limits for several key performance measures of the M/GI/s* + GI
SRPT queue in steady state. The main observation is the state-space collapse. In particular, in
the many-server limit, all class 1 customers are served immediately upon arrival and no class 2

customers are served, i.e., class 2 customers all abandon the queue.
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THEOREM 1. For the sequence of M/GI/s*+ GI queues under SRPT with p* = \/sxpu > 1 held
fized and the threshold, T, as defined in (1):
(a) limy ., P(ServﬂSC <7)=1 and limy_, P(Servi]SC >7)=0.
(b) limy o E[W2|Serv.] =limy o E[W2|S. < 7] =0.
(c) limy_,. E[W*Aband,.] = lim,_, o E[W2}|S. > 1] =1/6.

(d) lim o0 E[WCA:I = (1 - G(T))/(9

The proof of Theorem 1 can be found in Appendix A. We note from the theorem that the steady-
state probability of abandonment and various expected waiting-time measures are insensitive to
the patience-time distribution beyond its mean, and depend solely on the service-time distribution.
This lies in contrast to performance in the M/GI/s+ GI queue under FCFS, where the system’s
performance depends on the patience-time distribution beyond its mean (Whitt 2005, 2006).

The following corollary follows directly from Theorem 1 parts (b) and (c). It demonstrates the

desirable performance of SRPT.

COROLLARY 1. For the sequence of M/GI/s* +GI queues, SRPT asymptotically minimizes the
steady-state waiting time conditional on being served, and asymptotically maximizes the steady-state

waiting time conditional on abandoning

Let Thy, denote the maximum throughput of the M/GI/s* + GI queue. While the maximum
throughput is not necessarily achieved by SRPT, we show in the following proposition that SRPT

maximizes the throughput asymptotically.

PROPOSITION 2. For the sequence of M/GI/s* + GI queues,

A A

lim TO =limsup —2 = G(7),

A—00 A—00

i.e., SRPT asymptotically mazximizes the throughput among all service disciplines.

The proof of Proposition 2 can be found in Appendix B. We note from the proposition and the

definition of 7 in (1) that for a fixed value of p, the asymptotically maximal throughput depends
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on the service-time distribution. This is in contrast to the throughput of the M/GI/s* + GI queue
under FCFS (or LCFS) where, for a fixed value of p > 1, the throughput scaled by A is equal to

1/p (Whitt 2006). Furthermore, from the definition of 7 in (1), we have

AG(T)E[S|S <T]=s)\= ME;)[S],

which implies that

1 E[§]
¢ = EEs <A

Because p > 1, G(7) < 1 (since not all customers can be served) and E[S|S < 7] < E[S] (since

G(7) < 1). Then, we must have the inequality:

G(r)>1/p, (4)

i.e., the throughput of SRPT is strictly larger than the throughput of FCFS in the many-server
overloaded regime.

We will discuss the effect of the service-time distribution on the throughput of SRPT in more
detail in section 4.2: We will illustrate through numerical examples that for fixed values of E[S]
and p, the heavier the tail of the service-time distribution, the larger the throughput that SRPT

can achieve.

4. Comparison to Blind Policies

In this section, we compare the performance of SRPT to blind policies that do not use the service-
time information, such as FCFS and LCFS. We focus on the effect of patience-time and service-time
distributions on system performance. In addition to throughput, we also consider the steady-state
expected waiting time. The waiting time is defined as the cumulative amount of time that the
customer spends in queue until departure, either due to service or abandonment. We do so because
(1) waiting time measures are generally of interest in the management of service systems, and (2)
while SRPT asymptotically maximizes the throughput in the system (Proposition 2), it does not

necessarily minimize waiting times, and it is important to shed further light on this point.
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To compare the performance of SRPT to blind policies, we rely on steady-state fluid approxi-
mations for systems under blind policies as described in Whitt (2006). Fluid approximations are
known to be remarkably accurate in large-scale overloaded systems (Kang et al. 2010), which is the
regime that we consider (section 2.2). Throughout this section, we fix the traffic intensity p=1.4.
4.1. The Effect of the Patience-Time Distribution
We consider the asymptotic throughput, scaled by A, under the many-server overloaded scaling. In
this case, the patience-time distribution has no effect on the throughput under any of the scheduling
disciplines. For the SRPT queue, the throughput is equal to G(7) by Proposition 2. For all blind
policies (including FCFS and LCFS), it is equal to 1/p (Whitt 2006).

As for the steady-state waiting time, even though the patience-time distribution beyond its mean
has no effect on the limiting steady-state waiting time in the SRPT queue (part (d) in Theorem
1), it plays a central role in the performance of the FCFS queue (Whitt 2006). In particular, in

the many-server overloaded limit, the steady-state fluid waiting time of the FCFS queue is

E[TL(T <w)]+w(l — F(w)) where w=F""'(1—1/p).

We first consider patience-time distributions with strictly increasing-hazard-rate (IHR) or strictly
decreasing-hazard-rate (DHR). The hazard rate of the patience-time distribution is defined as
h(z) = f(x)/(1—F(x)). The distribution has IHR (DHR) if h is monotonically increasing (decreas-
ing) in = on (0,00). For blind policies, if h is decreasing in z (i.e., DHR), waiting customers
become increasingly patient with time. To minimize the waiting time, we should process customers
who waited more first. Analogously, if h(z) is increasing in z (i.e., IHR), then we should process
customers who waited less first.

For THR or exponential patience-time distributions (which has a constant hazard rate), LCFS
minimizes the steady-state fluid waiting among all blind policies (Proposition 3 in Bassamboo and
Randhawa (2015)). The fluid LCFS queue is described by two classes: The high-priority class is

entirely served and does not wait for service, whereas the low priority class abandons entirely. Thus,
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the steady-state fluid waiting time under LCFS is given by (1 —1/p)f. On the other hand, Theorem
1 shows that the limiting steady-state expected waiting time under SRPT is (1 —G(7))/6. Because
G(t)>1/p for p>1 (see (4)), (1—G(7))/0 < (1 —1/p)f. This implies that SRPT outperforms all
blind policies for overloaded systems with THR. or exponential patience-time distributions, when
the system is large enough. For DHR patience-time distributions, FCFS minimizes the steady-state
fluid waiting time among all blind policies (Proposition 3 in Bassamboo and Randhawa (2015)).
In this case, SRPT may lead to a larger expected waiting time than FCFS.

In Figure 1, we compare the performance of FCFS, LCFS, and SRPT under Weibull (left-side
figure) or Pareto (right-side figure) patience-time distributions. For both distributions, we vary the
shape parameter and adjust the scale parameter accordingly so that the mean time to abandon is
equal to 1. We fix the service-time distribution to be exponential with mean equal to 1 as well. For
LCFS and FCFS, we present the fluid limit. For SRPT, we present (1 —G(7))/6.

For the Weilbull distribution, F(z) = (1 —exp(—(z/m)*))1(z > 0), where o > 0 is referred to as
the shape parameter and m > 0 is the scale parameter. When the shape parameter is smaller than
1, it has DHR; when the shape parameter is equal to 1, it is an exponential distribution; when
the shape parameter is larger than 1, it has IHR. We observe from the right plot in Figure 1 that
for small enough values of the shape parameter (i.e., < 0.6), FCFS can achieve a shorter expected
waiting time than SRPT.

For the Pareto distribution, F'(z) = (z/m)*1(x > m), where o > 1 is referred to as the shape
parameter and m > 0 is the scale parameter. The hazard rate function is no longer monotone on
(0,00). In particular, h(z) =0 for < m, and h(z) >0 and is decreasing in x for x > m. In this
case, FCFS may not be optimal among blind policies (Proposition 5 in Bassamboo and Randhawa
(2015)). We observe from the right plot in Figure 1 that FCFS only achieves a shorter expected
waiting time than LCFS for small enough values of the shape parameter (i.e., < 1.3). Moreover,

SRPT leads to shorter expected waiting times than both FCFS and LCFS in this case.
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Figure 1 Steady-state waiting times for Weibull and Pareto abandonment under different shapes.

4.2. The Effect of the Service-Time Distribution

It has been observed that in single-server queues, the advantage of SRPT is especially pronounced
with a heavy tailed service-time distribution; see, for example, Lin et al. (2011) and Chen and
Dong (2020). We next investigate whether the same holds in the multiserver setting with abandon-
ment. For service times, we consider the family of Weibull distributions and the family of Pareto
distributions, both with varying shape parameters. We set the patience-time distribution to be
Weibull. Note that the service-time distribution has no effect on the throughput and steady-state
fluid waiting times for FCFS and LCFS queues, but it plays an important role in the performance
of the SRPT queue.

In Figure 2 we compare the throughput for SRPT, FCFS, and LCFS when service times have
Weibull (left-side figure) or Pareto (right-side figure) distributions. We vary the value of the shape
parameter in the Weibull and Pareto service-time distributions and adjust the scale parameter
accordingly so that the mean service time is fixed at 1. Note that as the shape parameter decreases,
the tails of the Weibull or Pareto distributions become heavier (i.e., 1 — F/(z) decays to zero at a
slower rate as = increases). The patience-time distribution is fixed as a Weibull distribution with
shape 0.4 and mean 1. We observe from the figure that SRPT always yields the highest throughput

(as we proved in Proposition 2). More importantly, the throughput of SRPT decreases as the shape
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parameter of the service-time distribution increases. This suggests that the heavier tail of the
service time distribution leads to higher throughput in the SRPT queue. Note that for the Weibull
service-time distribution with shape parameter 0.2, the throughput for SRPT is G(7) = 0.999 with
7=152.73. For the Pareto service-time distribution with shape parameter 1.2, the throughput for
SRPT is G(7) =0.999 with 7 =87.54. In both cases, we see almost all the customers get served
under SRPT. Only the customers with extremely long service times abandon the system. We also
recall that the throughput is not affected by the patience-time distribution, so we do not reproduce
identical figures for other patience-time distributions.

In Figure 3, we compare the steady-state expected waiting times for SRPT, FCFS, and LCFS
when service times have a Weibull distribution. Since the patience-time distribution affects the
waiting times of the FCFS queue, we show two Weibull patience-time distributions with different
shape parameters: 0.4 (left-side figure) and 1 (right-side figure). We first observe that when the
patience-time distribution has DHR (i.e., Weibull with shape 0.4) and the service-time distribution
has a large enough shape parameter (i.e., > 0.5), FCFS can lead to a shorter steady-state average
waiting time than SRPT. We also observe that similar to the throughput, for the steady-state
waiting times, the greatest advantage of SRPT over FCFS or LCFS is achieved by service-time
distributions with smaller shape parameters, i.e., corresponding to heavier tails. We make similar
observations for the case of Pareto service-time distributions with varying shape parameters. To

avoid repetition, we do not include the figures here.

Appendix A: Proof of Theorem 1

We apply the same many-server overloaded scaling described in section 2.2 to both the SRPT M/GI/s* +
GI queue and the two-class preemptive M/GI/s*/s* loss queue. Let Thé be the throughput of the A-th

M/GI/s* + GI queue, which we refer to as system O*.
A.1. Probability of Service

We begin by proving part (a) in the theorem. Let v*(z) denote the steady-state probability of successfully

finishing service for a customer with initial service time z in system O*. We note that

Thy, = )\/ g(z)y (x)dx,
0
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Figure 3 Steady-state waiting times for Weibull service times. (p=1.4)

i.e., in stationarity, the rate at which customers finish service is the same as the rate at which they enter

service. In addition,

= \ Iy wg(x)y M @)de
)\</0 9@y wﬁi%) Iy 9(@)y? (x)dz =5 (5)

i.e., the stationary number of customers in service is less than the service capacity. Lastly, define:

¥(x) = lim y* — [ 2)¥(x)dz = lim T—hg an _—foooxg(x)”y(x)dx
)= Jim @), &= [ gl = tim S and 8, = ST

From (5), and defining 5= (pu)~!, we have that:
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We will need the following two lemmas, Lemma 1 and Lemma 2, which we state and prove.

LEMMA 1. For the sequence of two-class M/GI/s*/s* queues under the preemptive priority rule,

A
. Thy,
lim

A— 00

=G(7).

PRrROOF. We first show that for a fixed A,

Th} ; = AG(7) (1 - (/000(1 + t/sk)f’*e—tdt> _1> .

As class 1 customers have preemptive priority over class 2 customers: For a class 1 customer, the system
operates like a single-class loss queue with arrival rate AG(7) and service-time distribution [S|S < 7]. As
the steady-state blocking probability depends on the service-time distribution only through its mean, and

r=AG(7)E[S|S < 7] = s*, we have the steady-state blocking probability:

N -1

SN 7oA s N
/st S
Pb* = — i Zk!r
Zk:or/ : k=0
s Al -t
s
= —klpF
;(suk)!k! "

-1

s S>\ oo
= (k>rk/ the tdt
k=0 0
= /0 (k>rktketdt
k=0

_ (/Ooo(Ht/r)s*e—tdt)_l - ( Om(1+t/sh)3*e—tdt>_l.

Next, class 1 customers enter service in the loss queue at rate AG(7)(1 — Pb*). By rate conservation, we have

>
N—————

-1

>
V)
>
SN———

Th} , = AG(r)(1 — Pb*). Then,

. Thz\ll . o A st — -t
lim = =G(7)[1- lim / (14+t/s™) e "dt =G(7).
A—00 )\ A— 00 0

LEMMA 2. For the sequence of M/GI/s*+ GI queues under SRPT, 7(z) =1{x <7}.

PROOF. We first note that Lemma 1 implies that

A
&, = lim LhO(OO)

A—o00 A—00

As &,-S, <5,
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Second, consider the optimization problem

min /O " 2g(e)(z)dx

s.t. /Ooog(x)'y(m)dx > /OT g(x)dx (7)
~(z) €10,1] for all z € [0,00)

The constraint [ g(z)y(x)dz > [ g(x)dx implies that

/T " g@)(@)d > / " g(@) (1 ().
For the objective function, we note that
/ " sg(a)y(a)de > / Sagnta)da+r [ glanes
> / wg@)r(e)ds+r / g(@)(1 =y (@))dz > / wg(z)da.
When v(z) = 1{z < 7}, [~ 2g(z)y(z)dz = [T zg(x)dz. Thus, the minimum of (7) is equal to E[S1{S < r}]
and the minimum is achieved when v(z) = 1{zx <T}.

Lastly, as [~ g(z)y(x)dx > G(7) and [° zg(x)y(z)de =E[S1{S <7}], ¥(z) =z <7}. m

Lemma 2 implies that

Th) Th)
lim ﬂ =G(7) and lim ﬂ

A—o00 A A—o0 A

= 0,
which further implies that

lim P(Serv)|S. <7)=1 and Alim P(Serv)|S. > ) =0.

A—roo

We have thus proved part (a) in Theorem 1.

A.2. Other Performance Measures

We now turn to proving parts (b) — (d) in the theorem.

PROOF. For customers with service time less than or equal to 7, by part (a) in Theorem 1,

P(T. > VS, <7)=P(Serv)|S. <71) — 1 as A — oc.

We note from the proof of part (a) that the convergence holds regardless of patience time distribution.
Consider a patience time distribution with f(0) > 0, e.g., exponential patience time. Then, we have (V}|S, <
7) =0 as A — oco. Because 0 < W> < V2>, (W2|S, <7)= 0. Next, as W} =min{V>,T.}, W} <T., and as

E[T.]=1/6 < oo, by dominated convergence theorem,

E[W2}S, <7] -0 as A — oco.
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For customers with service time larger than 7, by part (a) in Theorem 1,
P(T, <V}S.<71)=P(Aband}|S. < 7) — 1 as A — oc.
This implies that (W2}|S, > 7)=T.. Because W} <T, and E[T,] < co, by dominated convergence theorem,
EWXS,. > 7] - E[T.]=1/6 as A — cc.

Lastly, the convergence of E[W?] follows from the fact that E[W}] =E[W2}|S, < 7]P(S, < 7) +E[W2|S, >
TIP(Se > 7),

|
Appendix B: Proof of Proposition 2
PROOF. Let y(z) denote the steady-state probability of getting served for a customer with service time

requirement z. We first note that for the M/GI/s* + GI queue, any scheduling policy in stationarity must

(o i) G o

Thus, the maximum throughput of the system can be upper bounded by the optimal value of the following

satisfy

optimization problem.

max \ /O " g(a)y(x)da

St. /0 " (o) (z)da < /0 " 2g(w)da (8)

~(z) €0,1] for all x € [0, 00)

(
The constraint [~ zg(x)y(z)dz < [ zg(x)dz implies that

]

/O Ceglepy@detr [ gle)y(a)de < / " gy (@)de < / (),

T

which further implies that

. / T g@n@dr< [ og(e)(1—(x))dz <~ / " (@) (1~ (2))de,

/ " g@n )z < / g(@)(1 —y(x))d.

For the objective function, we have
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In addition, for v*(z) =1{z <7},

A /O " g(a)y" (@)dz = AG(r) and /0 " 2g(e)y (2)dz = /O " 2g(a)da.

This implies that v* is an optimal solution to (8) with the optimal objective value AG (7). Thus, Th}, < AG(7).

Because limy_,o, Th),/A = G(7), SRPT maximizes the throughput asymptotically. ®
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