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ABSTRACT

We consider the problem of approximating maximum Nash social
welfare (NSW) while allocating a set of indivisible items to n agents.
The NSW is a popular objective that provides a balanced tradeoff
between the often conflicting requirements of fairness and effi-
ciency, defined as the weighted geometric mean of the agents’ valu-
ations. For the symmetric additive case of the problem, where agents
have the same weight with additive valuations, the first constant-
factor approximation algorithm was obtained in 2015. Subsequent
work has obtained constant-factor approximation algorithms for
the symmetric case under mild generalizations of additive, and
O(n)-approximation algorithms for subadditive valuations and for
the asymmetric case.

In this paper, we make significant progress towards both symmet-
ric and asymmetric NSW problems. We present the first constant-
factor approximation algorithm for the symmetric case under Rado
valuations. Rado valuations form a general class of valuation func-
tions that arise from maximum cost independent matching prob-
lems, including as special cases assignment (OXS) valuations and
weighted matroid rank functions. Furthermore, our approach also
gives the first constant-factor approximation algorithm for the
asymmetric case under Rado valuations, provided that the maxi-
mum ratio between the weights is bounded by a constant.
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1 INTRODUCTION

In the discrete Nash social welfare (NSW) problem, one needs to
allocate a set G of m indivisible items to a set A of n agents where
each agent i has a valuation function v; : 26 5 R, and weight
(entitlement) w; > 0. The goal is to find an allocation maximizing
the weighted geometric mean, i.e., the Nash social welfare, of the
valuations:

max (

We refer to the special case when all agents have equal weight (i.e.,
w; = 1) as the symmetric NSW problem, and call the general case
the asymmetric NSW problem.

The (symmetric) NSW can be seen as a balanced trade-off be-
tween two other popular social welfare concepts, the utilitarian
social welfare that maximizes the sum of the valuations, and the
max-min fairness, also known as the Santa Claus problem, that
maximizes the smallest valuation of any agent. A distinctive feature
of the NSW problem is invariance under scaling of the valuation
functions. That is, unlike the utilitarian social welfare and the max-
min fairness, the set of optimal allocations in the NSW problem
remains unchanged even if the valuations of the agents are scaled
by arbitrary positive constants.
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Origins. Fair and efficient allocation of resources is a fundamen-
tal problem in many disciplines, including computer science, eco-
nomics, and social choice theory; see, e.g., several excellent books
written specifically on this problem [6, 9, 10, 46, 59, 60, 68]. The Nash
social welfare emerged as an objective that provides a balanced
tradeoff between the often conflicting requirements of fairness and
efficiency. It was discovered independently in several different con-
texts: First, as the unique solution to a bargaining game by Nash
in 1950 [37, 51]. It also coincides with the notion of competitive
equilibrium with equal incomes in economics [64], and as a notion
of proportional fairness in networking [38]. The above mentioned
works considered the symmetric Nash social welfare problem. The
asymmetric objective has also been well-studied since the seventies
[33, 36], and has found many applications in different areas, such
as bargaining theory [13, 42], water resource allocation [18, 34],
and climate agreements [69].

Computational Complexity. The NSW problem is NP-hard even
for two identical agents with additive valuations: the partition
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problem reduces to the NSW problem [53]. Moreover, the problem
is NP-hard to approximate within a factor better than 1.069 for
additive valuations [24], and better than 1.5819 for submodular
valuations [28]. These results hold already in the symmetric case.

On the positive side, several approximation algorithms were de-
veloped for the problem using various techniques. For the symmet-
ric NSW problem with additive valuations, Cole and Gkatzelis [16],
in a breakthrough result, designed the first constant-factor approx-
imation algorithm using a spending-restricted market equilibrium.
Anari, Oveis Gharan, Saberi, and Singh [1] followed with a constant-
factor approximation algorithm built on the theory of real stable
polynomials. Barman, Krishnamurthy, and Vaish [8] developed yet
another approach based on local search that provides the state-of-
the-art approximation factor of 1.45.

These three approaches have been extended to obtain constant-
factor approximation algorithms for mild generalizations of additive
valuations: budget-additive [25], separable piecewise linear concave
(SPLC) [2], and their combination, budget-SPLC [14] valuations. All
these approaches heavily exploit the symmetry of agents and the
characteristics of these ‘additive-like’ valuations, such as the notion
of a maximum bang-per-buck (MBB) items. This makes them hard
to extend to significantly more general settings.

Beyond ‘additive-like’ valuations or the asymmetric NSW prob-
lem no constant-factor approximation algorithms are known. Here,
the state-of-the-art are O(n)-approximation algorithms for the asym-
metric Nash problem under subadditive valuations [7, 15, 28]. How-
ever, no better than O(n) approximation has been achieved even for
special cases such as OXS valuations, or only two types of agents
with weights 1 or 2 under additive valuations. Therefore, O(n)
remained the best approximation factor for the symmetric NSW
problem beyond ‘additive-like’ valuations or for the asymmetric
NSW problem.

Independently, in a very recent development, Li and Vondrak

[45] gave a -approximation of the optimum NSW value for a

e

e—1)?
broad class (()f submodular valuation functions, including the same
class of Rado valuations we study, as well as the cone generated
by Rado valuations. A notable example in this cone are coverage
functions. The paper extends the real stable polynomial approach
used by Anari, Oveis Gharan, Saberi, and Singh [1], and shows that
the corresponding convex relaxation has constant integrality gap.
However, the randomized rounding technique can find a constant
factor approximate solution with exponentially small probability
only. Therefore, this does not yield a polynomial-time algorithm
for finding a near-optimal allocation. Moreover, the results only
apply for symmetric NSW.

Our Contributions. We make significant progress towards both
symmetric and asymmetric NSW problems. Firstly, we obtain a
constant-factor approximation for a broad class of submodular val-
uations we call Rado valuations.! This is a common generalization
of OXS valuations and weighted matroid functions. A Rado valua-
tion of an agent i € A is specified by a bipartite graph (G, V;; E;),

1We propose the name “Rado valuations” (Definition 2.4) in honor of Richard Rado,
who first studied the independent matching problem [58]. As already mentioned, in
the context of NSW, the same class has been studied in the recent work of Li and
Vondrak [45] as valuations arising via bipartite matching with a matroid constraint.
Murota [50] calls Rado valuations independent assignment valuations.
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edge costs ¢; : E; — Ry and a matroid M; = (V;, Z;). The value
vi(S) of a subset of items S C G is given as the maximum cost of
a matching between nodes in S and nodes in V; such that the end-
points in V; form an independent set in the matroid M;. Relation
between popular classes of valuations functions follows [43, 54]:

0OXs
Weighted Matroid Rank

Rado € GS € Submodular € Subadditive .

Additive ¢ SPLC ¢ C Rado

THEOREM 1.1. There exists a polynomial-time 25693/ez772—app—

roximation algorithm for the symmetric Nash social welfare problem
under Rado valuations.

Rado valuations form a subclass of gross substitutes (GS) valu-
ations. In fact, it was conjectured by Frank in 2003 that every GS
valuation arises as a Rado valuation, see Section 2.2. We give a
counterexample and formulate a refinement of this conjecture.

Secondly, we obtain a constant-factor approximation for the
asymmetric NSW problem under Rado valuations, provided that
the maximum ratio between the weights is bounded by a constant.
Assume the weights w; of the agents fall in the interval [1,y — 1]
for some y > 2.

THEOREM 1.2 (MAIN). There exists a polynomial-time 256y>-app-
roximation algorithm for the Nash social welfare problem with Rado
valuation functions. For additive valuation functions, there exists a
polynomial-time 16y -approximation algorithm.

We note that even if the weights of the agents are bounded,
an O(1)-approximation for the symmetric case does not yield an
O(1)-approximation to the asymmetric case.? Table 1 summarizes
the updated best approximation guarantees for the problem under
various valuation functions. The result of Li and Vondrak [45] gives
a (ei—31)2 ~ 6.8 approximation of the optimum value (but without

providing an allocation) for the cone generated by Rado valuations
in the symmetric case.

Table 1: Summary of the best approximation algorithms for
the NSW problem. Definitions of valuations functions are
deferred to Section 2.1.

l Valuations ‘ Symmetric ‘ Asymmetric ‘
Additive 1.45 (8] O(y) [Theorem 1.2]
SPLC 1.45 [14] O(y®) [Theorem 1.2]
Rado O(1) [Theorem 1.1] | O(y?) [Theorem 1.2]
Subadditive O(n) [7, 15] O(n) [7, 15]
To illustrate this point, consider two items and two agents with weights w; = 2,

wy = 1 and additive valuations v;({1}) = M, v1({2}) = 1, v2({1}) = M + 1,
v2({2}) = 1, where M is an arbitrarily large number. The unique optimal solution to
the symmetric case (by setting w] = w; = 1) is allocating good 2 to agent 1 and good
1 to agent 2. However, this returns an NSW value (M + 1)'/3 for the original weights.
This can be worse by an arbitrary factor than the value M?/3 obtainable by assigning
good 1 to agent 1 and good 2 to agent 2.
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1.1 Main Ideas

Our approach is based on a mixed-integer programming relaxation,
using a careful combination of convex programming relaxations
and combinatorial arguments.

The NSW problem is given with discrete valuation functions
v; : 29 — R, In order to apply convex programming techniques,
we first need to obtain a convex programming relaxation; already
this turns out to be a nontrivial task. As explained in Section 2.2,
gross substitute valuations are the subclass of discrete valuations
where a concave extension can be naturally defined.

Already for additive valuations, the natural relaxation of the
NSW problem has unbounded integrality gap [16]. In order to
formulate a mixed integer program, we identify a set H of n items,
and require that all these items must be integrally allocated. We do
not know if this relaxation can be solved in polynomial time: we
only provide an approximate solution to a further relaxation.

For the set H, we aim to identify the set of the ‘most important’
items. We find the allocation maximizing the NSW value assuming
each agent can obtain just a single item, and select H as the set of
the items chosen in this allocation. This can be efficiently solved
as a maximum weight matching problem. The algorithm in [28]
also starts with such a matching. One cannot commit to assigning
these items to the agents, as it may result in an arbitrarily bad
outcome; the approach in [28] is an intricate combinatorial scheme
with iterated matchings and reallocations to obtain an O(nlog n)
approximation for submodular valuations. Our result implies that
the mixed integer relaxation that requires H to be integrally al-
located has a constant integrality gap, in contrast to the standard
continuous relaxation. As a possible explanation why this may hap-
pen, we make a connection to the approach of Cole and Gkatzelis
[16] showing that all ‘expensive’ items in the spending restricted
equilibrium will be included in H.

We give a detailed exposition of the overall approach and formu-
late the main lemmas in Section 3, split into five phases. Here, we
only give a high-level overview. Phase I selects H as above. Phase
IT approximates the mixed relaxation by another mixed integer pro-
gram (Mixed+matching) that assigns items G \ H fractionally to
the agents, and at most one item from # to each agent. This is not a
relaxation of the original problem anymore, as an optimal solution
may allocate multiple items from # to the same agent. However,
(Mixed+matching) approximates the original mixed within a factor
Y- We note that this is the only part of our reductions that depends
on the bound y.

Solving (Mixed+matching) still does not turn out to be easy. In
Phase III, we find a 2-approximate solution by first solving the
restriction to G \ H—a convex program—then optimally assigning
the items in H subject to this fractional allocation.

All reductions thus far work for general subadditive valuations,
assuming they are given with a suitable concave extension. In
Phase IV we exploit combinatorial properties of the concave ex-
tension of Rado valuations to obtain a sparse solution. We first
show that the restriction of (Mixed+matching) to G \ H has a basic
optimal solution with at most |A| + 2|G \ H| non-zero variables.
We note that this yields an interesting new rational convex program
[65], the first nonlinear example we are aware of with an exponen-
tial number of constraints, given by a separation oracle. We then
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further sparsify the solution to at most 2| A| + |G \ H| non-zero
variables, at the expense of losing at most half of the objective
value.

At this point, we have a mixed integer solution that is not too
far from an integral one. Namely, # is already allocated integrally
and G \ H is allocated to agents fractionally but with at most
2|A| + |G \ H| non-zero variables. Thus, it suffices to fix a suitable
subset of 2|A| fractional variables to zero of the non-zero to obtain
a feasible solution, and round the rest of the variables to 1. However,
this may not be viable for any subset.

In the final Phase V, we make use of the initial choice of H as
the set of items allocated in the best allocation with one item per
agent. Using this property, we carefully recombine the matching
in the mixed assignment and the initial allocation of the items in
H by swapping around alternating cycles. This enables the final
rounding step to obtain an integer allocation.

We note that Phase IV and Phase V are the most involved in
our approach.

1.2 Further Related Work

We briefly mention further results on Nash social welfare, utilitarian
social welfare and max-min welfare.

Nash Social Welfare. NSW has turned out to be the focal point
in fair division. Caragiannis, Kurokawa, Moulin, Procaccia, Shah,
and Wang [12] call the optimal NSW solution ‘unreasonably’ fair
and efficient. The same paper introduces an algorithm for find-
ing optimum NSW allocation, which is deployed on the website
spliddit.org and used for fair allocation of indivisible goods [30].
Approximation algorithms for the NSW also preserve many nice
fairness properties, as shown in [11, 15, 29].

Utilitarian Social Welfare. In this setting, the goal is to find a
partition of the items that maximizes the sum of agents’ valuations.
This problem is straightforward for additive valuations. For gross
substitutes valuations (see Definition 2.1), the optimal partition
corresponds to a Walrasian equilibrium: there exists a price vector
such that each agent receives an optimal bundle at these prices.
Such an allocation can be efficiently computed [32, 39]. Giil and
Stachetti [32] also showed that the converse is essentially true: if a
class C of valuation functions contains all unit demand valuations,
and there exists a Walrasian equilibrium for an arbitrary choice
of valuation functions from C, then C must be a subset of gross
substitutes valuations.

For submodular valuations there is an ;% 1.5819-
approximation algorithm by Vondrak [67] and this is the best possi-
ble [40]. Feige [22] gave a 2-approximation algorithm for the social
welfare problem under subadditive valuations assuming access to
particular demand queries.

€ ~

Max-Min Welfare. In this problem the objective is to maximize
the minimum valuation of any agent. This NP-hard problem can be
seen as an absolute fairness problem and it has been appropriately
named the Santa Claus problem [5]. It is a significant open problem
to obtain a constant-factor approximation for additive valuations:
such algorithms are known only for restricted subclasses of additive
valuations, see Annamalai, Kalaitzis, and Svensson [3], and Davies,
Rothvof3, and Zhang [17]. For additive (resp. submodular) valuations
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the best approximation factor is O(+/nlog® n) by Asadpour and
Saberi [4] (resp. O(n) by Khot and Ponnuswami [41]).

Organization of the Paper. In Section 2 we formally define all the
notation and concepts. Here, we also explain the significance of
the gross substitutes and Rado valuations for the problem and our
approach. In Section 3 we give a rigorous overview of the algorithm
together with main lemmas proof ideas. Sections 4 and 5 contain
more detailed arguments for two phases. Concluding remarks are
given in Section 6.

Many proofs are omitted and for these proofs we refer the reader
to the full version [27]. We have chosen to present the proofs so that
the result in Theorem 1.2 for additive valuations is fully contained.

2 PRELIMINARIES

Throughout, we let G denote a finite set of m indivisible items
(goods), and A a set of n agents. Each of the agents i € A are
equipped with a valuation function v; : 29 — R,. We use the
shorthand notation v;; = v;({j}) to denote the valuation of agent i
for the whole item j.

Given a subset S € G we denote with ys the characteristic
vector of S. For k € N, we let [k] = {1,2,...,k}. A bipartite graph
(U, V;E) has node set U U V and an undirected edge set E C U X V.
For an edge subset F C E, we let dy (F) and dy (F) denote the set of
endpoints of F in U and in V, respectively. A matching from U to V
is represented as a mapping o : U — V U {0} such that for each
i € U with o(i) # 0, we have (i,0(i)) € E, and if o(i) # 0, then
o(i) # o(j) for j # i.

A matroid on a finite ground set V is given as M = (V, I'), where
I < 2" is anonempty collection of independent sets. This collection
is required to satisfy the independence axioms:

(I1) Monotonicity:if X € 7 thenY € 7 forall Y C X, and
(I2) Exchange property:if X,Y € I, |X| < |Y|, then there exists a
y €Y\ Xsuchthat XU {y} € 7.

The rank function r p : 2V — Z, associated with the matroid M
is defined with r 5((X) denoting the size of the largest independent
subset of X C V. A fundamental property implied by (12) is that
every maximal independent set in X has size r 5((X). The value
rm(V) is called the rank of the matroid, and the maximal inde-
pendent sets are called bases. A set X C V is in I if and only if
r(X) = |X|. We refer the reader to [61, Part IV] for matroids and
their role in optimization.

2.1 Valuation Functions

By a valuation function, we mean a function v : 29 — R, with
v(0) = 0. Let us start with two simple examples of valuations. The
function v is an additive valuation if v(S) = }jes vj, and a unit
demand valuation if v(S) = max;cs v; where vj € Ry represents
the value of item j € G.

We now define some basic properties. A function v : 29 — R,
is monotone if v(X) < v(Y) forany X C Y C G, subadditive if

vX)+ou(Y)>ov(XUY) VX, YCG,
and submodular if

vX)+ov(Y)z2ovXNY)+ov(XUY) VX, YCG.
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Additive valuations and unit demand valuations satisfy all the above
properties. Another basic example of submodular functions is the
rank function r q of a matroid M = (V, I). In fact, every integer
valued monotone submodular set function on V with v(X) < |X]|
arises as the rank function of a matroid. Given a weighting g € RY,
the weighted rank function rg(X) is the maximum g-weight of a
maximal independent set in X; this function is also submodular.

Gross Substitute Valuations. For a price vector p € RY and a
subset S C G, we let p(S) = % jcs pj- For a valuation function
v:29 — R,, the utility obtainable at prices p from a set S C G is
o(S) — p(S). The set of optimal bundles at prices p is called demand
correspondence and is defined as the set of bundles maximizing the
utility, i.e.,

D(v, p) := argmax v(S) — p(S) .
SCcG

An important class of valuation functions is gross substitutes valua-
tions, defined by Kelso and Crawford in 1982 [39]:

Definition 2.1. The valuation function v : 29 — R, is a gross
substitutes (GS) valuation if for any p, p’ € RY such that p’ > p and
any S € D(v, p), there exists an S’ € D(v, p’) such that SN {j : p; =
pircs.

That is, if we have an optimal bundle at prices p and increase
some of the prices, then there will be an optimal bundle that con-
tains all items whose price remained unchanged. For a comprehen-
sive survey on GS valuations, we refer the reader to the survey by
Paes Leme [57].

Gl and Stachetti [32] showed that every gross substitutes valu-
ation is submodular. It turns out that gross substitute functions are
intimately connected to discrete convex analysis, a general theory
arising at the intersection of convex analysis and submodularity.

Murota’s book [47] gives a comprehensive treatment of this field.
A central concavity concept on the integer lattice is that of Mb-
concave functions. The definition specialized for valuation functions
(corresponding to the sublattice {—oo, 0}9) is as follows.

Definition 2.2. The function v : 29 — R is an Mb -concave if for
any X,Y C Gandx € X Y,

o(X) +o(Y) < o(X\{xH U Z) +o((Y\ Z2) U {x})

max
ZCY\X,|Z|<1

That is, for any x € X \ Y, the sum v(X) + v(Y) is either non-
decreasing if we move x from X to Y, or the sum is non-decreasing
by swapping x for some y € Y \ X. As established by Fujishige and
Yang [23], these two concepts are equivalent:

THEOREM 2.3 ([23]). The valuation function v : 29 S Ryisa
gross substitutes valuation if and only if it is MB-concave.

This connection has enabled a fruitful interaction between the
areas of mechanism design and discrete convexity, see e.g. [50, 57].

Rado Valuations. The key class of valuation functions for this
paper will be Rado valuation functions, or Rado valuations. We
provide examples and an intuitive interpretation of these valuations
after the definition.

Definition 2.4. Assume we are given a bipartite graph (G, V; E)
with a cost function ¢ : E — Ry on the edges, and a matroid
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M = (V,I). For a subset of items S C @G, the Rado valuation
function v(S) is defined as the maximum cost of a matching M in
(G, V;E) such that (M) C S and oy (M) € 1, i.e,

M is a matching,
dg(M) C S,
Sy(M)e T

0(S) := max Z cle): (1)

eeM

Let us consider the special case where the matroid M is the free
matroid on V, i.e., 7 = 2V. In this case, the matroid constraints
Sy (M) € I are void. The value of a set S it then the maximum
cost matching in the bipartite subgraph induced by S U V. Such
valuations are called assignment valuations by Shapley [62], and
OXS valuations by Lehmann, Lehmann, and Nisan [43].

Shapley [62] gives a nice interpretation of assignment valuations.
Assume that each agent is a company. Furthermore, assume that
the items G are workers and V is the set of jobs within a particular
company. The edge set represents the possibilities (willingness) of
assigning workers to jobs, and the cost cji is value the company
gets by assigning worker j to job k. By the definition of assignment
valuations, the value of a subset S C G of workers for the company
is the maximum possible value the company gets by assigning
workers S to jobs V.

The same interpretation extends to Rado valuations with the
additional possibility that the occupied set of jobs must be an inde-
pendent set in matroid M. For example, the company may partition
the set of all jobs V into certain types, and require that at most one
job of each type to be assigned—a partition matroid constraint.

As another example of Rado valuations, consider the case where
V is a copy of the set of items G, with each j € G having a corre-
sponding j* € V,and let E = {(j,j’) : j € G}.Letg: G — R, and
cjj = gj forall j € G, and let r be rank function of M. In this case
the v(S) equals the weighted matroid rank function ry4(S), i.e., the
maximum g-weight of an independent subset of S.

Assignment valuations and weighted matroid rank functions
are well-known examples of Mb-concave (and, according to The-
orem 2.3, gross substitutes) functions. This is true in general for
Rado valuations.

Lemma 2.5 (Murota [50]). Every Rado valuation v : 29 SR, is
an M8 -concave function.

It is worth noting that in 2003, Frank posed the question on
whether the converse is also true: is the class of M8-concave func-
tions the same as those of Rado valuations?® We use an example
from [43] showing that this is not the case. The main underlying
reason is that this class is not minor closed. We then formulate a
refined conjecture, and mention an earlier conjecture by Ostrovsky
and Paes Leme [56], partially refuted by Tran [63]. For details we
refer to the full version [27].

2.2 Continuous Valuation Functions

The valuation functions v in the Nash social welfare problem are
defined on subsets of G. Our arguments are based on convex re-
laxations, which requires a continuous extension of the valuation

functions to Rf . We provide such an extension for Rado valuations;

3Personal communication by Andras Frank. See also Kazuo Murota’s lecture [48], the
problem sheet [49], and Renato Paes Leme’s lecture [44].
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however, we note that a suitable extension does not even exist for
general submodular valuations.

By a continuous valuation function we mean a continuous func-
tion v : [0,1]9 — R, with 0(0) = 0. We slightly abuse the notation
by using v to denote both discrete and continuous valuations; the
value of a subset S € G of items will be v(ys) = v(S). Extend-
ing notions from discrete valuations, a function f : Rf — Ry
is monotone if f(x) < f(y) forx < y, x,y € R?, and subaddi-
tive if f(x +y) < f(x) + f(y) for any x,y € [0, 119 such that
x+ye [0,1]9 4

Whereas our overall result requires the continuous extension of
Rado valuations, much weaker assumptions suffice for most parts
of the argument, as formulated next.

Assumption 1. For every agent i € A the continuous valuation
function v; : [0, l]g — R, is monotone, concave, and subadditive.

Concave Extensions of Discrete Valuations. For any discrete val-
uation function v : 29 — R4, we can define the concave closure
9:0,1]9 - R, as

?(x):= min
0= m

€eRY,a

R{(p,x)+oc :p(S)+a = v(S),VS C G},

see e.g. [47, Section 3.4]. As the minimum of linear functions, 0 is
always concave. Note that it provides the concave upper envelope
of the function v defined on the discrete set {0,1}9, meaning that
0 < f for every concave function f : Rf — R4 such that v(S) <
f(xs) forall S C G.

We leave it to the reader as an exercise to verify that for an
additive valuation v(S) = X ;s vj, the concave closure is the linear
function o(x) = (v, x).

Whereas the extension ¥ can be defined and is concave for every
valuation function v, evaluating o(x) can be a hard problem. For
example, in the case of submodular valuations, deciding whether
p(S) + a = v(S) holds for all S € G amounts to submodular max-
imization and is thus NP-hard. Computing 9(x) amounts to min-
imization over a polyhedron P where separation is NP-hard; by
the polynomial equivalence of optimization and separation [31], it
follows that evaluating 9(x) is NP-hard for submodular functions
(see also [35, Lemma 6.15]).

Apart from computational hardness, another problem is that
9(ys) > v(S) may be possible for S € G. If 3(ys) = v(S) for all
subsets S C G, then we say that 0 is the concave extension of v, and
that v is concave extensible.

Theorem 6.43 in [47] asserts that all M#-concave functions are
concave extensible, and the converse is also essentially true. This
underlines the importance of gross substitutes/Mf-concave valua-
tions for our approach: this is the subclass of valuations where we
can naturally use convex relaxation techniques. We also note that
for M-concave functions, the concave extension can be evaluated
in polynomial time. This is since, in contrast with general submod-
ular functions, Mb-concave functions can be efficiently maximized
with a simple greedy algorithm.

4The more precise definition would be f(x Vy) < f(x)+f(y) forany x, y € [0, 19,
where x Vy is the pointwise maximum of the vectors x and y. For monotone valuations,
these two definitions are equivalent.
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The Concave Extension of Rado Valuations. For the case of Rado
valuations, we now give an explicit description of the concave
extension by a linear program. This representation of the concave
extension is at the core of the arguments in Phase IV, where we
argue about the existence of a sparse optimal solution of a particular
convex program.

THEOREM 2.6. Consider a Rado valuationv : 29 — R given by
a bipartite graph (G, V; E) with costs on the edgesc : E — R4, and a
matroid M = (V, I') with a rank functionr = r 4 as in Definition 2.4.
Forx € [0,1]9, let us define

v(x):= max Z CikZjk
(,K)EE
s.t: Z Zjp < Xj VieG
kev 2
> zsrT)  VTCV
je€G,keT
z20.

Then, v = O is the concave extension of v, and satisfies Assumption 1.

In the light of this theorem, in the rest of the paper we will
denote by v : [0,1]¢ — R, the continuous Rado valuation defined
in (2).

2.3 Simple Upper Bounds

We will often use the following simple bounds.

Lemma 2.7. Letn,c € N,S C [n], and1 < wy, ..
i€Sletk; € Ry suchthat },;egki < c-n. Then

-

ieS
PrOOF. By the inequality of weighted arithmetic and geometric
means we have:

.,wp < y—1. For

<c-

1/2?:1 wi

I/Zi":l wi nwi wi
(l—[ kiWi) - 1_[ kizizl T 12w
ieS ieS ie[n]\S
s .
< 1;:)1 i an
Sl s Zim Wi
ok
< (y—l)%+l$c-y. ]

i=1 Wi

Lemma 2.8. Letn,c € N, S C [n]. Fori € S letk; € Ry such that

2ieski <c-n. Then
1/n
( ki) <c-elle,

3 OVERVIEW OF THE APPROACH

Let v; be a continuous valuation function and w; > 0 be the weight

for each i € A. Given a fractional allocation x = (x1,...,x,) €
Rﬂxg
T

[

ieS

, we let

l_[ vi(x;) ™

1/ % wi
ieA )

NSW(x) := (
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Then, the asymmetric Nash social welfare program is captured by
the following integer program.

maxNSW(x) s.t. Z xij<1VjeGxe{0,1}f. (NSW-IP)
ieA

Let OPT denote the optimum value. The natural relaxation of
(NSW-IP) is

max NSW(x) s.t. Z xij <1VjeG,x20.
ieA

(3)

The objective is log-concave assuming the v;’s are concave func-
tions. However, Cole and Gkatzelis [16, Lemma 3.1] showed that
this relaxation has unbounded integrality gap already for additive
valuations.

We propose a mixed integer programming relaxation instead
of (3). Consider a set of items H C G. Our mixed relaxation requires
the items in H to be allocated integrally and the rest can be allocated
fractionally.

max NSW(x)
s.t.: Z xij <1 VieGg
ieA (Mixed relaxation)
xij€{0,1} VjeHVieA
x2>0.

This clearly gives a relaxation of (NSW-IP): OPT¢; > OPT where
OPT¢y is optimal value of (Mixed relaxation) for any set of items
H. Theorem 1.2 is shown by constructing an integer allocation x €
{0,1}%G and an item set H such that NSW(x) > OPT¢/(256)°).
This is proved in five phases:

Phase I Find an appropriate item set .

Phase II  Approximate (Mixed relaxation) by another integer
program (Mixed+matching).

Phase III  Find an approximate mixed integer solution to
(Mixed+matching).

Phase IV Find a sparse approximate mixed integer solution
to (Mixed+matching).

Phase V. Round the mixed integer solution to an integer so-

lution.

We note that phases are not necessarily algorithmic phases but also
conceptional reductions of the problem. Regardless, we call them
phases for the sake of presentation. We now give an overview of
all the phases.

3.1 Phase I: Finding the Item Set H

We solve a maximum weight matching problem that achieves the
highest Nash social welfare value under the restriction that each
agent may only receive a single item. This can be achieved by
assigning an edge weight w;; = w; log(v;j) for every i € A, j €
G, and solving the maximum weight assignment problem in the
complete bipartite graph between A and G; we recall the notation
vij = vi({j}). Welet 7 : A — G denote the optimal matching
represented as a mapping, i.e. (i) is the item matched to agent



Approximating Nash Social Welfare under Rado Valuations

i € A.We define H as the set of items assigned by 7, i.e., H := 7(A).
We will refer to this set H as the set of most preferred items.>

The existence of 7 with finite weight proves that the instance
is feasible, i.e., there is a way of allocating one item to each agent
such that agent values the assigned item positively. On the other
hand, if no finite weight matching exists, the optimum value to
(NSW-IP) is 0. Henceforth, we assume without loss of generality
that the optimal NSW is non-zero.

3.2 Phase II: Reduction to the Mixed Matching
Relaxation

We approximate (Mixed relaxation) by a second mixed integer pro-
gram. We use variables y € R“ﬂx(g\ H) representing the fractional
allocations of the items in G \ 7-{. Even though the valuation func-
tions v; are defined on Rf, we use v;(y;) to denote v;(x;), where
x; is obtained from y; by setting x;; = 0 for j € H and x;; = y;;
forje G\ H.

max (

s.t.:

[l

I/Z, wi
wi
(vi(yi) + Uia(i)) )
ieA

D i

ieA
Yij 2 0
o : A — H is a matching.

1

IA

Vie G\H

> Vie G\ H,Vie A

(Mixed+matching)

We will refer to this program as the mixed matching relaxation.
The program (Mixed+matching) differs from (Mixed relaxation) in
two respects. Firstly, the objective differs from NSW(x): for each
agent, the value of each agent in (Mixed relaxation) is given by the
Rado valuation while in (Mixed+matching) we evaluate the utility
of each agent separately on H and G \ H and take the sum of
these two values. Secondly, and more importantly, we require that
the items in H are allocated to the agents by a matching. Unlike
(Mixed relaxation), this will not be a relaxation of (NSW-IP): the
optimal integer solution may allocate multiple items in H to the
same agent. We show that the effect of both these changes is limited.
Let (y, o) be a feasible solution to (Mixed+matching). We define
NSW(y, o) as the objective function value in (Mixed+matching),
and let OPT¢; denote the optimum value. Let us define NSW(y, o)
as the Nash social welfare of the same allocation. Namely,
NSW(y,0) = NSW(x), where x;; = y;j if j € G \ H, and for
Jj € H we have x;; = 1if j = o(i), and x;; = 0 otherwise. The next
lemma is an easy consequence of monotonicity and subadditivity.

Lemma 3.1. For a feasible solution (y, o) to (Mixed+matching), we
have

_ 1—
NSW(y, 0) = NSW(y, o) > ENSW(y, o).

Proor. We have NSW(y, o) > NSW(y, o) by subadditivity. By
monotonicity: 2NSW(y, o) > NSW(y, 0)+NSW(0, o) = NSW(y, o).
|

SInterestingly, in case of symmetric agents endowed with additive valuations the set
H contains all items with price at least one in any spending restricted equilibrium as
in [16].
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Using this lemma, as well as Lemma 2.7, we can relate the opti-
mum values and approximate solutions of (Mixed relaxation) and
(Mixed+matching).

THEOREM 3.2. Let H C G with |‘7—(| |A|. For the optimum val-
ues OPTq¢y to (Mixed relaxation) and OPT(H to (Mixed+matching),
we have

— 1
OPTy > — OPTy.
Y
Let (y,0) be
(Mixed+matching)
NSW(y,o) >
additive, then the stronger bound NSW(y, o) >

an a-approximate optimal solution to
that is, NSW(y,0) > LOPTg. Then,
Zay OPTyy. If the valuation functlons v; are
OPTqy applies.

0{

ProOF. We first show that OPT¢; > % OPT¢y. Let x be an opti-
mal solution to (Mixed relaxation). For each agent i, let K; be the set
of items agent i receives from H under x; and let y be the restriction
of x on G \ H defined as y;; = x;j for j € G \ H and y;; = 0 other-
wise. Let k; := |K;|. Denote with S the set of agents that receive at
least one items from H, ie., S = {i € A : k; > 1}. For each agent
i € Slet o(i) = maxjek,{vij}, and define o(i) = @ fori € A\ S.
Then, (y, o) is a feasible solution of (Mixed+matching). In other
words, (y, o) is obtained from x once each agent i € S discards all
items from K; except the most valuable one. By monotonicity and
subadditivity, for all i € S, we have

vilxi) S viy) + Y, vij < ki (0iY) + Vig(p) -

JEK;
Therefore,
T shor
NSW(x) (e i ()Y i [ =
NSW(y, 0') ieS (vi(y) + vzo‘(z))wl ics !
Moreover, }};cs ki < |H| = |A| = n. Then, the bound follows by

OPTy _ NSW(x)

OPTy NSW(y, o)
theorem follows by Lemma 3.1.

Lemma 2.7 and since —— . The second part of the

[m]

3.3 Phase III: Approximating the Mixed
Matching Relaxation

Our next goal is to find a 2-approximation solution to
(Mixed+matching); we do not know whether this problem is
polynomial-time solvable. By Theorem 3.2, this yields a (4y)-
approximation to (Mixed relaxation).

Let us first remove all items in H. Some agents may only value
positively the items H. We let A’ the subset of agents who have pos-
itive values for the items G \ H, that is, A’ := {i € A : v;(G\H) >
0}. Consider the “naive” relaxation (3) on the instance restricted to
A’ and G \ H, and taking the logarithm of the objective

> wilog(wi(yi)
ieA’
Z yij <1
ieA
y=0.
This is the classical Eisenberg—Gale convex program that com-
putes an equilibrium in Fisher markets with divisible items for

Vie G\'H (EG)
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homogeneous concave valuation functions [20]. Given an optimal
solution y* € Rf‘ XG\H) of (EG)

solution to (Mixed+matching).

we can find an approximate

THEOREM 3.3. Let H C G with |H| = |A|. Let #* be maximum
weight assignment in the complete bipartite graph between A and

H, with edge weights w;; = w; log (vi(y:‘) + vij) forie A, jeH.
Then, NSW(y*, 7*) > $OPTyy.

Theorem 3.3 is an immediate consequence of the following
lemma.

Lemma 3.4. Let H C G with |H| = |A|. Let « > 0 and y* be
an optimal and y a feasible solution of (EG) such that vi(y;) >
évi(y;k) foralli € A’. Let & be maximum weight assignment in
the bipartite graph with colour classes A and H, and edge weights
wij = wilog (vi(yi) + vij) fori € A, j € H. Then,

_ 1 —
NSW(y, 7) > —OPTy.
(y, ) P H

Since valuations v; are concave, (EG) is a convex program. For
any ¢ > 0, we can find an (1—¢)-approximate solution in polynomial-
time, where the running time depends on log(1/¢). It turns out that
approximation of the objective function might not be enough. In
Lemma 3.4 we require an agent-wise approximate solution: each
agent gets at least a constant fraction of her value in the optimum.
It is not clear if finding such agent-wise approximation is possible
in polynomial time for general concave valuations v;, but as we
will see in the next section we can find an exact optimal solution
for Rado valuations.

The proof of Lemma 3.4 is deferred to Section 4. It does not
depend on the choice of H but only requires |H| = |Al.

3.4 Phase IV: A Sparse Approximate Solution
for the Mixed Matching Relaxation

In this section we exploit the properties of Rado valuations. As-
suming the agents have Rado valuation functions, we can find an
approximate solution of (Mixed+matching) with a strong sparsity
property. Even though the approximation ratio is weaker than given
in Theorem 3.3, sparsity will be essential for the rounding in Phase
V.

THEOREM 3.5. Suppose the functions v; are Rado valuations. Let
H C G with |H| = |A|. We can find a feasible solution (y, rr) to
(Mixed+matching) such that

(i) NSW(y, 7) > 0PTyy,
(ii) supp(y) < 2| A+ LT where LT = {j € G\H : Xiea yij >
0}, that is, L is the set of allocated items in y.

Moreover, for additive valuation functions, we can strengthen (i) to
NSW(y, o) > 1 OPT¢y and (ii) to supp(y) < |A| + | L7].

Let us start with the special case of additive valuations. In this
case, an exact solution y* to the Eisenberg-Gale convex program
(EG) can be found in strongly polynomial time [55, 66].

THEOREM 3.6. Assuming the valuations v; are additive, we can
find an optimal solution y* of (EG) in strongly polynomial time such
that the support supp(y*) is a forest.
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The claim on the support follows easily by showing that any
cycles in supp(y*) can be eliminated, see e.g., [16, 19, 55]. Conse-
quently, |supp(y*)| < |A’| + | L] — 1. Together with Lemma 3.4,
this proves the statement in Theorem 3.5 for additive valuations.

For Rado valuations, we first prove that an optimal solution
of (EG) can be found in polynomial time. We first show that this
is a rational convex program, and use the variant of the ellipsoid
method for rational polyhedron [31].

Lemma 3.7. Suppose that for each agent i € A, v; is a Rado
valuation given by a bipartite graph (G, Vi; E;), integer costs ¢; :
Ei — Z and a matroid M; = (V;,1;) as in Definition 2.4. Let
T = max;eq |Vi|, and C = maxje 7 ||ci||co- Let the weights w; > 0
be rational numbers given as quotients of two integers at most U.
Assume the matroids M; are given by rank oracles. Then, (EG) has a
rational solution with poly(|A|, |G|, T,log C,log U) bit-complexity,
and such a solution can be found in poly(|A|, |G|, T,log C,logU)
arithmetic operations and calls to the matroid rank oracles.

Our next lemma shows that any feasible solution to (EG) can
be sparsified by losing at most the half of the value for each agent.
This is achieved in two steps, using the sparsity of basic feasible
solutions to linear programs. Half of the valuation may be lost
in the second step, where for the fractionally allocated items we
aim to remove one of the fractional edges. The set to be deleted is
identified by writing an auxiliary linear program.

Lemma 3.8. Suppose the functions v; are Rado valuations, and let
7 be a feasible solution to (EG). Then, in polynomial time we can find
a feasible solution y such that
(i) vi(y) > 3vi(D),
(ii) |supp(y)| < 2|A’| +|L7| where
LT =LY ={eG\H: Zica yij > 0}.

By combining Lemmas 3.4, 3.7, 3.8, we obtain Theorem 3.5 for
Rado valuations. For the proofs of Lemmas 3.7 and 3.8 see [27].

3.5 Phase V: Rounding the Mixed Integer
Solution

For this phase of the algorithm, we require a sparse approximate
solution as in Theorem 3.5, and exploit the choice of H as the set
of most preferred items in Phase I. We start with a mixed integer
solution (y, rr) as in Theorem 3.5. By a reduction of (y, 7r) we mean a
mixed integer solution (y”, 7) obtained as follows. For each j € L7,
we pick an arbitrary agent k(j) € A such that y,(j); > 0. We set
y;(l.)j = yy(j)j> and set y;j = 0 if i # k(j). By the bound on supp(y),
this amounts to setting < 2|A| values y;; to 0. The proof of the
next lemma is given in Section 5.

Lemma 3.9. Let H be the set of most preferred items, and let (y, )
be a solution to (Mixed+matching) as in Theorem 3.5. Let (y", 7) be a
reduction of (y, ir). Then in polynomial-time we can find a matching
p: A — H such that

___ 1 —
NSW(y", p) = —NSW(y, 7).
32y

Further, if the valuations are linear, then we can find a matching
p: A — H such that NSW(y", p) > §NSW(y, ).
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Such a matching p can be found by combining the matching 7
in the solution (y, ), and the initial matching z from Phase I that
delivers the highest NSW value such that every agent may receive
only one item. We swap from 7 to 7 on certain alternating paths
and cycles.

We are ready to prove the main results.

THEOREM 1.2 (MAIN). There exists a polynomial-time 256y>-app-
roximation algorithm for the Nash social welfare problem with Rado
valuation functions. For additive valuation functions, there exists a
polynomial-time 16y -approximation algorithm.

Proor. From Theorem 3.5 and Lemma 3.9, we can obtain a solu-
tion an (128y?)-approximate solution (3", p) to (Mixed+matching)
such that for each item L* there is exactly one incident edge in
supp(y”). We can obtain a 0-1 valued solution x to (NSW-IP) by
assigning each item in H according to p and each item j € £L* to
the unique agent i with yirj > 0. Clearly, NSW(x) > NSW(y", p).
We obtain NSW(x) > OPT¢/(256y%) > OPT/(256y*) using Theo-
rem 3.2. For additive valuations, we use the stronger bounds in the
same results. ]

The proof of Theorem 1.1 follows exactly as the proof of The-
orem 1.2 once we replace y by e'/¢. Sucha change is justified as
in the symmetric case we can use Lemma 2.8 instead of the bound
given by Lemma 2.7.

4 PHASE III: APPROXIMATING THE MIXED
MATCHING RELAXATION

Phase III presents a general way of obtaining a 2-approximation
to (Mixed+matching). By Theorem 3.2, this gives a (4y)-
approximation to (Mixed relaxation), a mixed integer relaxation
of the ANSW problem.

In (Mixed+matching), we need to allocate items G to the agents
in A in order to maximize an objective function that is an approxi-
mation of the NSW. Items in G \ H can be allocated fractionally
to the agents without any constraints. The items in H have to be
allocated integrally via an assignment, thereby allocating exactly
one item from H to each agent A.

While the exact computational complexity of (Mixed+matching)
remains unresolved, we show that we can 2-approximate it.

Denote £ = G \ ‘H. Let A’ be the subset of agents that have
positive value for the items in G\'H, A’ := {i € A : v;(G\H) > 0},
as some agents may only have positive value for the items in H.
Restricting (Mixed+matching) to the items £ and agents A’ and
taking the objective yields an instance of (EG):

max Z w; logvi(y;)

ieA
st Dyt vjeL
ieA
yij =20 VjEL,ViEﬂ',

The above is a convex program whenever the valuations v;(.) are
concave, and we can solve it to an arbitrary precision in polynomial
time if we have access to a supergradient oracle to the objective
function.
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On the other hand, suppose that in (Mixed+matching) the vari-
ables y are fixed. Under the fixed y, we can find an optimal as-
signment o. Namely, an optimal assignment is exactly a maxi-
mum weight assignment in the bipartite graph (A, H; E) where the
weight of an edge ij for i € A, j € H is w;j := w; log(vi(yi) + vij).

Informally, (Mixed+matching) is a combination of two tractable
problems. We show that an optimal solution y* to the restriction of
the problem to £ and A’, and an optimal assignment with respect
to the fixed y* gives a 2-approximation for (Mixed+matching).

In Section 4.1 we discuss the restriction of the problem to £ and
A’ and give a technical lemma. The main result of the section is
presented in Section 4.2.

4.1 Properties of Eisenberg—Gale Program

Let us now consider the Eisenberg-Gale program (EG). For concave
valuations v;, the above is a convex program. An optimal solution y*
and the optimal Lagrange multipliers p; for j € .L can be interpreted
as the so-called Gale equilibrium in the market with divisible items
L, agents A’, and where agent i has valuation v; and budget w;.
In particular, y* represent the allocations and p; for j € L, specify
the prices in the market equilibrium, see e.g., [26, 52]. In case of
additive (or more general homogeneous) valuations this can be
used to find a Fisher equilibrium, since Fisher and Gale equilibria
coincide under homogeneous valuations [21, 52].

Lemma 4.1. Let y* be an optimal solution to (EG) with additive
valutaions. Then for any feasible solution y’ and any A" C A’ it
v;(y})

holds ZiEﬂ” Wlm < Zie&’{’ Wi .

Proor. By scaling we may assume that v(y*) = w;. Hence, we
need to prove ;e 77 vi(y]) < Yiea v(y"). As y* and p form a
Fisher equilibrium, the previous inequality holds by the first welfare
theorem. O

For general monotone concave valuations, we will use a more
general technical lemma which we state without the proof.

Lemma 4.2. Let y* be an optimal solution to (EG). Then for any
feasible solutiony’ and any A" C A’ it holds

vi(y]

Z Wiﬂﬁ Z wi + Zwi.

ieA” vl(yi ) ieA” ieA’

4.2 The Approximation Guarantee for the
Mixed Matching Relaxation

Lemma 3.4. Let H C G with |H| = |A|. Let « > 0 and y* be

an optimal and y a feasible solution of (EG) such that v;(y;) >

L0i(y}) foralli € A’. Let w be maximum weight assignment in

the bipartite graph with colour classes A and H, and edge weights

wij = wilog (vily:) + vl'j) forie A, jeH. Then,

_ 1 ——
NSW(y, 7) > —OPTy .
o

Proor. Let 7* be a maximum weight matching in the bipartite
graph with colour classes A and H and with edge weights g} =
w; log(vi(y*) + vij). Equivalently, 7* is a matching maximizing

wi 1/ Yiea Wi
( 1_[ (Ui(yf) + Uirr*(i)) ) .

ieA
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We have the bounds
__ __ 1—
NSW(y, ) > NSW(y, 7*) > ENSW(y*,JT*). (4)

The first inequality is by the definition of 7 as the maximum weight
matching. The second inequality follows from the assumption
vi(y;) = évi(y?) for eachi € A’

The rest of the proof is devoted to proving that NSW(y*, 7*) >
%WF«H; together with (4), this implies the statement. Let us intro-
duce some notation. For an agent i € A, let Y] = v;(y]) be the
value agent i gets from the optimal fractional bundle y*. Then,

1/ Ziea wi
NSWy' ) = | [ [ +omea)™ [] oy,
ie A’ icA\A/

Let (y’,0) be an optimal solution achieving OPT¢;. For an
agent i € A let Y; = v;(y]) be the value agent i gets from
the fractional allocation y’. Then OPT¢; = NSW(y’,0) =

1/ Yiea wi
([—[ieﬂ(Yi + vig(l-))wi) T By definition of the set A’, the

agents in A\ A’ do not value the items in L. Thus, by monotonicity

1T iea wi
NsW(' o) =| [ [ Citoie)™ [ ooty
€A e A\A
By the choice of 7*, we have W(y*, ) 2 W(y*, o) where
1Zieawi
NSW o) =| [ [ +oie)™ [] o)

ieA’ ie A\A’

Combining the last two we have:

E— i\ Ziea wi
NSW(y',0) _ Yi+ v | .
NSW(y*, ) ~ \;eq \ Y7 + Violi) '

Let A” = {i € A’ : Y; > Y]} be the set of agents that get
more value from y’ than y*. Then, for i € A’ \ A" the fraction
Yi + v,
;—19(1) is trivially bounded by 1. On the other hand, fori € A"’
Yi' + ig(i)
Yi+Vio() _ Yi

we have < T Since OPTqy = NSW(y’, o) it follows

i+ vig(i) i

— i\ 1/ Diea wi

OPTyy < Yi + ig(i) v o
NSW(y*, 7%~ e \¥i +2ie)

IA

( 1_[ (ﬁ)wi)l/ZieAwi
iear \Yi

We claim that the last expression is bounded by 2. By Lemma 4.2 we
have Zieﬂ” Wi % < Zieﬂ” Wi +Zi€ﬂ’ Wi. Then by the inequality

between weighted arithmetic and geometric mean we have

Y.
Ziear Wiyr + Liea\ar 1
1

Y; )Wi/ZieJ( wi .

ie:ﬂ”(Yl'* DieA Wi
< Yiear Wi+ Dieq wi + A\ A"
B YieA Wi

The lemma follows. O

<2.

Garg, Husi¢, and Végh

5 PHASE V: ROUNDING THE MIXED
SOLUTION

We present the rounding for a sparse solution of (Mixed+matching).
We recall that by sparse we mean a feasible solution (y, )
of (Mixed+matching) satisfying: supp(y) < 2|A| + |£L"|, where
LY ={je G\ H: Yiea yij > 0}.

Such a sparse solution is rounded by setting 2|A| positive vari-
ables in y to 0, i.e., a reduction of (y, 7) and allocating the items
according to the support of the reduction. Formally, by a reduc-
tion of (y, r) we mean a mixed integer solution (y", 7) obtained
as follows. For each item j a fraction of which is allocated by y
(ie., j € L), we pick an arbitrary agent k(j) getting the item (i.e.,
Yr(j)j > 0)- We set y;(},)j = yy(j)j» and set yl.rj =0if i # k(j). In
words, the agent k(j) keeps getting the same amount in reduction
and no other agent receives any part of item j. By the bound on
supp(y), this amounts to setting < 2|A| values y;; to 0. Looking at
the reduction from the agents perspective: let d; be the number of
items agent i lost by reduction, i.e., the number of items j for which
y;j > 0 and yi’j = 0. Then, )};ca di < 2|A|.

The reduction (y", ) might have an arbitrarily worse objective
value than (y, ) (e.g., if for agent i we have v; ;(;) = 0 and reduction
sets y! = 0), but we show that we can find a different assignment
p such that (y", p) is only worse by a constant factor than (y, ),
no matter how the reduction is carried out. The assignment p is
obtained as a combination of 7 (the assignment obtained in Phase
I) and 7.

For a fixed reduction and the values d;, p and its properties are
given by the following lemma.

Lemma 5.1 (Key rounding lemma). Let H be the set of most pre-
ferred items, (y, 7r) a feasible solution to (Mixed+matching), and let
di € N,(d; > 1) foreachi € A. In O(|A|) time, we can find an
assignment p such that

1 Zieqa wi
) NSW(y, r)

—_— 1
NSW(y, p) > = (l_l(di 1)
2\
ieA
and for each i € A it holds either
(@) vipai) = 7-0i(yi), or
(b) for each j € L it holds vi; < ﬁ(v,—(y,—) + Vip(i))-

Intuitively, the above lemma states that starting with a feasible
allocation y, we can find an assignment p that might have smaller
NSW(y, p) than NSW(y, ) but has the following nice property for
each agent i € A:

e In case (a), i values the item p(i) at least as she values a
1/d; fraction of y; (and thus at least a 1/(d; + 1) fraction of
vi(yi) + vip(i))- Hence, agent i keeps a 1/(d; + 1)-fraction of
her value just by keeping p(i) even if we can take away all
items i gets from L.

o In case (b), every item £ has a small value for i when com-
pared to the combined value of y; and p(i). That is, i values
y; and p(i) significantly more than any d; items combined
from L. Looking at it from the other side, even if we were
to take away any d; in L items from i she will still keep a
fraction of the value.
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The essence of both cases is that the reduction will not hurt the
agent too much. Before we present the proof of Lemma 5.1, we
show that this is enough to prove Lemma 3.9.

Lemma 3.9. Let H be the set of most preferred items, and let (y, )
be a solution to (Mixed+matching) as in Theorem 3.5. Let (y", 7) be a
reduction of (y, ). Then in polynomial-time we can find a matching
p: A — H such that

I 1 —
NSW('.p) > oo NSW(w. ).

Further, if the valuations are linear, then we can find a matching
p: A — H such that NSW(y", p) > %NSW(y, ).

Proor oF LEMMA 3.9. We first prove the lemma for the general
case. Let y" be any reduction of y and let d; be the number items
agent i lost in reduction. By sparsity in Theorem 3.5 we have
Zieadi <2|A|

We use Lemma 5.1 to obtain p. Note that Lemma 5.1 requires
d; > 1sowe define d; = max{1, d;}. Thus, now we have the bound
Zieﬂ(ai +1) < 4|A|. Let p be the matching obtained by Lemma 5.1
given d;’s and y. By Lemma 2.7 we have that

(]‘[ @+ 1™

iceA

1/ Ziea wi
> —.

Thus, NSW(y, p) > %NSW(y, ). By the same

suffices to show that NSW(y",p) >

YieA Wi —— .
) NSW(y, p). We do so, by showing

inequality, it

(nieA(Ei + 1)V

that for each i € A it holds v;(y]) + v;p(;) = ﬁ(vi(yi) + Vip(i))-

By Lemma 5.1 for agent i we have either (a) or (b).
(a) In this case we have aivip(i) > vi(y;). Thus, vy
ﬁ(vi(yi) + Uip(,-)). Consequently, v;i(y]) + Vip(i)

vV v

ﬁ(vi(yi) + Vip(i))-

(b) We have v;; < ﬁ(vi(yi) +0jp(i)) for all j € L. Denote

with D; the set ofldi items j for which y;; > 0 and yirj =0.

By subadditivity v;(D;) < }jep, vij- Therefore, v;(D;) <
di Ei

m(vi(yi) + vip(i)) < m(vi(yi) +Uip(i))~ Hence, v;(y;)—

0i(Di) + V(i) 2 %(vi(yi) +0jp(3))- By subadditivity and

i+1
monotonicity we have v;(y]) > v;(y;) — vi(D;), proving in

this case as well that v; (y]) + v; ;) 2 ﬁ(vi(yi) + Vip(i))-

The lemma follows.

For additive valuations, we recall Theorem 3.6. It gives us an
optimal solution of (EG) that is supported on a forest in which each
tree contains an agent. In particular, this implies a nice property
for the reductions of y. Namely, we can choose a reduction y” in
which d; < 1 for each agent i € A. Such a reduction is obtained
by rooting each tree of the forest at an arbitrary agent and letting
Kk(j) to be the parent agent of item j. Informally, each agent loses at
most one item. Therefore, Ei = 1for all i € A. The lemma follows
by Lemma 5.1.

The proof of Lemma 5.1 is presented in the following section.
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5.1 Constructing the New Matching

Recall Phase I where we defined 7 as an assignment maximizing
(nieﬂ v:;i(i)) and H the set of items assigned by 7. We number the
agents A = {1,2,...,n},and renumber the items H = {1,2,...,n}
such that 7 = {(i,i) : i € A}. In other words, 7 assigns item i € G
to agenti € A.

Intuition. We are given a feasible solution (y, )
of (Mixed+matching) and 7. For the sake of illustration as-
sume that by using the matching 7 instead of 7 we don’t lose too
much in the objective, i.e.,

1/ Zieawi
) NSW(y, 7).

NSW(y, 7) > (l_[ (di + 1)~
ieA
In this case, each agent i gets the item i from . Let us show that
under the above assumption we can set p = 7, i.e., that for each
agent i either (a) or (b) holds.

Claim 5.2. Leti € A. Then either vj; > %vi(yi) orforanyje L
it holds v;; < ﬁ(v,j + vi(yi))

Proor oF CrLaim. By the optimality of 7 it then holds v;; > v;;
forallje L. Ifv;; > #vi(yi) then (a) holds. Otherwise, we have
that d;v;; < v;(y;). Combining it with v;; < v;;, we have that

(di + Doij < (di + Doii < 0i(yi) +vii = 0i(Yi) + Vir)- N

Therefore, our goal is to construct p by “replacing” as much of
7 with 7 without losing too much in the objective. By Claim 5.2 for
any agent for which p(i) = (i) we will have either (a) and (b). We
formalize this idea below, and give a way of constructing p such
that even when p(i) # 7(i) still we have either (a) and (b).

Algorithm. Let (y, 7r) be a feasible solution of (Mixed+matching).
We denote with Y; the value agent i gets in y, i.e., Y; = v;(y;). We
construct new assignment p by combining 7 and 7. In particular,
whenever (i) = (i) then we set p(i) := 7(i) = (i) and otherwise
exactly one of the following will be the case: p(i) = (i), p(i) = 7 (i)
or p(i) = 0. Notation p(i) = 0 represents the case that i is not
allocated any item from . (Formally, we can allocate one item to
each agent since |H| = |A| but as some agents might value some
items at 0 it is simpler to say that agent is not allocated an item by
p)

Consider the symmetric difference of the two assignments 7Az.
Each component is an alternating cycle; we consider the compo-
nents one-by-one. Take any component C of 7Ar with ¢ agents
and c items. Let the agents in the component be ay, az, . . ., ac. The
numbering is modulo c: a.,x = ai for all k € Z. By the con-
vention on the numbering, the corresponding items are also num-
bered aj,ay, ..., ac, and (ag, ar) € t for all k € [c]. We order the
agents around the cycle such that (ag, ar_;) € n for all k € [c]. Let
B:=B(C) ={t €[c] : Y4, > da,Va,a,_, }- We consider two cases
based on the size of B:

|B| = 0. In this case we set p(a;) = m(a;) = as—1 forall ¢ € [c].

|B| > 1. First, we trim by setting 7(a;) = 0 for each t € B. We have
Ya ara .
# < 2for eacht € Bsincedg, > 1.In words, each
ay

agent losses at most half of her value.

1422
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After trimming r, the connected component C decomposes
into several alternating paths. Consider one such path, start-
ing in agent a; and ending in item a,. It follows that k € B
and t ¢ Bforall k <t < r. We consider the following
ratio that measures the change in the objective value by
augmenting 7 over the previously mentioned path:

I

If it holds that ¢(C, k,r) < H;;Ilc(daf + 1)¥at then we say
that the interval [k, r] is reversible. Moreover, we set p(a;) =
t(as) = a; forallk <t < r.If [k, r] is not reversible then we
set p(ar) = 0 and p(a;) = w(a;) = a; forallk <t < r. We
do the same for every augmenting path.

r

Yak Vasa;q + Yat

o(C, k,r) := (

Vagar T Ya, Vasa; + Ya,

t=k+1

To prove Lemma 5.1, we first show that by changing the assign-
ment from 7 to p the objective value of (Mixed+matching) cannot
decrease by too much.

Lemma 5.3. The assignment p can be constructed in linear time (in
n), and it holds

Proor. It suffices to prove the lemma for each of the connected
components C of wAz. For |B| = 0 the lemma holds trivially. So
assume that |B| > 1 for the rest of the proof.

The procedure terminates in linear time, as we only require one
pass through the agents and items in C. To prove the bound on
NSW(y,p)
NSW(y, )
“before averaging” decreases at most by factor 2"« [1;_;(da, +
1)War,

If interval [k, r] is not reversible, then the change in the objec-
+Yq K )W“k

NSW(y, 7) _
NSW(y.p)

2+ [ @i+

)I/Zieﬂ wi
ieA

, we show that for every interval [k, r] the objective value

Yagag_q
Yak
a; with t € [k + 1,r], we have p(a;) = n(a;), and p(ar) = 0.
Since k € B, it follows that Y4, > dg; vapa;_, = Vapa_,- Thus,
Yak
( )
Vasa;y T Yat

( Vagap_; Yy )W“’f
If, on the other hand, [k, r] is reversible, then the difference in
the objectives is captured by
)
Vagap, + Yai Ya,
Ya,

tive function is captured by ( , as for every agent

< 2Yak

r

1

t=k+1

)wak Ir[ (
t=k+1
As [k, r] is reversible

2l

[1
< b ]L[(da, +1)War |
t=k

Yayag-1 + Yak Vasa,q t Yat

Varap + Ya; Va,a, + Ya,

| -

)Wut

Vagar T Ya, Va,a, + Ya,

_ Yak Vasapq + Yat

o(C,k,r) T 7
Varar * Yay t=k+1 Yasa; t Ya,
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. . v +Y,
Since k € Band d,, > 1 we again have W < 2. Hence,
ag

the change in the objective value is bounded by 2™ - T]/_, (dg, +
1)War, O

It is left to show that for each agent i either (a) or
that Y; = v;(y;).

(b) holds. Recall

Lemma 5.4. Leti € A. Then we either have
(@) vipgiy 2 dlivi(yi), or
(b) for eachj € L it holds vi; < ﬁ(vi(yi) + Vip(i))-

To prove the lemma we use the following simple claim, which
can applied to any agent i ¢ B:

Claim 5.5. For any agenti € A, if Y; < divjy(;), then

Vig(i) + Vi - (di + Dviq(i

Vii

vii + Y

Proor oF LEMMA 5.4. If p(i) = i, that is, agent i receives the
same item in p as in 7 then the lemma follows by Claim 5.2. For the
rest of the proof we assume p(i) # i. Hence, either p(i) = z(i) or
p()=10

We consider the component C of 7Ax containing an agent i. We
use the notation as before, denoting the agents in Cby ay, az, . . ., ac,
and letting i = ay.

If p(ag) = m(ay) = ap_; then for i it holds (a). Namely, p(ay) =
aj_1 implies that k ¢ B as otherwise this would be trimmed. Thus

> -1y,

Yo, < da,Vaga,_,; or equivalently vg, g, = 7, Yay-
k

If on the other hand p(ay) = 0, we have that k € B and also that
the interval [k, r] with starting and k and ending in r that corre-
sponds to some alternating path in C is not reversible (otherwise,
p(ag) = ag). Therefore, (C, k,r) > [1}_,(dq, + 1)" . Recall that
for each such considered interval we have k € Band t ¢ B. Starting
with [—[;:k(da, +1)War < @(C, k, r) and then by Claim 5.5 we obtain

1< ﬁ(da, 1) Ve . ( )Wak . ﬁ( )Wut
t=k t=2
< (dg, +1) ™k - ( )Wak ﬁ(
t=2

il

By the optimal choice of 7, for every j € £ we have

™

Combining the last two inequalities, we obtain Y, > (dg; +1)vg, ;.
Hence, in this case (b) holds, by recalling that i = a and p(ag) =
0. O

Yak Vasa,q t Yat

Va,a, + Ya,

)Wat
)Wut

Vagar T Ya,

Y,

agk Yasa;—

Vagay + Yay Ya,a,

We further bound

Yo, Yayj VYa;a;-

1< (dak + l)_wak . ( >
ara;

Varj Yapax

Yayay Ya,a;

Yayj VYa,a;
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6 CONCLUSIONS AND FUTURE WORK

We have given a constant factor approximation algorithm for the
Nash social welfare problem with Rado valuations, assuming that
the weights of the agents are bounded by a constant. Rado val-
uations form a broad subclass of gross substitutes valuations. It
remains open to obtain a constant factor approximation for the
entire class of gross substitutes valuations, and for even more gen-
eral classes, such as submodular valuations. The other main open
question is to remove the assumption of bounded weights, that is,
to obtain a constant factor independent of the parameter y.

We note that for subadditive valuations, Barman, Bhaskar, Kr-
ishna, and Sundaram [7] gave an O(n)-approximation and showed
that this is essentially tight: an O(n!~¢) approximation would re-
quire an exponential number of oracle queries for any fixed ¢ > 0.

The algorithm is based on a mixed integer programming relax-
ation, and decomposes into a number of phases. Most reduction
steps are applicable for the general subadditive setting. We only
require Rado valuations for Phase IV, to obtain an approximate
solution with a small support. The factor y only appears in the
reduction in Phase II, where we restrict each agent to receiving
only a single item from the set /. Besides extending the result to
more general settings, there is much scope for improving the ap-
proximation factor by using tighter analyses and amortizing across
the different phases.

For example, we expect that a (mild) extension to budget-Rado
valuations should be achievable. Similarly to [14, 25], this means
Rado valuations with a cap on the maximum obtainable value for
each agent. This only requires a slightly more careful argument in
Phase IV.

Our work also highlights Rado valuations as an interesting class
of gross substitutes valuations; this could be relevant also for other
problems in mechanism design: it is a broad class including most
common examples such as weighted matroid rank functions and
OXS valuations, yet it has a rich combinatorial structure that can
be exploited for algorithm design.
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