
Artificial Intelligence 300 (2021) 103547
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

An improved approximation algorithm for maximin

shares✩,✩✩

Jugal Garg ∗, Setareh Taki

University of Illinois at Urbana-Champaign, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 August 2020
Received in revised form 1 June 2021
Accepted 3 June 2021
Available online 8 June 2021

Keywords:
Fair division
Maximin shares
Strongly polynomial algorithm

Fair division is a fundamental problem in various multi-agent settings, where the goal is
to divide a set of resources among agents in a fair manner. We study the case where m
indivisible items need to be divided among n agents with additive valuations using the
popular fairness notion of maximin share (MMS). An MMS allocation provides each agent a
bundle worth at least her maximin share. While it is known that such an allocation need
not exist [1,2], a series of remarkable work [1,3–6] provided approximation algorithms
for a 2

3 -MMS allocation in which each agent receives a bundle worth at least 2
3 times

her maximin share. More recently, Ghodsi et al. [7] showed the existence of a 3
4 -MMS

allocation and a PTAS to find a (34 − ε)-MMS allocation for an ε > 0. Most of the previous
works utilize intricate algorithms and require agents’ approximate MMS values, which are
computationally expensive to obtain.
In this paper, we develop a new approach that gives a simple algorithm for showing the
existence of a 3

4 -MMS allocation. Furthermore, our approach is powerful enough to be
easily extended in two directions: First, we get a strongly polynomial time algorithm to
find a 3

4 -MMS allocation, where we do not need to approximate the MMS values at all.
Second, we show that there always exists a (3

4 + 1
12n)-MMS allocation, improving the best

previous factor. This improves the approximation guarantee, most notably for small n. We
note that 34 was the best factor known for n > 4.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fair division is a fundamental problem in various multi-agent settings, where the goal is to divide a set of resources
among agents in a fair manner. It has been a subject of intense study since the seminal work of Steinhaus [9] where he
introduced the cake-cutting problem for n > 2 agents: Given a heterogeneous (divisible) cake and a set of agents with
different valuation functions, the problem is to find a fair allocation. The two most well-studied notions of fairness are: 1)
Envy-freeness, where each agent prefers her own share of cake over any other agents’ share, and 2) Proportionality, where
each agent receives a share that is worth at least 1/n of her value for the entire cake.

We study the discrete fair division problem where m indivisible items need to be divided among n agents with addi-
tive valuations. For this setting, no algorithm can provide either envy-freeness or proportionality, in general, e.g., consider

✩ This paper is a participant in the 2020 ACM Conference on Economics and Computation (EC) Forward-to-Journal Program.
✩✩ A two-page abstract of this work appeared in the proceedings of ACM EC’20 [8].

* Corresponding author.
E-mail addresses: jugal@illinois.edu (J. Garg), staki2@illinois.edu (S. Taki).
https://doi.org/10.1016/j.artint.2021.103547
0004-3702/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2021.103547
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103547&domain=pdf
mailto:jugal@illinois.edu
mailto:staki2@illinois.edu
https://doi.org/10.1016/j.artint.2021.103547

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
allocating a single item among n > 1 agents. This necessitated an alternate concept of fairness. Budish [10] introduced an
intriguing option called maximin share, which has attracted a lot of attention [1,2,7,6,3,5,11,4]. The idea is a straightforward
generalization of the popular cut and choose protocol in the cake-cutting problem and a natural relaxation of proportionality.
Suppose we ask an agent i to partition the items into n bundles (one for each agent), with the condition that the other
n − 1 agents get to choose a bundle before her. In the worst case, i receives the least preferred bundle. Clearly, in such a
situation, the agent will choose a partition that maximizes the value of her least preferred bundle. This maximum possible
value is called i’s maximin share (MMS) value. In fact, when all agents have the same valuations, i cannot guarantee more
than the MMS value.

Each agent’s MMS value is a specific objective that gives her an intuitive measure of the fairness of an allocation. For
example, Gates et al. [12] showed that in real-life experiments maximin metric is preferred by participating agents over
others. This raises a natural question: Is there an allocation where each agent receives a bundle worth at least her MMS
value? An allocation satisfying this property is said to be maximin share allocation (MMS allocation), and if it exists, it
provides strong fairness guarantees to each individual agent. However, Procaccia and Wang [1], through a clever counter-
example, showed that MMS allocation might not exist but a 2

3 -MMS allocation always exists, i.e., an allocation where each
agent receives a bundle worth at least 2

3 of their MMS value. Later, Ghodsi et al. [7] improved the factor by showing the
existence of a 34 -MMS allocation using a sophisticated technique with a very challenging analysis.

We note that these are primarily existential results that do not provide any efficient algorithm to find such an allocation.
The main issue in these techniques is the need for agents’ MMS values. The problem of finding the MMS value of an agent is
NP-hard,1 but a polynomial-time approximation scheme (PTAS) exists [13]. Theoretically, one can use PTAS to find a (34 −ε)-
MMS allocation for an ε > 0 in polynomial time. However, for practical purposes, such algorithms are not very useful for
small ε . Hence, finding an efficient algorithm to compute a 34 -MMS allocation remained open.

1.1. Our results and techniques

In this paper, we develop a new approach that gives a simple algorithm for showing the existence of a 34 -MMS allocation.
Furthermore, our approach is powerful enough to be easily extended in two directions: First, we get a strongly polynomial
time algorithm to find a 34 -MMS allocation, where we do not need to use the PTAS in [13] to approximate the MMS values
at all. Second, we show that there always exists a (34 + 1

12n)-MMS allocation, improving the best previous factor by Ghodsi
et al. [7]. This improves the approximation guarantee, most notably for small n. We note that there are works, e.g., [4,7],
exploring better approximation factors for a small number of agents, and 34 was the best factor known for n > 4.

Our algorithms are extremely simple. We first describe the basic algorithm, given in Section 3, that shows the existence
of a 3

4 -MMS allocation. We assume that MMS values are known for all agents. Since the MMS problem is scale-invariant
(shown in Lemma 2.4), we scale valuations to make each agent’s MMS value 1. Then, we assign high-value items (e.g., a
single item that some agent values at least 3

4) to agents, who value them at least 3
4 , with a simple greedy approach based

on the pigeonhole principle. We remove the assigned items and the agents receiving these items from further consideration.
This reduces the number of high-value items to be at most 2n′ , where n′ is the number of remaining agents. These greedy
assignments massively simplify allocation of high-value items, which was the most challenging part of previous algorithms.
Next, we prepare n′ bags, one for each remaining agent, and put at most two high-value items in each bag. Then, we add
low-value items on top of each of these bags one by one using a bag filling procedure until the value of bag for some agent
is at least 34 . The main technical challenge here is to show that there are enough low-value items to give every agent a bag
they value at least 34 .

In Section 4, we extend the basic algorithm to compute a 3
4 -MMS allocation in strongly polynomial time without any

need to compute the actual MMS values (using the PTAS in [13]). Here, we define a notion of tentative assignments and
a novel way for updating the MMS upper bound. For each agent, we use the average value, that is the value of all items
divided by the number of agents, as an upper bound of her MMS value. The only change from the basic algorithm is that
some of the greedy assignments are tentative, i.e., they are valid only if the current upper bound of the MMS values is tight
enough. We show that this can be checked by using the total valuation of low-value items. If the upper bounds are not
tight enough for some agents, then we update the MMS value of such an agent and repeat. We show that we do not need
to update the MMS upper bounds more than O (n3) times before we have a good upper bound on all MMS values. Then, we
show that the same bag filling procedure, as in the basic algorithm, satisfy every remaining agent. The running time of the
entire algorithm is O (nm(n4 + logm)).

In Section 5, we show that our basic algorithm also yields a better bound of the existence of a (34 + 1
12n)-MMS allocation.

The entire algorithm remains exactly the same but with an involved analysis. The analysis is tricky in this case, so we add
a set of dummy items to make proofs easier. We use these items to make up for the extra loss for the remaining agents due
to the additional factor, and, of course, these items are not assigned to any agent in the algorithm.

1 Observe that the partition problem reduces to the MMS value problem with n = 2.
2

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
1.2. Related work

Maximin share is a popular fairness notion of allocating indivisible items among agents. Bouveret and Lemaître [14]
showed that an MMS allocation always exists in some restricted cases, e.g., when there are only two agents or if agents’
valuations for items are either 0 or 1, but left the general case as an open problem. As mentioned earlier, Procaccia and
Wang [1] showed that MMS allocation might not exist, but a 2

3 -MMS allocation always exists. They also provided a poly-
nomial time algorithm to find a 2

3 -MMS allocation when the number of agents n is constant. For the special case of four
agents, their algorithm finds a 3

4 -MMS allocation. Amanatidis et al. [4] improved this result by addressing the requirement
for a constant number of agents, obtaining a PTAS that finds a (23 − ε)-MMS allocation for an arbitrary number of agents;
see [3] for an alternate proof. In [4], they also showed that a 78 MMS allocation always exists when there are three agents.
This factor was later improved to 89 in [15].

Taking a different approach, Barman and Krishnamurthy [5] obtained a greedy algorithm to find a 2
3 -MMS allocation.

While their algorithm is fairly simple, the analysis is not. More recently, Garg et al. [6] obtained a simple algorithm to find
a 23 -MMS allocation that also has a simple analysis.

Ghodsi et al. [7] improved these results by showing the existence of a 3
4 -MMS allocation and a PTAS to find a (34 − ε)

MMS allocation.
Maximin share fairness has also been studied in many different setting, e.g., for asymmetric agents (i.e., agents with

different entitlements) [11], for group fairness [16,17], beyond additive valuations [5,7,18], in matroids [15], with additional
constraints [15,19], for agents with externalities [20,21], with graph constraints [22,23], for allocating chores [24,5,25], and
with strategic agents [26–29].

2. The MMS problem and its properties

We consider the fair allocation of a set M of m indivisible items among a set N of n agents with additive valuations,
using the popular notion of maximin share (MMS) as our measure of fairness. Let vij denote agent i’s value for item j, and
i’s valuation of any bundle S ⊆ M of items is given by vi(S) = ∑

j∈S vi j . Let V = (v1, . . . , vn) denote the set of all valuation
functions.

An agent’s MMS value is defined as the maximum value she can guarantee herself if she is allowed to choose a partition
of items into n bundles (one for each agent), on the condition that other agents choose their bundles from the partition
before her. In the following definition we define it formally.

Definition 2.1 (MMS value and MMS partition). Let I = 〈N, M, V 〉 denote an instance of the fair division problem, and let
�n(M) = {P = {P1, . . . , Pn} | Pi ∩ P j = ∅, ∀i, j; ∪k Pk = M} be the set of all feasible partitions of M into n bundles (one for
each agent). Agent i’s MMS value or μn

i (M) (or simply μi when n and M are clear from the context) is defined as

μn
i (M) = max

P∈�n(M)
min
Pk∈P

vi(Pk) .

We call a partition achieving μi , an MMS partition of agent i.
Further, let Pn

i (M) denote the set of partitions achieving μn
i (M), i.e.,

Pn
i (M) = {P ∈ �n(M) : min

Pk∈P
vi(Pk) = μn

i (M)} .

In other words, Pn
i (M) is set of all MMS partitions of agent i for items in M when there are n agents.

Definition 2.2 (α-MMS allocation and MMS problem). We say an allocation A = (A1, . . . , An) is α-MMS, for α ∈ (0, 1], if each
agent i receives a bundle Ai worth at least α times her MMS value, i.e., vi(Ai) ≥ α ·μi, ∀i ∈ N . An MMS allocation is simply
1-MMS allocation.

Given an instance I = 〈N, M, V 〉 and an approximation factor α ∈ (0, 1], the MMS problem is to find an α-MMS alloca-
tion.

2.1. Properties of maximin share

In this section, we state nice properties of maximin shares that our algorithm exploits. These are standard results ap-
peared in [1,4,30,5–7]. For completeness, we include their proofs in Appendix A.

Lemma 2.3 (Average upper bounds MMS). μn(M) ≤ vi(M)
, ∀i ∈ N.
i n

3

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Lemma 2.4 (Scale invariance). Let A = (A1, . . . , An) be an α-MMS allocation for instance I = 〈N, M, V 〉. If we create an alternate
instance I ′ = 〈N, M, V ′〉 where valuations of each agent i are scaled by ci > 0, i.e., v ′

i j := ci · vij, ∀ j ∈ M, then μ′
i = ci · μi and A is

an α-MMS allocation for I ′ .

2.1.1. Ordered instances
We say that an instance I = 〈N, M, V 〉 is ordered if:

vi1 ≥ vi2 ≥ · · · ≥ vim,∀i ∈ N .

In words, in an ordered instance, all agents have the same order of preferences over items. Bouveret and Lemaître [30]
showed that the ordered instances are the worst case. They provided a reduction from any arbitrary instance I = 〈N, M, V 〉
to an ordered instance I ′ = 〈N, M, V ′〉 with a simple polynomial-time procedure that converts an MMS allocation of I ′ into
an MMS allocation of I . Later, Barman and Krishnamurthy [5] generalized this result for α-MMS allocations. This property
is used in [5,6] to find a 23 -MMS allocation. Observe that the MMS values of an agent in I and I ′ are the same because, by
Definition 2.1, it neither depends on the order of the items nor on other agents’ valuations.

Lemma 2.5 (Ordered instance [30,5]). Without loss of generality, we can assume that agents have the same order of preferences over
the items, i.e., vi1 ≥ vi2 ≥ · · · ≥ vim, ∀i ∈ N.

2.1.2. Bag filling for low value items
Ghodsi et al. [7] showed that if we normalize the valuation of agents so that μn

i (M) = 1, ∀i ∈ N and vij ≤ β, ∀i ∈ N, j ∈ M ,
then we can find a (1 − β)-MMS allocation using the following simple bag filling procedure: All items are unallocated in the
beginning. Start with an empty bag B and keep filling it with unallocated items until some agent i values B at least (1 −β).
Then, allocate B to i (choose i arbitrarily if there are multiple such agents). Note that any remaining agent values B at most
one because before adding the last item to B everyone values it less than (1 − β) and adding one item will not increase
the value of B more than β . We repeat this process for the set of unallocated items and the set of agents who have not
allocated any bundle yet. Since vi(M) ≥ |N|, ∀i using Lemma 2.3, there are enough items to satisfy all the agents with a bag
that they value (1 − β).

In Sections 3.2 and 4.3, we design a more general bag filling procedure.

2.1.3. Reduction
A useful concept of valid reduction is used in [2–4,7,6]. From Definition 2.1, μk

i (S) denote the MMS value of agent i when
S is the set of items that needs to be divided among k agents (including i). Recall that for the α-MMS allocation problem
for instance I = 〈N, M, V 〉, we want to partition M into |N| bundles (A1, . . . , A|N|) such that vi(Ai) ≥ α · μ|N|

i (M), ∀i.

Definition 2.6 (Valid reduction). For obtaining an α-MMS allocation, the act of removing a set S ⊆ M of items and an agent
i from M and N is called a valid reduction if

vi(S) ≥ α · μ|N|
i (M)

μ
|N|−1
i′ (M \ S) ≥ μ

|N|
i′ (M), ∀i′ ∈ N \ {i} .

(1)

In words, valid reduction is the process of reducing the size of the instance I = 〈N, M, V 〉 by assigning a set of items S
to an agent i and getting a smaller instance I ′ = 〈N \ {i}, M \ S, V \ {vi}〉 while the two conditions in (1) is satisfied. Clearly,
an α-MMS allocation for the smaller instance I ′ gives an α-MMS allocation for the original instance. In our algorithms, we
use it to remove high-value items and get smaller instances.

3. Existence of 34 -MMS allocation

In this section, we present a simple proof of the existence of a 3
4 -MMS allocation for a given instance I = 〈N, M, V 〉.

We assume that the MMS value μi of each agent i is given. Finding the exact μi is an NP-Hard problem, however a
PTAS exists [13]. This implies a PTAS to compute a (34 − ε)-MMS allocation for any ε > 0. Using the properties stated in
Section 2.1, we normalize valuations so that μn

i (M) = 1, ∀i (Lemma 2.4) and assume that I is an ordered instance, i.e.,
vi1 ≥ · · · ≥ vim, ∀i (Lemma 2.5). Our proof is algorithmic. Whenever we apply a valid reduction and more than one agent
satisfies the conditions (1), we choose one arbitrarily.

For the ease of exposition, we abuse notation and use M and N to respectively denote the set of unallocated items and
the set of agents who have not received any bundle yet. We also use n := |N| and m := |M|. Further, we use j to denote the
jth highest value item in M .

The algorithm is given in Algorithm 1. We use α = 3
4 in this section. Later, in Section 5, we use the same algorithm for

α = 3
4 + 1

12n . Algorithm 1 has two main parts: Initial Assignment and Bag Filling. We now describe each part separately in
detail.
4

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Algorithm 1: α-MMS allocation.
Input : Ordered Instance I = 〈N, M, V 〉, i.e., vi1 ≥ vi2 ≥ · · · ≥ vim, ∀i ∈ N and α
Output : α-MMS Allocation

1 Normalize Valuations // Scale valuations so that μn
i (M) = 1, ∀i

2 (N, M, V) ← Initial-Assignment(N, M, V , α) // Algorithm 2
3 Bag-Filling(N, M, V , α) // Algorithm 3

Algorithm 2: Initial-assignment.
Input : Ordered Instance I = 〈N, M, V 〉, where μn

i (M) = 1, ∀i ∈ N , and an approximation factor α
Output : Reduced Instance

1 For any S ⊆ M , define �(S) := {i ∈ N : vi(S) ≥ α}
2 n ← |N| // n changes with N
3 S1 ← {1}; S2 ← {n, n + 1}; S3 ← {2n − 1, 2n, 2n + 1}; S4 ← {1, 2n + 1} // bundles that can be assigned
4 while (�(S1) ∪ �(S2) ∪ �(S3) ∪ �(S4)) �= ∅ do
5 S ← the lowest index bundle in {S1, S2, S3, S4} for which �(S) �= ∅
6 i ← an agent in �(S)
7 Assign S to agent i // initial assignment
8 M ← M \ S; N ← N \ {i}
9 return 〈N, M, V 〉

3.1. Initial assignment

We first assign high-value items using Algorithm 2. We note that handling high-value items is the biggest challenge in the
MMS problem, e.g., a major part of Ghodsi et al. algorithm [7] is devoted to allocating high-value items. In our algorithms,
we make it a simple process of greedy assignment by leveraging the pigeonhole principle to make valid reductions. We
define bundles S1 := {1}, S2 := {n, n + 1} (∅, if m ≤ n), S3 := {2n − 1, 2n, 2n + 1} (∅, if m ≤ 2n), and S4 := {1, 2n + 1} (∅, if
m ≤ 2n), where S1 has the highest value item in M , S2 has the nth and (n + 1)th highest valued items in M , and so on.
We will show that allocating any of these bundles to an agent who values it at least 34 is a valid reduction. Note that these
bundles change after every valid reduction.

In Algorithm 2, we keep assigning the lowest index S ∈ {S1, S2, S3, S4} to agent i, if any, for which vi(S) ≥ 3
4 . Then, we

update M and N to reflect the current unallocated items and agents who have not been assigned with any bundle yet. The
following lemma extends the ideas that appeared in [7,6].

Lemma 3.1. Let S be the lowest index bundle in S ∈ {S1, S2, S3, S4} for which �(S) := {i ∈ N : vi(S) ≥ 3
4 } is non-empty. Then,

removing S and agent i with vi(S) ≥ 3
4 is a valid reduction.

Proof. Clearly, vi(S) ≥ 3
4 . Therefore, we only need to show the second condition in Definition 2.6. We show this separately

for each case of S ∈ {S1, S2, S3, S4}. Fix agent i′ ∈ N \ {i} and P ∈ Pn
i′ (M) (Recall from Definition 2.1 that Pn

i′ (M) denote the
set of partitions achieving μn

i′ (M)). We show that after removing S , there exists a partition of M \ S into (n − 1) bundles
such that the value of each bundle is at least μn

i′ (M), i.e., μn−1
i′ (M \ S) ≥ μn

i′ (M).

• S = S1. Removal of one item from P affects exactly one bundle and each of the remaining (n − 1) bundles has value at
least μn

i′ (M). Therefore, μn−1
i′ (M \ {1}) ≥ μn

i′(M), ∀i′ ∈ N \ {i}.
• S = S2. In P , there exists a bundle with two items from {1, . . . , n + 1} (pigeonhole principle). Let T be a bundle in

P that has two items from {1, . . . , n + 1}. Let us exchange these items with items n and n + 1 in other bundles and
distribute any remaining items in T among other bundles arbitrarily. Clearly, the value of other bundles except T does
not decrease, and hence μn−1

i′ (M \ {n, n + 1}) ≥ μn
i′ (M), ∀i′ ∈ N \ {i}.

• S = S3. Similar to the proof of Case ‘S = S2’.
• S = S4. In each iteration, the lowest index bundle from {S1, S2, S3, S4} is picked. Therefore, S4 is only picked when

vi(S1), vi(S3) < 3
4 for all i ∈ N which implies that vi′1 < 3

4 and vi′(2n+1) < 1
4 and hence vi(S4) < 1 for all i ∈ N .

In P , if items 1 and 2n + 1 are in the same bundle, then clearly, removing S4 and agent i is a valid reduction. For
the other case, if 1 and 2n + 1 are in two different bundles, then we can make two new bundles, one with {1, 2n + 1}
and another with all the remaining items of the two bundles. The value of the bundle without {1, 2n + 1} is at least
2μi − 1 ≥ μi because vi(S4) < 1 for all i ∈ N and μi ≥ 1. Hence, this is a valid reduction. �

Lemma 3.1 implies the following corollary.

Corollary 3.2. After the execution of Algorithm 2 is completed, μi ≥ 1 for all i ∈ N.
5

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Algorithm 3: Bag filling algorithm for α-MMS allocation.
Input : Reduced Instance I = 〈N, M, V 〉 with μn

i = 1 ∀i and an approximation factor α
Output : Allocation A = (A1, . . . , An) where vi(Ai) ≥ α

1 Initialize Bags B = {Bk}k∈[n] as in (3) // see Fig. 1
2 R ← M \ J
3 for k = 1 to n do
4 T ← Bk

5 Define �(T) := {i ∈ N : vi(T) ≥ α}
6 while �(T) = ∅ do
7 j ∈ R // pick one low value item arbitrarily
8 T ← T ∪ { j}; R ← R \ { j} // add the new item to bag
9 i ∈ �(T); Ai ← T ; N ← N \ {i} // assign T to i ∈ �(T)

Fig. 1. Setting of the items in the bags.

Note that the original MMS value is 1 for each agent. Although it may increase after a valid reduction, we only need to
give each agent a bundle of value at least 34 to achieve a 34 -MMS allocation for the original instance. For this reason, we are
interested in partitions where the value of each bundle is at least 1 for an agent. Therefore, we abuse notation to denote by
Pn

i (M) the set of partitions achieving the original MMS value, i.e.,

Pn
i (M) = {P ∈ �n(M) : min

Pk∈P
vi(Pk) ≥ 1} . (2)

Observe that Pn
i (M) contains MMS partitions of agent i for the current M and n as well as the partitions that do not

achieve the current μi , but the value of each bundle is at least 1.

3.2. Bag filling

We use the bag filling procedure given in Algorithm 3 to satisfy the remaining agents. Let J1 := {1, . . . , n} denote the set
of first n items. Similarly, let us define J2 := {n + 1, . . . , 2n} and J := J1 ∪ J2. We call J to be the set of high-value items.
The following corollary is straightforward.

Corollary 3.3. If vi(S) < 3
4 , for all i and for all S ∈ {S1, S2, S3}, then (i) vij <

3
4 , ∀ j ∈ J1 , (ii) vij <

3
8 , ∀ j ∈ J2 , and vin < 3

4 −vi(n+1) ,
and (iii) vij <

1
4 , ∀ j ∈ M \ J , for all i.

Next, we initialize n bags as follows:

B = {B1, B2, . . . , Bn}, where Bk = {k,2n − k + 1},∀k . (3)

Each bag contains one item from J1 and one item from J2 such that from B1 to Bn value of items from J1 decreases
and value of items from J2 increases (see Fig. 1 for an illustration).

Algorithm 3 has n rounds. In each round k, it starts a new bundle T with T ← Bk . If there is an agent who values T
to be at least 3

4 , then assign T to such an agent. Otherwise, keep adding items from M \ J to T one by one until an agent
with no bundle assigned to her values T at least 34 . The algorithm allocates T to that agent, and if there are multiple such
agents, it chooses one arbitrarily.

For correctness, we need to show that there are enough items in M \ J to add on top of each bag in (3) so that each
agent gets a bundle that they value at least 34 . For this, we first divide agents into two types:

N1 := {i ∈ N | vi(Bk) ≤ 1,∀k} and N2 := N \ N1 .

If N2 is empty, then it is easy to check that using Corollary 3.3(iii) and the ideas in Section 2.1.2 that Algorithm 3 gives
each agent at least 3 . We need some more notation to show correctness when N2 is not empty.
4

6

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
For an agent i ∈ N2, define

Li := {Bk : vi(Bk) < 3
4 }; li := |Li |

Hi := {Bk : vi(Bk) > 1}; hi := |Hi|
xi := (34)li −

∑
k:Bk∈Li

vi(Bk).

(4)

In words, Li is the set of bags that i values strictly less than 34 , Hi is the set of bags that i values strictly more than 1, and
li and hi are the number of bags in Li and Hi respectively. Further, xi is the least total value needed to make all bundles in
Li at least 34 . Agents in N2 have nice properties that we show in the following lemma.

Lemma 3.4. For an agent i ∈ N2 , (i) li > 0 and hi > 0, (ii) vi1 > 5
8 , (iii) vi(Bk) < 9

8 , ∀k, and (iv) vij <
1
8 , ∀ j ∈ M \ J .

Proof. For the first part, if hi = 0 then i ∈ N1. Further, li = 0 implies that vi(Bn) ≥ 3
4 , which cannot be true after the

execution of Algorithm 2 due to Line 4–8 of the algorithm.
For the second part, vij < 3

8 , ∀ j ∈ J2 due to Corollary 3.3. Since hi > 0, there exists a j ∈ J1 such that vij > 5
8 . Further,

since item 1 is the highest value item for every agent, vi1 > 5
8 .

For the third part, each item of J1 has value less than 3
4 and each item of J2 has value less than 3

8 (Corollary 3.3) for
any agent. Therefore, vi(Bk) < 9

8 for any bundle Bk .
For the fourth part, the value of item 1 for an agent i ∈ N2 is more than 58 and vi(S4) < 3

4 , hence vij ≤ vi(2n+1) < 1
8 , ∀ j ∈

M \ J . �
In the following lemma, we show that if the total value of the items in M \ J for each agent i in N2 is at least xi + li

8 − 1
8 ,

i.e.,

vi(M \ J) ≥ xi + li
8 − 1

8 ,

then the bag filling algorithm will assign every agent (in N1 and N2) a bundle with value at least 3
4 . In the rest of this

section, we show that the bound on the value of M \ J actually holds by using the fact that μi ≥ 1 for all i ∈ N .

Lemma 3.5. If vi(M \ J) ≥ xi + li
8 − 1

8 , ∀i ∈ N2 , then Algorithm 3 gives every agent a bundle that they value at least 34 .

Proof. This is proof by contradiction. Note that, in Algorithm 3, R is the set of unallocated items from M \ J and T is the
bag that is being filled at a time. Let R(k) and T (k) be respectively R in the beginning and T at the end of round k of the
algorithm, i.e., R(1) = M \ J and T (1) ⊇ B1. For contradiction, suppose the algorithm stops at round t because there are not
enough unallocated items in R(t) to satisfy any remaining agent i, i.e., vi(Bt ∪ R(t)) < 3

4 .
If i ∈ N1, each removed bundle in rounds k ∈ [t − 1], has value of at most 1 for agent i. Because, if vi(Bk) ≥ 3

4 for
k ∈ [t − 1], agent i is already interested in Bk (i ∈ �(Bk)) and the algorithm does not enter the while loop in Line 6.
Therefore, if vi(Bk) ≥ 3

4 no more item has been added to T (k) = Bk . Also, if vi(Bk) < 3
4 for k ∈ [t − 1], before adding the

last item (if any) to T (k) , the value of T (k) is less than 3
4 (otherwise, it would be out of loop and allocated to someone).

Moreover, from Corollary 3.3, vij < 1
4 for j ∈ R(k) (since R(k) ⊆ M \ J). Therefore, at the end of the round k, vi(T (k)) < 1.

Further, since vi(M) ≥ n and vi(Bk) ≤ 1, ∀k, we have vi(Bt ∪ R(t)) ≥ 1, which is a contradiction.
If i ∈ N2, then since at round t , vi(T (t)) < 3

4 , we have Bt ∈ Li (See (4) for the definition of Li). Consider a round k ∈ [t−1].
If Bk /∈ Li , then T (k) = Bk has been assigned to someone with no additional items added to T (k) from R(k) because i ∈ �(T)

and the algorithm does not enter the while loop in Line 6. If Bk ∈ Li , then in round k, before adding the last item (if any) to
T (k) , the value of i for T (k) is less that 3

4 . Moreover, from Lemma 3.4, each item in R(k) has value of at most 1
8 . Therefore,

if Bk ∈ Li , the value of the assigned bag for i in round k is less than 78 . Since Bt ∈ Li , at most li − 1 bags from Li have been
assigned up to t −1 iterations. Further, since items from M \ J are added to bags in Li only, the total value taken from M \ J
up to t − 1 iterations, according to agent i, is at most xi − (34 − Bt) + (li − 1)/8 where xi − (3/4 − Bt) to make each of Li \ Bt

exactly 34 (See (4) for the definition of xi) and (li − 1)/8 to add an extra 18 to each. Hence, in the beginning of round t ,

vi(R
(t)) ≥

(
xi + li

8 − 1
8

)
−

(
xi − (34 − vi(Bt)) + (li − 1)/8

)
= 3

4 − vi(Bt) , (5)

which is a contradiction. �
Now, we only need to show that for each i ∈ N2, we have

vi(M \ J) ≥ xi + li − 1 . (6)
8 8

7

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
3.2.1. Showing (6)
In fact, we will show a stronger bound without − 1

8 in Theorem 3.15. We will use the extra − 1
8 to improve the bound in

Section 5. We start with a few lemmas to show more properties of agents in N2, in addition to previous properties shown
in Lemma 3.4. Recall from (2) that Pn

i (M) denote the set of partitions where the value of each bundle is at least 1.

Lemma 3.6. For an agent i ∈ N2 , there exists a bundle Pk in every partition P = {P1, . . . , Pn} ∈Pn
i (M) such that vi(Pk \ J) > 1

4 .

Proof. If there exists a bundle Pk with exactly one item j from J , then vi(Pk \ J) ≥ 1 − vij > 1
4 because the value of every

item is less than 3
4 . Otherwise, each bundle has exactly two items from J , which implies that one of the bundles, say Pk ,

has two items j1, j2 from the set {n} ∪ J2. Since vij1 + vij2 ≤ vin + vi(n+1) < 3
4 , vi(Pk \ J) > 1

4 . �
Next, we show that there exists a partition in Pn

i (M) for i ∈ N2 where all items with value more than 58 are in separate
bundles. The intuition of this proof is that the bundle which has two items of value greater than 5

8 can be merged with
another bundle (or possibly two other bundles) and make two (or three) bundles each value at least 1. This basically utilizes
the extra 28 value in the first bundle to reshuffle items to obtain the desired partition. We begin with the following claim.

Claim 3.7. If there exists a partition P = {P1, . . . , Pn} ∈ Pn
i (M) for an agent i ∈ N2 where a bundle Pk ∈ P contains two items with

value more than 58 for agent i. Then,

1. there exists another bundle Pk′ ∈ P for which max j∈Pk′ vij <
3
8 .

2. if vi(Pk \ J) > 1
4 , then we can make two new bundles from the items in Pk ∪ Pk′ where each bundle has one item with value more

than 58 and each bundle values at least 1.
3. if Pk′ cannot be divided into two parts with value at least 38 each. Then, vi(Pk′ \ J) < 1

4 .

Proof. Corollary 3.3 implies that the only items that can have value more than 5
8 are items in J1 = {1, . . . , n}. Therefore,

Pk has two items from J1. By the pigeonhole principle, there must exist another bundle Pk′ where all items are from
{n + 1, . . . , m}. Corollary 3.3 implies that each item in Pk′ has value less than 38 . This proves the first part.

For the second part, if vi(Pk \ J) > 1
4 we have vi(Pk) > 5

8 + 5
8 + 1

4 = 3
2 . We make two bundles by initializing two empty

bags and adding items from Pk ∪ Pk′ one by one in decreasing order of value to the bundle which has the lower value. We
will get new bundles with values v1 and v2 where v1 + v2 > 5

2 and |v1 − v2| < 3
8 . The second inequality holds because

each item in Pk′ and Pk \ J has value less than 38 . This proves the second part.
For the third part, assume vi(Pk′ \ J) ≥ 1

4 for a contradiction. We initialize two empty bundles and add items from Pk′
one by one in decreasing order of value to the bundle with lower value. We get two new bundles with value v1 and v2
where v1 + v2 = vi(Pk′) ≥ 1 and |v1 − v2| < 1

8 , which implies v1, v2 ≥ 3
8 . The second inequality holds because each item in

Pk′ \ J has value less than 18 . �
Lemma 3.8. For every i ∈ N2 , there exists a partition P = {P1, . . . , Pn} ∈ Pn

i (M) such that each Pk ∈ P has at most one item j with
vij >

5
8 .

Proof. If there are more than two items with value more than 5
8 in a bundle Pk of P ∈ Pn

i (M), then we add one of these
items to Pk′ , defined in Claim 3.7. This will ensure that the value of both Pk and Pk′ is at least 1. By repeating this, we can
obtain a P ∈Pn

i (M) that has at most two items with value more than 58 .
Next, we show that if there are two items j1, j2 each with value more than 58 for an agent i in a bundle Pk of P ∈Pn

i (M),
then we can construct another P ′ ∈ Pn

i (M) where this is not true. Let Pk′ ∈ P be a bundle for which max j∈Pk′ vij < 3
8 (see

Claim 3.7(1) for the proof of its existence).
Case 1: If vi(Pk \ J) > 1

4 , using Claim 3.7(2), we make two bundles with value at least 1 and exactly one item with value
more than 58 in each.

Case 2: If vi(Pk \ J) ≤ 1
4 and there exists a partition Q 1

k′ and Q 2
k′ of items in Pk′ such that value of each Q 1

k′ and Q 2
k′ is

at least 3
8 , then we can rearrange items in Pk ∪ Pk′ and make two new bundles ({ j1} ∪ Q 1

k′) and ({ j2} ∪ Q 2
k′). Clearly, the

value of each bundle is at least 1 and each has exactly one item with value more than 58 .
Case 3: Finally, if vi(Pk \ J) ≤ 1

4 and no such Q 1
k′ and Q 2

k′ exists (as in Case 2), then we claim that there exists a partition
of Pk′ into three bundles, each with value less than 38 . We can find this partition as follows: Initialize three empty bundles,
and repeatedly add the highest value item of Pk′ to the bundle with the lowest value. For a contradiction, suppose one of
the three bundles has value more than 3

8 , then the sum of the values of the other two sets must be less than 3
8 because

otherwise, they make a partition of two where each has value more than 3 . This means that at least one of the bundles
8

8

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Table 1
Valuation of agent a for items in J in Example 3.10.

Item 1 2 3 4 5 6 7 8 9 10 11 12

vaj
28
40

28
40

28
40

28
40

17
40

15
40

14
40

14
40

14
40

13
40

5
40

1
40

must have a value less than 3
16 . This implies that the value of the largest bag before adding the last item must be less than

3
16 and the last item also should value less than 3

16 , which is a contradiction. Therefore, there exists a partition Q 1
k′ , Q 2

k′
and Q 3

k′ of Pk′ such that each has value less than 38 .
According to Lemma 3.6, there exists a bundle Pk̂ ∈ Pn

i (M) such that vi(Pk̂ \ J) > 1
4 . Let vi(Pk̂) = 1 + δ for some δ ≥ 0.

Pk̂ cannot be same as Pk (Case 1 of this proof) and Pk′ (Claim 3.7(3)). We initialize three bags:

bag 1 : { j1} ∪ Q 1
k′ bag 2 : { j2} ∪ Q 2

k′ bag 3 : (Pk \ { j1, j2}) ∪ (Pk̂ ∩ J) ∪ Q 3
k′

Observe that the value of each of bag 1 and bag 2 is at most 9
8 , and the total value of all items in Pk , Pk′ and Pk̂ is at

least 3 + 2
8 + δ. We sort the remaining items in decreasing order and add them one by one to a bag with the lowest value.

Since the value of the last item added is at most 1
8 (Lemma 3.4), each bag has a value of at least 1 and it has at most

one item with value more than 5
8 . We repeat this process for each bundle with two items of value more than 5

8 to find a
desired partition. �

Let a be an agent in N2. For simplicity, until the end of this section, when we use value of an item or a bundle, we
mean the value for agent a (unless mentioned otherwise). Recall that we need to show (6). Let P = (P1, . . . , Pn) ∈ Pn

a (M)

be a partition satisfying the condition of Lemma 3.8, i.e., there is at most one item with value greater than 5
8 in Pk for all

k ∈ [n].
Using (3), we manipulate P as follows: First, for each Bi = { j, j′} with 34 ≤ va(Bi) ≤ 1, if j ∈ Pk and j′ ∈ Pk′ , then we turn

Pk and Pk′ into two new bundles { j, j′} and ((Pk ∪ Pk′) \ { j, j′}). Observe that va
(
(Pk ∪ Pk′) \ { j, j′}) ≥ 1. Hence, we can

assume that for each Bi /∈ La ∪ Ha (as defined in (4)), there exists a Pk = Bi and all other bundles value at least 1. Second,
we re-enumerate the bundles in P such that

• P1, . . . , Pt1 : each has an item j of value more than 58 and va(B j) < 3
4 .

• Pt1+1, . . . , Pt2 : each has an item j of value more than 5
8 and va(B j) > 1 (Observe that there are ha such bundles, so

t2 − t1 = ha).
• Pt3+1, . . . , Pn: each such Pk = Bk′ for some k′ and 34 ≤ va(Bk′) ≤ 1.
• Pt2+1, . . . , Pt3 be the remaining bundles (Observe that t3 = la + ha).

Let L1a ⊆ La be the set of bags in La , which have one item with value more than 5
8 , and L2a = La \ L1a . Clearly, |L1a | = t1

and |L2a | = la − t1.

Observation 3.9.

1. If va(B j) > 1 ≥ vaj >
5
8 , then by Corollary 3.3, va(2n− j+1) > 1

4 .
2. If va(B j) < 3

4 and vaj > 5
8 , i.e., B j ∈ L1a then va(2n− j+1) < 1

8 .
3. Using the two previous observations, if B j1 ∈ L1a and B j2 ∈ Ha , then j1 < j2 because va(2n− j2+1) > 1

4 > 1
8 > va(2n− j1+1) .

4. if B j1 ∈ Ha and B j2 ∈ L2a , then j1 < j2 because vaj1 > 5
8 ≥ vaj2 .

5. Bags are ordered by value of most-valued item in each bag. First, L1a then Ha then L2a (excluding the bags for which
3
4 ≤ va(Bk) ≤ 1).

6. The above observations imply that items with value in [18 , 14] (if any) automatically belong to bags B j ’s, which are neither
in Ha nor La . Hence, there is no such item in {P1, . . . , Pt3 }.

7. After the termination of Algorithm 2 we have vi(S2) = vi(Bn) < 3
4 . Therefore, Bn ∈ La . Further, since ha > 0 (Lemma 3.4),

Bn ∈ L2a . This implies that |L2a | ≥ 1.

Further, observe that there is no item from M \ J in Pt3+1, . . . , Pn . We leverage this observation to prove (6) by only
considering partitions {P1, . . . , Pt3 } that contain all items of M \ J . Here is a simple example to help understand the con-
struction.

Example 3.10. Consider an example where, after the execution of Algorithm 2, n = 6 (hence | J | = 12). The valuation of agent
a for items in J is shown in Table 1. The construction of bags is shown in Fig. 2 and Table 2.
9

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Fig. 2. Setting of the items in the bags in Example 3.10.

Table 2
Bags and their valuations in Example 3.10 where (Ha ∪ La)c refers to the bags not in
(Ha ∪ La).

Bag B1 B2 B3 B4 B5 B6

Setting {1,12} {2,11} {3,10} {4,9} {5,8} {6,7}
va(Bk)

29
40

33
40

41
40

42
40

31
40

29
40

Bag type L1a (Ha ∪ La)c Ha Ha (Ha ∪ La)c L2a

Fig. 3. An MMS partition (P) of agent a in Example 3.10.

Fig. 4. Re-enumerated P in Example 3.10.

Now let P be an MMS partition of agent a satisfying the condition of Lemma 3.8 be as Fig. 3. Mk ⊆ (M \ J) is the set
of low value items in Pk so

⋃
k∈[6] Mk = M \ J . Mk ’s can be possibly empty. Then, the enumerated P is shown in Fig. 4.

Observe that:

• va(B2) ∈ [34 , 1]. Therefore, items 2 and 11 are put into one bundle (P5) and all remaining items, which were previously
in the same bundle with each of these items, are in another bundle (P4). This is the case for B5 and items 5 and 8 too.
These bundles are put in the last (P5 and P6).

• B1 ∈ L1a and also va1 > 5
8 . Therefore, we set the bundle containing item 1 to be P1. B1 is the only bag with this property

and hence t1 = 1.
• B3, B4 ∈ Ha . Therefore, we put the bundles containing item 3 and item 4 next (P2 and P3). Therefore, t2 = 3.
• The remaining bundle is set to be next (P4). It means that t3 = 4.

Definition 3.11. Define y := vak′ where k′ is the highest value item in the set { j ∈ J2 ∩ Bk, Bk ∈ Ha}.

Observe that y is the value of the highest valued item from J2 (items in top row of Fig. 1), which is in a bag with value
more than 1. Further, 2 < y < 3 since by definition y + vij > 1 for some j ∈ J1 and y = vij′ for some j′ ∈ J2. For instance,
8 8

10

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
in Fig. 1, if all bags in {Bk+1, . . . , Bn} value at most 1 for agent a and va(Bk) > 1, i.e., Bk is in Ha , then y = va(2n−k+1) . This
also implies that va1 ≥ · · · ≥ vak > 5

8 . Moreover, y = va(2n−k+1) ≤ va(2n−k) ≤ · · · ≤ va(k+1) . In Example 3.10, y = 14
40 .

The value y turns out to be crucial, which we use to relate the total value of ∪t3
k=1 Pk ∩ (M \ J) to the value needed in

bag filling procedure. Intuitively, if y is high, then less value is needed from M \ J to make all bundles in {P1, . . . , Pt3 } to
be at least 1. This is also true for the bag filling argument: If y is high then less value is needed to add to the bags in (3) to
make each of them at least 3

4 . Otherwise, when y is low, the value of M \ J can be shown to be relatively high. We begin
with the following lemma.

Lemma 3.12. For any bundle Bk = { j, j′} ∈ La such that vaj, vaj′ < 5
8 , we have vaj, vaj′ ≥ y.

Proof. The claim follows from the construction of Bk ’s, and the fact that each bundle of Ha has an item with value more
than 58 . Let k be the index of the bundle in (3) for which the y in Definition 3.11 is achieved. Then

va1 ≥ · · · ≥ vak > 5
8 ≥ va(k+1) ≥ · · · ≥ va(2n−k+1) = y ≥ va(2n−k+2) ≥ · · · ≥ va(2n).

If vaj < 5
8 for j ∈ J1, then j > k and j′ < 2n − k + 1, implying the result. �

First, we only consider the case when bags in La satisfy Lemma 3.12. This is equivalent to the case when t1 = 0. Then,
we prove the general case in Theorem 3.15.

In the bags, which are in Ha , there are exactly 2ha items from J . However, in {Pt1+1, . . . , Pt2 }, we know that each
bundle has one item with value > 5

8 but may contain more items from J . We define z to reflect the possible difference,
i.e., z := max{2ha − | ⋃t2

t=t1+1 Pt ∩ J |, 0}. In Lemma 3.13, we show two things. First we show a bound for the value that is
needed with respect to y to make bags in La to become at least 34 (see definition of xi in (4)). Second, we show a bound for
M \ J with respect to z and y by using the fact that the value of each bundle in {P1, . . . , Pt3 } is at least 1. As we discussed
before, we will relate these two observations to prove the bound for va(M \ J) and we show (6) is always correct.

Lemma 3.13. For agent a ∈ N2 , if t1 = 0 then we have

1. xa ≤ (34 − 2y)la .

2. va(M \ J) ≥ max{xa + la
4 − yz + z

4 , z4 }, where z = max{2ha − | ⋃t2
t=t1+1 Pt ∩ J |, 0}.

Proof. For the first part, since t1 = 0, we have va(Bk) ≥ 2y, ∀Bk ∈ La (Lemma 3.12). This implies that xa = (34)la −∑
k:Bk∈La Bk ≤ (34 − 2y)la .

For the second part, in
⋃

k:Bk∈Ha
Bk , there are exactly 2ha items from J . If there are at least 2ha items in

⋃t2
t=t1+1 Pt ∩ J

then z = 0. On the other hand, if there are 2ha − z items in
⋃t2

t=t1+1 Pt ∩ J , then it implies that there are at least z bundles
in {Pt1+1, . . . , Pt2 } with exactly one item from J . Each of these bundles need more than 14 value of items from M \ J to be
1.

Next, if z = 0, it means that there are at least 2ha items from J in {Pt1+1, . . . , Pt2 } and 2la items from J in
{Pt2+1, . . . , Pt3 } since t1 = 0. Then all bundles in {Pt2+1, . . . , Pt3 } need at least xa + la

4 value of items from M \ J to be-
come 1 because the value of each item in the bundles of La is at least y (follows from Lemma 3.12 and Observation 3.9).
If z > 0, then all bundles in {Pt2+1, . . . , Pt3 } need at least xa + la

4 − yz value of items from M \ J to become one because
each of the z items has value at most y (Lemma 3.12). Therefore, in total, there should be at least xa + la

4 − yz + z
4 value of

items from M \ J in {Pt1+1, . . . , Pt3 }. Letting Q = Pt2+1 ∪ · · · ∪ Pt3 , we have (using v(Pt) ≥ 1 and t3 − t2 = la , and abusing
notation):

la ≤ va(Q)

= va(Q ∩ J) + va(Q ∩ (M \ J))

= va(Q ∩ Ha) + va(Q ∩ La) + v(Q ∩ (M \ J))

≤ zy + va(La) + va(Q ∩ (M \ J))

= zy + (34)la − xa + va(Q ∩ (M \ J)),

implying va(Q ∩ (M \ J)) ≥ xa + la
4 − yz, where the second-to-last line uses the fact that |Q ∩ J | = 2la + z, so obviously

va(Q ∩ J) ≤ va(La) + zy (any items from Ha that end up in Q are worth at most y, which is at most the value of any La
item), and the last line follows from substituting xa = (3)la − va(La).
4

11

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Further, in case z is large such that the value of xa + la
4 − yz + z

4 is negative, we still have z bundles in {Pt1+1, . . . , Pt2 }
with exactly one item (with value of at most 3

4) from J in each. Therefore, we need z
4 value of items from M \ J to make

all bundles in {Pt1+1, . . . , Pt2 } value 1. �
In Lemma 3.13, we showed that va(M \ J) ≥ max{xa + la

4 − yz+ z
4 , z4 }. In Theorem 3.14, we prove (6) (for the special case

when t1 = 0) by relating the two observations from Lemma 3.13 and using two different cases for max{xa + la
4 − yz+ z

4 , z4 }.

Theorem 3.14. For agent a ∈ N2 , if t1 = 0 then

va(M \ J) ≥ xa + la
8 . (7)

Proof. Using Lemma 3.13(2) there are two cases for the maximum of xa + la
4 − yz + z

4 and z
4 . We prove the claim for each

case separately.

Case 1: Suppose xa + la
4 − yz + z/4 ≥ z/4, then z ≤ xa+ la

4
y . Further, Lemma 3.13(1) implies y ≤ 3la−4xa

8la
. Using these, we get

va(M \ J) ≥ xa + la
4 − z(y − 1

4) ≥ 4xa + la
16y

≥ (4xa + la)la
2(3la − 4xa)

.

Next, consider

(4xa + la)la
2(3la − 4xa)

−
(
xa + la

8

)
= 28x2a + (2xa − la)2

8(3la − 4xa)
≥ 0 .

The last inequality follows because (3la − 4xa) > 0 (Lemma 3.4). This implies va(M \ J) ≥ xa + la
8 .

Case 2: Suppose xa + la
4 − yz + z

4 ≤ z
4 . Then, using Lemma 3.13(1), we have

va(M \ J) ≥ z
4 ≥ 4xa + la

16y
≥ (4xa + la)la

2(3la − 4xa)
≥ xa + la

8 . �

Next, we handle the general case when t1 > 0. Let Jmin = ⋃
Bk∈L1a

Bk ∩ J2 (recall that L1a denote the set of bags in La that
have one item with value more than 5

8). Then, we have vaj < 1
8 , ∀ j ∈ Jmin because these items are bagged with an item

value more than 58 and together they have value less than 34 . Therefore, va(Jmin) < t1
8 . Let us call items in (M \ J) ∪ Jmin as

filler items (each filler item, by Lemma 3.4(iv), has value < 1
8) and items in J \ Jmin as base items.

Theorem 3.15. For agent a ∈ N2 , we have va(M \ J) ≥ xa + la
8 .

Proof. In this proof we only consider the items in {P1, . . . , Pt3 } because, as discussed before, these bundles contain all
items from M \ J . Let x′

a := 3
4 t1 − ∑

Bk∈L1a
va(Bk), and x′′

a := xa − x′
a . For agent a, we can treat items of Jmin as low-value

items so we will prove:

va(M \ J) + va(Jmin) ≥ x′
a + t1

4 + x′′
a + (la − t1)/8. (8)

Since va(Jmin) is at most t18 , (8) directly implies the theorem.
In {P1, . . . , Pt3 }, recall that each of {P1, . . . , Pt1 } contains a base item whose value is at least the maximum of all the

items in the remaining bundles. Further, if there are two base items in any bundle Pk in {P1, . . . , Pt1 }, then va(Pk ∩ J) > 1
(using Observation 3.9). If each bundle in {P1, . . . , Pt1 } has exactly one base item (t1 bundles in total) then items of value
at least x′

a + t1
4 are needed to make all these bundles at least 1. This, together with Theorem 3.14, proves the bound. On the

other hand, if there are more than t1 base items in {P1, . . . , Pt1 }, by Observation 3.9(vi), each base item in {P1, . . . , Pt3 } has
value > 1

4 . Therefore, for each extra base item j, there are two cases. If j comes from Bk ∈ L2a then clearly, there should be
enough items in M \ J to compensate for vaj in {Pt2+1, . . . , Pt3 } since the value item j is adding to a bag in L1a is more than
what it was considered in the right side of (8). For the other case, if j comes from Bk ∈ Ha then it will make Bk \ { j} to
need more low-value items than the bundle in {P1, . . . , Pt1 } who gets j to become one since if Bk ∈ Ha and Bk′ ∈ L1a then
vak < vak′ (Observation 3.9(v)). This completes the proof. �
12

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Algorithm 4: 3
4 -MMS allocation.

Input : Ordered Instance 〈N, M, V 〉, i.e., vi1 ≥ · · · ≥ vim, ∀i ∈ N
Output : 3

4 -MMS Allocation
1 Normalize Valuations (i.e., scale valuations so that vi(M) = n, ∀i ∈ N) // n = |N|
2 (N, M, V) ← Fixed-Assignment(N, M, V) // Algorithm 5
3 (Nt , Mt , V t) ← Tentative-Assignment(N, M, V) // Algorithm 6

4 while N21 �= ∅ do
5 i ← the lowest index agent in N21 // N21 is defined in (9)
6 Undo Tentative-Assignments // go back to (N, M, V)

7 Update i’s MMS bound & normalize valuations // Theorem 4.5
8 (N, M, V) ← Fixed-Assignment(N, M, V) // these assignments are final
9 (Nt , Mt , V t) ← Tentative-Assignment(N, M, V)

10 Make all tentative assignments final: (N, M, V) ← (Nt , Mt , V t)

11 Bag-Filling(N, M, V , α) for α = 3
4 // Section 4.3 and Algorithm 3

4. Algorithm for 34 -MMS allocation

The existence proof of 34 -MMS allocation in Section 3 requires the knowledge of the exact MMS value μi ’s of all agents,
e.g., the proof of valid reduction for bundle S4 in Lemma 3.1 needs this assumption. Finding an exact μi of an agent i is
an NP-Hard problem, however a PTAS exists [13]. This implies a PTAS to compute a (34 − ε)-MMS allocation for an ε > 0.
However, for small ε , this PTAS is computationally very expensive and may not be practical. In this section, we show that
our algorithmic technique in Section 3 is powerful enough to be modified into a strongly polynomial time algorithm to find
an exact 3

4 -MMS allocation for a given instance I = 〈N, M, V 〉. The key idea is to use the average as an upper-bound for
the MMS value; see Lemma 2.3.

As it is shown in Section 2.1, we assume I to be an ordered instance, i.e., vi1 ≥ vi2 ≥ · · · ≥ vim, for all i ∈ N . We fix
the order of agents in N such that at each step of the algorithm if more than one agent satisfies the conditions of valid
reduction, defined in Section 2.1.3, we choose one with the lowest index. We maintain the same order among remaining
agents after every valid reduction. For the ease of exposition, as in Section 3, we abuse notation and use M and N to denote
the set of unallocated items and the set of agents who have not received any bundle yet, respectively. Moreover, we use
n := |N| and m := |M|. Further, we use j to denote the jth highest value item in M , and i to denote the ith agent in N as
per the fixed order.

In this section, unlike what we did in Section 3 (normalizing the valuation of items based on actual μn
i (M)), we normal-

ize vij ’s using the total value of all items.

Definition 4.1. We call an instance I = 〈N, M, V 〉 normalized if vi(M) = n for all i ∈ N .

Using the scale invariance property (Lemma 2.4), we can without loss of generality work with the normalized valuations
so that vi(M) = n for all agents i ∈ N . The proof of following corollary is straightforward.

Corollary 4.2. For a normalized instance I = 〈N, M, V 〉, μn
i (M) ≤ 1 ∀i.

The algorithm to compute a 34 -MMS allocation is given in Algorithm 4. It has three main parts: Initial Assignment, Update
Upper Bound, and Bag Filling. Initial Assignment is further divided into two parts: Fixed and Tentative.

4.1. Initial assignment

This section is very similar to Section 3.1 where we assign S1, S2, S3, and S4 to agents in order to reduce the number of
high-value items to at most 2n. The main difference for this section is assigning S4. Since assigning S4 is a valid reduction
only if μn

i (M) = 1 (Lemma 3.1), therefore, when S1, S2, and S3 value less than 3
4 for all agents we check for S4 and if

the first S4 is allocated, then this allocation and all initial allocations after that are called tentative assignments. Tentative
assignment are finalized only if allocation of any S4 did not take away too much valuation for any agent in N .

It is crucial for this step to assign bundles to agents according to an order. Therefore, for S1, S2, S3, and S4 the bundle
with lower index has more priority and if there are more than one agent satisfied with S ∈ {S1, S2, S3, S4} we choose
the one with lower index based on the original order of N . This ordering will be useful when we have to undo tentative
assignments.

Update N, M, V After every assignment, say bundle S to agent i, we update N, M, V as follows:

M ← M \ S; N ← N \ {i}; vi′ j ← vi′ j · |N|
vi′(M)

,∀i′ ∈ N, j ∈ M .

Note that this maintains μn(M) ≤ 1, ∀i ∈ N after normalization (Definition 4.1 and Lemma 2.3).
i

13

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Algorithm 5: Fixed-assignment.
Input : Ordered Instance 〈N, M, V 〉 (i.e., vi1 ≥ · · · ≥ vim, ∀i ∈ N), where μn

i (M) ≤ 1, ∀i ∈ N
Output : Fixed Assignments and Reduced Instance

1 For any S ⊆ M , define �(S) = {i ∈ N : vi(S) ≥ 3
4 }

2 S1 := {1}; S2 := {n, n + 1}; S3 := {2n − 1, 2n, 2n + 1} // bundles that can be assigned
3 T = �(S1) ∪ �(S2) ∪ �(S3)

4 while T �= ∅ do
5 S ← the lowest index bundle in {S1, S2, S3} for which �(S) �= ∅
6 i ← the lowest index agent in �(S)
7 Assign S to agent i // final assignment
8 Update N, M, V , T
9 return N, M, V

Algorithm 6: Tentative-assignment.
Input : Ordered Instance 〈N, M, V 〉 that satisfies Conditions 1-3 in Corollary 3.3
Output : Tentative Assignments and Reduced Instance

1 For any S ⊆ M , define �(S) = {i ∈ N : vi(S) ≥ 3
4 }

2 S1 := {1}; S2 := {n, n + 1}; S3 := {2n − 1, 2n, 2n + 1}; S4 := {1, 2n + 1}
3 T = �(S1) ∪ �(S2) ∪ �(S3) ∪ �(S4)

4 while T �= ∅ do
5 S ← the lowest index bundle in {S1, S2, S3, S4} for which �(S) �= ∅
6 i ← the lowest index agent in �(S)
7 Assign S to agent i // tentative assignment
8 Update N, M, V , T
9 return N, M, V

4.1.1. Fixed assignment
In this part, we allocate high-value items to agents using Algorithm 5. We assign the bundle S ∈ {S1, S2, S3} to the lowest

index agent i ∈ N for which vi(S) ≥ 3
4 . Then, we update N, M, V and repeat this step until no such agent exists. Lemma 3.1

is applicable here to show that allocating S ∈ {S1, S2, S3} to agent i and removing them from M and N is a valid reduction.
As in Section 3, let J1 := {1, . . . , n} denote the set of first n items. Similarly, define J2 := {n +1, . . . , 2n} and J := J1 ∪ J2.

Note that Corollary 3.3 is also applicable here.

4.1.2. Tentative assignment
This step is a continuation of Fixed Assignment in Section 4.1.1. It starts when Algorithm 5 terminates and the first

S4 bundle is being assigned. In this part, we assume that μn
i (M) = 1, ∀i ∈ N , i.e., the actual MMS value for each agent is

equal to her current MMS upper bound, and we allocate S1, S2, S3, S4 using this assumption. In the next step, either this
assumption works fine and we make all tentative assignments final and move to the next stage of bag filling or we detect
an agent i for whom μn

i (M) is significantly lower than 1. In the latter case, we update i’s MMS upper bound. In particular,
we update the MMS upper bound by updating the valuations so that the new MMS upper bound remains 1 for every agent.

In Algorithm 6, for S ∈ {S1, S2, S3, S4} we check whether there exists an i ∈ N with vi(S) ≥ 3
4 . If true, then we tentatively

assign the lowest index such a bundle S to the lowest index such an agent i and we tentatively update M, N, V as we did
in Section 4.1.1. Choosing the lowest index Sk makes sure that when S4 is assigned, then none of S1, S2, S3 satisfies the
condition. This is essential in proving that assigning S4 to an agent is a valid reduction in Lemma 3.1. Further, note that
when S4 is assigned, the value of each bundle in {S1, S2, S3} for every agent is strictly less than 34 . However, after removing
an agent i with S4, it may later trigger valid reductions with {S1, S2, S3}.

4.2. Updating MMS upper bound

The goal here is first to detect the agents for whom the MMS upper bound is overestimated and second to update this
bound for them. To detect these agents we continue as in Section 3 by first initializing n bags as in (3) (see Fig. 1), and
divide agents into two types N1 and N2 according to their valuations for these bags. Recall that N1 is the set of agents
whose value for each bag is at most 1, and N2 is the set of remaining agents.

In this section, we need to analyze agents in N2 more thoroughly. We further partition agents in N2 into two sub-types
as follows:

N21 := {i ∈ N2 : hi > li and vi(M \ J) < xi + li/8}; N22 := N2 \ N21 . (9)

Lemma 4.3. If hi ≤ li for i ∈ N2 we have vi(M \ J) ≥ xi + li .
8

14

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Proof. The value of any bag in Hi is less than 9
8 for i (Lemma 3.4). By (4), the value of any bag which is not in Hi ∪ Li is

at most 1 and the total value of bags in Li is at most

3
4 li − xi .

The total value of the items in M , in a normalized instance, is n so we have

vi(M \ J) ≥ n −
[
(98hi) + (n − hi − li) + (34 li − xi)

]

= − hi
8 + li

4 + xi ≥ xi + li
8 .

�

Lemma 4.3 shows that (6) holds for all i ∈ N22. Hence, by Lemma 3.5, if N21 is empty, then we do not need to update
the MMS upper bounds, and we can proceed to the next stage of bag filling. Note that Theorem 3.15 is still applicable for
all agents in N2, which implies the following corollary.

Corollary 4.4. For any agent i ∈ N21 , μi < 1.

The next theorem gives a new upper bound for these agents.

Theorem 4.5. For any i ∈ N21 , μi ≤ α∗ = max{α1, α2, α3, α4, α5}, where

α1 = 4
3 vi1

α3 = 4
3 (vi(2n−1) + vi(2n) + vi(2n+1))

α2 = 4
3 (vin + vi(n+1))

α4 = 4
3 (vik + vik′)

α5 = max
{
α : vi(M\ J)

α ≥
∑

Bk : vi(Bk)
α <

3
4

(34 − vi(Bk)
α) + 1

8

∣∣{Bk : vi(Bk)
α < 3

4

}∣∣} ,

where k and k′ are respectively the maximum value items from J and M \ J that were not tentatively assigned, and 〈N, M, V 〉 refers
to the instance after we undo the tentative assignments in Line 6 of Algorithm 4.

Proof. For a contradiction, suppose μi = β and β > α∗ . We have

β > α1 =⇒ vi1 < 3
4β

β > α2 =⇒ (vin + vi(n+1)) < 3
4β

β > α3 =⇒ (vi(2n−1) + vi(2n) + vi(2n+1)) < 3
4β

β > α4 =⇒ (vik + vik′) < 3
4β .

From this, we can conclude that vi(S) < (34)μi for S ∈ {S1, S2, S3}. Therefore, agent i will not be satisfied in Fixed-
Assignment step. Further, since each bundle in {S1, S2, S3} is worth strictly less than (34)μi to agent i, all S4 bundles, which
are tentatively assigned, (see Algorithm 6) have value at most μi , and hence all tentative assignments are valid reductions
(Lemma 3.1). Also, since β > α4, no new pair that form S4 will satisfy i. Furthermore, by normalizing vij ’s (i.e., scaling
them by 1/β), the value of the bags in (3) will increase and consequently hi will not decrease therefore, hi will remain
greater than 0. Consequently, since hi > 0 and β > α5, agent i will remain in N21 even after we normalize her valuation
with respect to β . This is because, by definition of α5, this is the maximum value that we can normalize the valuation such
that agent i will not satisfy the definition of N21 in (9). Note that by normalizing the valuations, xi and li will be affected
that we have taken into account in definition of α5.

It implies that μi < β (Corollary 4.4), which is a contradiction. �
Remark 4.6. It is easy to see from (9) that if we scale the valuations by 1

α for α = v(M \ J)/(xi + li
8), then agent i will not

remain in N21. However, α5 can be more than α because if we scale the valuations by 1
α for 0 < α < 1 both xi and li will

decrease (see (4)).

Remark 4.7. α5 can be computed in O (n) time using a simple procedure. Sort the value of bags in Li . Let uk be the value
of the kth highest value bag in Li . If α ∈ (1, u1/(34)) and we scale the valuations by 1

α then all bags, which were in Li will
remain in Li . Similarly, if α ∈ [uk/(34), uk+1/(34)) then li will be reduced by k. After figuring out which bags remain in Li
and which bags do not, we can compute xi with respect to α. Then, we can check whether there exists an α in the range
for each k, starting with k = 1, that holds the definition of α5. If not, then we move to the next k.
15

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Table 3
Valuation of agent i for items in J in Example 4.8.

Item 1− 27 28− 30 31 32 33− 60

vij
29
40

15
40

14
40

13
40

12
40

Table 4
The value of the bags in Example 4.8.

Bag B1 − B27 B28 B29 B30

vi(Bk)
41
40

27
40

28
40

29
40

Bag type Hi Li Li Li

Example 4.8. Consider an example where, after the execution of Algorithm 6, n = 30 (hence | J | = 60). The valuation of some
agent i ∈ N21 for items in J is shown in Table 3 and her valuation for bags is shown in Table 4. In this example, we show
how to find α5.

Let vi(M \ J) = 9
40 . First, observe that hi = 27, li = 3, xi = 6

40 , and vi(M \ J) = 9
40 < 21

40 = li
8 + xi . It shows that agent i

belongs to N21.
In order to obtain α5, we check how the value of li would change after scaling the valuations of agent i by 1

α5
.

• Let α5 > 29
40 then li = 3. We check if there exists an α5 in this range for which the following bound holds

1
α5

× vi(M \ J) ≥ 3
8 + (34 − vi(B28)

α5
) + (34 − vi(B29)

α5
) + (34 − vi(B28)

α5
). (10)

• If not, let 2840 < α5 ≤ 29
40 then li = 2 (B30 will not belong to Li anymore). We check if there exists an α5 in this range for

which the following bound holds

1
α5

× vi(M \ J) ≥ 2
8 + (34 − vi(B28)

α5
) + (34 − vi(B29)

α5
). (11)

• If not, 2740 < α5 ≤ 28
40 then li = 1. We check if there exists an α5 in this range for which the following bound holds

1
α5

× vi(M \ J) ≥ 1
8 + (34 − vi(B28)

α5
). (12)

• Else, α5 = 27
40 (li = 0).

Note that in (10), (11), and (12) we have obtained the sum of li8 and the new xi after scaling the valuations. It takes at
most li steps (3 steps in this example) to find the maximum α5 for which one of the bounds above holds.

We pick an agent i with the lowest index in N21 and update i’s valuation as vij ← vij
α , ∀ j ∈ M and repeat. In Theorem 4.9,

we show that the number of updates is at most n3 in the entire run of algorithm.

4.3. Bag filling and running time

Note that we reach the bag filling stage only when N21 (see (9)) is empty. Here, we use Algorithm 3 of Section 3.2. Since
N21 is empty, Lemma 3.5 is applicable, which implies a 34 -MMS allocation. Next, we show that the entire algorithm runs in
strongly polynomial time.

Theorem 4.9. The entire algorithm runs in O (n5m) time for an ordered instance, and in O (nm(n4 + logm)) time for any instance.

Proof. In Algorithm 4, normalization takes O (mn) arithmetic operations. Both Fixed-Assignment and Tentative-Assignment
procedures take at most O (n2m) arithmetic operations. The bag filling procedure takes at most O (n2m) time. Each iteration
of the while loop takes O (n2) arithmetic operations to find the set N21 of agents, O (m) arithmetic operations to update
valuations of an agent i ∈ N21, and O (n2m) arithmetic operations to run Fixed-Assignment and Tentative-Assignment pro-
cedures. Therefore, each iteration of the while loop takes at most O (n2m) arithmetic operations.

To bound the number of iterations of the while loop, we upper bound the number of times it is run for a particular
agent, say a, in N21. Consider the first iteration when a is the lowest index agent, then if we update a’s valuation due to
α ∈ {α1, α2, α3} (see Section 4.2), then a gets a fixed assignment after this iteration, and we will not see her again. If we
update a’s valuation due to α = α4, then in the future iterations, agent a will not be in N21 unless the instance is reduced
due to a fixed assignment. This could happen only when another agent in N21 ends her iteration due to α ∈ {α1, α2, α3}.
Clearly, this can occur at most O (n) time. Finally, if we update a’s valuation due to α = α5, then agent a will not be in N21

again unless the instance is reduced due to either fixed or tentative assignment, which can affect the set of agents in N21.
16

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
This could happen only when another agent of N21 ends her iteration due to α ∈ {α1, α2, α3, α4}. Clearly, this can occur at
most O (n2) time. Therefore, the maximum number of iterations of the while loop is at most O (n3). Since each iteration
takes at most O (n2m) arithmetic operations, Algorithm 4 takes O (n5m) time. Note that this is for an ordered instance.

The reduction from the general instance to ordered instance is given in Appendix A. Algorithm 7 takes O (mn logm) time
to make the original instance ordered by creating a sorted list of items for each agent. Next, we show that Algorithm 8 can
be implemented in O (mn) time. Initialize a binary array A of size m to all ones. A[j] indicates whether item j is available
or not; 1 means available. Each agent has a sorted list of items from the Algorithm 7. From the solution of the ordered
instance using Algorithm 4, we can create an array B of size m, where B[j] stores the agent who is assigned the item j.
Observe that B can be constructed in O (m) time. Then, for each item j from 1 to m, we get the agent B[j] who is assigned
j, and then we try to give B[j] the highest item in her list. If her highest item is not available, which we can check from A,
then we delete this item from B[j]’s list, and move down to the next highest item and repeat until we reach at an available
item. We give this item to B[j] and mark it assigned in A. Since the size of each agent’s list is m, the total time is O (mn).
Using Algorithms 7 and 8 together with Algorithm 4, the running time of the entire procedure is O (nm(n4 + logm)). �
5. Existence of (34 + 1

12n)-MMS allocation

In this section, we show that our approach in Section 3 can be extended to obtain the existence of a (34 + γ)-MMS
allocation for any given instance I = 〈N, M, V 〉 where γ = 1

12n . We note that γ is a constant for the given instance, where
n := |N|. We assume that the MMS value μi of each agent i is given. Finding an exact μi is an NP-Hard problem, however
a PTAS exists [13]. This implies a PTAS to compute a (34 + γ − ε)-MMS allocation for any ε > 0. Using the properties
shown in Section 2.1, we normalize valuations so that μ1 = 1, ∀i and assume that I is an ordered instance, i.e., vi1 ≥ · · · ≥
vi|M|, ∀i. Our proof is algorithmic. If more than one agent satisfies the conditions (1) of valid reduction, then we choose one
arbitrarily.

For the ease of exposition, we abuse notation and use M and N to denote the set of unallocated items and the set of
agents who have not received any bundle yet, respectively. Further, we use j to denote the jth highest value item in M .
Moreover, we use n := |N| and m := |M|. This is the reason we use γ , which is a constant for a given instance, to denote
the approximation factor.

The approach is identical to Section 3. Here, we run Algorithm 1 with α = 3
4 + γ . The analysis is also almost same.

Here, we crucially use the extra 18 (see (6) and the paragraph after it) to obtain a better factor. To avoid repetition, we only
highlight the differences.

5.1. Initial assignment

In Algorithm 2, we keep assigning a bundle S ∈ {S1, S2, S3, S4} to agent i, if any, for which vi(S) ≥ 3
4 + γ . Then, we

update M and N to respectively reflect the current unallocated items and agents who are not assigned any bundle yet.
Observe that Lemma 3.1 is applicable here to show that assigning a bundle S ∈ {S1, S2, S3} is a valid reduction. However, it
only applies for S4 when vi(S4) ≤ 1, ∀i.

As in Section 3, let J1 := {1, . . . , n} denote the set of first n items. Similarly, define J2 := {n +1, . . . , 2n} and J := J1 ∪ J2.
The following corollary is straightforward.

Corollary 5.1. If vi(S) < 3
4 + γ , ∀i and ∀S ∈ {S1, S2, S3}, then (i) vij < 3

4 + γ , ∀ j ∈ J1 , (ii) vij < 3
8 + γ

2 , ∀ j ∈ J2 , and vin <
3
4 + γ − vi(n+1) , and (iii) vij <

1
4 + γ

3 , ∀ j ∈ M \ J , for all i.

However, the value of S4 might be strictly greater than 1 for an agent i. Corollary 5.1 implies that, vi(S4) < 3
4 + γ + 1

4 +
γ
3 = 1 + 4γ

3 . We use dummy items to fix the issue of extra 4γ3 lost in assigning S4.

Dummy items (D1): For each removed S4 in Algorithm 2, we add one dummy item d j such that

vi({d j}) = 4γ

3
∀i ∈ N . (13)

Let D1 denote the set of all dummy items after the termination of Algorithm 2. We note that dummy items will not be
assigned to any agent. They are defined to make proofs easier. Later, we introduce two more sets D2 and D3 of dummy
items in Section 5.2. Let D := D1 ∪ D2 ∪ D3 with D2 = D3 = ∅ currently. The proof of the following corollary easily follows
from Lemma 3.1.

Corollary 5.2. For any remaining agent i ∈ N, μn
i (M ∪ D) ≥ 1.

The proof of the following lemma easily follows using (13) and Corollary 5.2.
17

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Lemma 5.3. When Algorithm 2 terminates, we have μn
i (M) ≥ 1 − 4γ r

3 and vi(M) ≥ n − 4γ r
3 , ∀i, where r is the total number of rounds

in Algorithm 2 when S4 is assigned.

5.2. Bag filling

The overall approach is same as in Section 3.2. We use the bag filling procedure given in Algorithm 3 to satisfy the
remaining agent by setting α = 3

4 + γ . We initialize the bags with items in J as in (3) (see Fig. 1). Algorithm 3 has n
rounds. In each round k, it starts a new bundle T with T ← Bk . If there is an agent who values T to be at least 34 + γ , then
assign T to such an agent. Otherwise, keep adding items from M \ J to T one by one until someone values T at least 34 +γ .

For correctness, we need to show that there are enough items in M \ J to add on top of each bag in (3) so that each agent
gets a bundle that they value at least 34 +γ . For this, we first divide agents into two types: N1 := {i ∈ N | vi(Bk) ≤ 1 + 3γ

2 , ∀k}
and N2 := N \ N1. Next, we update the notations of (4) to reflect the improved bound. For an agent i ∈ N2, define

Li := {Bk : vi(Bk) < 3
4 + γ }; li := |Li |

Hi :={Bk : vi(Bk) > 1+ 3γ
2 }; hi := |Hi|

xi := (34 + γ)li −
∑

k:Bk∈Li

vi(Bk).

(14)

The proof of the following lemma is an easy extension of Lemma 3.4, hence omitted.

Lemma 5.4. For an agent i ∈ N2 , (i) li > 0 and hi > 0, (ii) vi1 > 5
8 + γ , (iii) vi(Bk) < 9

8 + 3γ
2 , ∀k, and (iv) vij <

1
8 , ∀ j ∈ M \ J .

The proof of the following lemma is an extension of the proof of Lemma 3.5, and is in Appendix A.

Lemma 5.5. If vi(M \ J) ≥ xi + li
8 − 1

8 , ∀i ∈ N2 , then Algorithm 3 with α = 3
4 + γ gives every agent a bundle that they value at least

3
4 + γ .

Now, we only need to show that for each i ∈ N2, we have

vi(M \ J) ≥ xi + li
8 − 1

8 (15)

We start with a few lemmas. Recall from (2) that Pn
i (M) denote the set of partitions where the value of each bundle

is at least 1. The proofs of the following two lemmas are extensions of the corresponding Lemmas 3.6 and 3.8 respectively,
and are given in Appendix A.

Lemma 5.6. For an agent i ∈ N2 , there exists a bundle Pk in every partition P = {P1, . . . , Pn} ∈ Pn
i (M ∪ D) such that vi(Pk \ J) >

1
4 − γ .

Lemma 5.7. For every agent i, there exists a partition P = {P1, . . . , Pn} ∈ Pn
i (M ∪ D) such that each Pk ∈ P has at most one item j

with vij >
5
8 + γ .

Fix an agent, say a, in N2. For simplicity, until the end of this section, when we use value of an item or a bundle, we mean
their value for agent a (unless mentioned otherwise). Recall that we need to show (15). Let P = {P1, . . . , Pn) ∈ Pn

a (M ∪ D)

be a partition satisfying the condition of Lemma 5.7.
We manipulate P as follows: First, for each Bi = { j, j′} with 34 +γ ≤ va(Bi) ≤ 1 + 3γ

2 , if j ∈ Pk and j′ ∈ Pk′ , then we turn
Pk and Pk′ into two new bundles { j, j′} and (Pk ∪ Pk′ ∪ {d j} \ { j, j′}), where d j is a new dummy item with va(d j) := 3γ

2 .

Dummy items (D2): Let D2 denote the set of all dummy items added during the manipulation of P . Observe that |D2| =
n − ha − la . Each d j ∈ D2 values 3γ2 for agent a. Therefore,

va(D2) = 3γ |D2|
2

. (16)

Later we introduce one more set D3 of dummy items. Recall that D = D1 ∪ D2 ∪ D3 where D1 is defined in (13) and
D3 = ∅ currently. Observe that va

(
Pk ∪ Pk′ ∪ {d j} \ { j, j′}) ≥ 1. Hence, we can assume that for each Bi /∈ La ∪ Ha (as defined

in (14)), there exists a Pk = Bi and all other bundles value at least 1. Second, we re-enumerate the bundles in P such that

• P1, . . . , Pt1 : each has an item j of value more than 5 + γ and va(B j) < 3 + γ .
8 4

18

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
• Pt1+1, . . . , Pt2 : each has an item j of value more than 5
8 + γ and va(B j) > 1 (Observe that there are ha such bundles,

so t2 − t1 = ha).
• Pt3+1, . . . , Pn: each such Pk = Bk′ for some k′ and 34 + γ ≤ va(Bk′) ≤ 1 + 3γ

2 .
• Pt2+1, . . . , Pt3 be the remaining bundles (Observe that t3 = la + ha).

Definition 5.8. Define y := vak′ where k′ is the highest value item in the set { j ∈ J2 ∩ Bk, Bk ∈ Ha}.

Observe that 1
4 + γ

2 < y < 3
8 + γ

2 . For instance, in Fig. 1, if no bag from {Bk+1, . . . , Bn} is in Ha but Bk ∈ Ha , then
y = va(2n−k+1) . This also implies that va1 ≥ · · · ≥ vak > 5

8 + γ . Moreover, y = va(2n−k+1) ≤ va(2n−k) ≤ · · · ≤ va(k+1) . The proof
of the following lemma is an easy extension of the proof of Lemma 3.12, and hence omitted.

Lemma 5.9. For any bundle Bk = { j, j′} ∈ La such that vaj, vaj′ < 5
8 + γ , we have vaj, vaj′ ≥ y.

Next, we show the extension of Lemma 3.13, whose proof is given in Appendix A.

Lemma 5.10. For agent a ∈ N2 , if t1 = 0 then we have

1. xa ≤ (34 + γ − 2y)la
2. va((M ∪ D) \ J) ≥ max{xa + la(

1
4 − γ) − yz + z(14 − γ), z(14 − γ)}, where z = max{2ha − | ⋃t2

t=t1+1 Pt ∩ J |, 0}.

The following lemma is an extension of Theorem 3.14, and its proof is given in Appendix A.

Theorem 5.11. For agent a ∈ N2 , if t1 = 0 then

va(M ∪ D \ J) ≥ xa + la
8 . (17)

Next, we handle the general case when t1 > 0. Let L1a ⊆ La be the set of bags in La , which have one item with value
more than 58 + γ , and L2a = La \ L1a . Clearly, |L1a | = t1 and |L2a | = la − t1. Note that |L2a | ≥ 1 because Bn ∈ L2a .

Dummy items (D3): For each bag in L1a we add a dummy item d j where va(d j) = γ . Therefore,

va(D3) = |D3| · γ = |L1a | · γ < la · γ . (18)

The following theorem is an extension of Theorem 3.15, and its proof is given in Appendix A.

Theorem 5.12. For agent a ∈ N2 , we have va((M ∪ D) \ J) ≥ xa + la
8 .

Next, we obtain the bound without the dummy items in the next theorem.

Theorem 5.13. For any agent a ∈ N2 , va(M \ J) ≥ xa + la
8 − 1

8 .

Proof. From Lemma 5.3, (16), and (18), the total value of the items in D is at most

va(D) ≤ 4γ r

3
+ 3γ |D2|

2
+ γ la ≤ 3γn

2
≤ 1

8
,

because |D2| + r ≤ (n − ha − la) and γ = 1
12n , where n is the number of agents in the original instance. This, together with

Theorem 5.12, proves the theorem. �
5.3. Better approximation factor?

The algorithm is specifically designed for the approximation factor of 3
4 . The first issue that the algorithm faces by

increasing the approximation factor, is that removing S4 will no longer be a valid reduction (see Lemma 3.1 and Section 5.1).
However, as we showed in Section 5, with the use of the extra 18 value in M \ J (Lemma 3.5 and Theorem 3.15), we could
use the same algorithm for the factor of 3

4 + γ with γ = 1
12n . This raises a natural question of whether this is the best

algorithm can do, i.e., are there tight examples for which the same algorithm cannot guarantee better than 3
4 + 1

12n ? We
leave this as an interesting open question. However, we can show that our algorithm does not guarantee a factor greater
than 3 + 1 .
4 12

19

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Table 5
Valuation of agents for item j, j ∈ M in Exam-
ple 5.14.

Item 1 2− 4 5−m

v j
5
6

1
3

ε
2

Example 5.14. Let I = 〈N, M, V 〉 be an instance for which we want α(= 5
6 + ε)-MMS allocation for some ε > 0. Let N =

{1, 2} be the set of agents with identical valuations, M = {1, 2, . . . , m} be the set of items where m = � 1
3ε � + 4, and V = v .

Agents’ valuation for each item is shown in Table 5.
Clearly, the MMS partition is P1 = {2, 3, 4} and P2 = {1} ∪ {5, . . . , m} of M , which implies μn

i (M) = 1, ∀i. When we run
Algorithm 1 on I = 〈N, M, V 〉 then there will not be any initial assignment, and it will run the bag filling procedure with
bags Bi = {1, 4} and B2 = {2, 3}, which will not output an α-MMS allocation.

6. Conclusions

We developed a new approach that gives a simple algorithm for showing the existence of a 34 -MMS allocation. Further-
more, we showed that our approach is powerful enough to be easily extended to obtain (i) a strongly polynomial time
algorithm to find a 3

4 -MMS allocation, and (ii) the existence of a (34 + 1
12n)-MMS allocation, improving the best previous

factor. Consequently, this gives a PTAS for finding a (34 + 1
12n − ε)-MMS allocation for any ε > 0. An interesting question is to

find the maximum γ for which the proposed algorithm obtains (34 +γ)-MMS allocation. We could show that our algorithm
fails for γ > 1

12 , but the question remains open for γ ∈ (1
12n , 112].

Further, it could be worth exploring whether extending the approach yields a 4
5 -MMS allocation. Such an extension

would be challenging because after the initial greedy assignments, there will be 3n high-value items, and this would make
the process of initializing the bag filling procedure harder due to too many items to handle and also the value of some bags
might exceed significantly more than 1.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank anonymous referees for their comments and suggestions that have helped to improve the pre-
sentation of the paper. Work on this paper supported by NSF Grant CCF-1942321 (CAREER).

Appendix A. Missing proofs

Lemma 2.3 (Average upper bounds MMS). μn
i (M) ≤ vi(M)

n , ∀i ∈ N.

Proof. Suppose for some agent i, μn
i (M) > vi(M)/n, i.e., there exists a partition of M into n bundles where all bundles have

value strictly more than vi(M)
n . Therefore, vi(M) ≥ n · μn

i (M) > n · vi(M)/n = vi(M), which is a contradiction. �
Lemma 2.4 (Scale invariance). Let A = (A1, . . . , An) be an α-MMS allocation for instance I = 〈N, M, V 〉. If we create an alternate
instance I ′ = 〈N, M, V ′〉 where valuations of each agent i are scaled by ci > 0, i.e., v ′

i j := ci · vij, ∀ j ∈ M, then μ′
i = ci · μi and A is

an α-MMS allocation for I ′ .

Proof. For any bundle S ⊆ M , we have v ′
i(S) = ci · vi(S). Therefore, μ′

i = ci · μi . Further, v ′
i(Ak) = ci · vi(Ak) ≥ ci · α · μi =

α · μ′
i, ∀k. �

Lemma 2.5 (Ordered instance [30,5]). Without loss of generality, we can assume that agents have the same order of preferences over
the items, i.e., vi1 ≥ vi2 ≥ · · · ≥ vim, ∀i ∈ N.

Proof. Consider Algorithms 7 and 8. It is enough to show that given any instance I = 〈N, M, V 〉, we can find an ordered
instance I ′ = 〈N, M, V ′〉 in polynomial time using Algorithm 7. Furthermore, given an α-MMS allocation A′ for the ordered
version I ′ , we can find an α-MMS allocation A for the original instance I in polynomial time using Algorithm 8.

Clearly, items in I ′ are sorted by their values, and they have the same order for all agents. Also, it takes mn iterations to
obtain I ′ . Note that each agent’s MMS value will remain the same in I ′ because it neither depends on the order of items
20

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Algorithm 7: [5] Conversion to an ordered instance.
Input : Instance I = 〈N, M, V 〉
Output : Instance I ′ = 〈N, M, V ′〉 in which v ′

i1 ≥ · · · ≥ v ′
im for all i ∈ N

1 for i = 1 to n do
2 for j = 1 to m do
3 j∗ ← jth highest value item of M for agent i
4 v ′

i j ← vij∗

Algorithm 8: [5] α-MMS allocation for unordered instance.
Input : Instance I = 〈N, M, V 〉, Ordered Instance I ′ = 〈N, M, V ′〉, α-MMS allocation A′ = (A′

i)i∈N for I ′
Output : α-MMS allocation A = (Ai)i∈N for I

1 Ai ← ∅, ∀i
2 for j = 1 to m do
3 i∗ ← i ∈ N : j ∈ A′

i // i∗ is the agent who has jth item of I ′ in her bundle
4 j∗ ← argmax j∈M\(⋃i∈N Ai)

vi∗ j // j∗ is i∗’s favorite unassigned item
5 Ai∗ ← Ai∗ ∪ { j∗}

nor on the valuations of other agents. We prove that vi(Ai) ≥ v ′
i(A

′
i) for all i ∈ N . Consider the round r of the Algorithm 8

and consider item r from I ′ is in A′
i . It means that agent i is getting her rth favorite item in A′

i but now after r − 1 round,
exactly r − 1 items are allocated and she will get her favorite item among unallocated items. Therefore, the item she gets in
this round is at least as valuable as the one she was getting in the ordered instance. Therefore, vi (Ai) ≥ v ′

i(A
′
i) ≥ α · μi . �

Lemma 5.5. If vi(M \ J) ≥ xi + li
8 − 1

8 , ∀i ∈ N2 , then Algorithm 3 with α = 3
4 + γ gives every agent a bundle that they value at least

3
4 + γ .

Proof. This is proof by contradiction. Suppose the algorithm stops at round t because there are not enough items in L
(= M \ J) to satisfy any remaining agent i, i.e., vi(Bt ∪ L) < 3

4 + γ .

If i ∈ N1, each removed bundle in rounds k ∈ [t − 1], has value of at most 1 + 3γ
2 for agent i. Because, if vi(Bk) ≥ 3

4 + γ

for k ∈ [t − 1], no more item has been added to T = Bk . Also, if vi(Bk) < 3
4 + γ for k ∈ [t − 1] before adding the last item (if

any) to T the value of T is less that 34 + γ and from Corollary 5.1, vij <
1
4 + γ

3 for j ∈ L. Therefore, at the end of the round
vi(T) < 1 + 3γ

2 .

This implies that the total value of assigned bundles in round 1 to t − 1 is at most (t − 1)(1 + 3γ
2). Let n′ be the number

of agents remaining after Algorithm 2, and n be the number of agents in the original instance. We have vi(M) ≥ n′ − 4γ r
3

due to Lemma 5.3. Therefore, the value of items in L before the round t starts is at least

vi(L) ≥ n′ − 4γ r

3
−

(
(t − 1)(1 + 3γ

2) + vi(Bt) + (n′ − t)(1+ 3γ
2)

)
.

This implies that

vi(L) + vi(Bt) ≥ 1− 3(r + (n′ − 1))γ

2
≥ 1 − 3(n − 1)γ

2
≥ 7

8
+ 1

8n
≥ 3

4
+ γ ,

where we use γ = 1
12n , which is a contradiction.

If i ∈ N2, then since at round t , vi(T) < 3
4 + γ , we have Bt ∈ Li . Consider a round k ∈ [t − 1]. If Bk /∈ Li , then T = Bk has

been assigned to someone with no additional items added to T from L because i ∈ �(T). If Bk ∈ Li , then in round k, before
adding the last item (if any) to T , the value of i for T is less that 34 + γ and from Lemma 5.4, all items in L have value of
at most 18 . Therefore, if Bk ∈ Li , the value of the assigned bag for i in round k is less that 78 + γ . Hence, in the beginning of
the round t ,

vi(L) ≥
(
xi + li

8 − 1
8

)
−

(
xi − (34 + γ − vi(Bt)) + (li − 1)/8)

)
= 3

4 + γ − vi(Bt),

which is a contradiction. �
Lemma 5.6. For an agent i ∈ N2 , there exists a bundle Pk in every partition P = {P1, . . . , Pn} ∈ Pn

i (M ∪ D) such that vi(Pk \ J) >
1 − γ .
4

21

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Proof. If there exists a bundle Pk with exactly one item j from J , then vi(Pk \ J) = 1 − vij >
1
4 − γ because value of every

item is less than 3
4 + γ . Otherwise, each bundle has exactly two items from J , which implies that one of the bundles, say

Pk , has two items j1, j2 from the set {n} ∪ J2. Since vij1 + vij2 ≤ vin + vi(n+1) < 3
4 + γ , vi(Pk \ J) > 1

4 − γ . �
Lemma 5.7. For every agent i, there exists a partition P = {P1, . . . , Pn} ∈ Pn

i (M ∪ D) such that each Pk ∈ P has at most one item j
with vij >

5
8 + γ .

Proof. We show that if there are two items j1, j2 with each value more than 5
8 + γ for an agent i in a bundle Pk of

P ∈Pn
i (M ∪ D), then we can construct another P ′ ∈Pn

i (M ∪ D) where this is not true. Corollary 5.1 implies that there must
exist another bundle Pk′ for which max j∈Pk′ vij < 3

8 + γ
2 . If there exists a partition Q 1

k′ and Q 2
k′ of items in Pk′ such that

value of each Q 1
k′ and Q 2

k′ is at least 38 −γ , then we can rearrange items in Pk ∪ Pk′ and make two new bundles ({ j1} ∪ Q 1
k′)

and ({ j2} ∪ Q 2
k′). Clearly, the value of each bundle is at least 1 and each has exactly one item with value more than 58 + γ .

If no such Q 1
k′ and Q 2

k′ exists, then we claim that there exists a partition of Pk′ into three sets with each value less than
3
8 . We can find this partition as follows: Initialize three empty bundles, and repeatedly add the highest value item of Pk′ to
the bundle with the lowest value. For a contradiction, suppose one of the three bundles has value more than 3

8 , then the
sum of the values of the other two sets must be less than 3

8 because otherwise, they make a partition of two with each
value more than 3

8 − γ . This means that at least one of the bundles must have a value less than 3
16 . This implies that the

value of the largest bag before adding the last item must be less than 3
16 and the last item also should value less than 3

16 ,
which is a contradiction. Therefore, there exists a partition Q 1

k′ , Q 2
k′ and Q 3

k′ of Pk′ such that each value less than 38 .
According to Lemma 5.6, there exists a bundle Pk̂ ∈ Pn

i (M) such that vi(Pk̂ \ J) > 1
4 − γ . Let vi(Pk̂) = 1 + δ for some

δ ≥ 0. Observe that Pk′ cannot be same as Pk̂ and Pk , otherwise we would have made two bundles earlier, each with value
at least 1 and exactly one item more than 58 + γ . We initialize three bags:

bag 1 : { j1} ∪ Q 1
k′ bag 2 : { j2} ∪ Q 2

k′ bag 3 : (Pk \ { j1, j2}) ∪ (Pk̂ ∩ J) ∪ Q 3
k′

Observe that the value of each of bag 1 and bag 2 is at most 9
8 + 3γ

2 , and the total value of all items in Pk , Pk′ and Pk̂

is at least 3 + 2
8 + δ + 2γ . We sort the remaining items in decreasing order and add them one by one to a bag with the

lowest value. Since the value of the last item added to each bag has a value of at most 1
8 (from Lemma 5.4), each bag has

a value of at least 1 and it has at most one item with value more than 5
8 + γ . We repeat this process for all bundles with

two item of value more than 58 + γ to find a desired partition. �
Lemma 5.10. For agent a ∈ N2 , if t1 = 0 then we have

1. xa ≤ (34 + γ − 2y)la
2. va((M ∪ D) \ J) ≥ max{xa + la(

1
4 − γ) − yz + z(14 − γ), z(14 − γ)}, where z = max{2ha − | ⋃t2

t=t1+1 Pt ∩ J |, 0}.

Proof. For the first part, since t1 = 0, we have va(Bk) ≥ 2y, ∀Bk ∈ La (Lemma 5.9). This implies that xa = (34 + γ)la −∑
k:Bk∈La Bk ≤ (34 + γ − 2y)la .

For the second part, in
⋃

k:Bk∈Ha
Bk there are exactly 2ha items from J . If there are at least 2ha items in

⋃t2
t=t1+1 Pt ∩ J

then z = 0. On the other hand, if there are 2ha − z items in
⋃t2

t=t1+1 Pt ∩ J , then it means that there are at least z bundles
in Pt1+1, . . . , Pt2 with exactly one item from J . Each of these bundles need more than 14 − γ value of items from M \ J to
become 1.

Next, if z = 0, then all bundles in {Pt2+1, . . . , Pt3 } need at least xa + la(
1
4 − γ) value of items from M \ J to become

1 because the value of each item in the bundles of La is at least y (follows from Definition 5.8 and the construction of
Bk ’s in (3)). If z > 0, then all bundles in {Pt2+1, . . . , Pt3 } need at least xa + la(

1
4 − γ) − yz value of items from M \ J to

become one because each of the z items has value at most y (Lemma 5.9). Therefore, in total, there should be at least
xa + la(

1
4 − γ) − yz + z(14 − γ) value of items from M \ J in {Pt1+1, . . . , Pt3 }.

Further, in case z is large such that the value of xa + la(
1
4 − γ) − yz + z(14 − γ) is negative, we still need z(14 − γ) value

of items from M \ J to make all bundles in {Pt1+1, . . . , Pt2 } value 1. �
Theorem 5.11. For agent a ∈ N2 , if t1 = 0 then

va(M ∪ D \ J) ≥ xa + la
8 . (17)

Proof. Using Lemma 5.10(2) there are two cases for the maximum of xa + la(
1
4 − γ) − yz + z(14 − γ) and z(14 − γ). We

prove the claim for each case separately.
22

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
Case 1: Suppose xa + la(
1
4 − γ) − yz + z(14 − γ) ≥ z(14 − γ), then z ≤ xa+la(

1
4−γ)

y . Further, Lemma 5.10(1) implies y ≤
la(

3
4+γ)−xa

2la
. Using these, we get

va(M ∪ D \ J) ≥ xa + la(
1
4 − γ) − yz + z(14 − γ)

≥ xa(
1
4 − γ) + la(

1
4 − γ)2

y

≥ 2xala(14 − γ) + 2l2a(
1
4 − γ)2

la(
3
4 + γ) − xa

.

We need to show that

2xala(14 − γ) + 2l2a(
1
4 − γ)2

la(
3
4 + γ) − xa

−
(
xa + la

8

)
≥ 0 . (A.1)

For n ≤ 4 (i.e., number of agents in the original instance is at most 4), there is a simpler way to prove this claim.
However, there are better approximation factors available for them in any case [7], so we assume that n > 4. Since γ = 1

12n ,
it decreases as n increases. Therefore, it is enough to show (A.1) for n = 5. For this, we put γ = 1

60 in (A.1) and get,

2xala(14 − 1
60) + 2l2a(

1
4 − 1

60)2

la(
3
4 + 1

60) − xa
−

(
xa + la

8

)
= 7(30xala + 7l2a)

15(23la − 30xa)
− 8xa + la

8

= 3600x2a − 630xala + 47l2a
120(23la − 30xa)

>
36(10xa − la)2 + la(11la + 90xa)

120(23la − 30xa)

≥ 0 .

The last inequality follows because the denominator is positive using the definition of xa .

Case 2: Suppose xa + la(
1
4 − γ) − yz + z(14 − γ) ≤ z(14 − γ). Then, using Lemma 5.10(1), we have

va((M ∪ D) \ J) ≥ z(14 − γ) ≥ xa(
1
4 − γ) + la(

1
4 − γ)2

y
≥ xa + la

8 ,

where the last inequality follows from the Case 1. �
Theorem 5.12. For agent a ∈ N2 , we have va((M ∪ D) \ J) ≥ xa + la

8 .

Proof. Let Jmin = ⋃
Bk∈L1a

Bk ∩ J2. Then, we have vaj < 1
8 , ∀ j ∈ Jmin because these items are bagged with an item value more

than 5
8 + γ and together they have value less than 3

4 + γ . Therefore, va(Jmin) < t1
8 . Let x′

a := (34 + γ)t1 − ∑
Bk∈L1a

va(Bk),
and x′′

a := xa − x′
a . For agent a, we can treat items of Jmin as low-value items so we will prove:

va((M ∪ D) \ J) + va(Jmin) ≥ x′
a + t1

4 + x′′
a + (la − t1)/8. (A.2)

Since va(Jmin) is at most t18 , (A.2) directly implies the theorem. Let us call items in (M \ J) ∪ Jmin ∪ D as filler items (each
has value < 1

8) and items in J \ Jmin as base items (each has value > 1
4 + γ

3).
In re-enumerated Pn

a (M ∪ D), recall that each of {P1, . . . , Pt1 } contains a base item whose value is at least the maximum
of all the items in the remaining bundles. Further, if there are two base items in any bundle Pk in {P1, . . . , Pt1 }, then
va(Pk) > 1. If each bundle in {P1, . . . , Pt1 } has exactly one base item (t1 bundles in total) then items of value at least
x′
a + t1(

1
4 − γ) are needed to make all these bundles at least 1 and there are t1 items in D3 with value γ . This, together

with Theorem 5.11, proves the bound. On the other hand, if there are more than t1 base items in {P1, . . . , Pt1 }, then for
each extra base item j, there are two cases. If j comes from Bk ∈ L2a then clearly, x′

a will decrease by less than vaj but x′′
a

will increase by vaj , so the bound only improves. For the other case, if j comes from Bk ∈ Ha then it will make Bk \ { j}
to need more low-value items than the bundle in {P1, . . . , Pt1 } who gets j to become one, so x′

a will only increase and x′′
a

stays same, and hence the bound only improves. This completes the proof. �

23

J. Garg and S. Taki Artificial Intelligence 300 (2021) 103547
References

[1] A.D. Procaccia, J. Wang, Fair enough: guaranteeing approximate maximin shares, in: Proc. 15th Conf. Economics and Computation, EC, 2014,
pp. 675–692.

[2] D. Kurokawa, A.D. Procaccia, J. Wang, When can the maximin share guarantee be guaranteed?, in: Proc. 30th Conf. Artif. Intell., AAAI, 2016, pp. 523–529.
[3] D. Kurokawa, A.D. Procaccia, J. Wang, Fair enough: guaranteeing approximate maximin shares, J. ACM 65 (2) (2018) 8:1–8:27.
[4] G. Amanatidis, E. Markakis, A. Nikzad, A. Saberi, Approximation algorithms for computing maximin share allocations, ACM Trans. Algorithms 13 (4)

(2017) 52:1–52:28.
[5] S. Barman, S.K. Krishnamurthy, Approximation algorithms for maximin fair division, in: Proc. 18th Conf. Economics and Computation, EC, 2017,

pp. 647–664.
[6] J. Garg, P. McGlaughlin, S. Taki, Approximating maximin share allocations, in: 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, 2019,

pp. 20:1–20:11.
[7] M. Ghodsi, M. Hajiaghayi, M. Seddighin, S. Seddighin, H. Yami, Fair allocation of indivisible goods: improvements and generalizations, in: Proc. 19th

Conf. Economics and Computation, EC, 2018, pp. 539–556.
[8] J. Garg, S. Taki, An improved approximation algorithm for maximin shares, in: Proc. 21st Conf. Economics and Computation, EC, 2020, pp. 379–380.
[9] H. Steinhaus, The problem of fair division, Econometrica 16 (1948) 101–104.

[10] E. Budish, The combinatorial assignment problem: approximate competitive equilibrium from equal incomes, J. Polit. Econ. 119 (6) (2011) 1061–1103.
[11] A. Farhadi, M. Ghodsi, M.T. Hajiaghayi, S. Lahaie, D.M. Pennock, M. Seddighin, S. Seddighin, H. Yami, Fair allocation of indivisible goods to asymmetric

agents, J. Artif. Intell. Res. 64 (2019) 1–20.
[12] V. Gates, T.L. Griffiths, A.D. Dragan, How to be helpful to multiple people at once, Cogn. Sci. 44 (2020) e12841.
[13] G.J. Woeginger, A polynomial-time approximation scheme for maximizing the minimum machine completion time, Oper. Res. Lett. 20 (4) (1997)

149–154.
[14] S. Bouveret, M. Lemaître, Characterizing conflicts in fair division of indivisible goods using a scale of criteria, Auton. Agents Multi-Agent Syst. 30 (2)

(2016) 259–290.
[15] L. Gourvès, J. Monnot, On maximin share allocations in matroids, Theor. Comput. Sci. 754 (2019) 50–64.
[16] S. Barman, A. Biswas, S.K.K. Murthy, Y. Narahari, Groupwise maximin fair allocation of indivisible goods, in: Proc. 32nd Conf. Artif. Intell, AAAI, 2018,

pp. 917–924.
[17] B.R. Chaudhury, T. Kavitha, K. Mehlhorn, A. Sgouritsa, A little charity guarantees almost envy-freeness, in: Proc. 31st Symp. Discrete Algorithms, SODA,

2020, pp. 2658–2672.
[18] Z. Li, A. Vetta, The fair division of hereditary set systems, in: Proc. 14th Conf. Web and Internet Economics, WINE, 2018, pp. 297–311.
[19] A. Biswas, S. Barman, Fair division under cardinality constraints, in: Proc. 27th Intl. Joint Conf. Artif. Intell, IJCAI, 2018, pp. 91–97.
[20] S. Brânzei, T.P. Michalak, T. Rahwan, K. Larson, N.R. Jennings, Matchings with externalities and attitudes, in: Proc. 12th Conf. Auton. Agents and Multi-

Agent Systems, AAMAS, 2013, pp. 295–302.
[21] N. AhmadiPourAnari, S. Ehsani, M. Ghodsi, N. Haghpanah, N. Immorlica, H. Mahini, V.S. Mirrokni, Equilibrium pricing with positive externalities, Theor.

Comput. Sci. 476 (2013) 1–15.
[22] X. Bei, A. Igarashi, X. Lu, W. Suksompong, Connected fair allocation of indivisible goods, CoRR arXiv:1908 .05433.
[23] Z. Lonc, M. Truszczynski, Maximin share allocations on cycles, CoRR arXiv:1905 .03038.
[24] H. Aziz, G. Rauchecker, G. Schryen, T. Walsh, Algorithms for max-min share fair allocation of indivisible chores, in: Proc. 31st Conf. Artif. Intell., AAAI,

2017, pp. 335–341.
[25] X. Huang, P. Lu, An algorithmic framework for approximating maximin share allocation of chores, CoRR arXiv:1907.04505.
[26] S. Barman, G. Ghalme, S. Jain, P. Kulkarni, S. Narang, Fair division of indivisible goods among strategic agents, in: Proc. 18th Conf. Auton. Agents and

Multi-Agent Systems, AAMAS, 2019, pp. 1811–1813.
[27] G. Amanatidis, G. Birmpas, E. Markakis, On truthful mechanisms for maximin share allocations, in: S. Kambhampati (Ed.), Proc. 25th Intl. Joint Conf.

Artif. Intell, IJCAI, 2016, pp. 31–37.
[28] G. Amanatidis, G. Birmpas, G. Christodoulou, E. Markakis, Truthful allocation mechanisms without payments: characterization and implications on

fairness, in: Proc. 18th Conf. Economics and Computation, EC, 2017, pp. 545–562.
[29] H. Aziz, B. Li, X. Wu, Strategyproof and approximately maxmin fair share allocation of chores, in: Proc. 28th Intl. Joint Conf. Artif. Intell, IJCAI, 2019,

pp. 60–66.
[30] S. Bouveret, M. Lemaître, Efficiency and sequenceability in fair division of indivisible goods with additive preferences, CoRR arXiv:1604 .01734.
24

http://refhub.elsevier.com/S0004-3702(21)00098-9/bib90621AA794AC1DAE6B1792A42D195583s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib90621AA794AC1DAE6B1792A42D195583s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib3E5C8F0A674A4ECFFB6CB7DF1885E407s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibDD35E67CC29C824503C88C173378014As1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibA18031CB242FED40727C58408AC23F71s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibA18031CB242FED40727C58408AC23F71s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib7D21103BFD2FCFFE6BE5AC77273C8E31s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib7D21103BFD2FCFFE6BE5AC77273C8E31s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibAFDE2D416F1FD1283F8836A5E55F892Ds1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibAFDE2D416F1FD1283F8836A5E55F892Ds1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibABFF1F61CEAF9BC08C7ED39FF4D61667s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibABFF1F61CEAF9BC08C7ED39FF4D61667s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib28A0B9D41CDEBE3FA3302B16D1A959B6s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibCB6297B8177C8453B30937DB6675851Bs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib90E24CAFFCC61B6022A96B58F4AD1FA1s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib2E4D4E12189EAEA760443F0F336378BCs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib2E4D4E12189EAEA760443F0F336378BCs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib57EA7BE0AE525F1BEE975B1796737DD3s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib929BA7F00AA531B0A5905159D42D2DE4s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib929BA7F00AA531B0A5905159D42D2DE4s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib1CB0FA2077FF051F4E164BA489979178s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib1CB0FA2077FF051F4E164BA489979178s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib6868BBD147D175EA7A2CECCFFF988441s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibA10FAE5E290AB944D5ED00C84C3788EEs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibA10FAE5E290AB944D5ED00C84C3788EEs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib196E77E3700AD7FE6386AFF97E17FE04s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib196E77E3700AD7FE6386AFF97E17FE04s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibB9279033D118357C162B67E14C13B403s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibE71E8479F6156DFE03190C9942FF1B88s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib527F82A3F3C5882070189F2479F58B58s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib527F82A3F3C5882070189F2479F58B58s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibC6268EB42962EF4BDCF1B0FC460240C0s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibC6268EB42962EF4BDCF1B0FC460240C0s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib062A2EC766269BD466ABE96D719D2DF6s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib31B5BB1D8A80867AD35B351FA515C8E8s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib317FF683309610C5E75B7590B11AAC65s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib317FF683309610C5E75B7590B11AAC65s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib66D0CBA420B6DA198D8AF15B42F48FFDs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib82CB871531C4AAA7A486618AAAE6B065s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib82CB871531C4AAA7A486618AAAE6B065s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibE06EFF769E4503FD3C9D26A3F6074278s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bibE06EFF769E4503FD3C9D26A3F6074278s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib89424904DF752AB5AF99BFD66B9D2204s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib89424904DF752AB5AF99BFD66B9D2204s1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib3BFB30C6E14D347CA51D59115A5FDAFCs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib3BFB30C6E14D347CA51D59115A5FDAFCs1
http://refhub.elsevier.com/S0004-3702(21)00098-9/bib9BE2CCDD3CB88C68A794D90B993C89A0s1

	An improved approximation algorithm for maximin shares
	1 Introduction
	1.1 Our results and techniques
	1.2 Related work

	2 The MMS problem and its properties
	2.1 Properties of maximin share
	2.1.1 Ordered instances
	2.1.2 Bag filling for low value items
	2.1.3 Reduction

	3 Existence of 3/4-MMS allocation
	3.1 Initial assignment
	3.2 Bag filling
	3.2.1 Showing (6)

	4 Algorithm for 3/4-MMS allocation
	4.1 Initial assignment
	4.1.1 Fixed assignment
	4.1.2 Tentative assignment

	4.2 Updating MMS upper bound
	4.3 Bag filling and running time

	5 Existence of (3/4+1/12n)-MMS allocation
	5.1 Initial assignment
	5.2 Bag filling
	5.3 Better approximation factor?

	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A Missing proofs
	References

