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Service systems are typically limited resource environments where scarce capacity is reserved for the most
urgent customers. However, there has been a growing interest in the use of proactive service when a less
urgent customer may become urgent while waiting. On one hand, providing service for customers when
they are less urgent could mean that fewer resources are needed to fulfill their service requirement. On the
other hand, utilizing limited capacity for customers who may never need the service in the future takes the
capacity away from other more urgent customers who need it now. To understand this tension, we propose
a multi-server queueing model with two customer classes: moderate and urgent. We allow customers to
transition classes while waiting. In this setting, we characterize how moderate and urgent customers should
be prioritized for service when proactive service for moderate customers is an option. We identify an index,
the modified cu/0-index, which plays an important role in determining the optimal scheduling policy. This
index lends itself to an intuitive interpretation of how to balance holding costs, service times, abandonments,

and transitions between customer classes.
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1. Introduction

With recent advancements of predictive analytics and data availability, considerable efforts have
been made to develop predictive tools for service systems. For example, in healthcare settings,
predictive models have been created to evaluate the risk of ICU admission (Churpek et al.[2014),
hospital acquired infection (Chang et al|2011), Cardiovascular events (Rumsfeld et al. 2016]),
and various other adversarial patient deterioration. In call centers, predictive models have been
developed to identify customers who are likely to contact their insurance company based on past
claims data (Jerath et al.2015).

From the operations perspective, predictive information on customers’ future service needs brings
the opportunity of developing approaches to provide effective proactive service and, potentially,
improve system performance. In healthcare, there is well-documented evidence that delayed treat-
ment can lead to worse medical outcomes such as longer length of stay or higher mortality rate
(Chan et al.|2008, |Chalfin et al.[2007, Chan et al.|2016|). Proactive care, with the help of the pre-
dictive models that forecast patient deterioration, can help reduce treatment delays and improve

patient outcomes (Hu et al|2018]). In the insurance company call center example, |Jerath et al.



(2015)) advocate reaching out proactively to customers who have a high probability of calling to
increase customer satisfaction and reduce peak demand.

Isolating the potential impact of proactive service is not straightforward. On one hand, advancing
service for customers when they are less urgent could mean that fewer resources are needed to fulfill
their service requirement. This has the potential benefit of reducing the overall workload of the
system. On the other hand, utilizing limited capacity for customers who are less critical may take
capacity away from other more critical customers whose service needs are more urgent. Moreover,
some of these less critical customers may be satisfied without ever needing the critical service.
Thus, providing proactive service to them may end up generating more workload for the system. In
this paper, to develop a better understanding of the key tradeoffs in proactive service, we propose
a multi-class queueing system that explicitly models customers’ deterioration and improvement
behavior, and study the optimal scheduling policy for proactive service based on the model.

While proactive service has long been considered in manufacturing settings where preventative
maintenance effectively reduces the demand for future repair services (McCall 1965, Pierskalla
and Voelker|1976)), in service systems, there are very few works analyzing proactive service with
predictive information about customers’ future needs (see Section for a detailed review of
some related works). Our modeling approach aims to provide a systematic way to capture the key
tradeoffs in the limited resource environment: the potential benefit of serving customers early on
with fewer resources versus the potential cost of delaying service for the more urgent customers
and generating more overall workload to the system. Moreover, our analysis provides insights on
how the accuracy of the predictive information affects the prioritization of services.

We conduct analysis on both the long-run average performance and the transient performance,
with the focus on developing structural insights into the optimal scheduling policy. The long-run
average performance analysis provides guidance on scheduling proactive service when the system
is in its “normal” state of operation. That said, service systems often operate in a highly non-
stationary environment. A surge in demand due to random shocks, e.g., disease outbreaks or mass
casualty events for hospitals and insurance companies, weather patterns resulting in mass flight
cancellations for airline call centers, etc., can bring the system far from its normal state of operation.
It is thus important to study the transient optimal control and to develop an understanding of the
most cost-effective way to bring the system back to normal.

Our analysis quantifies the merits of proactive service. We are able to characterize settings where
proactive service can be beneficial and others where it is better to focus all resources on the most

urgent customers. Our main contributions can be summarized as follows.



Queueing model with dynamic class types. We propose a Markovian multi-server queue
with two customer classes: urgent and moderate. The key feature we incorporate is that a moderate
customer who does not receive timely service may resolve their problem and leave without requiring
service, or may deteriorate and become an urgent customer. Similarly, an urgent customer who does
not receive service may leave the system, e.g., through adversarial events such as abandonment, or
may improve to the moderate class. If we assume there is a classifier (e.g. an early warning system)
that classifies potentially risky customers into the moderate class, then the proportion of moderate
customers who will actually deteriorate into the urgent class measures the true positive rate of
the classifier. Our analysis, which builds on a deterministic fluid approximation of this queueing
model, provides insights on how different model parameters affect the optimal scheduling policy
for proactive service.

Equilibrium analysis. To minimize the long-run average cost for the fluid model, we show
that the decision to prioritize the urgent class versus the moderate class is governed by what we
refer to as the modified cu/6-rule. In particular, the corresponding modified cu/#-index accounts
for the class-transition dynamics in addition to the holding costs, service rates, and abandonment
rates. The exact expression of this index lends itself to a very intuitive interpretation of which
parameters — pre or post transition of class types — impact the performance.

Transient optimal control. To minimize the cumulative transient cost (until reaching the
equilibrium point with zero queue) for the fluid model, we show that the optimal policy may switch
priority depending on the interplay between two indices: the cu-index and the modified cp/6-index.
In particular, it is optimal to schedule according to the modified cu/6-rule when the system state is
far away from the equilibrium, and follow the cu-rule when the state gets close to the equilibrium.
Furthermore, if the same class is prioritized by both the cu-rule and the modified cp/0-rule, then it
is optimal to assign strict priority to this class throughout the transient time horizon. On the other
hand, if one class is prioritized near the equilibrium and the other is prioritized far away from the
equilibrium, then the optimal scheduling policy switches priority at most once along the trajectory.
After characterizing the structure of the optimal scheduling policy, calculating the optimal policy
curve where priority switches can be done relatively easily. We conduct sensitivity analysis on the
policy curve and quantify the effect of prediction accuracy on the optimal scheduling policy.

Our transient analysis also provides a paradigm for solving transient control problems in queues.
In particular, the analysis can be summarized by three steps: (i) Approximate the transient dynam-
ics using a proper fluid model; (ii) Derive the structure of the optimal scheduling policy for the

fluid model. As the fluid model is a deterministic dynamical system, this step is done utilizing



Pontryagin’s Minimum Principle and special techniques to deal with state constraints; (iii) Based
on the structure of the optimal policy, solve a simpler version of the optimal control problem, i.e.
solve for the optimal policy curve.

The rest of the paper is organized as follows. We conclude this section with a brief review of
related literature (Section [1.1). The model and detailed problem formulation are introduced in
Section[2] We derive the optimal scheduling policy to minimize the long-run average cost in Section
and the optimal scheduling policy to minimize the cumulative transient cost until reaching the
equilibrium point in Section [ Section [5] considers some model extensions. Lastly, we conclude in

Section [6] All the proofs are provided in the appendix.
1.1. Related Literature

Our work is mainly related to three streams of literature. From the problem context, our problem is
related to i) proactive service for managing service systems and ii) scheduling in multi-class queues,
especially queues with dynamic class types. From the methodology perspective, our work is related
to iii) transient queueing control. In what follows, we briefly review related works in these areas.
Proactive Service. There are a number of works on proactive service in service systems, most of
which focus on optimal screening strategies in healthcare. For example, Ozekici and Pliska, (1991])
study the optimal scheduling of inspection in the context of screening for cancerous tumors. They
take false positives into account but not the limited resource environment, i.e. they do not consider
the externality each patient places on other patients. Ormeci et al. (2015)) study the optimal
scheduling of screening where the screening service shares resources with the more urgent diagnostic
service. They model the benefit of screening through its effect on improving the “environment”.
Sun et al.| (2017)) study whether to perform triage under austere conditions, where triage occupies
scarce resources but can provide more information on how to prioritize patients. Hu et al.| (2018))
take an empirical approach to examine the cost and benefit of proactively transferring “risky”
patients to the ICU. In various service settings, there are also works modeling proactive service
when providers have advance information about customers’ future service needs, but they do not
model the dynamic change of customer class types as we do. Examples include Xu and Chan|(2016]),
Yom-Tov et al.| (2018)), Delana et al.| (2019) and (Cheng et al.| (2019). Our work complements this
literature by providing a general modeling framework that takes several key aspects of proactive
service into account. These aspects include a limited resource environment, customer deterioration
and amelioration, different service needs, and different waiting costs. We also derive structural

insights on the optimal scheduling policy for proactive service.



Optimal scheduling of multi-class queues. Our modeling approach falls into the category of multi-
class queues. There is a growing literature on optimal scheduling of multi-class queues; see, for

example, Mandelbaum and Stolyar| (2004), [Harrison and Zeevi (2004), [Stolyar et al. (2004), and

Puha and Ward| (2019)) for a recent review of works on scheduling multi-class queues with impatient

customers. Due to the linear structure in system dynamics, in a lot of cases, a simple index-

based policy can be shown to be optimal. For example, the cu-rule is shown to be optimal for a

single server queue without abandonment (Cox and Smith||[1991). The cp/6-rule is shown to be

asymptotically optimal for multi-class queues with exponential patience time distribution in the

many-server overloaded regime (Atar et al.|2011)). We also note that due to the prohibitively large

state-space and policy-space for these problems, approximation techniques are often employed to

develop structural insights on the optimal policy, (e.g., [Van Mieghem| (1995), Tezcan and Dail
(2010), |Gurvich and Whitt| (2010))).

The most relevant multi-class queueing models to ours are queues with dynamic class types.

Sharing similar motivation to our work, Akan et al.| (2012) model the wait list for donated organs

as a multi-class overloaded queue. Disease evolution is captured by allowing customers to transition

between different classes representing different health levels. Xie et al.| (2017) conduct performance

analysis for systems where delayed customers may renege the current queue and transfer to a

higher-priority class. |Cao and Xie| (2016]) derive the optimal scheduling policy for a single-server

two-class model with holding and transferring costs. Down and Lewis (2010) study an N-model

in which customers from the class with flexible servers (low-priority) can be upgraded to the one
with dedicated servers (high-priority). Most of these works rely on exact or numerical analysis of
the corresponding Markov decision process (MDP), where the analysis can become prohibitively
challenging when the scale of the system becomes large or more features are added to the model. In
this paper, we adopt a fluid approximation approach, which borrows insights from the conventional
heavy-traffic asymptotic analysis under the fluid scaling .

Transient Queueing Control. Analyzing transient queueing dynamics is often very challenging,
even without the added complexity of optimizing over different control policies. Only a limited

set of numerical and approximation techniques have been developed for transient performance

analysis. These include inverting Laplace transforms (Abate and Whitt||1988, [2006), heavy-traffic

asymptotics (Honnappa et al.|[2015)), etc. Our study uses a fluid approximation and employs tools

from the optimal control theory for dynamical systems to derive the optimal transient scheduling

policy; see (Sethi and Thompson|2000, Grass et al.[2008) for an overview of continuous-time control




et al.|1995), which is a common methodology used for both linear and nonlinear continuous control
problems. The most relevant works to ours are Larranaga et al| (2013) and Larranaga (2015),
where they consider a multi-class single-server queue with abandonment but static (fixed) class
types. Aiming to minimize the cumulative transient holding cost for the fluid approximation, the
authors show that the optimal policy may switch priority depending on the interplay between the
cp-index and the cu/6-index. We note that adding the component of dynamic class types is a highly
nontrivial extension due to the more complicated boundary behavior (when the state constraints
are binding). Moreover, the optimal trajectories in our case cannot be characterized in closed
form. We highlight that the analysis laid out in Section |4] substantially extends the framework for
navigating optimal control problems with state constraints; this approach may shed insights for

other queueing control problems.

2. The Model

To explore the potential benefits of proactive service, we propose a Markovian two-class multi-
server queueing system as depicted in Figure I} Customers (jobs) are defined by their need for
service. Without loss of generality, we refer to Class 1 as the urgent class: those with immediate
need for service. Focusing resource allocation to just these customers is a common approach in
the service operations literature. In this work, we also consider a moderate class (Class 2): those
who currently do not need as high level of service as Class 1, but are at risk of becoming urgent.
The novel feature we incorporate is dynamic class types. We allow Class 2 customers to transition
to Class 1 while waiting and refer to this as a degradation. Proactive service (preventive service),
i.e. providing service to Class 2 customers, can prevent Class 2 customers from becoming Class 1
customers. We also allow Class 1 customers to transition to Class 2 while waiting, and refer to this
as improvement. Note that, mathematically, our model is symmetric. We differentiate customers as
urgent and moderate to better facilitate discussions of real-world applications and derive managerial
insights.

These type of dynamics may arise in a lot of service operations applications. For example, in
hospitals, Class 1 customers may correspond to patients who are physiologically unstable and in
need of care in an Intensive Care Unit (ICU), while Class 2 customers may correspond to patients
in the general medical ward who are at risk of deteriorating. Those who are in the general medical
ward, but are known to have no risk of needing ICU care, would be outside of our modeling
framework. Many patients in the general medical ward will never need ICU care, while others

may decompensate and be transferred up to the ICU. With improving accuracy of early warning



systems, proactive ICU admission before a patient is severely critical is becoming a reality (Hu
et al.[2018). What remains is to understand when and how such care should be utilized.

Another example is airline call centers following massive flight cancellations, e.g. due to severe
weather issues. In this case, urgent customers are those with complicated and urgent travel needs,
and thus require immediate assistance from the agents. Moderate customers are those who can
either rebook through an agent or rebook online themselves. However, some moderate customers
may develop negative emotions while trying to find another flight themselves and may require more
service time to satisfactorily address their needs once they have joined the urgent queue for agent
assistance (Altman et al.|2019).

We consider a system with s identical servers, i.e. they offer the same quality of service. Class 4
customers, ¢ = 1, 2, arrive to the system according to a time-homogeneous Poisson process with rate
A;. Class 1 customers have independent and identically distributed service requirements following
an exponential distribution with mean 1/4,. While waiting to receive service, a Class 1 customer
may improve and transition to the Class 2 queue according to an exponentially distributed clock
with rate v;. A Class 1 customer can also abandon the queue if its waiting time exceeds its
patience time. The patience time is exponentially distributed with mean 1/6; and is independent
of everything else. For Class 1 customers, one can interpret this abandonment as an undesirable
event. For example, in the healthcare setting, urgent patients could be placed in an off-service unit,
transferred to another hospital, or even die. In a call center setting, customers may abandon and
their patronage may be lost.

Class 2 customers can either be proactively served (i.e. before transitioning to Class 1), abandon
the system, or deteriorate into Class 1. Should the system administrator choose to provide proac-
tive service to a Class 2 customer, its service time is exponentially distributed with mean 1/pu,.
Deterioration and abandonment happen according to two independent exponential clocks with rate
Yo and 0y, respectively. For Class 2 customers, one can interpret the abandonment as a desirable
outcome. For example, in the healthcare example, the abandonment for moderate patients can be

the event that the patient is no longer at risk for deterioration, i.e., the patient self-cures.

Remark 1 We make two remarks about our modeling assumptions. First, the Markovian assump-
tion on system primitives, including exponential deterioration and upgrade times, is quite common
in the literature; see, for example, \Down and Lewis (2010), |Cao and Xie (2016), | Xie et al.| (2017).
This is in part because the assumption greatly facilitates the theoretical analysis of system dynam-

ics. Second, in practice, it is natural to assume that the service times while in Class 1 and Class



2 for the same customer should be correlated. This can be achieved by assuming that the “base”
service requirement for a customer is characterized by a rate 1 exponential random wvariable, V.
When the customer is served as Class i, i = 1,2, its service time is Vy/p;. In this case, we keep
the marginal service time distribution in Class i as exponential with rate p; while maintaining
the order of the service times, e.g., if uy < pa, then Vo/puy > Vo /o with probability 1. Due to the
memoryless property of exponential random variables, introducing such correlation will not affect
the dynamics of the system. For simplicity in the subsequent development, we treat these service

times as independent random variables.

Figure 1 Two-class queue
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We next provide a useful interpretation for the ratio ¢ :=~5/(0 +2). Note that if no proactive

service is provided to Class 2 customers, 7, /(62 4 72) of them will deteriorate into the urgent class.
Suppose Class 2 customers are identified via a classifier that determines customers who are “at
risk” of deteriorating (e.g., Escobar et al. (2012)), then v2/(62 +72) can be interpreted as the true
positive rate of this classifier. That is, it measures the accuracy of the classifier. For example, if
we know with certainty that Class 2 customers will eventually deteriorate into Class 1 customers,
then 0y =0 and ~, /(62 +72) = 1.

To understand the key tradeoffs we are trying to capture with this model, we start by discussing
the extreme case where v; = 60; = 60, = 0. In this case, if no service is provided to Class 2 customers,
each Class 2 customer generates an average workload of vo/(11(02 + 72)) to the system. This is
because 73 /(62 +2) of the Class 2 customers will deteriorate into Class 1 and all Class 1 customers
must be served. On the other hand, if we can provide proactive service to all Class 2 customers, then
each Class 2 customer will generate an average workload of 1/p5. The magnitude of 7> /(02 + 72)

impacts whether it may be more or less beneficial, from a workload perspective, to provide proactive



service to Class 2 customers. Of course, the actual problem we are facing is more complicated
than minimizing the system workload. In particular, the different waiting, abandonment, and/or
class-transition costs incurred by the two classes can also have a substantial impact on the optimal
scheduling policy.

Let X;(t) denote the number of Class ¢ customers in the system at time ¢, t > 0. We denote
by Z;(t) the number of servers assigned to Class i customers, and by @Q;(¢) the queue length of
Class ¢ at time t. Clearly, Z;(t) + Z2(t) < s and X;(t) — Z;(t) = Q:(t) > 0 for i = 1,2. We also write
X(t) = (X1(b),X2(t)), Z(t) = (Z,(t), Z2(t)), and Q(t) = (Q:1(t),Q(t)). Note that the state of the
system at time ¢ can be described by (X(¢),Q(¢)). A scheduling policy II is defined as a rule for
allocating servers to customers, i.e. Z;’s are the control variables. We consider Markovian policies
under which the server allocations are made based on the current state (X, @) only. In particular,
the policy is non-anticipating. Under this class of scheduling policies, which we denote by set .,
{(X(t),Q(t)) :t >0} forms a Markov process.

As the process {(X(¢),Q(t)) : t > 0} actually depends on the scheduling policy II, we can more
explicitly mark the dependence by writing the stochastic process as {(X"(¢),Q"(¢)) : t > 0}. We
also denote R!'(t) as the cumulative number of the customers that have abandoned the Class i
queue by time ¢, and T'}'(¢) as the cumulative number of customers that have changed type from
Class i to the other by time ¢. In what follows, we shall drop the superscript II when it can be
understood from the context.

We incur costs for all customers who wait, abandon, or transition classes. In particular, for each
Class i customer, we denote h; as the holding cost per unit time waiting in queue, «; as the fixed
cost of abandonment, and v; as the fixed cost of changing class types. Our goal is to minimize the

aggregated cost incurred, namely,

E / S hQuhdt+ 3 (auRi(T) + wTo(T))

0 =12 i=1,2

. (1)

Note that under the Markovian modeling assumption, we have
T T
BIRMI=6E| [ Qod] wd Ermi=z| [ e, i-12
0 0
Thus, can be equivalently written as
T
E |:/ (ClQl(t) + CQQQ <t)) dt:| s where C; = hz + 04192 + Vi%i for i = 1, 2.
0

This implies that we can incorporate the abandonment costs and the class-transition costs into the

holding costs. In what follows, we shall use ¢; and ¢, to denote the “generalized” holding costs.



10

Note that we defined Class 1 as the urgent class in order to facilitate interpretation and draw
managerial insights. For example, this can correspond to defining Class 1 customers as those having

a higher generalized holding cost, i.e., ¢; > c3.

Remark 2 Due to our Markovian assumptions and our holding cost criteria, the system perfor-
mance is agnostic to the order customers are served within a class. The policy development focuses
on which class to prioritize; customers within the same class can be served in any order, e.g.,
first-come-first-served. That said, when looking at individual customers, depending on the transi-
tion dynamics and scheduling policies, it is possible that a customer’s waiting time may increase or
decrease after changing class. Indeed, our policy development leverages the fact that customers may
be able to afford to wait longer after transition (due to the smaller holding cost) and so we can focus
resources to the higher priority customers. If we wanted to take waiting-time related fairness into
account, we would need to modify our objective function to add some cost of fairness or adapt the
optimization problem to incorporate a fairness constraint. Quantifying the fairness of a scheduling
policy is an interesting and challenging problem which is outside the scope of this work. We refer

to|Wierman (2011]) for more discussions on the topic.

In this paper, we focus on two cost measures. One is the long-run average cost; the other is the
cumulated transient cost. The two cost formulations have different focuses and are both relevant
in practice. The long-run average cost formulation involves minimizing the cost when the system
is in its “normal” state of operation. When shocks bring the system far from its normal state of
operation, the transient cost formulation aims to minimize the cost incurred to bring the system

back to normal. More precisely, the long-run average cost minimization problem is

1 T
min limsup fIE [/ (a1Q1(t) + Q5 (1)) dt | . (S1)
0

e 700
It is significant that the long-run average problem is not capacity specific, namely, the system can
be staffed to operate in an underloaded or overloaded regime. For the cumulated transient cost

minimization problem, we define
T :=inf{t>0:Q,(t)+Qa(t) =0}.

That is, T is the time until the total queue is emptied. We assume that for the transient problem,
we have ample capacity such that E[7] < oo for any fixed initial state (X (0),Q(0)) = (z¢,qo). Then

the transient optimization problem can be written as

-
min E [/0 (a1Q1'(t) + Q5 (1)) dt | . (S2)

e
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These cost minimization problems are MDP’s. Due to the large (infinite) state-space and policy-
space, they are prohibitively hard to solve from a computational standpoint. Even if we solve
it numerically, limited insights about the optimal policy can be gained. Various approximation
techniques have been developed in the literature to solve large-scale MDPs. With the goal of gaining
structural insights into the optimal scheduling policy, we employ a fluid approximation approach;
a similar method has been used in, for example, [Whitt| (2006)), |[Perry and Whitt| (2009), Atar et al.
(2010).

2.1. The Fluid Model

To construct the fluid model, we replace the stochastic arrival, service, abandonment and class-
transition processes by their corresponding deterministic flow rates. We use the lowercase ¢ to
denote the fluid queue length process, and a fluid scheduling policy 7 specifies the service capacity

allocation process (z1,25). Under 7, the fluid dynamics take the form
dqi(t) =M — z1(t) 1 — 0141 (t) — y1qu (t) + 7v2q2(t)

dga(t) = Xa — 2o(t) pho — 0202(t) — Y2q2(t) + 71 ().

(2)

Let % denote the set of fluid admissible scheduling policies. We say that a policy belongs to %
if the server allocation only depends on the current state of the system (Markovian), and satisfies

the following constraints:

%) >0, i=1,2 t>0

z1(t) +2(t) <s, t=0 (3)
dgi(t) >0 whenever ¢;(t)=0, i=1,2, t>0.

The first and second constraints in require that a non-negative amount of service capacity is
assigned to each class, and the total amount of allocated resource does not exceed service capacity.
The third constraint guarantees that the resulting queue length process ¢;(t) is non-negative for all
t > 0. Note that the queue length process {¢q(t) : t > 0} actually depends on the scheduling policy 7.
We can more explicitly mark the dependence by writing it as {¢"(t) : ¢ > 0}. To keep the notation
concise, we shall drop the superscript when it can be understood from the context.

We comment that the fluid dynamics capture the mean dynamics of the stochastic system well,
as we will demonstrate later with numerical experiments. In addition, this type of fluid model often
arises in the literature as the functional law of large numbers limit for a sequence of properly scaled
stochastic systems under the conventional heavy traffic scaling (Whitt|2002, Reed and Ward|[2008).

In this limiting regime, we scale up the arrival rates and the service rates while scale down the space
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(Alternatively, we can scale up time while scale down the abandonment rates, the class-transition

rates, and the space). The number of servers is held fixed®.

2.2. Problem Formulation

In this section, we introduce the fluid counterparts of the stochastic cost minimization problems.
Note that for the long-run average optimization problem, we only require that the amount of service
capacity is non-negative, s > 0.

Fluid long-run average cost optimization problem:

1 T
min limsup - / (1T () + ol (1)) . (F1)
0

T€F  Tooo
For the transient optimization problem, let 7 :=inf{t > 0:¢;(t) + ¢2(¢t) = 0}, which is the first
time when the total fluid queue reduces to 0. We assume that there is ample capacity s such that for
any ¢(0) =qo, 7 < o00. As will be explained in Section [4} the precise condition is s > Ay /1 + A2/ pa.

Fluid transient optimization problem:

iy [ (e () + cagi () . (F2)

Our analysis relies on understanding the long-run regularity of the fluid model. We thus provide

the following definition.

Definition 1 Consider the autonomous dynamical system dq(t) = f(q(t)) with q(0) = qo. Suppose

f has an equilibrium point q., i.e. f(q.) =0. Let || -|| be the Euclidean norm in R*. Then

(1) q. is locally asymptotically stable if there exists 6 > 0, such that if ||qo — qe|| < 0, then
lim, o [lg(8) — ]| =0.

(2) q. is globally asymptotically stable if for any initial condition qq, lim; . ||q(t) — ¢.|| =0.

We shall start by solving the long-run average cost minimization problem (F1)) in Section [3| We
then solve the transient cost minimization problem (F2) in Section
3. Optimal Long-Run Scheduling Policy

In this section, we solve the fluid long-run average cost minimization problem. To ensure system
stability for any arrival rates and service capacity, we impose the following assumption on the

abandonment and class-transition rates.

Assumption 1 (i) 6, + 7,05 >0 and 0y + 20, > 0. (ii) i 711921272 and 711 ielwﬁ

1 In particular, we do not scale up the number of servers as in the many-server heavy traffic regime.
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Part (i) of Assumption |1] requires that the system has the “necessary” abandonment for stability
even with no service. For example, if the abandonment rate from Class 1 is zero (6; = 0), then a
Class 1 customer can leave the system by converting to Class 2 and eventually abandoning the
Class 2 queue (716> > 0). Part (ii) of the assumption requires that there is a workload difference
based on when (i.e. before versus after class-transitions occur) service is provided. This imposes a
tradeoff when deciding which class to prioritize (see, Appendix for more details).

The long-run average cost minimization problem can be explicitly written as

T
, min - limsup % /0 (c1q1(t) + cago(t)) dt
st dqi(t) =M — pz(t) = 011 () — 711 (t) +7202()
dga(t) = A2 — p2za(t) — O2q2(t) — 12¢2(t) + 114 (t)
z1(t) +22(t) <s, t>0
z1(t), 22(1), 1 (t), g2(t) =0, ¢ >0.

This is an infinite dimensional linear program (LP). We first make an important observation
that allows us to reformulate the problem as a finite dimensional LP. This observation will be made
rigorous in Theorem [I| If the fluid dynamical system converges to an equilibrium point as t — oo,
then minimizing the long-run average cost can be reformulated as finding the optimal equilibrium
point. In particular, we have the following alternative problem formulation.

 min - ciqf 4 cags
2§,25,45,45
st. AN — 2y —01q7 — 7147 +72¢5=0
A2 = pi225 — 0205 — 7245 + 147 =0 (4)
26423 <5
215 %3, 41545 2 0
Note that the first two constraints in (4]) characterize the equilibrium point: rate-in equals rate-out.

By rearranging , we have an equivalent optimization problem:

c 5 71 e c 72

1 [ 2 6

max + 71+61 Mlz§+ + 2+72 ,UQZze
(4 (4 (4 (4

s \ O +n=—2r Oy +yptl .

1°72 1 ’Yl ~a+05 2 72 14671 2 '72 ~1461 1 '71

O2+v2
€ e
st. z2{+z5<s

(o +92)M+92de (Ot o Valia 22> 0 (5)
(B2 +72)00 + M0z (B2+72)01 +mb> " (B2 +72)00 + 70y "~
(O +7)Ae A (Gr+7)pe Lo Vit >0

(01 +71)02+7201 (01 +71)0a+7201 > (01 +71)02 + 20, "
21,25 > 0.
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It is easy to see that the optimal solution to tends to assign a larger value to the z{ with a
larger coefficient in the objective function. Motivated by this observation, we define the modified

cp/0-inder as follows: The modified cu/0 index for Class 1 is

0l
ry = NN E =i Y (6)
01+ 7294392 02+ 71?91
and the modified cu/0 index for Class 2 is
Y2
C2 19517
ro = + M. (7)
<02 T2 7194}91 0 + T 920-3’)'2

From @ and , we observe that when ~; =0 we recover the standard cp/6-index (Atar et al.
2010). When ~; # 0, the extra terms are to account for the class-transition dynamics. To interpret
the index 7 in (6)) (7 in (7)) follows by symmetry), we note that the first term corresponds to the
standard cpu/60-structure for Class 1 customers. In particular, these customers incur a cost at rate
¢1. The effective abandonment rate is 6; + v,65/(02 + 72). This is because “abandonment” in this
case consists of the nominal abandonment, which happens at rate 6;, as well as the improvement.
The improvement happens at rate v;, but we also have to adjust for the fact that vo/(y2 + 62) of
those customers may deteriorate and transition back to Class 1. Thus, the net improvement rate
is 7162/ (y2 + 02). The second term takes into account the Class 1 customers who improve to Class
2. These customers will incur a cost at rate ¢, when in Class 2. Because the proportion of Class 1
customers who improve to Class 2 is 71 /(01 +71), the expected cost rate is co7y; /(61 +1). When in
Class 2, these customers abandon at rate 6., and deteriorate at rate v, with a feedback probability
Y1/ (01 + 7).

Formally, we have the following theorem characterizing the optimal scheduling policy based on

the modified cp/6-index.

Theorem 1 Under Assumption giving strict priority to the class with a higher modified cp/0-
index minimizes the long-run average cost (F'1). That is, if 11 > 1o, for r1,79 defined in @ and ,
then it is optimal to give strict priority to Class 1. Otherwise, it is optimal to give strict priority

to Class 2.

To prove Theorem |1, we need to ensure that the fluid dynamical system converges to the desired
equilibrium point under the strict priority rule implied by the modified cu/6-index. We provide
detailed analysis on the long-run regularity of the fluid model under the strict priority rules in
Appendix [A] These convergence analyses are interesting in their own right, as they reveal impor-

tant characteristics of the system dynamics. Moreover, we show that an interesting bi-stability
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phenomenon, i.e. the presence of two equilibria, can arise when the sub-optimal strict priority rule
is employed. We provide more discussions about this phenomenon in Section (3.1

We next numerically compare the long-run average costs of the fluid models to those of the
corresponding stochastic systems under different strict priority rules. We denote P, as strict priority
to Class 1 and P; as strict priority to Class 22. Figure [2| plots the long-run average costs for systems
with different numbers of servers s. The fluid costs are plotted in dashed lines while the costs for the
stochastic systems are plotted in solid lines. As the long-run average costs for the stochastic systems
are estimated using simulation, we also provide the corresponding 95% confidence interval. Figure
2(a)| illustrates the scenario where the modified cu/f-index suggests prioritizing Class 1, while
Figure has the modified cp/f-index suggesting prioritizing Class 2. We first note that the long-
run average fluid cost approximates the long-run average cost of the stochastic system reasonably
well, especially when s is small (the system is in the so-called overloaded regime) and when s is
large (the system is in the so-called underloaded regime). Second, we observe that when comparing
the strict priority rules, prioritizing the class with a larger modified cu/6-index always leads to a
lower cost in the stochastic system. Thus, even when the cost of fluid system may deviate from
that of the corresponding stochastic system, the resulting policy recommendations are consistent.
Lastly, we note that in Figure when 18 < s < 22, the fluid model under strict priority to
Class 1 has two different equilibria (bi-stability). Which equilibrium the fluid system converges to
depends on its initial condition. For the corresponding stochastic system, it will fluctuate around
one equilibrium point for a while before transitioning to the region around the other equilibrium
point. Thus, the corresponding long-run average cost is a weighted average of the costs around the

two equilibria.

3.1. Bi-Stability

Due to the dynamic class types, applying the strict priority rule that does not agree with the modi-
fied cp/0-index can lead to a bi-stability phenomenon. Motivated by proactive service applications,
in this section, we study in more depth a special case where bi-stability arises. Specifically, we
consider the system parameters for which Theorem []in Appendix [A.T]suggests that if we prioritize
the urgent class, the system exhibits bi-stability. While, in this parameter regime, following the
modified cu/f-rule is the optimal policy, from a practical standpoint, the service provider may
prefer to give priority to the urgent class, as long as it does not degrade system performance. We

2 Throughout this manuscript, all numerical experiments for the stochastic system are conducted with preemption,
though we emphasize this has no impact on the fluid analysis.
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Figure 2 Optimal long-run scheduling policy
((a): A= 10, Aoy = 20, M1 = 1.5,/1,2 = 3,’}/1 = 0.1,’}/2 = 0.1, 91 = 0.17 02 = 0.47 Cc1 = 57 c2=3
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(a) The modified cu/0-rule: Py (b) The modified cp/6-rule: P,

explore whether it is reasonable to (sometimes) give priority to the urgent class even though one
of the optimal long-run average policies indicates priority should be given to the moderate class.

The parameter regime we are interested in is when the urgent class (Class 1) has a higher cu-

index, i.e., ¢yt > Coflo, but py < 921272 2, which implies that the moderate class (Class 2) has a

higher modified cu/6-index, i.e., 7o > 7. In this case, from the workload perspective, it is more
efficient to serve moderate customers before they deteriorate, i.e.,

2 Y2 + 05 I

1< Y2 1

Additionally, the capacity is in the critical region

A A A A
Mo g hy b
B e p1 o Oy +y2 py

(8)

Figure 3| provides an illustration of the vector field under bi-stability. We note that there are
two locally asymptotically stable equilibrium points. Which equilibrium point the queue process
converges to depends on its initialization.

Intuitively, the bi-stability arises because if we delay service for moderate customers, they will
end up generating more workload on average when they deteriorate into the urgent class. When
the system is critically loaded as in , even though we have enough capacity to serve both classes
when service is provided in a timely manner, i.e., A1 /u; + Ao/ 2 < s, we do not have enough capacity
to serve all the customers when service for Class 2 is delayed, i.e.,

Mo T X
o Oatyo g

s <
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Figure 3  Vector field under bi-stability
()\1 = 107 )\2 = 20, S = 20711,1 = 17 M2 = 2.5,’)/1 = 0.2,’}/2 = 0.4, 91 = 0‘1,92 = 0.2)
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Under bi-stability, we note that one of the equilibrium points leads to very good performance
— zero holding cost, while the other equilibrium point has positive queues for at least one class
(Figure (3| and Theorem . Ideally, we want to avoid the “bad” equilibrium regardless of where
we start. One way to ensure global convergence to the “good” equilibrium is to switch priority
to the moderate class as suggested by the modified cu/0-rule. However, there are many systems
where it may be preferable to give priority to the urgent class for obvious administrative reasons.
Thus, we propose an alternative intervention, which we refer to as the bi-stability control. For
a fixed threshold oy > 0, when ¢ (t) + ¢2(t) < o, we prioritize the urgent class; otherwise, we
prioritize the moderate class. Following a similar Lyapunov argument as in Appendix when
oy is sufficiently small, ¢(¢) will converge to (0,0) regardless of its initialization g, i.e., (0,0) is
a globally asymptotically stable equilibrium under this control. As such, both the modified cu/6
rule and the bi-stability control with properly chosen threshold lead to the same optimal long-run
average cost in this case. However, when studying the transient cost, i.e., the cost incurred to
restore system to zero when it is initialized far from zero, the bi-stability control can lead to a
lower cost than the modified cp/6 rule as we will explain in Section

We next elaborate on the implications of the fluid bi-stability phenomenon for the stochastic
system. When bi-stability arises in the fluid system, the queue length process of the corresponding
stochastic system will fluctuate around one equilibrium for a while before transitioning to the
region around the other equilibrium. Figure shows a typical sample path of the stochastic
queue length process, i.e., we plot Q»(t) for ¢ € [0,1000]. Figure provides the histogram of
Q2(t). We observe that it follows a bi-modal distribution where the two peaks are around the two

fluid equilibria.
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Figure 4 Bi-stability in the stochastic system
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Figure[5|plots the long-run average cost for the stochastic system under the bi-stability control for

different values of o (point estimates together with the corresponding 95% confidence intervals). In

the stochastic system, if Q;(t) + Q2(t) < ap, we prioritize the urgent class. Otherwise, we prioritize

the moderate class. Note that ay = 0 is equivalent to assigning strict priority to the moderate class,

i.e., the modified cp/6-rule. Interestingly, we observe that for certain values of oy, the bi-stability

control achieves a smaller long-run average cost than the modified cpu/6-rule. As surprising as the

observation may seem at first glance, this phenomenon is due to stochastic fluctuations that bring

the system away from the equilibrium, i.e., zero queue. To restore the system to zero in the most

cost-effective way, the experiments suggest that we should prioritize the moderate class when the

queues are large, and prioritize the urgent class when the queues are small. We explore this more

formally in our transient analysis in Section [

Figure 5 Long-run average cost under the bi-stability control
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4. Optimal Transient Scheduling Policy

Service systems often operate in highly non-stationary environments. In healthcare settings, for
example, random shocks like disease outbreaks or mass casualty events can push the system far
from its normal state, i.e., equilibrium. When such a demand shock happens, the key question
we wish to address is how to bring the system back to its normal state of operation in the most
cost-effective way. In this section, we study the transient optimal control problem to find the
optimal clearing of backlogs. In particular, we derive the optimal scheduling policy to help the
system recover from demand shocks.

We start by focusing on the after-shock control. In particular, we assume ¢(0) = gy > 0 3 but we
now have abundant capacity to bring the fluid queues to zero in a finite amount of time under

some admissible control. In particular, we make the following assumption on the capacity s.

Assumption 2 s> A;/u1 + Aa/pa.

Later in Section [5.1] we generalize the arrival-rate pattern to include the period of demand shock
in our planning horizon. In particular, the shock raises the arrival rates for a fixed amount of time,
during which the service capacity is insufficient and so the backlogs increase. Importantly, the
arrival rates during the demand shock period can be time-varying and violate Assumption [2| After
the initial shock, the arrival rates restore to normal and satisfy Assumption [2] It is significant that
the structure of the optimal control does not change under this more general arrival-rate model
(see Theorem . The after-shock control studied in this section builds the basis for the cases with
more general arrival rates.

Recall that 7 =inf{t > 0: ¢ (t) + g2(t) = 0} is the first time both of the fluid queues are emptied.
Based on Theorem [, Assumption [2] implies that there exists a scheduling policy 7, under which,
for any ¢(0) =gy > 0, 7 < 0o. We also note from our long-run regularity analysis in Appendix
that under Assumption |2 both strict priority to Class 1 and strict priority to Class 2 lead to the
same long-run average holding cost — zero. However, our following analysis will reveal important
differences in their transient performance.

The optimal transient scheduling policy depends on the interplay between two index rules. We
define the cu-rule as a policy that prioritizes the class with a higher c;u; value, i =1,2, i.e., the
cu-index. Similarly, the modified cu/0-rule is a policy that prioritizes the class with a higher r;
value, 1 = 1,2, i.e., the modified cp/6-index as defined in @ and . To capture the differential

effect of each of these rules, we impose the following assumption on the indices.

8 We define a vector a > 0 if all its components are nonnegative and there is at least one component that is strictly
positive.
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Assumption 3 ¢y # copto and 1y #E .

We next introduce a few more notations to simplify the presentation of the problem. From the

fluid dynamics , we define f(q,2) = (fi(q, 2), f2(q,2)) where fi(q,z) =X\ — z1p1 — b1q1 — Y1q1 +
Y2q2 and fo(q, z) = Ag — 2apia — O2G2 — Y2G2 + 71¢1- From the constraints on the admissible controls

(3), we define g(q) = (91(q),92(q)), where g;(q) = —q;, for i =1,2, and h(z) = (hi(2), ha(2), hs(2)),
where hy(2) = 21 + 20 — 8, ha(2) = —21, and hz(z) = —z2. We also define F'(q) = ¢1q1 + ¢2ga. Then

the transient optimal control problem can be explicitly written as:

z

s.t. dq(t) = f(q(t),2(t))

min /OT F(q(t))dt

(F2)

In optimal control theory, optimization problems of the form are referred to as optimal
control with state constraints. Despite a rich body of literature in optimal control, problems with
state constraints are, in general, very difficult to solve explicitly as they impose extra boundary
conditions (Trélat|[2012). While some results can be derived in special cases, there is no systematic
way to deal with these problems; we refer to the survey paper Hartl et al. (1995) for an overview.

We combine several techniques from optimal control theory to derive the optimal transient
control. Our solution strategy is to first derive the structure of the optimal scheduling policy. In
particular, as we shall explain in Theorem [2, the optimal scheduling policy switches priority at
most once and priorities can be characterized by two simple index rules. Then solving for the
optimal scheduling policy reduces to finding the policy curve that governs where in the state space
the switch in priority happens. We provide a closed form characterization of the policy curve in
Proposition [4] for a special case, and provide an efficient numerical scheme to construct the policy
curve for the other cases.

The next theorem characterizes the structure of the transient optimal scheduling policy. Let 7*

denote the time to empty the queue under the optimal policy.

Theorem 2 Under Assumptions @ and@ for the transient optimal control problem :
L If the cu-rule and the modified cu/0-rule both prioritize Class i, i = 1,2, then the strict priority
rule to Class i is optimal for any t € [0,7*].
I1. If the cu-rule prioritizes Class i but the modified cu/0-rule prioritizes Class j, fori#j, i,j =

1,2, then there exist positive real numbers € and M with 0 < e < M, such that it is optimal
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to prioritize Class i when q1(t) + q2(t) < € and prioritize Class j when q1(t) + q2(t) > M.
Furthermore, the optimal scheduling policy switches priority at most once over the transient

time horizon [0,7*].

Based on Theorem if the cu-rule and the modified cp/6-rule agree with each other, it is optimal
to give strict priority to the class with a higher cu-index (and correspondingly a higher modified
cp/0-index) for any ¢ € R%. If the two index rules do not agree, we will follow the cp-rule when we
are close enough to the equilibrium point (0,0); when we are far from the equilibrium point, we
should follow the modified cu/#-rule. Moreover, in this case, we switch priority at most once, and
the time at which the switch occurs depends on the value of ¢gy. This indicates that there exists a
policy curve {q:u(q) =0}, where we switch from the modified cu/6-rule to the cu-rule.

The remaining task is to characterize the policy curve. In Figure [f], we provide a numerical
illustration of the optimal trajectory of the queue length process. Figure shows the case where
the modified cp/6-rule prioritizes Class 1 while the cu-rule prioritizes Class 2. We plot four optimal
fluid trajectories starting from different initial values (derived by solving the a discretized version of
(E2')). We also plot the corresponding policy curve (dashed line). Figure shows the case where
the modified cpu/f-rule prioritizes Class 2 while the cu-rule prioritizes Class 1. We will provide

more discussions about the policy curve in Section [4.3.3

Figure 6 Optimal transient queue length trajectory
((a): )\1 = 10, AQ = 20, M1 = 1.5,#2 = 3,’71 = 0.1,’72 = 0.1, 01 = 0.1, 02 = 0.47 S§= 17, Cc1 = 5, Co2 = 3
(b) )\1 == 10, )\2 = 20,#1 = 1, M2 = 25, Y1 = 027 Y2 = 047 91 == 0.1,92 == 02, S = 26, C1 = 5, C2 = 1)
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Remark 3 Even though Theorem [3 is stated under Assumption [1}, following the same lines of

analysis, we can show that if 6, = 0, = v, = =0, we can recover the well-known optimality of
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the cu-rule throughout the transient time horizon (see C’orollary@ in Appendiz @ Furthermore,
if i =7 =0 but 6,0, >0, we should follow the cu-rule when we are close to the origin and the
ordinary cp/0-rule when we are far from the origin (This is a special case of Theorem @) In this
case, we recover the results in|Larranaga (2015). Nevertheless, the approaches utilized in literature

to study the special cases are not directly generalizable to our setting with dynamic class types.

We next provide the general strategy of proving Theorem 2] It includes three main parts. We first
provide some formal definitions to describe the boundary behavior and rule out some “irregular”
behaviors in Section We then establish the optimal scheduling policy when ¢; + g < € for
e sufficiently small in Section This is done by solving the optimal control problem directly.
Lastly, we establish the optimal scheduling policy for the rest of the state space in Section
utilizing Pontryagin’s Minimum Principle. We believe this framework can be applied to derive the
structure of the optimal policy for other transient control problems for queues.

4.1. Boundary Behavior

The main challenge in dealing with an optimal control problem of the form is to characterize
the system behavior on the boundary where the state constraints hold tight. In our case, the state
constraint g(q(t)) = —q(t) <0 requires the queue length process ¢(t) to stay non-negative for all
tel0,7].

To characterize the boundary behavior, we would ideally like to identify when the trajectory
enters the boundary and when it exits the boundary. In particular, we would like to characterize the
time points t;,’s when g¢;(q(tx)) =0 for some i = 1,2, but for any § > 0, there exists t € (t;, — 9, t;, +9)
such that g;(¢(t)) > 0. An important class of points of this type is known as the junction time
(Hartl et al.|1995). We next provide some formal definitions to characterize the junction times. An
interval 7 := [t1,t5] C [0,7] (or [t1,t2), (t1,ta], (t1,t2)) is called an interior arc if g(q(t)) <0 holds
for all t € Z. Correspondingly, an interval Z := [ty, 5] C [0, 7] (or [t1,t2), (t1,t2], (t1,t2)) is called a
boundary arc if g;(q(t)) =0, for some i =1,2, holds for all t € Z. A time instant ¢; is called an entry
time if an interior interval ends at and a boundary interval starts at ¢;. A time instant ¢, is called
an exit time if a boundary interval ends and an interior interval starts at t,. Furthermore, if the
trajectory of ¢;(t), i =1,2, only “touches” the boundary at time ¢3, i.e., ¢;(t3) =0, but there exists
d > 0 such that ¢;(t) > 0 for any ¢ € (t3 —0,t3+0) and t # t3, then t3 is called a contact point. Entry,
exit, and contact times taken together are called junction times. Figure provides a pictorial
illustration of different types of junction times for ¢;(¢). In particular, ¢;, to, and ¢3 in Figure
are an entry, exit, and contact point respectively. In addition, the interval [¢;,¢5] is a boundary arc,

and the interval [0,¢;) is an interior arc.
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Not all boundary trajectories can be characterized by the junction times. A class of boundary
behaviors that is often hard to deal with is known as chattering, which happens when the trajectory
q:(t), i=1,2, oscillates between zero and positive values infinitely fast. Specifically, a time instant
t, is said to be a chattering point of the state trajectory g, if ¢;(t4) =0, and for any 6 > 0 there
exists s’ and s” € (t4, —0,t4+9) such that ¢;(s’) > 0 and ¢;(s”) = 0. In addition, an interval is said to
be a chattering interval if any sub-interval of it contains at least one chattering point. Figure
provides an example where the state trajectory has a chattering point ¢4, and Figure provides

an example of a chattering interval.

Figure 7 Different types of junction times and chattering behavior
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Chattering behavior can arise in many different optimal control problems. One classical example
is Fuller’s problem (Fuller| [1963]). Noticeably, for non-constrained linear control problems with
compact polyhedral control space, it has been shown that there always exists an optimal solution
that switches finitely many times among the vertices of the control polyhedron; see, for example,
Chapter 2.8 in |Schattler and Ledzewicz| (2012). However, the pathological situation of chattering
has not been ruled out for linear systems with state constraints, which is the case of our problem
. We overcome the difficulty here by showing that for , it is without loss of optimality to

consider trajectories without chattering points or chattering intervals.

Lemma 1 For the transient optimal control problem (F2'), it is without loss of optimality to

consider state trajectories without chattering behavior.

4.2. The cu-Rule Near the Origin

When the state is close enough to the origin (0,0), which is also an equilibrium point for the fluid

system under Assumption [2] and an appropriate control, we establish that the cu-rule is optimal.

Proposition 1 Under Assumptions @, and@ for the transient optimal control problem (F2')),
if 1(t),q2(t) €10,€), with e >0 sufficiently small, then the cu-rule is optimal on the transient time

interval [t, 7.
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The result in Proposition (1| is derived based on the observation that when the queue length
is sufficiently small, the dominant dynamic for the system comes from service completion, which
has an order ¢ effect. The effect of abandonment and class-transition is only second-order, namely,
order €2. Focusing on service completion only, c;u; is the rate at which we can reduce the holding
cost per unit time and per unit capacity allocated to serving Class 4 jobs, i =1,2. In order to

reduce holding cost as fast as possible, the class with a larger cu-index should be prioritized.

4.3. The Optimal Policy for the Rest of the State Space

When the states are far away from the origin, we have to take abandonment and class-transition
into account, and these substantially complicate the analysis. To develop structural insights in
this region, we utilize a necessary characterization for the optimal solution to the control problem,
which is known as Pontryagin’s Minimum Principle (Hartl et al.[1995).

To understand the underlying mechanism, we first note that if we view the optimal control
problem as an infinite dimensional linear program, then we can write down its dual problem
and study the optimal primal-dual structure. There are two classes of “dual variables”. One is
referred to as the adjoint vectors (also known as the co-state vectors), which are the dual variables
for the fluid dynamics, i.e. dq(t) = f(q(t), 2(t)). The other is called the Lagrangian multipliers, which
are the dual variables for the state constraints, i.e. g(g(t)) <0, and the pure-control constraints
i.e. h(z(t)) <0. More precisely, let p € R? denote the adjoint vector, and n € R? and £ € R® denote
the Lagrangian multipliers for the state and control constraints, respectively. The Hamiltonian

H :R? x R2 x R? - R of the system is defined as:
H(q(t), 2(t),p(t)) = p(t)" f (a(t), 2(t)) + F ((t))
=p1(t)dgi (t) + p2(t)dgz(t) + c1g1(t) + c202(1)
=pi(t) (M = pa21(1) = 0161 (t) = Nqa (8) +7242(¢))
+p2(t) (A2 = paza(t) = 0202(t) — 122 (t) + 711 (1)) + 101 (t) + c2ga(t).
The augmented Hamiltonian L :R? x R2 x R? x R? x R? - R is defined as
L(q(t), 2(t),p(t),n(t),£(t)) :== H(q(t), 2(), p(t)) +n(t)" g(a(t)) + &) "h(=(t))
=p1(t) (M — 21 (t) — 0101 (t) — naqr () +7242(2))
+pa(t) (A2 — pra22(t) — 0202(t) — Y202 (t) + M1 (1) + c1q1 (1) + c2ga(t)
= () qu(t) = m2(t)qa(t) + & (8) (21(8) + 22(t) — 5) = &2(t)21(t) — &5 (1) 22(1).
Pontryagin’s Minimum Principle states a number of necessary conditions which the optimal solution

to the optimal control problem (F2') satisfies. The actual theorem can be found in Appendix

Here we provide a brief overview of the conditions.
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1) Ordinary Differential Equation condition (ODE)) specifies the dynamics of the “optimal primal
trajectory” ¢*(t):
7 (0)=qo, dq"(t)=f(q"(t),z"(t)). (ODE)

2) Adjoint Vector condition (ADJ|) specifies the dynamics of the “optimal dual trajectory” p*(t):

dpi(t) = (01 +v)pi(t) = mps(t) —er + 07 (1),  dp5(t) = (02 +72)p5(t) —y2pi () — ca+n5(t). (ADJ)

In general, we cannot fully characterize p*(¢) due to the fact that p}(0) and n;(¢) are “unspecified”,
i.e., we cannot fully specify their values or dynamics based on the necessary conditions.
3) Minimization condition characterizes the optimal control z*(¢) as a minimizer of the

Hamiltonian:

H(g"(t),2"(t),p" (1)) = min{H (¢ (1), 2(t), " (2)) }- (M)
As H(q*(t),z(t),p*(t)) is linear in z(t), it is easy to see from that the optimal control strictly
prioritizes one class at any given time. As z{(t) + z5(t) = s for ¢t € [0,7*], we can write 2] (t) =
s —z5(t). Then, we define

ity ;= 2= OO i) — s,

1 (t) is referred to as the switching curve, because the sign of ¥ (t) determines which class we should
give priority to. In particular, to minimize H, when () > 0, priority should be given to Class 1
at time ¢, i.e.,
s if ¢7(t) >0
ﬁ@:{mm&fﬁm%@ o, M E0 =550, Q
H1
When 1 (t) < 0, priority should be given to Class 2, i.e.,

{s if ¢3(t) >0

. Ao+y14] (1) e
mln{s,%} if ¢5(¢t) =0.

zi(t)=s—2z3(t), and 2z (t)= (10)

However, when 1 (t) = 0, the optimal control is undetermined. We also note that () can be fully
characterized by p(t)’s, i = 1,2. Thus, analyzing the structure of the optimal dual trajectory p*(¢)
can reveal important information about the optimal scheduling policy z*(t).

4) For optimal control problems with state constraints, if F, f, g, h do not depend on t explicitly,
Hamiltonian condition requires that H(q*(t),z*(t),p*(t)) is a constant for all ¢ € [0,7*]. Further,
if the problem has a fixed termination state but free termination time, as in our case, then the

constant is equal to zero (Cristiani and Martinon|2010). In particular, we have

H(q"(t),z*(t),p*(t)) = 0. (H)



26

5) Transversality condition requires that
—mpi () +&7(1) = &5(1) =0, —pap3(t) + &7 (1) — &5 () = 0. (T)

6) Complementarity condition requires that

) mi(t) =0if ¢i(t) > 0; ny(¢) = 0 if ¢;(t) =0.

) m5(t) =0if g5(t) > 0; m5(¢) > 0 if g3(t) =0.

C3) &(t)=01if 27(t) + 25(t) < s; & () >0 if 25(t) + 25(t) = s.
C4) &(t)=0if z7(t) > 0; &(t) >0 if 25(¢) =0.

Ch) &(t)=0if z5(t) > 0; &(t) >0 if z5(¢) =0.

7) Jump condition characterizes the potential discontinuity of the adjoint vector p*(t) and
the Hamiltonian H(q*(t),z*(t),p*(t)) at junction times or in the boundary arcs. Specifically, For
any time (8 in a boundary arc or a junction time, the adjoint vector p*(¢) and the Hamiltonian
H(q*(t),z*(t),p*(t)) may have a discontinuity, but they must satisfy the following jump conditions:
There exits a vector w* () = (wi (), w;(8)) € R?, such that

(J1):p"(B=) =p"(B+) + @i (B) Va1 (¢ (8)) + w3 (8)Vag2(q™(B))
(J2): H(q"(6-),2(8=),p"(8-)) = H(q"(B+), 2(8+),p" (6+)) = wi(B)Vigr(¢"(8))
—w;(B)Vig2(q*(B))
(J3):w*(8) 20, w'(8)"g(q"(8) =
where V_g denote the derivative of g with respect to x.
From the discussion of the necessary conditions, we highlight that if we can characterize the
switching curve 9 (t), then we will be able to unfold the corresponding optimal policies. However,

this is a highly nontrivial task, as we are not able to fully characterize p*(t).

4.3.1. The Modified cu/6-Rule Far from the Origin We now derive several key properties
of the switching curve 1 (t) from Pontryagin’s Minimum Principle. These properties together allow
us to establish the optimal scheduling policy when the states are large (far from the origin).

The first property characterizes the switching curve on the boundary arc.

Lemma 2 Let [ti,t5] be a boundary arc along the optimal state trajectory with entry point t; and

exit point ty. For any t € (t1,t2), the switching curve ¥(t) =0.

The second property establishes the continuity of the switching curve.

Lemma 3 The switching curve ¥(t) is continuous over [0, 7*].
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Assume there exists an optimal control to problem under which the state trajectory only
has a finite number of junction points. Let N denote the total number of entry and contact points
in the optimal state trajectory ¢;(t) and ¢;(t) before 7*. These N entry or contact points are
ordered and denoted by 7;, j =1,...,N. In particular, 7, is the first time when one of the queues
gets emptied from the initial queue length qq; 7y is the last time before 7* when one of the queues
gets emptied. Naturally, the queue that gets emptied at time 7y is maintained at zero until the
other queue reaches zero at time 7*. From Lemmas [2{ and |3} we know that 1 (7;) = 0 for entry/exit
point 7;. To this end, we examine the switching curve backward in time from each entry point and

derive the following characterization of the switching curve.

Lemma 4 For any entry and contact point 7;, j =1,...,N, there exists an interval (0,ca;), 0 <

a; < T1j, such that for t € (0,c;), the backward switching curve (1; —t) takes the form
D1y —t) =11 =12+ (1A (1) = paAa(7;)) €10 — (1 Ay (75) — paAa(75)) 217570,

where r1,79 are defined in @ and , v1,Uy are positive constants that depend on 7;’s and 6;’s,

and A;(7;),As(7;) are constants that depend on the values of T; and p*(7;).

Following Lemma @, we define the pseudo switching curve backward from 7; as
DT (t) =11 =72+ (1 A (75) — paAo(7y)) €150
— (u Ay (15) — paAg(1;)) €27 for t >0, j=1,...,N.
In particular, the pseudo switching curve removes the constraint that ¢ € (0, a;) from Lemma {4 and
it agrees with the switching curve ¢ (7; —t) as long as the multipliers 1} (7; —t) and n;(7; —t) stay at
zero. However, if one of the multipliers becomes strictly positive at some time 3, i.e., n(1; —3) >0
for some i = 1,2, the switching curve may deviate from the pseudo switching curve for ¢t > .

The significance of Lemma [4]is that even though the constants A;(7;) and A, (7;) are unspecified,
there are only a very few possibilities for the shape of D7 (t), and thus for the part of ¢(7; —t) that
coincides with D7 (t). Now, consider the first (forward in time) entry point 7;. By the definition of
71, both classes have strictly positive queues before 7, so the multipliers n;j (7, —t) and n; (7 —t)
are zero for all ¢ € (0,7]. In this case, the backward switching curve ¢ (7, —t) and the pseudo
switching curve D™ (¢) coincide over the interval ¢ € (0,7;]. Note that for ¢ > 71, the queue length
trajectory is beyond its initialization, and thus (7, — t) is not defined. On the other hand, the
pseudo switching curve D™ (t), as a function of ¢, is well-defined for all ¢ > 0. Sending ¢ to infinity

in the pseudo switching curve D™ (t), we get

lim D™ (t) =1y —ry, for ry,r in (6) and (7). (11)

t—o0
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The sign of the right-hand-side of is governed by the modified cu/f-index, which is positive
if the modified cu/6-index for Class 1 is larger. It is important to correctly interpret the limit in
for the backward switching curve ¢ (m; —t) . Because ¥(m; —t) only equals to D™ (t) on (0, 7]
and is not defined for ¢ > 7{, one may hypothesize that if the initial queue lengths, ¢q, are large
enough, then 71, the amount of time needed to empty one of the queues, is also large, and we might
be able to send ¢ large enough such that the sign of (7, —t) will be governed by the modified
cp/0-index. However, we need to note that the constants A;(7;) and A,(7;) also depend on ¢q
through 7, and p*(7;). We thus need to rigorously establish that A;(7;) and Ay(7;) are properly

bounded. Putting all these analyses together, we are able to establish the following result.

Proposition 2 Under Assumptions @ and@ for the transient optimal control problem ,
there exists a positive real number M such that when qi(t) + q2(t) > M, the modified cu/0-rule is

optimal at time t, t > 0.

4.3.2. Number of Priority Switches Propositionsandimply that the cu-rule is optimal
when the states are close enough to the origin, and the modified cp/6-rule is optimal when the
states are far away from the origin. We now specify what happens in between these two extreme
regions. By analyzing possible shapes of the switching curve characterized in Lemma[4] we are able

to establish the following proposition.

Proposition 3 Under Assumptions @ and@ for the transient optimal control problem (F2')),
if the cu-rule and the modified cu/0-rule prioritize the same class, the optimal transient schedul-
ing policy does not switch priority. If the two index rules prioritize different classes, the optimal

transient scheduling policy switches priority at most once over the transient time horizon [0,7*].

Figure|§|illustrates the interaction between the switching curve and the optimal transient system
dynamics. In particular, we plot the switching curve ¥ (¢) and the corresponding optimal state
trajectory ¢*(t) for t € [0, 7*] backward in time. In this example, over the initial time interval [0,77),
¥ (t) is negative, so strict priority is given to Class 2 (following the modified cp/6-rule). Class 2
queue empties at time 7; and is given priority to be maintained at zero over the interval |7y, 3).
Immediately after 3, the switching curve becomes strictly positive and priority is switched to Class
1 (following the cu-rule). Note that the Class 1 queue decreases and the Class 2 queue increases

over [3,7,). Lastly, priority is kept at Class 1 on [r2, 7*] to maintain its queue at zero.
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Figure 8 Example backward switching curve and state trajectory
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4.3.3. The Policy Curve In this section, we first focus on the special case where there is
only one-way transition from Class 2 to Class 1, namely, 7, = 0. From Theorem [2| the optimal
scheduling rule switches priority at most once. This implies there exists a policy curve P that
divides the state space and governs where the priority switches. Note that this curve is distinct
from, but intimately related to, the switching curve (t). Suppose the cu-rule prioritizes Class 2
and the modified cp/6-rule prioritizes Class 1. By utilizing the Hamiltonian condition , we are
able to characterize (and approximate) the policy curve P for switching from P; to P, explicitly.
Namely, if the states are initialized “above” P, then the server prioritizes Class 1 until ¢(t) € P at

some t. From time ¢ onwards, the server prioritizes Class 2 until the system is emptied at 7*.

Proposition 4 Under Assumptions @ and@ for the transient optimal control problem (F2’)

with v1 =0, if cypr < capto and r1 > 1o, the policy curve P for switching from Py to Py is given by

1 (cl(Alm + (A1 = sp1) pa) n 31(32>32(a1’az)> = 0} ,

P:=<(aj,az) ER? : —
{@raert N it
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where

Bi(az) := (c1(—az(02 + v2) + A2) pt1 + coagbypio + c1(azys + Ay — Spt1) fi2)

By(ag,az):= ( — p2(azy201 +a101 (2 — 01 4+ 02) — Y2 Ay + 0101 — O A1 — Y2 Ay + 57212)

7]
az (0, + 72)) 7
— Ao + So

0= ) (12— 1+ 0 ) (14
Bs(ar,az) := (72 — 01+ 02) (61 (a2(02 +72) — Ao) s + 01 (—azy2 + @16y — A+ spa ) po) -
If 79 =0, c1 41 > copi2 and r1 < 1y, we can derive the policy curve P for switching from P, to P; by
symmetry from Proposition

If ¢y 1y > copp and 7 < ry (still with v, = 0), the policy curve for switching from P, to P; cannot
be characterized in closed form. This is due to the class-transition dynamics. In particular, we
lack information of the Lagrange multiplier 7} (¢) on the boundary arc when ¢;(¢) =0. Due to the
deterioration, 7j(t) not only affects pi(t) but also pj(¢) through p;(t), see (ADJ). As such, the
condition that H(q*(t),2*(t),p*(t)) =0 is not enough to pin down the value of policy curve. Note
that this is not the case in Proposition [} because on the boundary arc when g (t) =0, 3 (t) affects
p3(t) only. See Appendix for a more detailed discussion.

We note that the policy curve characterized in Proposition [4]is close to being, but not exactly,
linear. More generally, to characterize the policy curve for switching from the modified cu/6-rule
to the cu-rule in the presence of transitions from both class types, i.e., 71,72 > 0, we propose the
following numerical scheme:

Step 1. Construct n optimal trajectories ¢*(t) starting from different initial conditions that are
far from the origin. This can be done by solving a discretized version of . Record the n
corresponding switching points.

Step 2. Fit the best curve that goes through the n switching points.

We conduct extensive numerical experiments on P for different system parameters. In all cases,
the curve appears to be close to linear. Thus, we suggest setting n to be around 5, setting the
discretization step size to be around 0.1p;, and fitting the best line to the n switching points.

We next provide some sensitivity analysis on the policy curve through numerical experiments. In
particular, we use the numerical scheme outlined above to construct the policy curve. For simplicity
of illustration, we focus on the case where the cu-rule prioritizes the urgent class, Class 1, and the
modified cp/f-rule prioritizes the moderate class, Class 2, i.e., ¢ipa > oo and 1 < 1.

Our first group of numerical experiments is on the value of ¢ :=~,/(62 + 72). As mentioned

earlier, if Class 2 patients are identified by a classifier, e.g., an early warning system, ¢ measures
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the true positive rate of the classifier. Figures [9] and [10] illustrate how the policy curve changes as
¢ decreases. Since 7, and 6, both affect the value of ¢, we first keep 05 fixed and vary the value
of v, (Figure E[) Then, we keep 7, fixed and vary the values of 6, (Figure . In both figures, we
vary the values of ¢ from 0.7 to 0.4 in increments of size —0.1. We first observe that the policy
curve contracts inwards as ¢ increases. In the example of a classifier, this observation suggests
that as the quality of the classifier improves, the region in which the optimal scheduling policy
prioritizes Class 2 increases. When ¢ = 1, the size of the region where it is optimal to prioritize
Class 1 is minimized, but the region is still non-trivial. On the other hand, as ¢ decreases, a phase
transition in the prioritization rule occurs because r; will become larger than r,. In particular,
there exists a threshold ¢, such that once ¢ < ¢, 1 > ry and the policy curve “vanishes”, namely,
we should give strict priority to Class 1 for all states. We also note that given the complex nature
of system dynamics, the effect of increasing 0, and decreasing v, would be different. In particular,
when comparing Figure [9] to Figure we observe that even for the same value of ¢, the policy
curves in the two figures are different. To look further into this, in Figure we fix ¢ =0.6 and
vary 0y and -, simultaneously. We observe that as 6, and 7, decrease, the policy curve contracts
outwards. This is because as abandonment and class-transition occur at slower rates, the effect of
service completion is more dominant. Thus, the region in which we adopt the cu-rule increases.
Similar to the above sensitivity analysis on the policy curve with respect to ¢ via 65 or v, we
also conduct sensitivity analysis for different values of capacity s; see Figure We observe that

the policy curve contracts inwards as s decreases. Define the nominal traffic intensity as

pi=(A/p1+ Ao/ p2) /5.

Figure|12|indicates that as the system becomes more heavily loaded (i.e., as p increases), the region

where we prioritize according to the cu-rule shrinks.

Figure 9  Sensitivity analysis of the policy curve with respect to v2/(62 + v2) by varying 2
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Figure 10
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Numerical Experiments for the Stochastic System

We conclude this section by generalizing the insights from the fluid model analysis to the original

stochastic system. The quality of the generalization depends how closely the fluid model approxi-

mates the corresponding stochastic system.

As mentioned in Section the fluid model can arise as a functional law of large numbers limit

for a sequence of properly scaled stochastic systems in the conventional heavy traffic regime. In
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what follows, we first elaborate on the scaling under heavy traffic and then conduct numerical
comparisons between the fluid trajectory and scaled stochastic sample paths.

Consider a sequence of stochastic systems indexed by n, n € N. For Class i in the nth system,
the arrival and service rates satisfy A := \;n, ul' := u;n, i =1, 2. Moreover, we scale down space by
considering the fluid-scaled queue length process Q"(-) := Q7 (-)/n for the nth stochastic system.
Given the initial fluid queue length ¢g, the nth system has initial queue length Q™(0) := [gon].
Given the fluid policy curve P, for the nth stochastic system, a switch in priority will happen at

time ¢ if Q" (t) € P", where

P 32{(_?,Q3)2Q?€[%-1/71,@[14-1/71],@?6[QQ—l/n,QQ+1/n],(q1,q2)EP}.

Figure [I3] compares the fluid trajectory with a simulated sample path for the corresponding
stochastic system for different values of n. We observe from the plots that for a relatively small
scaling parameter, e.g., n = 10, the stochastic sample path is already well approximated by the
fluid model. Furthermore, if we plot the trajectory of the average queue length over multiple sample
paths of the stochastic system, the behavior of the “average trajectory” mimics the fluid model
even more closely.

For systems with a very small number of servers, we can solve the MDP numerically; see
Appendix [E|for details about our solution method. In Figure[T4] we plot the MDP solutions together
with the fluid policy curves for four 3-server systems with the nominal traffic intensity p varying
from 0.6 to 0.9. We observe that for lightly and moderately loaded systems (with p=0.6,0.7,0.8),
the optimal scheduling policy for the stochastic system shares the same structure as the optimal
fluid control, i.e., it switches priority once from the modified cp/6-rule to the cu-rule. We also plot
the corresponding fluid policy curve (solid line in Figure . We observe that when the system is
lightly loaded, i.e., p=0.6,0.7, the policy curve of the MDP solution matches the fluid policy curve
well. For critically loaded system (with p=10.9), the optimal policy follows the modified cu/6-rule
throughout; namely, the neighborhood near the origin where the cu-rule is optimal does not exist.
In addition, note that the region where the fluid policy employs the cu-rule is also very small in
this case. Despite some slight deviations between the MDP solution and the fluid-translated policy,
in all cases, the optimality gap of the fluid-translated policy is very small, as shall be seen next.

For each of the four stochastic systems in Figure [14] we randomly select a set J of initial points;
see Appendix [E] for details on this initialization. For each initialization ¢, € J, we compare the
average transient cost under (i) the MDP policy (the optimal policy), (ii) the fluid-translated policy

with an approximating linear policy curve P, (iii) strict priority to Class 1, P;, and (iv) strict
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priority to Class 2, P,. Each cost is estimated based on 1000 independent sample paths. In Table

we present the average, minimum and maximum optimality gap for polices (ii), (iii), and (iv). We

observe

that the fluid-translated policy has a very small optimality gap in all cases. In particular,

the maximum optimality gaps are less than 3.8% and the mean optimality gaps are less than 1.6%.

Figure 13 Comparison of the transient fluid trajectory and the stochastic sample path
((a) 2 servers: Al = 1,)\2 = 2,#1 = 1.5,#2 = 3,’}/1 = 0.1,’}/2 = 0.1,91 = 0.1,02 =04
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Table 1
((@) 3 servers: A1 =1, =2, 41 =1.28, u2 =2.0,71 =0.2,72 =0.4,61 =0.1,02 =0.2,¢c1 =5,c2 =1
(b) 3 servers: A1 =1, o =2,141 =1.09, 42 =1.7,91 =0.2,72 =0.4,6, =0.1,0: =0.2,¢1 =5,c2 =1
(c) 3 servers: A1 =1, 2 =2, 41 =0.95, u2 =1.48,71 =0.2,72 =0.4,01 =0.1,02 =0.2,¢c1 =5,c2 =1

(d) 3 servers: A; =1, A =2, j1; = 0.84, 13 = 1.32,71 = 0.2, 72 = 0.4,0; = 0.1,0, = 0.2,¢1 =5, ¢ = 1)

Stochastic optimality gap of different policies (percentage gap to the MDP)

Case (a) p=0.6 Case (b) p=0.7
Fluid policy curve P P, Fluid policy curve P P,
Mean gap 0.22% 0.69% 8.34% [ Mean gap 1.11% 243% 4.27%
Min gap 0.01% 0.17%  3.92% | Min gap 0.01% 0.88%  0.33%
Max gap 0.41% 1.74%  14.74% | Max gap 2.85% 4.60% 16.51%
Case (c) p=0.8 Case (d) p=0.9
Fluid policy curve P, P, Fluid policy curve P, P,
Mean gap 1.53% 6.92%  0.77% | Mean gap 0.95% 17.31% 0.00%
Min gap 0.25% 4.19%  0.10% | Min gap 0.09% 12.41% 0.00%
Max gap 3.74% 10.28% 1.70% | Max gap 1.76% 24.71% 0.00%
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Exact MDP solutions (Solid line is the corresponding fluid policy curve)

Figure 14
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Model Generalizat

5.

In this section, we consider two generalizations of the model. In the first one, we consider the case

with time-varying arrival rates to capture the full demand shock period. In particular, we assume

the arrival rates are high for a certain period of time before returning to the “normal” level, and

study the transient optimal control problem in this setting. In the second one, we study a system

with more than two classes where transition can happen between adjacent classes. We generalize

the modified cp/6-index to this setting. As we will demonstrate subsequently, many of the insights

we derived in the previous sections still hold in these generalizations.
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5.1. Time-Varying Transient Arrival Rate

The transient optimal control problem is motivated by demand shock scenarios. The analysis
in Section [ focuses on an after-shock optimal control problem where the arrival rates satisfy
A1/ 1+ A2/ pe < s, but the system can have an arbitrarily large initial backlog. In this section, we
consider a generalization where we include in our analysis the period of time during the shock. The
shock raises the arrival rates for a fixed amount of time, during which the service capacity falls
short and the queue increases. After the initial shock, the arrival rates restore to normal, i.e., the
service capacity is able to meet demand and eventually empty the system. Formally, we impose

the following assumption on the arrival rates.

Assumption 4 The arrival rates to the system, {\;(t) :t >0} and {\2(t) : t > 0}, are non-negative,
and there exists some T >0 such that

(1) Ai(t) and \o(t) are continuously differentiable with respect to t over the time interval [0,T);
(2) q1(t) >0 and g2(t) >0 for all t € [0,T] under any admissible scheduling policy m € .F ;

(3) Ai(t) = A1 and Aa(t) = Ay for some Ay, Ay that satisfy Ai/py+ o/ pe < s, for allt >T.

Under Assumption |4 A;(¢) and Ay(t) can be any continuously differential functions with argu-
ment ¢ over the initial interval [0,7") (condition (1)). The demand shock needs to be high enough
such that neither queues empties during the shock (condition (2)). Lastly, after the shock, we have
enough resources to bring the queue all the way back to zero (condition (3)). With a slight abuse
of notation, we define

Ti=inf{t>T:q:(t) +q(t) =0} =T

Under Assumption [4] condition (3), 7 < cc.

Recall that the fluid dynamics are defined via f(q,2) = (f1(q, 2), f2(q,2)), where fi(q,2z) = A\ (t) —
zipn — gy —71q1 +72q2 and fa(q, 2) = Xa(t) — zap12 — 02g2 — ¥2q2 +71¢1- For the initial period [0,7)
with potentially time-varying arrival rate, we will add a time component to f, i.e., f(q,z,t), to
reflect the time dependence. The transient fluid optimization problem can be formulated as a two-
stage optimal control problem. In particular, the first-stage problem (over the initial time period
[0,T)) is expressed as

T
omin_ [P de+ =)
st dg(t) = f (q(t), 2(t),t) (12)
h(z(t)) <0,
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where Z(q(T')) is the terminal cost and is the optimal objective value for the second-stage problem

{Z(t):II“IgtngT+T} /T F(q(t))dt
sit. dq(t)= f(q(t),2(t))
9(q(t)) <0

h(z(t)) <0.

(13)

Note that the first-stage problem is “explicit” without the state constraint g(¢(t)) <0, because
under Assumption [4, there does not exist an admissible control under which either of the queues
gets emptied during [0,7]. Let ¢*(T) denote the optimal queue length at the end of the initial
time horizon in problem . The second-stage problem is the same as if we shift the
time from [T,T + 7] to [0,7] and set the initial condition ¢(0) := ¢(7"). Due to this connection,
the structural insights from the case of constant arrival rates in Section [ is maintained in this

time-varying case.

Theorem 3 Under Assumptions @ and for the transient optimal control problem - :
L If the cu-rule and the modified cu/0-rule both prioritize Class i, i = 1,2, the strict priority
rule to Class i is optimal for any t € [0,T + 7*].

I1. If the cu-rule prioritizes Class i but the modified cu/0-rule prioritizes Class j, fori#j, i,j =
1,2, there exist positive real numbers € and M with 0 < e < M, such that fort € [T, T + 7], it
is optimal to prioritize Class i when q,(t) +q2(t) < € and prioritize Class j when q1(t) +q2(t) >
M. Furthermore, the optimal scheduling policy switches priority at most once over the entire

transient time horizon [0,T + 7.

Theorem [3] indicates that for time-varying arrival rates satisfying Assumption [ the optimal
control switches priority at most once from the modified ¢j/6-rule to the cu-rule. However, different
from the case of fixed arrival rates, the modified cu/0-rule can be optimal during the demand shock
(i.e. [0,7)), even for very small queues if the demand rate and/or the duration of the shock are
sufficiently large. This indicates that when the priority switches is not only state-dependent but
also time-dependent. As a simple consequence of Theorem [3| the following corollary characterizes

the optimal transient control for sufficiently large demand shocks.

Corollary 1 For the two-stage transient control problem, let P be the policy curve from the second-
stage problem, and M € R, be defined in Theorem[3 If the arrival rates {\;(t) :t >0} and {A\2(?):
t >0} are such that ¢;(T) + q2(T) > M under any admissible control, the optimal control employs
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the modified cu/0-rule over the interval [0,T], and switches to the cu-rule when t >T and the state

crosses the policy curve P, namely, when q,(t) + ¢2(t) € P.

With general time-varying arrival rates, characterizing when and where the priority switches can
be very complicated and highly case-dependent. For example, the switching point depends on where
the system is initialized, how long the demand shock lasts, etc. As such, we leverage the insights
from Theorem [3] and Corollary [I, and propose two heuristic policies. In both heuristics, we first
derive the policy curve based on the optimal control problem with the normal arrival rates,
ie.,, A\ and Ay (ignoring the demand shock). In Heuristic 1, we apply a time-homogeneous policy
where we follow the cu-rule when the queues are “below” the policy curve, and follow the modified
cp/0-rule when the queues are “above” the policy curve. In Heuristic 2, we modify the policy to
be time-dependent. In particular, we employ the modified cju/6-rule for the initial demand-shock
period [0,7T"). Then, for ¢t > T, we follow the cp/6-rule when the queue is “above” the policy curve,
and follow the cu-rule when the queues are “below” the policy curve. In Table [2] we compare the
performance of (i) Heuristic 1, (ii) Heuristic 2, (iii) the cu-rule, and (iv) the modified cp/6-rule.
The problem instances we consider have piecewise constant arrival rates where the arrival rates
switch from a fixed high level to a fixed low level, and we vary the duration of the high demand
period, T. We observe that when the demand shock lasts for a sufficiently long time, i.e., T'> 0.4,
Heuristic 2 performs near optimal. However, when the demand shock lasts for only a short period of
time, i.e., T'=0.1,0.2, Heuristic 1 performs very well. This is because, in the later case, the queues

barely build up during the demand shock, and it is optimal to apply the cu-rule throughout.

Table 2 Fluid optimality gap of different policies (percentage gap to (12))
(/\1 = 10, )\2 = 20,;11 = 1,,u/2 = 2.57’}/1 = 0.27’}/2 = 0.4:7 91 = 0.17 92 = 0.2, S = 26, C1 = 5, Co = 17 q(O) = (1, 1), )\Z(t) =
spifor t€[0,7),5=1,2)

Demand shock duration T Heuristic 1 Heuristic 2 cu Modified cu/6
0.1 0.00% [l 18.90% 0.00% E146.15%
0.2 0.00% I 10.15% 0.00% El 27.41%
0.4 I 6.14% 0.00% Il 18.48% I 6.84%
0.6 I 9.29% 0.00% B 72.19% | 3.43%
0.8 I 10.20% 0.00% 1273% | 2.05%
1.0 I 1033% 0.00% | 1.41%
1.2 I 1027% 0.00% | 1.22%
14 I 10.08% 0.00% 1.03%
1.6 I 9.54% 0.00% 0.77%
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5.2. Multi-Class System

Thus far, our analysis has focused on a two-class system. We next discuss an extension to a
multi-class system with K customer classes as depicted in Figure The customer classes can be
interpreted as having different urgency levels, with Class 1 being the most urgent and Class K
being the least. Class ¢ is associated with its arrival rate \;, service rate u;, abandonment rate 6;,
and cost rate ¢;, i =1, ..., K. To capture class-transitions, delayed Class ¢ customers degrade into
Class 7 —1 at rate v; ;_1, and improve to Class i+ 1 at rate 7; ;+1, where v; o, Y x+1 := 0. Note that
this multi-class model can capture the case where some customers never transition type by setting

the corresponding transition rates to 0.

Figure 15 Multi-class queueing network
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5.2.1. Long-Run Average Analysis Following similar lines of analysis as in Section |3 we
first optimize over the set of equilibrium points. In particular, we have the following linear program:

K

min Zc»qfﬁ
{ze i:l,.A.,K} ) o

st. ANi— Mizf - (’72',1'71 +Yiit1+ Gi)qz'e +7¢+1,iQf+1 +’Y¢71,¢qie_1 =0, i=1,.,.K
K
>
i=1
z,q; >0, i=1,.. K.

(14)
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Set Yk k+1:=0, and for ¢ decreasing from K —1 to 1, we define the modified class improvement

rates sequentially as

- 011+ Vit1,i42

Yiit1 = Vi = . 15
A +1%‘+1,i +0i11+ Vit1i42 (15)
Similarly, set 7, o := 0, and for 7 increasing from 2 to K, the modified class deterioration rates are

sequentially defined by

Oi—1+Yiz1,i—2
Yie1,i +0ic1 +Yic1i—2 ’
The modified improvement and deterioration rates in and can be understood as the

(16)

Yii—1 = Vii—1

effective class-transition rates adjusted for potential feedback. For example, the nominal deteriora-
tion rate from Class 2 to Class 1 is adjusted from 21 to J2.1 =72.101/(01 + 71.2). Intuitively, if no
service is provided, out of the customers that have degraded to Class 1, a proportion 6 /(01 + v 2)
will be fed back to Class 2. Thus, the effective degradation rate is o ;.

Rearranging the terms in , we can derive that the optimal solution to assigns the

maximum value to the z{ with a larger modified cu/6-index, r;, where

i—1 i
& Cj Vi, k—1

T = Uy — = + = — =

(01 + Viji—1 T+ Vi1 ; 0; +55-1+ %)+ k=11 Viek—1 + Vi1 + O

K . j—1 "
j ko k+1 )
+ 7 ! >, fori=1,.. K.
j;1 0+ Vjj-1+ Vgt oy Vewsr + Vo1 + Ok

Note that while the expression is more complex, this index has similar interpretation to that when
there are only two classes.

To establish the optimality of the modified cu/#-rule for the long-run average cost, we also need
to verify that the optimal equilibrium point in is an asymptotically stable equilibrium under
the modified cu/f-rule. This requires extending the Lyapunov argument in Appendix [A| to the
multi-class setting. We note that this task will become prohibitively tedious, especially for a large

number of classes, K.

5.2.2. Transient Analysis The transient analysis for the two-class system can also be par-
tially generalized to multi-class systems.

First, based on the insights from the two-class case, when the states are arbitrarily close to the
origin, the effect of class-transition and abandonment on the system dynamics is only second-order.
Focusing on the service completions, we can show that such that the cu-rule is optimal in the
e-neighborhood around the origin, i.e., when ¢;(t) € [0,¢€) for i =1, ..., K, for € sufficiently small.

Second, applying Pontryagin’s Minimum Principle for the multi-class case, we see that at any

time ¢, the optimal policy prioritizes the class with a larger p}(¢)u; value, where p! is the optimal
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adjoint vector associated with Class i. Let 7; be the first time after initialization when one of the
queues gets emptied. Using a similar backward construction as in Lemma [4] we can characterize
p;(m1 —t) and show that lim, . p; (71 —t)p; = r; (assuming we can extend the function to t > 1),
where r; is the modified cu/6-index for Class i. This suggests that the modified cp/6-rule is likely to
be optimal when the queues are far enough from the origin. However, we emphasize that this is only
a heuristic argument. Rigorously establishing such a result requires highly non-trivial derivations.

Lastly, the optimal scheduling policy for areas between the e-neighborhood of the origin and the
far from the origin region remains unclear. Noticably, it is not necessarily true that the optimal
policy switches priority at most once along the trajectory, as in the case of a two-class system. We
perform extensive numerical experiments for a three-class model. The solutions to confirm
that the optimal solution follows the modified cu/6-rule when the state ¢ is sufficiently far from
the origin, and the cu-rule near the origin. In many problem instances, the optimal scheduling
policy switches priority rule at most once. However, there are also instances where the optimal
scheduling policy switches priority more than once, and it follows neither the modified cu/6-rule
nor the cu-rule during part of the transient horizon.

To facilitate implementations, we propose a one-switch policy, where we switch priority at most
once, and follow the the modified cu/6-rule when the system state is far from the equilibrium and
the cu-rule when the state is close to the equilibrium. Table [3| compares the performance of the
one-switch policy, the modified cp/6-rule, and the cu-rule. For the one-switch policy, we find the
optimal policy curve when imposing that at most one switch is allowed. According to the system
parameters, the modified cp/6-rule and the cu-rule prioritize in the order of Classes 3,2,1 and
Classes 1,2, 3 respectively. In these systems, the optimal LP solution may, under certain initial
conditions, prioritize Class 2 over part of the transient horizon. Nevertheless, the sub-optimality
gap of the one-switch policy is fairly small, i.e., less than 2.6%, while applying the modified cu/6-
rule or the cu-rule throughout can sometimes lead to very large sub-optimality gaps. In general,
we expect the one-switch policy to be a reasonable heuristic policy when the modified cu/#-index
and the cu-index are relatively aligned.

6. Conclusion

In this work, we propose a novel multi-class queueing model to capture the class-transition behavior
(e.g., degradation or improvement) in service systems. Our analysis provides insights into how
proactive service should be utilized. We identify an important metric, the modified cu/6#-index,
which plays a critical role in specifying the optimal scheduling policy and lends itself to a very

intuitive interpretation. In particular, as in the case of the conventional cu/f-index, the modified
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Table 3 Fluid optimality gap of different policies (percentage gap to (F2'))
()\1 =10,A2=20,3 = 30, 1 = 4,;12 =5, u3 =06, 01 = 0.2, 0> =0.1,05 = 0.1,72,1 =0.1,71,2=0.2,732 =0.1,v23 =
0.3,5 =30,c1 =20,c2 =15, c3 = 10, cp-index = {80, 75,60}, modified cu/6-index = {433,583,650})

Initialization One-switch Modified cu/6 cu
(5,5,5) 0.00% ENSR3% | 0.00%
(10, 10, 10) 0.00% INZR0% | 0.00%

(50, 50, 50) I 0.60% TT9.39% I 0.60%
(100, 100, 100) E 221% T 6156% El 221%
(250, 250, 250) El 257% 1 2.84% 15.09%
(500, 500, 500) 0 095% 0 1.04% BET7013%
(1000, 1000, 1000) ||  0.36% | 042% BR11%

cu/0-index balances the relative importance of holding costs, service times, and abandonment rates.
Moreover, it augments the standard cp/6-index by several important additional terms that account
for class-transitions.

We study both the long-run average cost and the transient cost minimization problem. When
planning the system in the long run, we show that following the modified cu/6-rule is optimal.
When considering the most cost-effective way to clear backlogs created by demand shocks, one
should employ the modified cu/6-rule when the system has a very large backlog (i.e., when it is
essential to account for the abandonment and class-transition dynamics), and follow the cu-rule
when the system has a sufficiently small backlog (i.e., when cost minimization is driven by service
completions).

We assume, throughout the paper, that class-transitions and abandonment happen according
to independent exponential clocks, i.e., class-transition and abandonment have constant failure
rates. It has been shown in a number of service settings, the patience times may have increasing or
decreasing failure rates (Puha and Ward 2019)). One can potentially extend the long-run average
cost minimization problem to incorporate non-exponential class-transitions and abandonments. In
particular, characterizing the fluid equilibrium points in these cases follows similar lines of analysis
as in |Whitt| (2006)). However, since the optimality of the conventional cp/#-rule may no longer hold
for non-exponential patience-time distributions (Puha and Ward|2019), we expect the optimality
of the modified cp/6-rule may also not hold with general class-transitions. We leave this as an
interesting direction for future research.
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Appendix A: Long-Run Regularity of the Fluid Model and Proof of Theorem

The key to proving Theorem|I]is to establish that the optimal solution to the long-run average fluid optimiza-
tion problem, , is a globally asymptotically stable equilibrium under the strict priority rule suggested by
the modified cu/6-index. In this section, we first establish the long-run regularity of the fluid model under
strict priority rules. The stability analysis of strict priority rules can be of independent interest, especially
as such policies are often used in practice. Additionally, we identify an interesting bi-stability phenomenon
for certain parameter regions under strict priority rules. We then use the long-run regularity results to prove

Theorem [II

A.1. System Stability under Strict Priority Rules

Due to the symmetry of the system, we provide the analysis for strict priority to Class 1 only, i.e., the analysis
for strict priority to Class 2 follows identically by symmetry. Under P;, when ¢ (¢) > 0, we will assign all
capacity to Class 1. When ¢, (¢) =0, we will assign to Class 1 the minimum amount of capacity necessary to
maintain its queue at zero if there is enough capacity; otherwise, we will assign all the capacity to Class 1.

In particular, the system dynamics are characterized as follows:
dqi(t) = A — p1s — 01q1(t) = n1qu(t) +72q2(1),  dga(t) = Aa — 02q2(t) — Y2q2(t) +71q:1(1); (17)

(i) If ¢:(t) =0,42(t) >0,
AL+ 72G2(t
dqi(t) =M — (1322() A S> +7242(t),
1

B A1 +72q2(t)
1251

(18)

+
dqa(t) = Ao — po (8 > —02q2(t) —Y2g2(1);

(iii) If ¢1(t) =0,¢2(t) =0,
4
dq(t) = 1 — (21 A s> , dga(t) = Ag — o ((s — 21) A 22) . (19)

Using a Lyapunov argument, Theorem [4] characterizes the long-run regularity of the fluid dynamical system

under strict priority to Class 1.

Theorem 4 Under Assumption for the dynamical system - ,
Case 1. When py > Q;’T{m,ug,

Ta If % + % <s, the system has a globally asymptotically stable equilibrium at

i =0, ¢5=0.
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Ib If % 4222 <5 % + %, the system has a globally asymptotically stable equilibrium at

O2+v2 p1 —

s (G + 22— )

¢;=0, q¢5= > 0.
' 2 (02 2) —ap
Ic If s< % + 92127 ™ . the system has a globally asymptotically stable equilibrium at
o Mt g sm e Ml + (A + Ao —spm) A2
0= 20 =T 0 Or+ 72’
01+’ylgz+,\/2 (02 +72)01 +7102 2+ V2

Case II. When p < 5 Tos He

IIa If 2—1 + 021272 = <s, the system has a globally asymptotically stable equiltbrium at

q; =0, ¢5=0.
ITb If 21 + 2 AQ <s< % + 921272 o2 the system has two locally asymptotically stable equilibria
A+ Az—sm Ao A+ A —s A
=0 =0 and gfy= it Ein >0, g =22ftmitdazam) A
01 +m 92+,Y2 (02 +72)01 + 7102 02 + 72

IIc If s = —1 + %, the system has an equilibrium at (¢%1,95,) = (0,0) and a locally asymptotically stable

equilibrium at

>\1 + 924_7 )\2 — SH1 - )\291 +’}/1 ()\1 + )\2 — S,Uq) )\2

e

>0, = .
01 +7 122 (02 + 72)01 + 102 O + 2

02+72

e
12 =

IId If s < :—1 + %, the system has a globally asymptotically stable equilibrium at

e >\1 + 924_7 )\2 — SH1 e )\201 +’yl()\1 -+ )\2 - 8[1,1) )\2
h= N (ST =~
1t Y1545, (02 +72)01 + 7102 2+ 72

Remark 4 We note that when py = vaua/(02 + 7v2), the system can have uncountably many equilibrium
points. In particular, for s = \i/u1 + Aa/p2, any (q5,¢5) satisfying ¢¢ =0 and (A + 72q5)/p1 < s is an

equilibrium point. We do not consider this parameter regime, i.e. p; = yapa/(02 +v2), in this paper.

PROOF: [Proof of Theorem 4] The stability analysis for P; divides the parameter regime into six cases. In
each case, we construct a Lyapunov function to establish the asymptotic stability. As the proof for each case
follows similar lines of analysis, we only present the proof for Case Ia which has a globally asymptotically
stable equilibrium and Case IIb which has two locally asymptotically stable equilibria. The proofs for the
rest of the cases given the appropriate Lyapunov functions follow similarly and are thus omitted.

The Lyapunov function we utilize to prove each case differs; they are summarized in the table below.
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Lyapunov function

Case Ia | Subcase 1: 711|(J1 —qi|+ ikh —qsl;  Subcase 2: |q1 — q§| + g2 — 5]

Case Ib | Subcase 1: -~[q1 —¢f| + i|Q2 —qsl;  Subcase 2: |q1 — ¢§| + g2 — 5]

Case Ic la1 — qf| + a2 — g5)
Case Ila 1 — g5+ 575 a2 — a5

Local equilibrium (0,0):
o —ail+ 2lee — g5l ;

Case IIb Local equilibrium (AIZ?_Y”ZSLL17 AQQ(IGZ_llq/(Qééj_if/;QZH 1)>:
1T O3 +72
1 — a1l + g2 — g5
Case Ilc lq1 — q7| + |g2 — 5|
Case IId g1 — g5 | + g2 — g5]

Let V denote the Lyapunov function we constructed. To prove the asymptotic stability of an equilibrium
point ¢¢, we need to verify that 1) V(¢¢) =0 and V(g) — oo as ||q|| = o0; 2) V,V(¢)T f(q) <0 for ¢ #¢°. In
the case of local stability, the second condition is checked locally with g restricted to be in some neighborhood
of g, i.e. 0<||g—¢°|| <4 for some § > 0. As 1) is straightforward from our definition of the Lyapunov
function, we focus on verifying 2) only.

. 0o+
Case 1. 921272 < Z—;, i.e., Z—i — 2#—;2 <0.
Ia. If 2 4 22 <,
M1 I

Ia.Subcase 1. 22— < & < f1ifn
02+2 12 7

Consider Lyapunov function of the form
1 1
V4 _ _ e 4+ = _ e ,
(q) o 1 — qf] o |92 — 5]
where (gf,q5) is the corresponding equilibrium point (0,0).
(i) I q:(t) >0,
dg1(t) =M — pas — 01q1(t) — 11qa(t) +7242(t)

dqa(t) = Ao — 02q2(t) — v2q2(t) +v1q1(2).

YV (@) F(@) = (M — a5 — 0raa(£) — s (1) +7202(8)) + iw 02 (t) — 10 (t) + s (1))

M1
A A 0 0
:1+2_S+(%_1+%> ql(t)Jr(’Vz_ﬁ%) o)
1251 H2 H2 M1 M1 H2
<0,

where the last inequality follows from the facts that 2L + 22 <5, and - < B Gt |
1 n2 2+72 2 71
(ii) If ¢:(t) =0, g2(t) > 0,

(a) if A1+v24q2(t) Z s,
p1
dqi(t) = A — p18 +72q2(t)
dqz(t) = Ao — 02q2(t) — v22(1).

VL V(@) F(@) = (O — s +720(8)) + i@\z — 0245(t) — 120 (1))

H1

A1A 02+
_Ahhe (72_272>q2(t)

H1 o M2 H1 H2
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where the last inequality follows from the facts that % + % <s,and 22— < B < ftm

O2+v2 M2 1
(b) If >\1+121q2(t) <s,

AL+ t
dg (t) =\ — (W) +VQQQ(t) =0
1

B A1 +7242(1)

dQQ (t) = )\2 — U2 (S
1258

) —02q2(t) —Y2g2(1).

V. V()" flq) = L ()\2 — 2 (S - Alﬂ?qz(t)) —Oaqa(t) — V2Q2(t)>

H2 M1
A A 02 +

M A (72272> a(t)
M1 M2 Ha H2

<0,

where the last inequality follows from the facts that % + % <s,and 22— < % < tm

0242 Y1
Ia.Subcase 2. -2 < &tn ~m
02+72 71 2

Consider Lyapunov function of the form

Vig)=lq — a1l +loz — g3,
where (¢, q5) is the corresponding equilibrium point (0,0).
(i) If 1 (¢) >0,
dgy (t) = A = pas — 11() = M1qa () + 7202(1)
dgz(t) = A2 — 02q2(t) = 12¢2(t) + 1102 (0).
Vo V(@) f(a) = (M = ps = 01q1(t) = 111 () +7242(1)) + (A2 — 0242 (t) — 7242(t) +1101(1))
=X — 1S+ A —01q1(t) — O2g2(t)

A A
= M1 <1 +2 - 5> —01q1(t) — 02q2(t)
M1 M1

AA
< (1 4+ 22 S) — 91611 (t) - 92Q2(t)

where the first inequality follows from the fact that gy > ua (due to elj% < ﬁ), and the second inequality
follows from the facts that 2—1 + 2—; <sand ¢ () >0.

(i) If ¢ (¢) =0, g2(t) >0,
(a) If 22028 > 5,
dqi(t) = A1 — pas +722(t)
dga(t) = A2 — 022(t) — 2q2(?).
Vo V(@) fla) = (M — pus +72¢2(t) + (A2 — 0202() — 71242(t))

=X — 15+ Ao — baga()

A A
= (1 +22 —3> —0242(1)

M1 1
A A

< p1 (1 + 2 S) —02q2(1)
1251 H2

<0,
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where the first inequality follows from the fact that pu; > po, and the second inequality follows from the facts
A A
that 2 4 22 < s and ga(t) > 0.
(b) If Mtr2a2(t) - o
B ’

AL+ t
S EEWHURY
1

_ )\1—’_Ziqz(t)) —0202(t) = 7202(t).

A A 0
Vo V(@) f(q) = pa (1 +22 -5+ (72 - 2= +72> Q2(t)> <0,
H1 M2 251 K2

where the last inequality follows from the facts that % + % <s,and 22— < 4t < m

02+v2 71 po”
A1y A2 <Ay Az
IIb. If 151 12 <s8= H1 O+~ p1°

@szm—wl(

dQQ (t) = )\2 — U2 (S

To check for local stability, it is sufficient to find a Lyapunov function V that satisfies V,V(q)” f(q) <0
in an open neighborhood of the equilibrium point. We construct different Lyapunov functions for different
equilibrium points.

(i) Local stability of (g5, ¢5) = (0,0): Consider Lyapunov function of the form
1 1
V(g)=—|q —g5| + —lg2 — g5
(9) ="l —ail+ ~lg2 — i

Let 0<e< 5“”“/7;*1 be such that

A A 0
1+25+<’Y22+72)e<0. (20)
M1 M2 Ha H2

We know such e exists because 2—1 + 2—2 —s<0and % — 92#% > 0. Consider states (q1,q2) with ga <e.
(a) If ¢:1(t) >0,
dgi(t) =M1 — pas — 01q1(t) — 11qa (t) +7242(t)

dga(t) = A2 — 02q2(t) — Y2q2(t) + 11¢1(2).

1 1
V.V(9)" flq) = E(Al — p15 — 011 (t) = v1q1(t) +7202(t)) + g()o —02q2(t) = vq2(t) + 101 (1))

A A 0+ 0, +

A S (77> o)+ (77) aalt)
H1 o M2 125 M1 M1 M2
A A 0

M e (72_2ﬂ2> o)
B M2 M1 H2

<0,

where the first inequality follows from the facts that “L < -2 < #1471 anq ¢, (¢) > 0, and the second
M2 O2+72 71
inequality follows from and the fact that g.(t) <e.
(b) If ¢1(t) =0, g2(t) > 0 (the assumption ¢o(t) < € implies that M+17“‘f2(t) <),

AL+ t
dq, (t) =A1— [ (132(12()) +’YQQ2(t) =0
1

_ A1 +72q2(1)

dga(t) = A2 — po (8 ) —0202(t) — 7202(t).

251
1 A+ t
vymfﬂmzQrﬁme—l'WM))—%@@—wwuﬂ
2 M
A A 0
_Ahhe (72_2ﬂ2> o)
M1 H2 1250 125)

<0,
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where the inequality follows from and the fact that g2(¢) <e.

.. - MAg22-do—sp1 y,0 _
e e\ 2472 201+71 (A1 +A2—su1)
(i) Local stability of (¢f,q5) = P e (e AR TS

: Consider Lyapunov function of the

form
Vi(g) =g — qi| + g2 — g5
Consider states g such that g; >0 and ¢, > 0.

(a) If q1(t) > g7, q2() > g5 and (q1(t),q2(t)) # (41, 45),
dqr(t) = Ay — p1s — 01q1 () —y1q1 () +7202(1)

dga(t) = A2 — 02q2(t) — Y2q2(t) + 11¢1 (1)
V V(@) f(@) =M1 —p1s — 011 (t) = 71q1 () +7202(1)) + (A2 — 0242(t) — v202(t) + 111 (1))

=X — 15+ Ao — 011 () — 62¢2(2)
< )\1 — 1S + AQ — 01(]16 — ngg
p— 0)
where the inequality follows from the facts that g1 () > q%, g2(t) > ¢5 and (q1(t), g2(t)) # (g5, ¢5)-
(b) If ¢1(t) > ¢f and ¢2(t) <5,
dqi(t) =X — p1s — 01q1(t) — v1q1 (1) + V242(t)
dqa(t) = Ao — 02q2(t) — v2q2(t) +71q:1(2).
Vo V(@) f(a) = (M — pas — 011 (t) = 1aqi (t) +7202(t) — (A2 — O20a(t) — 7202(t) + 1141 (1))
=1 — 18— Ay — (01 +271)qu (t) + (02 + 272) g2 (1)
<A1 — 18— Az — (014 271) g5 + (02 4 272) 5

where the inequality follows from the facts that ¢;(¢) > ¢ and ¢2(t) < g5.

(c) If 1 () < ¢f and g¢o(t) > g5,
dgi(t) = 1 — pas — 01q1(t) — 11qa(t) +7242(t)

dga(t) = Ao — 02q2(t) — 2q2(t) +71¢1(2).
V V(@) fa) = =AM — pas — 0101 (t) = 11qa (1) +722(1)) + (N2 — 022 (t) — 7202 (t) + 1161 (1))

=—A1+p1s+ A+ (91 + 2’71)611 (t) - (92 + 2’Y2)Q2(t)
< =A1 4 s+ A2+ (01 4+ 291) g5 — (02 + 27v2) 45

where the inequality follows from the facts that ¢; () < ¢f and g2(t) > ¢5.
(d) If q1(t) <qi and g2(t) < g3,
dgi(t) =M1 — pa1s = 01q1(t) — 11qa(t) +7242(t)

dga(t) = A2 — 02q2(t) — 2q2(t) + 11¢1 (1)
V V(@) flg) == —p1s —01q1(t) =111 (t) +72q2(t)) — (A2 — O2g2(t) — y2q2(t) + 7161 ()

==X+ 15— A+ 01q1(t) + 02q2(t)
<=M+ n18 — Ao + 91qf + 02q§

= 0’
where the inequality follows from the facts that g1 () < ¢f and g=(t) < ¢5. Q.E.D.
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A.2.

PROOF:

Proof of Theorem [1

Consider the equivalent LP formulation for the long-run average cost minimization problem

(F1). For any given set of parameters, we first solve the LP to obtain an optimal solution (z§*, z5*) which

represents the optimal long-run average service capacity allocated to Class 1 and Class 2. We then show

that (z§*,25*), and the corresponding (¢§*,¢5*), is the globally asymptotically stable equilibrium under the

modified cp/6-rule, which corresponds to P; or P depending on which class has a higher modified cpu/6-

index. This step is based on the stability analysis for P, (or P, by symmetry) in Appendix Following

similar parameter regimes examined in the stability analysis, we divide the analysis here into different cases.

For each case, the tables below list the optimal LP solution (2§*,z5*), the corresponding (¢$*, ¢5*), and the

static control under which (¢§*,¢5*) is a globally asymptotically stable equilibrium.

Case I. 21 < 22— In this case, the modified cy/f-rule prioritizes Class 2.
(217, 25") (47", 45") Control
A1 Y2 A2 A1 Az
M1 O2+v2 p1 <s ( ) (070) Pl» P,
A1 >\2 < < M Y2 A2
1 + §< 11 + O2+v2 p1 ( *2) (030) P2
XL A
s As ’Ylﬂl( +H2 9) R R
9 Al A2
™~ noM AL e w2 (91+’Y1)u2 Y11 M;LQ(MJFM s) 0 P
we ot e =SS + ) (ﬂjﬁ—?—s) (O1+v1)p2—vip1 2
xo iyt
w2 (01+~1)p2—y101
7 _
s< A2 + Y1 A1 (0 S) A192+72(A1+A2—su2) Ao+ IR A1 —sp2 P
p2 01ty pe ’ (01+71)02+7201 O5+v2 gt 2
1+71
B 01471 >\2 oM A1 Y2 A2
Case II. 02+72 < M2 < 71 » and + 01+v1 p2 — p1 O2+v2 p1’
Modified cu/6-rule prioritizes Class 1
(27", 25") (a7",a5") Control
ALy A2 AL Az
IJ'1+IJ'278 (,ul’,ug) (070) P17P2
A2
(Al noma (G432 —0) .
) — ’ ALy A2
ﬁ—‘,— v cgoeM +>\72 H1 (02+72) 11 —r212 0 “1“2(#1+#z s) P
p1 02472 p1 — K1 K2 A 'quz(Al +%—s) 7 (02472 )1 —v2p2
s "1 (02+72) 1 —v2p2
Y2
Q2 MmN <My w2 X (S O) MAgoas 227501 2501 41 (A F Az —spi) P
pe 01ty pe =7 = p1 ' O2+v2 ma ’ Oty | (O2t12)014mos 1
At Ag Sp1 -
Ao Y1 A1 92+72 X201 +v1 (A1 +FAa—sp1)
§< w2 + 01471 p2 (570) ( 61471 92+72 > (O2+72)01+7102 P
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Modified cp/6-rule prioritizes Class 2

ex ex €ex* €ex*
(25%,25%) (g%, q5%) Control
A1 A2 A1 Ao
Mg d g A 0,0 P, P
u1+u2* p1 ope (7) 1, 12
Aoy A
(S Cg (@)
01+ - ’ LSRN
Mmoo My N - (i“jw i (WO P,
0 - LSNPSR 0 — )
M1 2+v2 M1 M1 2 A w (01+71) 2 =101
w2 (01+71)p2 =111
Aoy A
(S e mm(GiEee)
01+ — ’ LSRN
22 4 om Mgy 2 22 S R wo P,
p2 o Ortyipe T T om 02472 p1 71#1(L1+A—2—s) (01+71)p2—y1p1 ’
22 4 A\ T a7
w2 (01+71)p2 =111
Ao+ 72—\ —spo
s<zp_m M (O 5) A102+7v2 (A1 4+ —sp2) 01+71 P
w2 01471 pe ’ (014+71)02+7201 7 oty eliln :

Y2 B1 01471 A2 YA S A Y2 A2
Case III. O2+72 < H2 < v and H2 + 01471 B2 = K1 + O2+v2 p1’
This case follows from Case 2 by symmetry.
Case IV. ﬁ > 917%. In this case, the modified cp/6-rule prioritizes Class 1.

This case follows from Case 1 by symmetry. Q.E.D.
Appendix B: Proofs of the Results in Section

The proofs in this section are organized as follows. We start by showing that it is without loss of optimality
to restrict our analysis to solutions without chattering behavior (Lemma [1)). We then establish the optimal
scheduling policy when we are close to the equilibrium (Proposition . Both proofs are based on solving
the state trajectory ¢ directly. Second, we use Pontryagin’s Minimum Principle and Proposition [I] to prove
Propositions[2]and [3] In particular, we provide more details about Pontryagin’s Minimum Principle. We next
prove the auxiliary lemmas (Lemmas [2] - [4]), which are then used to prove Propositions [2] and [3] Note that
we actually prove Proposition [3 first, because the proof of Proposition [2] utilizes the results established in
Proposition 3] Putting the results of Propositions[I]-[3] together, we complete the proof of Theorem 2] Lastly,

we characterize the policy curve in the special case where v; =0, ¢; 1 < capiz, and ry > ry (Proposition [4)).

B.1. Proof of Lemma [1]

PRrROOF: We prove the lemma by first showing that the cost difference between a chattering trajectory and
a properly constructed trajectory without chattering is negligible. This implies that any admissible control
policy m that yields a chattering interval can be replaced by a cost-wise equivalent control 7 that does not
yield chattering state trajectories. Thus, it is without loss of optimality to consider state trajectories without
chattering behavior for the transient optimal control problem .

Consider an interval I := [0, €] where queue 1 is initiated at zero and receives no service capacity for an
€ > 0 amount of time. During this interval, a queue accumulates in queue 1. Following I, I, = (¢,e+ €] is an
interval of length ¢’ > 0, over which queue 1 receives full service capacity s and is eventually emptied at the
end of I,. Suppose ¢» is initiated at level ¢2(0) = ga0, g20 € Ry. We compute the state trajectory and cost
over I; Uly, ie. [0,e+€].
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Over the first interval I;, the state trajectories evolve as
q1(t) = (qov2 + A1)t +o(e), te[0,€
42(t) = g20 + (q20(—72 — 02) + A2 — spa) t+0(€), t€[0,¢].
Note that it is possible to ignore the boundary condition that go(¢) > 0 for sufficiently small e. At time e,
the end of time interval Iy, the length of ¢; and ¢, are
q1(€) = (q2072 + A1) €+ 0(e)
q2(€) = q20 + (qa0(—72 — 02) + A — sp2) € + o(e).
Using (q1(€),q2(€¢)) as the initial condition at the beginning of the interval I, we can characterize the
trajectory of ¢; and ¢o over Iy as
q1(t) = €(qaov2 + A1) + (t —€) [M + (=71 — 01) (2072 + A1) — s
+72(q20 — G2072€ — qa0€l2 + €Xy — sepz)| +-0(€), tE€[e,e+€]
q2(t) = q20 — q2072€ — q20€ba + €Xg — sepia + (t —€) [y1€(qa072 + A1) + A2
+(—v2 — 02)(q20 — G2072€ — q20€02 + €Aa — sepa)] +0(€), t€[e,e+€].
In addition, the value of €, the time it takes to empty queue 1 from initial level ¢, (¢), is

A
¢ = €(qa072 + A1) +o(e).
—@q2072 — A1+ S

The total holding cost over the two intervals I; and I5 is given by

e+e’ e+e’
C201 / ql(t)dt+62/ QQ(t)dt
0 0

In contrast, we now consider an interval with the same length, € + ¢/, and the same initial condition
(¢1(0),42(0)) = (0,¢20). Now, instead of having ¢; increase from zero and then decrease to zero, we assign
strict priority to Class 1 and maintain ¢; at zero. The rest of the service capacity is allocated to serve Class
2. Similarly, we characterize the corresponding state trajectory over this interval of length €+ ¢’ as

G1(t)=0, te0,e+¢€]

G2(t) = qa0 +t[qao (Y21 — Oapt1 +Yapi2) + Aapin + A pio — spapie] /pn +o(e), t€[0,e+€],
and the total holding cost as

5 e+e’ e+e’
C:C1 / ql(t)dt—f—CQ/ dg(t)dt
0 0

Comparing C' and C, we get
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2(g2072 + A1 — sp1)
+ 25 (14 €(y2 +602)) (ga072 + A1) — spa) o — ¢1 (@307 €(71 + 72 + 01 +02) +71€XT + €61 A

C-C=

5 (q2072 + A1) (626(1120’72 + A1) (1120(7172 + (2 +602)*) + 1A — (2 + 92))\2)

—Yo€A Ag + 8AL 1 — 8212+ 5Y2€N o + Gao2 (271€A + €(201 4 02) A1 + spy 4 yae( A — Ao + sug)))
=o(e).

In addition, at the end of time e+ €', we have ¢;(e+¢€¢)=g1(e+¢€¢) =0, and

*(g2072 + M) (q20(y172 + (Y2 +602)%) + 1A — (72 +02) (N2 — sp12))
- =o(e). (22)
G20Y2 + A1 — 511

g2(e+¢€)—galet+€)=



%)

Importantly, implies that the cost under the policy that has ¢; first increase and then decrease and the
cost under strict priority rule to Class 1 which maintains ¢; at zero differ by o(¢€). From , the queue lengths
at time €+ ¢’ under the two policies also differ by o(e). Now for any interval of length L, suppose we divide
it into O(L/e) small triangles (trajectories where ¢ first increases for e units of time and then decreases
to zero). Each has a cost difference o(€) from the cost under strict priority to Class 1. Then the overall
cost difference between the two policies (chattering versus non-chattering) is o(e€)O(L/¢), which goes to zero
for fixed L as € goes to zero. Note that any chattering interval consists of infinitely many such triangular
trajectories with infinitesimally small intervals over which ¢; first increases above and then decreases to
zero. This implies that any admissible control policy 7 that yields a chattering interval where ¢; fluctuates
infinitesimally around zero can be replaced by a cost-wise equivalent control 7 that maintains ¢; at zero
over the same interval and agrees with 7 elsewhere. The same approach applies to any chattering interval of
g2 around zero — i.e., we can show that there exists a cost-wise equivalent control under which g, does not

chatter (stays at zero). Q.E.D.

B.2. Proof of Proposition

Proor: Let (¢1(0),q2(0)) = (e,¢€). Since the optimal control gives strict priority to one class at any given
time, for e > 0 sufficiently small, it is sufficient to compare the two strict priority rules; see Larranagal (2015)
for a similar observation. Under each priority rule, we characterize the fluid trajectory and calculate the
cost. By comparing the costs under the strict priority rules, we note that when the system is initiated close
enough to the origin, the optimal policy is to follow the cu-rule.

We first consider strict priority to Class 1. The time horizon is divided into two intervals with length
t1 and to respectively. Class 1 first receives full service capacity and gets emptied at the end of the first
interval. Over the second interval, Class 1 is maintained at zero queue and Class 2 is eventually emptied.

The fluid trajectory over the first interval is characterized by
q1(t) = e+ (—y1€+ v — €01 + A\ — spuq)t+o(e), t€]0,t]
QQ(t):6+(716—726—692+)\2)t+0(6), tG[O,tl],

and the value of ¢; is
€

] = ——— .

S +o(e)

Taking the value of (q1(t1),¢2(¢1)) as the initial condition for the second interval, the fluid trajectory over

the second interval is

ql(t)zo, te [thtl +t2]

go(t) = [—€02p11 (A1 + Ao+ sp1) + 726 (A — Ao — sp) (1 — pr2) — (A — spa) (Ao + Arpo — spapo)] (8 — 1)
o(t) =

pri (=1 +spr)

ber—22 Lo, teltyti+t
€ ol€), 5 5
T+ 1,t1 +t2

and the value of ¢4 is
pi(=A1+ Ao+ spq e
(A1 = sp1)(Aapin + Aipio — S fiz)

to = +o(e).
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The cumulative holding cost under Py over [0,t; + 2] is given by

ty ty
CPl:cl/ [6—|—(—71€+’yge—691+/\1—Sul)t]dt—i—cQ/ [e+ (1€ — Y2€ — €6s + Ao t] dt
0 0

+c /t1+t2 { [—€02p01 (—A1 + Ao+ spu1) + 726 (A — Ao — spun) (1 — p2) — (A1 — span) (Aapun + Aapia — spapo)] (¢ —11)
* pa(=Ar + sp)

6)\2
—dt 2
+€+—/\1—|—su1} +o(e%)

2 — 2 2
_ ¢ (_cl 4 C2Qabtz = Au(p +2p0) + 50 (1 + m))) +o(e?).
2(A1 — sp1) Agpin + (A1 — sp1) 2

Next, we consider the strict priority rule to Class 2. Let C™2 denote the total cost of clearing the fluid

queue from initial backlog level (¢1(0),g2(0)) = (e,€). It follows by symmetry that

2 Arpn — Ao (2 +241) + spa(p2 +2p1))
P — € <—c +Cl( 1 +o(e2).
2(A2 — sp2) ’ Atpia + (A2 — spiz) pa ()

Comparing the total costs under P; and P, we get
P _ P2 — € (crpin — capa) (AF — M (2X0 + 5(p1 — 22)) + (Ao +2501) (A2 — spuz))

2(A1 = sp1) (= A2+ sp2) (Aaptn + (A — sp1)pa)
_ (e — capia) (A (Ar = spa) + (Ag — sp2) (Ao + 2501 — 2X1)) 2
= +o(e”),
2(sp1 — A1) (sp2 — A2) (spapia — Atz — Aafin)
Note that as s > A;1/p1 + A2/pa, in , the denominator 2(sp; — A1) (Sp2 — A2)(Sp1p2 — Ape — Aapig) >

0, and in the numerator, (A;(A1 —sp1) 4+ (A2 — sp2) (A2 + 2sp1 —2A1)) < 0. Thus, for e sufficiently small,

+0(€?)
(23)

CP — CP2 < 0 if and only if ¢;p; > copie, and vice versa. This indicates that if the system is initiated
sufficiently close to the origin, then the cu-rule is optimal. Q.E.D.
B.3. Pontryagin’s Minimum Principle

In this section, we provide more details about Pontryagin’s Minimum Principle, which will be used in the

proof of Lemma [2| — |4 and Propositions [2[ — [3| Consider the transient optimization problem (F2) (also

presented below).

win [ Fao)a

st dq(t) = f(q(t),2(t))
9(q(t)) <0
h(z(t)) <0.

(F'2| revisited)

The pure state constraint g(q(t)) <0 is, in general, very hard to deal with as it does not explicitly involve
the control z(t) and can only be regulated indirectly via the ordinary differential equation dg(t). To quantify
how “implicitly” g(q(t)) depends on z(t), define g7, j=1,2,...,¢, i = 1,2, recursively as

g: (a(t), 2(t)) = gi(a(t))
9: (a(t), 2(t)) = V497 (a(1), 2(1)) " f (a(t), 2(1))

g:(a(t), 2(t)) = Vog; ™~ (a(), 2() " f (a(t), 2()) -
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If V.g!(q(t),2(t)) =0 for 0<j</¢—1, and V.g(q(t),2(t)) #0, then the state constraint g;(¢(t)) is said to
be of order £. It is easy to see that for (F2)), each pure state constraint is of order 1.
We next introduce a full rank assumption, often referred to as constraint qualification, on g(q(t)) and

h(z(t)). In particular, for g(q(t)) of order 1, the constraint qualification requires that the matrices
|240] and - [2GO0 diag (h(:(1))]
have full rank for all ¢ > 0. In the context of (F2)), we have

rank {7‘9912‘;(”)} =rank [Ml 0} =2,

0 125)
and
1 1 z#()+2@)—s 0 0
rank [w diag (h(2(t)))] =rank |1 0 0 —z1(t) 0 =3,
0 -1 0 0 —z(t)

as at least one of 21 (t) and 25(¢) is strictly positive at all times. Hence, satisfies the constraint qualifi-
cation.

Under the constraint qualification, Pontryagin’s Minimum Principle contains a list of necessary conditions
satisfied by any optimal solution to the control problem. The next theorem summarizes some of the necessary
conditions we utilize in our development. We refer to the survey paper Hartl et al.| (1995 for a comprehensive
summary of developments regarding Pontryagin’s Minimum Principle for optimal control problems with state

constraints.

Theorem 5 (Pontryagin’s Minimum Principle (Hartl et al.| (1995), Sethi and Thompson, (2000)))
Assume that the constraint qualification holds. Let z* be an optimal solution to , q* be the corresponding
state trajectory, and T be the optimal hitting time. Then, there exists a mon-zero piecewise absolutely
continuous adjoint vector p* : [0,7*] — R? with piecewise continuous derivatives, piecewise absolutely
continuous Lagrangian multipliers n* : [0,7%] = R?, £ :[0,7*] = R3, and a vector w*(B;) € R? for each point

B; of discontinuity of p* such that for almost every t € [0,7*],

1. Ordinary Differential Equation condition:

¢"(0)=qo, dq"(t)=f(q"(t),2"(t)) (ODE)
2. Adjoint Vector condition:
dp*(t) = =V, L(q"(£), 2" (£),p" (), " (1), €" (1)) (ADJ)
3. Minimization condition:
H(q"(t),2"(t),p" (£)) = min{ H(q"(¢), 2(£), p"(£))} (M)
4. Hamiltonian condition:
H(q"(t),2"(t),p"(t)) =0 (H)

5. Transversality condition:
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6. Complementary condition:
n'(t) =0, n"(t)"g(qg"(t)=0
() =0, &) h(z"(t)=0

7. Jump condition: For any time in a boundary arc or a junction time, (3, the adjoint vector p*, and the

(©)

Hamiltonian H may have a discontinuity, but they must satisfy the following jump conditions:
(J1):p"(B=) =p"(B+) +wi(B)Vag1(q"(8)) + w3 (B)Vag2(q"(5))
(J2): H(q"(B—),2(8—),p"(8=)) = H(q" (B+), 2(B+),p" (B+)) = wi(B)Vig1(q"(B)) — w3(B) Veg2(q(B))
(J3):w*(B) 20, w*(B)"g(q"(B))=0.
()
Next, we provide more explanations about the conditions in Pontryagin’s Minimum Principle listed in
Theorem [5| to complement the discussion in Section 4.3

1. First, let

¢:= \/'yf + 271 (2 + 01 —02) + (y2 — 01 +05)2 = \/73 + 272 (71 + 02 —01) 4 (71 — 02+ 01)% (24)
Note that ¢ is well-defined, because
V427112401 —02) + (v2— 01+ 602)> =77 +2m (12 + 61 — 02) + (—y2 + 61 — 62)°
> 97+ 271 (=2 + 01— 02) + (=2 + 01 — 05)°
= (11 =2 +6, —6)° >0.

Solving the ordinary differential equations in (ADJ) for the dynamic of the adjoint vectors, we get

1 t t
p; (t) _ Ze%t(71+"{2+91+62) {CKI (0) cosh (;) =+ sinh (24) |:(’}/1 — Y2 + 91 — 02)K1 (0) — 2")/1K2(0)
t 1
—2m / i€_§(71+72+91+02+<)u (201’}/2 +ea(y1 =2+ — 02— ()
0
— e (2c172 + Ca(1 — Y2+ 01 — 02+ () +2(—1 + )72 (u)

+ (=1 +72—01+0+C+e (1 — 2+ 61 — 0o +C))U§(U)>du]

t
+ CCOSh g + (’Vl — g+ 91 _ 02) sinh g / ie*%(’y1+’72+91+02+4)u
2 2)) ), 2¢

(—cl(%—vﬁ@l — 0+ )+ 2071+ (1 =2+ 61 — O+ + e (=1 + 72— 01+ 602+ ()i (u)

— 2715 (u) — € (2c271 + 1 (=71 + 72 — 01 + 02 + ) — 27175 (u)))du},

where K7(0), K5(0) are constants that depend on p3(0) and p3(0). The expression for p3(t) follows by
symmetry.
The adjoint vector is connected to the value function under the optimal control. In particular, the value

function =: R} — R associated with (F2)) is defined by

=(a1,a2) =inf {/ F(q(t))dt| q1(0) = a1, q2(0) = az, q is a feasible trajectory in (F2) } .
0

There exists an adjoint vector p*(¢) such that p*(¢) = V,Z(¢*(¢)) under the condition that V,=(q) is
well defined (Frankowska|2010). As the cost structure is linear and increasing in ¢*(t), it follows that

p*(t) >0 for all ¢t > 0.
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2. Minimization condition and the optimal assignment of service capacity in equations @ - reveal
important properties of the optimal control structure. First, observe in @[) - that on the interior
arc when both states are strictly positive and the switching curve is non-zero, the optimal control is
“bang-bang”. Namely, it must be the case that one of the two classes is assigned full service capacity s.
On the other hand, on the boundary arc when one of the states is at zero, the optimal control is of an
“interior” type. Namely, both z7(¢) and z3(t) stay strictly positive in the interior of the control region,
ie., z5(t),25(t) € (0,s).

3. Consider time (, where 5 < 7*, as a time on a boundary arc or a junction time. If the adjoint vector

p* has a discontinuity at time [, then Jump condition requires that
pi(B=)| _ |pi(B+) cay |1 . 0| _ [pi(B+) —wi(B)
o)) = )|+ [ e | ) = G0 2R
and that
w; (8) =0, wi(B)gi(q"(B))=0, i=12.

Note that if ¢;(8) =0, then ¢3(8) > 0 and thus w3(8) = 0. The same holds true for ¢;, namely, if
q5(8) =0, then ¢7(8) >0 and thus wj(5) = 0. Hence, only the adjoint vector associated with the queue
that is at zero can have a jump, while the other adjoint vector remains continuous at time /.

In addition, since the pure state constraint g(g) is time invariant, i.e., the function g does not
have a time argument, we have V,g(q*(53)) = 0. According to Jump condition ({J), the Hamiltonian

H(g*(t),z*(t),p*(t)) is continuous over boundary arcs and at junction times.

4. Pontryagin’s Minimum Principle only requires the necessary conditions to be satisfied “almost every-
where”. In particular, ¢*(¢) and p*(¢) can have discontinuities at countably many points. For most
problems studied in the literature, jumps only happen at junction times (Hartl et al.|[1995)). That said,
in general, we cannot rule out the possibility of jumps on the boundary or interior arcs. In our anal-
ysis, we shall first assume that p*(t) is continuous on interior arcs. We then show that the continuity
assumption indeed holds by verifying a sufficient version of Pontryagin’s Minimum Principle for the
optimal control problem (F2).

We next introduce the sufficient version of Pontryagin’s Minimum Principle. Since the terminal state in
problem is zero and F(0) =0, can be equivalently formulated as an optimal control problem
without a terminal state constraint but rather over an infinite time horizon. The following sufficient conditions
are adapted from Theorem 8.2 and Theorem 8.4 in (Hartl et al.|[1995|) for the equivalent version of

over an infinite time horizon.

Theorem 6 (Arrow-type sufficient condition) Let (¢*,2*) be a feasible pair for an equivalent version
of problem (F2') with infinite time horizon. Assume that there exists a piecewise continuously differentiable
function p*(t) : [0,00) — R? and piecewise continuous functions n* :[0,00) — R? and £ : [0,00) — R3, such

that conditions , , @, (@, (@, (@ hold. Assume further that at all points 8 of discontinuity
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of p*, there exists an w*(B) € R? such that (J1) and (J3) in (@ hold. In addition, assume that the following

limiting condition holds:

lim p*(t)" (q(t) — q*(t)) >0 for every other feasible state trajectory q.

t—o0
If the minimized Hamiltonian H(q*(t),z*(t),p*(¢)) = min, {H (q*(t),2(t),p*(¢))} is convex in ¢*(t) for all
(p*(t),t), the pure state constraint g(q(t)) is quasiconvex in q(t), and the control constraint h(z(t)) is quasi-

convex in z(t), then (¢*,2*) is an optimal pair.

We first note that the solution we derive in this paper indeed satisfies the sufficient conditions in Theorem
|§| and is thus optimal. More specifically, first, we design the control by ensuring that conditions ,
, , , and are satisfied almost everywhere. In particular, in our proposed solution, the state
trajectory ¢*(t) satisfies at all the continuity points of the control z*(¢). The adjoint vector p*(¥)
follows the ordinary differential equations in everywhere on the interior arcs. , , and
hold everywhere over the transient time horizon. Second, Jump condition is guaranteed everywhere over
boundary arcs and at junction times. Since p*(¢) is continuous over interior arcs, conditions (J1) and (J3)
in indeed hold for all discontinuity points of p*(¢). Third, for any feasible state trajectory ¢(t) other
than ¢*(t), lim, . p*(¢)(¢(t) — ¢*(¢)) > 0 holds, because p*(¢),q(t) >0 for all ¢ >0, and lim, ., ¢*(¢) = 0.
Lastly, following @[)—, the control z*(t) is linear in ¢*(¢) for all ¢ > 0. Hence, the minimized Hamiltonian
H(q*(t),z*(t),p*(¢t)) is linear in ¢*(t) for all (p*(¢),t). The convexity conditions on g(q(t)) and h(z(t)) are
also satisfied as g(q(t)) and h(z(t)) are linear in ¢(¢) and z(t) respectively.

We are now ready to prove the results in Section using Pontryagin’s Minimum Principle.

B.4. Proof of Lemma [2]

PRrROOF: The proof of Lemma [2] uses Transversality condition and Complementarity condition .
Consider a boundary arc [¢,t2] and a time epoch ¢ € (¢1,t2). First, by @ - 7 the control over the boundary
arc is of an “interior” type, and the amount of service capacity assigned to both classes (23(t),z5(t)) is
strictly positive. By Complementarity condition (C]), the multipliers satisfy &;(t) =0 and &;(¢) = 0. Then,
by Transversality condition (TJ), we have p1pj(t) = pap3(t) = &;(t). Hence, the switching curve satisfies
P(t) = pap; (¢) — paps(t) =0 for ¢ € (¢1,12). Q.E.D.
B.5. Proof of Lemma [3]

PROOF: Recall that the switching curve is characterized by 1 (t) = p1pi () — p2ph(t). Since 9 (t) =0 on the
boundary arcs and by our construction, p*(¢) does not jump on the interior arcs, the switching curve (¢)
is continuous at all time ¢ € [0,7*] if p*(¢) is continuous at the junction times. In the rest of the proof, we
establish the continuity of p*(t) at the junction times.

Following Proposition 4.2 in [Hartl et al.| (1995) and Proposition 3.63 in |Grass et al.| (2008), for the optimal
control problem which has pure state constraints of order 1, the adjoint vector p*(¢) is continuous at
a junction time 3, i.e., w*(8) =0, if the entry or exit is nontangential, i.e., dg;(8—) <0 or dg;(5+) > 0,
respectively. Namely, the nontangential condition requires that if 8 is an entry or contact point for ¢,

then dg;f(S—) < 0. If 8 is an exit or contact point for ¢, then dg;(8+) > 0. In what follows, we use this
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nontangential condition and/or Jump condition to establish continuity of p*(¢) at junction times. We
prove the statement for the junction times associated with Class 1; the arguments for Class 2 follow by
symmetry. The discussion is divided into three cases based on the relative level of service capacity s.

A Ao A A
Case L max{3t 4 522-22 M 4 22} <5,
(i) Let 8 be an entry or contact point for g.

In order to drive g} to zero, full service capacity must be assigned to ¢} right before 3, i.e., 2} (8—) = s.

Hence,
dg; (=) =M — 121 (B—) — 01¢; (=) —=11¢; (B—) +72¢5(8—) = A — 15 + 7245 (f—).

In addition, there exists some neighborhood [ — 4, 3), 0 < < 3, where dg;(t) <0 for all t € [f -6, ).
This implies that

¢5(t) <(sp1—A1)/ve forallte[B—46,0).
We next show that dgj(8—) < 0. Suppose by contradiction dg;(5—) =0, then it must be the case that
q3(B8) = (sp1 — A1)/72. On the other hand,
dgs (1) = Az — p2z3 (1) = (02 +72) 05 (8) + 71471 (1) < Ao — (02 +72)45 (1) + 7141 (D),

which is strictly negative if

43 (t) > X2 /(02 +72) + 145 (1) /(02 +72).-
For s > max {\1/u1 + A2/ p2, A1 /1 + Aoy /((v2 + 02) 1) }, it holds that

4 (B) = (sp1 — A1) /2> Ao /(02 +72).

Therefore, there exists some ¢’ > 0, such that dg;(¢) <0 and ¢5(t) > ¢5(5) for t € (5 — 9, 5). It follows
that dg;(t) >0 for t € (8 — &, 3), which contradicts that dgj(t) <0 for all t € [8 -4, 3).
Therefore, dgj(8—) <0 at entry or contact point 3.
(ii) Let S8 be an exit or contact point for g}. Similar arguments as in Case 1(i) apply, and we can show that
dq; (B+) > 0.
Since all the entry and exit trajectories are nontangential, the adjoint vectors p*(t) are continuous at the

junction times associated with Class 1 in this case.

M Y2 A2 A1y Az
Case II. s = ui + 92+2'Y2 uf > ui + ui'
(i) Let 8 be an entry point for ¢; (¢).
First, if dgj(5—) < 0, then it follows from the nontangential condition that there is no jump in the
adjoint vector p*(¢) at time /3.

Second, suppose for the sake of contradiction that dg;(8—)=0. It then follows that

33 (B) = (sp1 — A1) /72 = A2/ (62 + 72).
Note that the point (0, A2/(62 +72)) is a locally asymptotically stable equilibrium point for the joint
queue length process under priority to Class 1, while (0,0) is the equilibrium under priority to Class
2. Hence, priority must be switched from Class 1 to Class 2 at time /. This implies that 5 cannot be
an entry point for ¢;(¢), a contradiction.

Therefore, dgj(5—) < 0 at entry point 5 for ¢;.
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(i)

(ii)

Let 8 be an exit point for ¢;.

First, if dgj(8+) > 0, then it follows from the nontangential condition that there is no jump in the
adjoint vector p*(t) at time /3.

Second, suppose for the sake of contradiction that dg;(5+)=0. Then,

33 (B) = (sp1 = A1) /72 = A2/ (02 + 72).
Following the same reasoning as in Case I1(i), since the point (0, A2/ (02 +2)) is a locally asymptotically
stable equilibrium point for the joint queue length process, priority must be switched from Class 1 to
Class 2 at time (. This implies that z7(8+) =0 and

dqi (B+) = A1 — paz1 (B+) — 1141 (B+) +7245(8+) > 0,
a contradiction.
Therefore, dgj(5+) > 0 at exit point S for ¢f.

Let 3 be a contact point for gj.
First, if dg;(8—) < 0 and dg;(8+) > 0, then p*(t) does not have any jump at time S due to the

nontangential condition.

Second, if dgj(8—) =0, then following the same arguments as in Case II(i) and Case II(ii), it holds
that ¢3(8) = X2/(02 + 72) and priority is switched from Class 1 to Class 2 at time (. In this case,
Jump condition requires the adjoint vector p*(¢) to have no jump at time S. To see this, suppose
for the sake of contradiction that p*(t) jumps at 8. Then, Jump condition characterizes that
pi(B+) = pi(B—) + wi(B), for some wj(B) > 0. Recall that the switching curve is defined as ¥(t) =
P (t) — pops(t). Since Class 1 is prioritized right before 5, it holds that (6—) > 0. If p;(t) has a
jump with strictly positive size wi(5) at time S, then ¥(8+) > 0. However, this implies that priority

cannot be switched to Class 2 at time [, which is a contradiction.

Third, the case where dgj(5+) =0 can be ruled out by exactly the same arguments in Case II(ii).

In the cases where 8 is an entry or exit point, we show that the trajectories are nontangential. Hence the

adjoint vectors p*(t) are continuous at these junction times associated with Class 1. In the case where £ is a

contact point, we have established the continuity of the adjoint vectors p*(¢) at § by either showing that the

trajectories are nontangetial or using Jump condition (in the case where priority is switched from Class
1 to Class 2 at f3)

Case ITI. 2L 4 22 g XM 32 Ao
K1 H2 M1

(i)

O2+v2 p1

Let 8 be an entry point for ¢;.

First, if dg;(8—) <0, then p3(t) does not jump at 8 due to the nontangential condition.

Second, suppose for the sake of contradiction that dg;(8—) =0. Then, ¢;3(8) = (spu1 — A1) /72 < A2/ (02 +
v2). Recall that the dynamic of ¢ follows dgj(t) = Ao — pez5(t) — (62 + v2)q5(t) + 11¢; (t). Because
priority is kept at Class 1 over the boundary arc following /3, there exists some ¢ > 0 such that dgi(t) > 0
for t € [8, 8+ 0). This implies that dgj(t) >0 for t € (3,34 6), contradicting the fact that S is an entry
point for ¢ (t).

Therefore, dgj(5—) < 0 at entry point 5 for ¢;.
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(ii) Let 8 be an exit point for ¢;.

First, if dgi(8+) > 0, then pj(t) does not jump at 8 due to the nontangential condition.
Second, suppose for the sake of contradiction that dgj(6+)=0. Then, priority must be kept at Class 1
at time 5 and over some interval [, 8481 ), §; > 0; otherwise, dg; (8+) > 0. In addition, we have, ¢3(3) =
(sp1 — A1) /72 < A2/(02 +72). It then follows from the dynamic of ¢; that there further exists some ds,
0 < 62 < 01, such that 25 (t) = s, dg;(t) > 0 and dg;(¢) > 0 for ¢t € (8, 5+ 2). Since p;(t) > 0, p5(t) >0 and
q5(t) >0 for t € (B, 8+ 62), we have H(q" (), 2*(t),p" (t)) = pi (t)da; (t) +p3(t)daz(t) + c1¢5 () + c2q5(t) >
0 for t € (8,8 + d2). However, the Hamiltonian condition requires that H(q*(t),z*(t),p*(t)) =0
almost everywhere, which gives a contradiction.
Therefore, dgj(8+) > 0 at exit point 3 for ¢;.

(iii) Let S be a contact point for ¢f.
First, if dg; (8—) < 0 and dg; (8+) > 0, then p*(t) does not jump at 3 due to the nontangential condition.
Second, for dgj(5—) =0, we first note that if priority is switched from Class 1 to Class 2 at time S,
then Jump condition requires that p*(t) does not jump at 8 due to the same reasoning as in Case
TI(iii). Next, suppose for the sake of contradiction that dgj(8—) = 0 and priority is kept at Class 1 over
some interval [3,8 + 1), 61 > 0. Then, following the same arguments as in Case III(ii), there exists
some 0, 0 < 03 < 0y, such that 2} (t) = s, dg;(t) > 0 and dg;(t) > 0 for ¢t € (8, 8+ d2), which violates the
Hamiltonian condition (H]), and thus gives a contradiction.
Third, the case where dg}(5+) =0 is ruled out by the same arguments as in Case IIL.(ii).

In the cases where (3 is an entry or exit point, we show that the trajectories are nontangential. Hence the

adjoint vectors p*(¢) are continuous at these junction times associated with Class 1. In the case where § is

a contact point, we have established the continuity of p*(t) at 8 by either showing that the trajectories are

nontangetial or using Jump condition .

Taking Cases I, II, IIT together, we have shown that the adjoint vectors p*(t) are continuous at all the

junction times. This further implies that the switching curve v (t) is continuous at all ¢ € [0, 7*]. Q.E.D.

B.6. Proof of Lemma [4
PROOF: By Lemma [I] we restrict to trajectories without chattering behavior. For any entry or contact
point 7;, there exists a nontrivial interval (0, ;) such that for ¢ € (0,«;), ¢;(7; —t) and ¢;(7; —t) are both

strictly positive. Thus, the multiplier n* is equal to zero over any interior arc. Recall from that

(= \/’Y%+271(72+91 —02)+ (2 —01+62)% = \/7§+272(’Yl +0;—01)+ (y1 — 02+ 601)%
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We get from (ADJ) that for ¢ € (0,;),

71
P (Tj _ t) Cq + ©2 ’Yl+91 + e%(71+72+91+02)(‘rj_t) (Kl (Tj) cosh |:1C(Tj _ t):|
01 +m ’72+92 02 +72 ’Yl+91 2
1 1
Z 71 =72 T b1 = U2) (T Y1ii2 sin T —
+<(( +01 = 03) K (7;) = 27 K2(7;)) sinh | 5¢(7; — 1)
c1 C2 19 1
+ m 1 4+ezm +v2+01+602) (75 —t)
01 m Y2 +92 92 72 Y1 +61

E (Kl(Tj) + % (1 =2 +61 —02) Ky (75) — 2’71K2(Tj))> e36(mi—1)

1 1 o
3 <K1(7j> + ¢ (1 =2 +01 —02)Ki(7;) — 271K2(7'j))) e ¢ t)]
1 ©2 71’191
91 n ’Yz+92 02 T2 71(291

1
+5 <K1(Tj) + ¢ (11 =2+ 61 —02) K (75) — 271K2(Tj))) e 0O 0

1 1 1 .
2 <K1(TJ’) + ¢ (11 =2+ 61 — 02) K (75) — 271K2(7'j))) ez (Hr2Fo1+62-0)(r—t)
where K;(7;), K2(7;) are constants that depend on p3(7;) and p3(7;).
Let
1 1
()= g (Ka(m)+ (=724 = 0 (7) ~ 20 Ea(r) ) (25)
It is immediate that
c 1
pi (Tj —t) _ - C1 - - 271+6(191 +Al(Tj)e%(71+72+91+92+0(7j—i) _ Al(Tj)e%(71+w2+91+92—g)(7j—t)_
1tm Y2+02 2+ 72 Y1461
(26)
By symmetry, for
1 1
Aalry) = 5 (Ko 4 7 (G2 =04 02~ 60 Kalr) ~ 2aEa(5) ) (27)
we have
V2
pi(rs — 1) = Co ‘1 92+'y22 + Ay(T )62 (1+72+01+02+0) (7 —t) _ A2(Tj)e%(w+w2+91+92—c><q—t>.
02 + 72 71 +91 0 + " 0242
(28)

The backward switching curve from time 7; over the interval (0, ;) is given by

1/)(7_ t) ( ‘1 + €2 711191 > M < C2 + “ 9212“/2 ) M
i 1= 0 2
0 + N+ 72+92 02 + 72 1 +91 02 + 2550, 1 +91 01 + " 02 -‘f"/z

+ (1 A1 (1) — poAa(Ty)) €2 L(v1+2+014+02+¢) (15 —t)

— (1 As(15) — p2As (1)) ez (ntr2+01+02—0)(7;—t)
Lastly, we note that v; + v + 61 + 02 — ¢ > 0. This is because under Assumption [1} at least one of #; and

05 is strictly positive, and then,
(= \/’7% + 271 (y2 + 01 — 02) + (y2 — 01 + 62)?

< \/7%"‘2’71(72‘4‘914'92)4-(’724-91 +65)?

=71 +72+ 61+ 6.
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The statement follows from defining

1 1
(5 125(’71 +72+01+0:+C), v 525(71 +y2 401 +62—().

Q.E.D.

B.7. Proof of Proposition

PROOF: The proof utilizes Proposition [1| and the possible shapes of the switching curve, (7x — t), char-
acterized in Lemma [4] It is divided into two cases, depending on the relationship between the cp-index and
the modified cu/6-index.

Case 1. First, we consider the parameter regime where the cu-rule and the modified ¢p/6-rule prioritize the

same class, namely,
(e1pp1 — o) (r1 —12) >0, for rq,ry in @ and .

For the moment, suppose Class 1 has a higher cu-index and modified cp/6-index.

By Proposition[I} when the state is in an e-neighborhood of the origin, it is optimal to assign strict priority
to Class 1. Recall that 7y is the last entry or contact point (forward in time) when one of the states hits
zero. It follows that 7 must be the last epoch forward in time when g hits zero, and ¢7 is then maintained
at zero after 7y, i.e., ¢j(t) =0 for ¢t € [Ty, 7*]. By Lemma [4] the switching curve right before 7y satisfies for
some ay < Ty,

Uy =) =711 =72 + (1AL (Tx) — pa Ax(Ty)) €2 (OO0
— (11 Ay (T) = paAg (7)) e2 01720020 0N =0 ¢ e (0,7 — auy),
where A;(7y) and As(7y) are constants in R. Furthermore, D7~ (t), the pseudo switching curve backward

from 7y, satisfies

lim D™ (¢t) =11 — 12 >0.

t— o0
The structure of D™ (t) regulates that it can have at most two zeros. With lim, ., D"~ (t) > 0, the two
possible function shapes D™ (t) can take are demonstrated in Figure with one root in Figure and
two roots in Figure Figure |16|is comprehensive in the sense that any D™ (¢) function shares the same
behavior in crossing zeros and in the limit as t — co. In particular, if D™ (¢) has one zero as in Figure
then it must be that D™ (t) is increasing at the zero point and eventually converges to r; —ra. Once
D7~ (t) crosses zero, it will never decrease to zero again. Likewise, if D™ (t) has two zeros as in Figure
then it must be that D™V (¢) has negative slope at the first zero, has positive slope at the second zero, and
eventually converges to r; — ry. Once D™ (t) crosses the second zero point, it will never decrease to zero
again. We comment that if the values of A;(7y) are As(7y) are known, then there is no ambiguity in the
trajectory of D™V (), and thus no notion of “possible” function shapes. Nevertheless, due to the degrees of
freedom inherent to Pontryagin’s Minimum Principle, it is hard to characterize these coefficients exactly.
Therefore, the idea is to infer the structure of the optimal control from the interaction of the coefficients

without explicitly characterizing their values.
We first note that the interval [7y,7*] is a boundary arc over which ¢; is maintained at zero. It follows

that 1(t) =0 for t € (75,7*) (Lemma [2), and ¢(t) is continuous in time so that 1 (7y) = 0 (Lemma [3).
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Figure 16  Possible trajectory of D™ (t) with c1u1 > cope, modified c¢ip1 /61 > modified capiz /02

D™(t)
D™(t)
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(a) One zero point (b) Two zero points

Furthermore, since the optimal control is “bang-bang” right before 7y, in order to drive ¢; to zero at time
Tn, strict priority must be given to Class 1 in some non-trivial neighborhood before 7. Namely, there exists
€,y > 0 such that ¢(¢) > 0 for ¢t € (75 — €,,7n ). For D™ (), this implies that D™ (0) =0 and D7~ (¢t) > 0 for
t € (0,€,,). Thus for the possible structures in Figure[L6] if D™ (t) has one zero (Figure[L6(a)]), then D™ (0)
is at this unique zero point. If D™~ (t) has two zeros (Figure[I6(D)]), then D™~ (0) is at the second zero. This
implies that as long as the dynamic of the switching curve ¢ (75 — t) follows that of D™~ (t), ¥ (7x —t) > 0.
It is important to note that the trajectory of i(ry —t) agrees with D™ (¢) for ¢ in some non-degenerative
interval (0,7n — an).

Next, taking the derivative of D7~ (t) with respect to ¢, it is easy to see that dD™ (¢t) can have at most
one root. Since D™ (0) =0 and D™ (t) > 0 for ¢t € (0,¢,, ), it holds that for any interval [0, £), £ > 0, either
D7~ () is strictly increasing over [0,£) or D™ (£) > lim;_, o, D™ (t) — ¢ for some ¢ > 0 (which can be arbitrarily
small). In either case, D™ (¢) > ¢ for some &' > 0. If n;(7y —t) =0 and n5(7y —t) =0 for ¢t € [0,), then
the same holds true for the backward switching curve (7 —t) over the interval ¢ € [0,£). To this end, it is
only possible for ¢(7y —t) to deviate from the dynamic of D7~ (t) if n;(7x — ) becomes strictly positive at
some time 0 < § <t. (Naturally, 5 < ay.) Now, suppose there exists such 8> 0, i.e., n5(y — 3) > 0. Note
that nj(tn —t) =0 and n3(7x —t) =0 for all t € [0, ). As D™~ () > ¢’ for some &’ >0 and n;(7y — 3) >0, it
follows that t(7x — 8) > ¢’ > 0. However, n;(7y — ) becomes positive only if ¢;(7y — ) =0, which implies
that strict priority is given to Class 2 right before time (75 — ), ie., ¥((7a — ) —) < 0. However, due to
the continuity of the switching curve, this contradicts the fact that (7y — 8) > ¢’ > 0. Therefore, for all
t € (0,7n], ¥(7n —t) follows the dynamic of D7~ (¢) and remains strictly positive. We then conclude that
strict priority to Class 1 is optimal throughout the transient time horizon.

The proof for the case where Class 2 has a higher cu-index and higher modified cp/60-index follows similarly.
In this case, strict priority to Class 2 is optimal throughout the transient time horizon.

Case II. We consider the case where the cu-rule and the modified c¢u/6-rule prioritize different classes,
namely,

(c1p1 — capio) (r1 —12) <0,  for r1,7s in @ and .

For the moment, suppose Class 1 has a higher cu-index and Class 2 has a higher modified cpu/6-index.

Following similar lines of arguments as in Case I, the backward switching curve ¢ (7 — t) follows the dynamic
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of D™~ (t) for some non-trivial time interval t € (0,ay). Again, the structure of D™ (¢) guarantees that it
can have at most two zeros. With Class 2 having a higher modified cu/6-index, the two possible shapes for
D7~ (t) are demonstrated in Figure with Figure crossing zero once and Figure crossing zero
twice. In particular, if D™ (t) has one zero as in Figure then it must be that D7~ (¢) is decreasing at
the zero point and eventually converges to r; —ry < 0. Once D™ (t) crosses zero, it will never increase to zero
again. Likewise, if D™ (t) has two zeros as in Figure then it must be that D™~ (¢) has positive slope
at the first zero, has negative slope at the second zero, and eventually converges to r; — 2. Once DV (t)

crosses the second zero point, it will never increase to zero again.

Figure 17  Possible trajectory of D™ (t) with cip1 > capo, modified cip1 /01 < modified capz /602

D™(t)
D™(t)
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0 © 01p@ 0
t t

(a) One zero point (b) Two zero points

By Proposition [} for ¢;pu; > cops, it is optimal to give strict priority to Class 1 when the system state is
close enough to the origin. Therefore, 7 is the last time before 7 when ¢f hits zero. In order to empty g7,
strict priority must be given to Class 1 for some non-trivial time interval right before 7. This implies that
there exits €,, > 0 such that D, (0)=0 and D, (¢t) >0 for t € (0,¢,, ). In this case, we can rule out Figure
D, (0) must be at the first zero in Figure Now, let time 5 > 0 denote the second zero in Figure
i.e., D™ () =0. Then, one of the following three scenarios holds.

Scenario 1. 7y < . The backward switching curve ¢)(7y —t) agrees with D™ (¢) for all ¢ € [0, 7x]. Because
Y(Ty —t) >0 for all t € (0,7y), strict priority is given to Class 1 throughout the transient time horizon.
Scenario 2. 7, > (. The backward switching curve ¢ (7y — t) follows D™ (¢t) for ¢ € [0, 8). Both ¢} (7x — )
and g3 (7y —t) stay strictly positive over t € (0, 3). At time t = 3, priority is switched from Class 1 to Class 2
(backward in time). In this scenario, we consider the cases where either both queues are strictly positive at
t=f as in Figure or (3 is a contact point as in Figure In either cases, the multipliers o} (7x —t)
and 7;(7y — t) stay at zero (or become positive only at one point). Then the backward switching curve
P(rn — t) further follows D7~ (t) for some non-trivial interval, (8,8 4 ) for some ¢ > 0. Following similar
arguments as in Case I, once crossing zero at t = 3, the backward switching curve ¥ (7y —t) remains strictly
negative afterwards as shown in Figure In this case, the optimal control (forward in time) switches
priority once from Class 2 to Class 1.

Scenario 3. 7y > 8. The backward switching curve (7 —t) follows D7~ (t) for all ¢ € [0, 8). Both ¢; (75 — )

and ¢5(7y —t) stay strictly positive over ¢ € (0, 3). Different from the Scenario 2, § is an exit point (forward
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Figure 18 Backward state trajectory and switching curve in Scenario 2
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in time) for the trajectory of ¢;; see Figure Correspondingly, the entry point is 7y_1. At time 75 _1,
the switching curve ¢ (7 _1) = 0. Now, we repeat the structural derivation for the backward switching curve
starting from 7x_1, namely, for the function ¢ (ry_1 —t). In order to drive ¢5 to zero at time 7y_;, strict
priority must be assigned to ¢; for some amount of time right before 7v_1. As such, there exits € >0

such that D™-1(0) =0 and D™~-1(¢) <0 for t € (0, ¢

TN -1
v, )- Again, following similar arguments as in Case I,
we can show that once crossing zero at Ty_1, the switching curve ¢ (7y_; — ) remains strictly negative for
t € (0,7n_1). In this case, the optimal control (forward in time) switches priority once from Class 2 to Class

1. The structure of the backward switching curve in this case is illustrated in Figure [19(b)|

Figure 19 Backward state trajectory and switching curve in Scenario 3
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In all the three scenarios above, the optimal control either assigns strict priority to Class 1 throughout, or
switches priority once from Class 2 to Class 1.

When Class 2 has a higher cu-index and Class 1 has a higher modified cp/6-index, the proof holds in
a similar fashion. In this case, the optimal control either invariantly assigns strict priority to Class 2, or

switches once from prioritizing Class 1 to Class 2. Q.E.D.

B.8. Proof of Proposition

PRrROOF: First, as shown in Proposition if the cu-rule and the modified ¢y /6-rule prioritize the same class,
then the modified cu/6-rule (the cu-rule) is optimal throughout the transient time horizon and the claim

follows.



69

Next, consider the case where the cu-rule and the modified cu/6-rule prioritize different classes, namely,

(c1pp1 — capa) (r1 —12) <0, for r1,7ry in @ and .

By Propositions |1}and |3} when the cu-rule and the modified cu/6-rule prioritize different classes, the optimal
control follows the cu-rule near the origin and switches priority at most once along the trajectory. However,
it remains to be shown whether or not the optimal control will ever switch priority. Namely, the work left is
to prove that there exists a set of initial conditions from which the optimal trajectories switch priority from
one class to the other. In this proof, we establish the existence of such initial values and provide a partial
characterization of the states at which the system will follow the modified cu/6-rule.

For the moment, we consider the case where the cu-rule prioritizes Class 1 and the modified cu/6-rule
prioritizes Class 2. We first note that by the definition of 77, both queues are strictly positive for t < 7y.
Thus, the multipliers nj(t) =n3(t) =0 for ¢t < 7;. By Lemma [4] the backward switching curve before 7; is
characterized as follows

1/)(71 - t) =r1—T2+ (M1A1(7'1) - #2A2(7'1)) 6%(71+72+01+92+O(T17t)
— (1 A1 (11) — p2Aa(11)) e%(V1+W2+91+92—C)(Tl—0, (29)
where A; (1), A2(71) are constants in R, and 0 < ¢ <51 +v2 + 601 + 2.
Note that due to class-transition, when one queue gets emptied, the other queue cannot be arbitrarily

large. In the case where Class 1 gets emptied at 7, it holds that ¢;(m) =0, and for any € > 0,

q5(11) < (sp1— A1) /72 +e

Similarly, in the other case where Class 2 gets emptied at 7, it holds that ¢3(71) =0 and for any € > 0, we
have ¢;(71) < (spt2 — A2) /71 + €. Since ¢;(m1) and ¢5(71) are uniformly bounded for any initialization, using
the fact that p*(¢) = V,Z(¢*(t)), it holds that pi(71) and pj(71) are bounded for any initialization.

Now, from the form of A; () and Ay(7) in the proof of Lemma |4} in particular, and (27)), we see
that A;(71) and As(7y) are bounded if pt(7;) and p3(71) are bounded, uniformly for any initialization.

Lastly, if the system is initialized with a large queue, 71, the time to empty queue 1 for the first time
forward in time, is large. As t approaches 71 in , the sign of the backward switching curve will eventually
be governed by r; — r5. In other words, for M sufficiently large, the modified cp/6-rule is optimal at time ¢
it g1(t) +q2(t) > M.

The arguments for the other case where the cu-rule prioritizes Class 2 and the modified cp/6-rule prioritizes

Class 1 follow by symmetry. Q.E.D.

B.9. Proof of Theorem [2]
PROOF: The statement of Theorem [2] follows directly from Propositions [} 2, and [3] Q.E.D.

B.10. Proof of Proposition [4]

PROOF: For ¢ipq < capig and ry > 1y, Theorem [2] indicates that a one-time switch in priority from Class 1
to Class 2 will take place if the system is initialized far enough from the origin. To derive the policy curve at

which (state) the switching takes place, we apply the Hamiltonian condition . In particular, let (a1, az)
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be a state where priority is just switched from Class 1 to Class 2, i.e., (a1,as) is on the policy curve, where
a1 > 0 and ay > 0. We denote the time of the switching by ¢;. We also denote t, > ¢; as the time Class 2 gets
emptied and t3 = 7* > t5 as the time Class 1 gets emptied.

Starting from time ¢;, the dynamic of the adjoint vector for p*(¢) is specified by (ADJ) as

t
pi(t) = K (t))e!™ + e / e (—cy + 17 (s)) ds
0

Ky Y2 ’ _
(1) = Ko (t ei(92+’y2) 4 M2 etf1 _ et(92+72) + I R e %01 (¢ +n*(s))ds 30
p2( ) 2( 1) 72_914_92 ( ) 72_91_’_92 0 ( 1 T]l( )) ( )

t t
) [ ey () st O [ (e pg(9) ds,
Yo — 01+ 02 0 0

where K (t1) and K»(t1) are constants that depends on pj(t1) and p3(¢1). Since there is no other switch in

priority (Proposition [3]) after t1, ¢1(t) >0 for t € (t1,t3), and ¢2(t) >0 for ¢ € (¢1,t2). Then, reduces to

pit) = ;i LR () for tE [t ts]
1
() = C2 C172 i ety Ky (th) + 6(92+W2)t(_72K1 (t1) + (72 — 01+ 02) K5 (t1)) for ¢ € [t1, t)].
? Oz +7v2  01(02+2) Yo —0; + 0 ’

(31)

The rest of the analysis is divided into three time intervals. For each one of the three intervals, we
characterize the state trajectory ¢*(t) and the adjoint vector p*(t). Then, plugging the values of ¢*(t) and
p*(t) into the Hamiltonian and utilizing the Hamiltonian condition (H]), we are able to characterize the
constants K (t1), K2(t1) in as well as the policy curve. These steps will become self-explanatory as the
proof proceeds.

Case 1. ¢} is strictly positive or has just reached zero at time ¢;. In this case, full service capacity s is
assigned to Class 1 at time t;—.

Interval 1: At time t;—, we assign s servers to Class 1 and 0 servers to Class 2.

Gi(ti—)=a
3 (ti—) = ay
C
H( (1), (02,07 (1)) = v + s + e — a4 00 —sp) (5 Fa0))
1

c1y2 + c204

—a9 (0 A
F(—a2(02+72) + %) (72914—9192

(1),
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Interval 2: Over [t1,t2), we assign 0 server to Class 1 and s servers to Class 2, and Class 2 gets emptied at

time to.

1
() = — e(tt1)(72+91+92)<6(tt1)91 0, (ay(0s + Ay +s
ql() 91(62"")/2)(’}/2—914‘02) Y2 1( 2( 2 72) 2 MQ)

— et E292) (9, 4 y5) (agyafy + @161 (2 — 01 4+ 02) — Yo i + 01 A1 — o di — Yo do + SY2fia)

— e(t_tl)(72+91+92)(72 — 01 4 05) (0201 + 2 (M + Ao — SMQ)))

1
q;‘(t) - I~ e~ (t=t1)(02+72) (a2(92 _|_,72) 4 (_1 +e(t—t1)(92+72)>()\2 _ SMQ)) ,

bt — 1 log —Aagy2 — a202 + )\2 — Sl2
2 A — Spiz

1
H(q"(t),z"(t),p"(t)) = W{Cﬁb}q + 201 (A2 — sp2) + c17y2(A1 + A2 — sp2)
1(V2 2
— 6102 +2) [0191-’{1@1) — MK (t) + a0 Ko (t1) — Ao Ko(t)

+5pa Ko (1) + azye (=K1 (t1) + KQ(tl))] }
Putting the analysis for Interval 1 and Interval 2 together, we can solve for K;(¢1) and K5(t;) from the
system of equations H(q*(t1),z*(t1),p*(t1)) =0 and H(q*(¢t),2*(t),p*(t)) =0 for ¢ € [t1,t2). In particular,
(—az(f2 +2) + A2)p1 + coazbhipio + 1 (azy2 + A1 — spua ) po

C
Ki(t))=—

01(az(02 +72) — A2)pr +01(—azy2 + @16y — A1+ spa) po (32)
Ko(ty) = c1Y2 + 261 (cray + caaz) iy
2{1) — — :
Y201+ 0102 a0z +y2)p1 — Aopir — agyaptz + (@101 — Ay + sp ) o

Interval 3: Over [t,t3], we assign enough servers to maintain Class 2 at zero and the rest of the service

capacity to Class 1. Class 1 gets emptied at time ¢3.

ef(tftQ)el
()= — (asy20, + a0 — 014+ 02) — oA + 0101 — O30 — X+ 5
‘h() 91(_724_91_92)( ( 27201 1 1(’72 1 2) Y2A1 171 2A1 — Y272 ’72/12)
01
az (02 +72))92+”2 1
14 2R — (Mg — sp2)(— (7o — 01+ 0) 1 +
< —\o + Sfio L1 (( 2 /1'2)( ('72 1 2)/141 ’YQ,UQ)

el (9 — By 4 B3) Magir + (A 8#1)#2))>,

7 (t) =0,

1 1
t3 —to=—1Io Ao —s —0,+96 =
76 g<(72—91+92)()\2M1+(/\1—Sul)uz) <( 2= o) (D2 =0t o) =2tz)

— g (27201 + @101 (72 — 01 4 02) — Yo A1 + 0101 — O2 A1 — Y2 ho + 572/12)

__6
<1+ az (02 +’Y2)) o2t >)
— A2+ Spo

Note that [ta,%3) is a boundary arc for g5 and an interior arc for ¢;. As dg;(t) =0, we have

H(q™ (1), 2" (t),p" (1)) = pi(t)dqi (t) + p5 (1) dg3 (1) + c1qi () + c2q5(t) = pi(H)dgq (8) + caqi (B)-

Then, plugging the expression of ¢;(t), (31), into H(q*(t),z*(t),p*(t)), we get
4
a2(02 + 72) ) 92+1’Yz

l(tl) ( (
+ (A2 = sp2) (2 — 01 + 02) 11 — Yap12) —Aa + Spio

H(q"(t),27(1),p" (1)) = 1272 — 01 1 02)

— p2(azy201 4+ a101 (2 — 01 4 02) — 2 A1 + 01 A1 — 0201 — 2o + 372#2))

c1(Aapn + (A — sy ) o)
+
01142
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Plugging the value of K;(t1), (32), into the equality H(q*(t),z*(t),p*(t)) =0 for ¢ € [ts,t3) establishes the
relationship (a1,as) must satisfy. This gives the policy curve in Proposition
Case II. ¢} is equal to zero at time ¢; and has been maintained at zero over interval [t; — €,¢1] for some
€ > 0. In this case, the right amount of service capacity is assigned to Class 1 at time ¢; — to maintain ¢} at
Zero.

Interval 1: At time t;—, we assign (A1 + 7243 (t1—))/p1 servers to Class 1 and the rest of the servers to

Class 2.

q;(ti—)=0
g5 (t1—) = ay

H(q (=), 2" (t1-),p" (1)) = caas + (—am 05)+ Ao —spiz +

(agy2 + A1) pa ) (6172 + a6y

+ Ko (t
H1 Y261 + 6105 2( 1)>

Interval 2: Over [t1,t5), we assign 0 servers to Class 1 and s servers to Class 2, and Class 2 gets emptied

at time 5.

1
(1) = — e(ttl)(’72+91+92)<e(tt1)91 0, (a (0 + — Ao+ s

ql() 91(92""}/2)(’}/2_91‘1'62) Y2 1( 2( 2 72) 2 MQ)
— et (022) (92 + ’72)(a2’Y291 — VoA + 0101 — 02X — Y2 ho + 572112)
- e(t_tl)(72+91+92)(’72 — 014+ 02)(02A1 +v2 (A1 + A2 — 3M2))>7

1
(t) = Oyt n e~ 0272) (g, (0 4 5) + (=1 + et 12 (3, — spu5))
ty 1, = 1 log [ 28272~ a6 + A2 — spz
02 + 72 A2 — Spta
1
H(q"(t),2"(t),p"(t)) = m{ﬁ%)q + 201 (Ag — spa) + c1v2 (A1 + Ag — spu2)

—01(02 +72) [ — MK (t1) + a202 Ko (t1) — A\ Ka(t)

+ 512 Ko (t1) + anya (=K1 (t) + Ka(t1))] }-

Putting the analysis for Interval 1 and Interval 2 together, we can solve for K;(t;) and Ky(¢;) from the
system of equations H(q*(t1),2*(t1),p*(t1)) =0 and H(q*(t), 2*(t),p*(t)) =0 for ¢ € [t1,t2). In particular, we

get

c1(—az(02 +72) + A2) 1 + c2a26 pio + c1(a2y2 + Ay — spi1) pr2
61 (az(02 +72) — A2) 1 + 61 (—a2y2 — A1+ spq) e
v +ca0, CaQ2 iy
Yobh + 0105 as(02+ v2)p1 — Aopin — aoyapis 4+ (= A1 + spa ) pe

Kl(tl) =

Kg(tl) -
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Interval 3: Over [t,t3], we assign enough servers to maintain Class 2 at zero and the rest of the service
capacity to Class 1. Class 1 gets emptied at time ¢3.
ef(t*t2)91
1(=72 + 61 —02)
01
/) Tt 1
(1 . a2(2+72)> S

—Xo + Spia g(oﬂ_slh)(_(% — 01+ 02)p1 + v2p12)

q(t)= 0 ( (a27201 — Y2 A1 + 0101 — O2A1 — Y2 Ao + 572 102)

el (9 — By 4 0,) agan + (A — smm))) ,

0 (t) =0,
i 1

ts —ta=—1o
T g((72—914'92)()\2,&1—1-()\1—sul)MQ

) (w = op2) (12— 1 + O2)pas — vapa)

01
as (0 + BPRED
— 2 (@2y201 — Y2 A1 + 01 A1 — O2 A1 — Yoo + 572 112) (1 + 72& 2 %)) ))
—Ag + Spto

Note that [ta,3) is a boundary arc for g3 and an interior arc for ¢;. As dg;(t) =0, we have
H(q"(t),2"(t),p"(t)) = p1(t)dq; (t) + p3(t)das (t) + crqy (t) + c2q3(t) = pi(t)da; (t) + c1q5 (1).

Then, plugging the expression of ¢;(t), into H(q*(t),z*(t),p*(t)), we get
Kl (tl)

Hlg(®),=0,p" (1) = = =5y

(_ p12 (a2¥20r — Y21 + 01 A1 — 02X — Yoo + $72112)

01
as(02 + ’Yz)) 2472 )

Ay — —0,+0 — 1
+ (A2 = sp2)((72 14 02) 1 72#2)( + I VTP,

c1(Aapn + (A — sp1) pa)
+
01412

Plugging the value of K;(t1), (33), into the equality H(q*(t),z*(t),p*(t)) =0 for ¢ € [t2,t3) establishes the

relationship as must satisfy in order for priority to be switched from P; to P, given that ¢; is at level a; and
¢; has been maintained at zero for some amount of time. It is easy to see that setting H (g*(¢),z*(t),p*(t)) =0
in Case 2 retrieves the point (0,a3) on the switching curve established in Case 1.

It is important to note that the switching point (0,as) analyzed in Case 2 assumes that ¢; has been
maintained at zero before priority is switched. On the other hand, the switching point (0,as) on the policy
curve derived in Case 1 assumes that ¢i just hits zero when priority is switched from P, to P». It is well
expected that the switching points in the two cases coincide with each other. Our proof rigorously verifies

this. Q.ED.
Appendix C: Proof of Theorem

ProoF: We dissect the transient optimization problem over the entire time horizon [0, + 7*] into a two-
stage optimal control problem. The first-stage problem is over the time interval [0,7"). The second
problem is over the time interval [T, T + 7*] and its initial condition is equal to the terminal state in
problem (12)). We also note that over [T, T + 7] is equivalent to over [0,7*] with the appropriate
initial condition. In what follows, to distinguish problems and , we will append superscripts [1] and
[2] to the queue length processes, dual vectors, etc., associated with problems and , respectively.
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For example, we will write the time horizon for as [0, T1) and the time horizon for as [012), 7+ (21],
where 0011 =0, 70 =T,0! =0, and 7+ = 7.

We first note that for the second-stage problem over [0 7*[2]] it follows directly from Theorem
that the optimal scheduling policy follows the cu-rule when the states are sufficiently small, and follows the
modified cp/6-rule when the states are sufficiently large. The work left is to show that the optimal scheduling
policy switches priority at most once over the entire transient time horizon [0,7 4 7*]. To do this, we establish
an analogous version of Proposition [3] below.

Claim A. Under Assumptions |[l| and 4. for the transient optimal control problem and , if the
cu-rule and the modified cp/6-rule prioritize the same class, then the optimal transient scheduling policy does
not switch priority. If the two index rules prioritize different classes, then the optimal transient scheduling
policy switches priority at most once over the transient time horizon [0,7T + 7*].

To establish Claim A, we observe that problem over the initial period [0, T11) is an optimal control
problem with fixed time, free terminal state, terminal cost, and no state constraints. For this type of problems,

the following version of Pontryagin’s Minimum Principle applies.

Lemma 5 (Theorem 3.4 in |Grass et al.| (2008)) Under Assumption let z*1 be an optimal solution
to , and ¢* be the corresponding state trajectory. There exists a continuous and piecewise continuously
differentiable adjoint vector p*! : [0, TM] — R? satisfying for all t € O™, TM]:

1. Ordinary Differential Equation condition (ODE):

M(0)=qo, dg"M(t) = fU (¢ (2), 21 (1), 1)
2. Adjoint Vector condition (ADJ):
A (D) = 9, H (g 1), 200,00, )
3. Minimization condition (M):
HY (g (), 2 W (), p M (1), 1) = min{ HW (¢ (2), 21 (), p" M (1), 1)}
4. Transversality condition (T):
P = v, 5 (). (39

Note that as we allow for time-varying arrival rates on [0, 7], 11 and H') have an explicit time compo-
nent. We draw several connections between the two versions of Pontryagin’s Minimum Principles in Lemma
and Theorem [p| First, the construction of the Hamiltonian and conditions (ODE) and (M) are essentially
the same in the two versions, except that fluid dynamic f* and the Hamiltonian H! in Lemma [5| are
time-dependent through Al (t). Second, Minimization condition (M) in Lemma [5| specifies the dynamics of
the adjoint vector for problem

dpi™ (1) = (01 +7)piM () = aps(t) — e, dpsM(t) = (05 +22)psl (1) — vapi M (t) — 2, (35)



(0]

while the Minimization condition (M) in Theorem [5| gives that for problem (F2’)

dpiP (1) = (01 + )PP (1) — PP (1) — er + P @), dpsP(E) = (02 + 72)psP (8) — 32p i (1) — o + m3 2 ().

(36)
Comparing with , we note that the adjoint vectors for problems and follow the same
dynamic when the state constraints in are not active, namely, when both queues are strictly positive.
Third, Transversality condition holds exclusively for the first-stage problem which has fixed terminal
time and no terminal (state) constraint.
To this end, for the second-stage problem , let 7'1[2] denote the first time one of the two queues hits
zero. The pseudo switching curve associated with 7'1[2] is given by
D () = = 1o+ (AP () = pp AR (7} ) e Crbotonton o0
— (AP () = o AR () ) €3 Crtomtont o001 for anr ¢ > 0.
Since both queues are strictly positive for ¢ € [0[2), 7)), the multiplies 1] (t) = 31! (£) = 0 for ¢ € [0, 7[?).
It follows that the switching curve for problem backward from time 7'1[2] agrees with D’ (t), namely,

[2]

1/1[2] (71[2] —t)=D" (t) forallte (0[2]771[2]]'

Now, recall that E(qo) is the value function from state g in the second-stage problem (F2'). Thus, it
follows from Transversality condition in Lemma [5| that

p Tt =V 2@ (TM)) = V,E(g"P(0%)) = p I (07). (37)

By , together with the fact that the adjoint vectors for problems and (F2')) follow the same
dynamic when both queues are strictly positive, it is easy to see that the backward switching curve for the

first-stage problem ¢[! is connected to the pseudo switching curve for the second-stage problem D7 via
ST 1) = D (72 1), for all te [0, 7). (38)

It follows from that analyzing the first-stage backward switching curve yM (T —¢) is equivalent to
analyzing the second-stage pseudo switching curve D (7'1[2} +t) extended beyond the beginning epoch of

the second-stage problem for another T time units. It is then straightforward to see that the arguments in
the proof of Proposition [3| extend to the first-stage problem and Claim A follows. Q.E.D.
Appendix D: The Special Cases with No Class-Transition and Abandonment

The special case where v, =5 =6; = 6, =0 is not covered in Theorem [2] as Assumption [1| does not hold
in this case. However, the same lines of argument, utilizing the Pontryagin’s Minimum Principle, can be

use in this case to establish the optimality of the cu-rule. Indeed, the proof is more concise here and nicely

illustrates the main idea behind our proof strategy.

Corollary 2 If y1 =7y, =0,=02=0, and s > A\1/u1 + A2/ A2, the cu-rule is optimal for the transient fluid
optimal control problem .



76

PROOF: Suppose without loss of generality that c;u; > cops. The queue length process evolves as
dql (t) = )\1 — U121 (t) and dQQ (t) = )\2 — U222 (t)

The Hamiltonian is
H(q(t),2(t), p(t)) = p1(t)dqi (t) + p2(t)dga(t) + c1q1 () + c2g2(t)
=p1(t) (A = pa21(t)) + p2(t) (A2 — p222(1)) + 12 (t) + €242 (1)
The augmented Halmiltonian takes the form
L(q(t),2(t),p(t),n(t),£(t)) = H(x,s,p) +n(t)" g(a(t)) + ()" h(=(t))
=p1(t) (M — paz1(t)) +p2(t) (A2 — p222(1)) + c1¢1 (1) + c292(¢)
+m(t)(=q1(t) +12(t)(—g2(t)) + &2 (8) (21 (£) + 22(t) — 5)
+ &) (—21(t)) + & () (—22(2)).
Since dp*(t) = =V, L(q"(t), 2" (t),p"(t),n"(t),£"(t)), we have

dpi(t) = —c1+ni(t) and  dp;(t) = —ca +15(t). (39)

Hence,
t

t
pi(t) = —clt—i—/ 7 (s)ds+ K; and pi(t)= —C2t+/ N5 (s)ds + Ko,
0 0

where K; and K5 are constants that depend on p*(0).

The switching curve is
$(t) = papi(t) — paps(t)-

Proposition [[] still holds in this case. Hence, when the queue length process is arbitrarily close to the origin,
the cu-rule is optimal and Class 1 should be given strict priority. Let 7y be the last time epoch (forward in

time) when ¢; (¢) hits zero, i.e.,
T~ =sup{t:q;(t) =0, ¢;(t —€) >0 for some € >0} .

Following the same lines of arguments as in Lemmas|2|and 3] we have the switching curve ¢ (t) =0 for ¢ > 7.
We next characterize the optimal control before 7. To this end, observe that by construction, both queues
are strictly positive before 7. Therefore, there exists a non-trivial period [0, 8], 8 < Tx, such that for ¢ € [0, 3],

the backward switching curve is characterized by

W —£) = () + (capin — Capa)t+ (u2 / (s —m / nI(S)d8> — (1 — o)t (40)

Since cyu1 > capio, the significance of is that strict priority must be assigned to Class 1 during this
period. Moreover, as no queue has the possibility to hit zero over this period, the characterization of the
switching curve indeed holds for all ¢ € [0, 7]. Namely, strict priority to Class 1 is optimal throughout
[0,7*]. Q.E.D.
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D.1. Full Characterization of the Dual Vectors When v, =7, =60, =0,=0

When establishing the optimal scheduling policy, we use Pontryagin’s Minimum Principle to derive structural
properties of the dual vectors (p*(t), n*(t), £*(¢)) without characterizing their expressions explicitly. The
latter step can be prohibitively hard for systems with convoluted dynamics, as is the case for our model with
both abandonment and class-transition. On the other hand, for simplified systems without abandonment or
class-transition, we can provide a full characterization of the dual vectors. We next illustrate the derivation.

By Corollary [2| the cu-rule is optimal at all time for systems without abandonment and without class-
transition. Suppose without loss of generality that the cu-rule prioritizes Class 1, i.e., ciuu; > copte. In this
case, the value function associated with state (ai,as) is equal to the cost of emptying the system under
P; when the system is initialized at (a1,a3). We can then calculate the value function by solving the state

trajectory and the cost directly. Specifically, the value function takes the form

(a1, a2) = 1 (—c1a2+ ca (a3pa (=1 + spn) +afdopn — 20102 (M —Sm)uz))_
’ 2(A1 — sp1) ! Agpin + (A1 — spa) o

For a fixed initial condition, qo, let ¢*(¢) denote the (optimal) state trajectory under P;, which can be
solved directly. Along the optimal state trajectory, 71 is the time epoch when ¢ first gets emptied. g is then
maintained at zero after time 7y, until ¢; reaches zero at time 7*.

Using the fact that there exists an adjoint vector p*(¢t) = V,E(¢;(t),¢5(t)), we have

1 ca(—q5()A1 +q; (H) X2 + 545 (t)ul)uz)
()= ———— [ —c1q; (t) + , telo, 7"
1() Al_sul ( 1q1() A2M1+(A1_3M1)/J/2 [ T]

—Xofi1 — A fio + Spipie

The switching curve is then given by

tel0,77].

Y(t) = papi (t) — paps(t), te€0,77],

where p*(t) is calculated explicitly in (4I]).
In addition, it follows from that at all regular points of p; (¢) where p;(t) is differentiable with respect
to t, i (t) =dp;(t) +¢;, i =1,2. In this case,

T]*_ 0, tE[O,Tl]
! ¢y —Cofia/ 1, tE [T, T]

ny =0, tel0,77].

Lastly, we can infer from Transversality condition and Complementarity condition that

§(t) =pmpi(t), tel0,77]

&)=0, tel0,7]

() {ulpi(t) —pepi(t),  1€[0,7]

0, te&[m,r].
We comment that similar analysis to delineate the dual vectors is not replicable for the general system
with both abandonment and class-transition. We shall illustrate the difficulty for a simplified system with

one-way class-transition, namely, 7; = 0. Consider the scenario where the cpu-rule prioritizes Class 2 and the
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modified cu/6-rule prioritizes Class 1 (y; =0). With the policy curve explicitly characterized in Proposition
one can potentially calculate the value function (by calculating the optimal state trajectory starting from
any state) and derive the dual vectors as above. However, due to the intertwined system dynamics introduced
by class-transition, we have not found a way to fully characterize the optimal state trajectory analytically,
particularly in the segment where strict priority is given to Class 1. In the other scenario where the cu-rule
prioritizes Class 1 and the modified cp/6-rule prioritizes Class 2 (y; = 0), the analysis is hindered by not

being able to characterize the policy curve as well as the optimal state trajectory.
Appendix E: MDP Solutions in Section [4.4

In this section, we provide details about how we solve the transient scheduling problem to derive the
MDP policy in Figure In addition, we elaborate on the initialization for the simulation experiments in
Table [

We use the uniformization approach with truncation to solve the MDP . Let A= Xy + Xy + (g +
12)s + (01 + 02 + v1 + ¥2) Xonawx, where s =3 in the small system we consider, and the maximum number in
system after truncation is X,,., = 40. To truncate the infinite state space Markov process, the transition
rates are modified such that the number-in-system does not exceed X,,,, for each class. In our setting, if
X1 =40, the arrival rate to Class 1 is set to Ay =0, and the deterioration rate from Class 2 to Class 1 is set
to 7o = 0. Similar treatment is applied to Class 2 when X5 =40.

Define the set of feasible server allocations as
Z(Xl,Xg) = {(Zl,Zz) €Z+ X Z+ : Z1 §X17 Z2 S X27 Zl —‘ng S S}
The bellman operator for the MDP takes the form

- 1 - -
.:(Xl,Xg) = K Cl(Xl — Zl) +02(X2 — Zg) —+ {)\1:.(X1 —+ ].,Xg) —+ )\QZ(Xl,XQ —+ 1)

in
(21,22)€2(X1,X2)
+ (Zupn +01(X1 — 21))=(X0 — 1, Xo) + (Zapia + 02(Xo — Z2))=(X1, Xo — 1)
T (Xs = Z1)E(X - 1L, Xo+1) +92(Xe — Z2)E(X1 +1, Xp — 1)
+ (A — A1 — Ao — Z1,u1 - 91(X1 - Z1) - Z2,u2 - 92(X2 - ZQ) —’Y1(X1 - Zl)

—’}/Q(XQ—ZQ))E(Xl,XQ)}] if X1 —‘y-)(2>57
and
E(Xl,Xg):O lel —|—X2S$. (42)

Note that reflects the terminal cost 0 when the system reaches 0 queue (absorbing states) in the transient
control problem .

In Table[} when simulating the system dynamics under different policies, we select JJ = 15 initial conditions
by sampling X; and X, independently and uniformly from 3 to 20. Since the small system in consideration has
3 servers, the lower bound is set so that there is positive queue at initialization under any server allocation.

Figure 20| illustrates the selected initial points as red crosses.
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